
Complexity Analysis of a Trust-Funnel Algorithm for
Equality Constrained Optimization

Frank E. Curtis

Department of Industrial and Systems Engineering
Lehigh University, Bethlehem, PA, USA

Daniel P. Robinson

Department of Applied Mathematics and Statistics
Johns Hopkins University, Baltimore, MD, USA

Mohammadreza Samadi

Department of Industrial and Systems Engineering
Lehigh University, Bethlehem, PA, USA

COR@L Technical Report 16T-013

COMPLEXITY ANALYSIS OF A TRUST FUNNEL ALGORITHM1

FOR EQUALITY CONSTRAINED OPTIMIZATION⇤
2

FRANK E. CURTIS

†
, DANIEL P. ROBINSON

‡
, AND MOHAMMADREZA SAMADI

†
3

Abstract. A method is proposed for solving equality constrained nonlinear optimization prob-4

lems involving twice continuously di↵erentiable functions. The method employs a trust funnel ap-5

proach consisting of two phases: a first phase to locate an ✏-feasible point and a second phase to6

seek optimality while maintaining at least ✏-feasibility. A two-phase approach of this kind based on a7

cubic regularization methodology was recently proposed along with a supporting worst-case iteration8

complexity analysis. Unfortunately, however, in that approach, the objective function is completely9

ignored in the first phase when ✏-feasibility is sought. The main contribution of the method proposed10

in this paper is that the same worst-case iteration complexity is achieved, but with a first phase that11

also accounts for improvements in the objective function. As such, the method typically requires12

fewer iterations in the second phase, as the results of numerical experiments demonstrate.13

Key words. equality constrained optimization, nonlinear optimization, nonconvex optimization,14

trust funnel methods, worst-case iteration complexity15

AMS subject classifications. 49M15, 49M37, 65K05, 65K10, 65Y20, 68Q25, 90C30, 90C6016

1. Introduction. The purpose of this paper is to propose a new method for17

solving equality constrained nonlinear optimization problems. As is well known, such18

problems are important throughout science and engineering, arising in areas such as19

network flow optimization [24, 30], optimal allocation with resource constraints [11,20

25], maximum likelihood estimations with constraints [23], and optimization with21

constraints defined by partial di↵erential equations [1, 2, 31].22

Contemporary methods for solving equality constrained optimization problems23

are predominantly based on ideas of sequential quadratic optimization (commonly24

known as SQP) [3, 13, 14, 18, 19, 20, 26, 29]. The design of such methods remains an25

active area of research as algorithm developers aim to propose new methods that attain26

global convergence guarantees under weak assumptions about the problem functions.27

Recently, however, researchers are being drawn to the idea of designing algorithms28

that also o↵er improved worst-case iteration complexity bounds. This is due to the fact29

that, at least for convex optimization, algorithms designed with complexity bounds30

in mind have led to methods with improved practical performance.31

For solving equality constrained optimization problems, a cubic regularization32

method is proposed in [8] with an eye toward achieving good complexity properties.33

This is a two-phase approach with a first phase that seeks an ✏-feasible point and34

a second phase that seeks optimality while maintaining ✏-feasibility. The number of35

iterations that the method requires in the first phase to produce an ✏-feasible point36

is O(✏�3/2), a bound that is known to be optimal for unconstrained optimization [6].37

The authors of [8] then also propose a method for the second phase and analyze its38

complexity properties. (For related work on cubic regularization methods for solving39

constrained optimization problems, see [7, 9].)40

⇤
This material is based upon work supported by the U.S. Department of Energy, O�ce of Science,

O�ce of Advanced Scientific Computing Research, Applied Mathematics, Early Career Research

Program under contract number DE–SC0010615, as well as by the U.S. National Science Foundation

under Grant No. DMS–1319356.

†
Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA.

E-mail: frank.e.curtis@gmail.com; mos213@lehigh.edu

‡
Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD,

USA. E-mail: daniel.p.robinson@jhu.edu

1

This manuscript is for review purposes only.

mailto:frank.e.curtis@gmail.com
mailto:mos213@lehigh.edu
mailto:daniel.p.robinson@jhu.edu

Unfortunately, however, the method in [8] represents a departure from the current41

state-of-the-art SQP methods that o↵er the best practical performance. One of the42

main reasons for this is that contemporary SQP methods seek feasibility and optimal-43

ity simultaneously. By contrast, one of the main reasons that the approach from [8]44

does not o↵er practical benefits is that the first phase of the algorithm entirely ignores45

the objective function, meaning that numerous iterations might need to be performed46

before the objective function influences the trajectory of the algorithm.47

The algorithm proposed in this paper can be considered a next step in the design48

of practical algorithms for equality constrained optimization with good worst-case49

iteration complexity properties. Ours is also a two-phase approach, but is closer to the50

SQP-type methods representing the state-of-the-art for solving equality constrained51

problems. In particular, the first phase of our proposed approach follows a trust52

funnel methodology that locates an ✏-feasible point in O(✏�3/2) iterations while also53

attempting to yield improvements in the objective function. Borrowing ideas from the54

trust region method known as trace [15], we prove that our method attains the55

same worst-case iteration complexity bounds as those o↵ered by [8], and show with56

numerical experiments that consideration of the objective function in the first phase57

typically results in the second phase requiring fewer iterations.58

1.1. Organization. In the remainder of this section, we introduce notation that59

is used throughout the remainder of the paper and cover preliminary material on60

equality constrained nonlinear optimization. In §2, we motivate and describe our61

proposed “phase 1” method for locating an ✏-feasible point while also attempting to62

reduce the objective function. An analysis of the convergence and worst-case iteration63

complexity of this phase 1 method is presented in §3. Strategies and corresponding64

convergence/complexity guarantees for “phase 2” are the subject of §4, the results of65

numerical experiments are provided in §5, and concluding remarks are given in §6.66

1.2. Notation. Let R denote the set of real numbers (i.e., scalars), let R
+

denote67

the set of nonnegative real numbers, let R
++

denote the set of positive real numbers,68

and let N := {1, 2, . . . } denote the set of natural numbers. For any of these quantities,69

let a superscript N 2 N be used to indicate the N -dimensional extension of the set—70

e.g., let RN denote the set of N -dimensional real vectors—and let a superscript M⇥N71

with (M,N) 2 N ⇥ N be used to indicate the M -by-N -dimensional extension of the72

set—e.g., let RM⇥N denote the set of M -by-N real matrices.73

A vector with all elements equal to 1 is denoted as e and an identity matrix74

is denoted as I, where, in each case, the size of the quantity is determined by the75

context in which it appears. With real symmetric matrices A and B, let A � (⌫) B76

indicate that A� B is positive definite (semidefinite); e.g., A � (⌫) 0 indicates that77

A is positive definite (semidefinite). Given vectors {u, v} ⇢ RN , let u ? v mean that78

u
i

v
i

= 0 for all i 2 {1, 2, . . . , N}. Let kxk denote the 2-norm of a vector x.79

1.3. Preliminaries. Given an objective function f : RN ! R and constraint80

function c : RN ! RM , we study the equality constrained optimization problem81

(1) min
x2RN

f(x) s.t. c(x) = 0.82

At the outset, let us state the following assumption about the problem functions.83

Assumption 1. The functions f and c are twice continuously di↵erentiable.84

In light of Assumption 1, we define g : RN ! RN as the gradient function of85

f , i.e., g := rf , and define J : RN ! RM⇥N as the Jacobian function of c, i.e.,86

2

This manuscript is for review purposes only.

J := rcT . The function c
i

: RN ! R denotes the ith element of the function c.87

Our proposed algorithm follows a local search strategy that merely aims to com-88

pute a first-order stationary point for problem (1). Defining the Lagrangian L :89

RN ⇥ RM ! R as given by L(x, y) = f(x) + yT c(x), a first-order stationary point90

(x, y) is one that satisfies 0 = r
x

L(x, y) ⌘ g(x) + J(x)T y and 0 = r
y

L(x, y) ⌘ c(x).91

Our proposed technique for solving problem (1) is iterative, generating, amongst92

other quantities, a sequence of iterates {x
k

} indexed by k 2 N. For ease of expo-93

sition, we also apply an iteration index subscript for function and other quantities94

corresponding to the kth iteration; e.g., we write f
k

to denote f(x
k

).95

2. Phase 1: Obtaining Approximate Feasibility. The goal of phase 1 is96

to obtain an iterate that is (approximately) feasible. This can, of course, be accom-97

plished by employing an algorithm that focuses exclusively on minimizing a measure98

of constraint violation. However, we find this idea to be unsatisfactory since such an99

approach would entirely ignore the objective function. Alternatively, in this section,100

we present a trust funnel algorithm with good complexity properties for obtaining (ap-101

proximate) feasibility that attempts to simultaneously reduce the objective function,102

as is commonly done in contemporary nonlinear optimization algorithms.103

2.1. Step computation. Similar to other trust funnel algorithms [21, 12], our104

algorithm employs a step-decomposition approach wherein each trial step is composed105

of a normal step aimed at reducing constraint violation (i.e., infeasibility) and a106

tangential step aimed at reducing the objective function. The algorithm then uses107

computed information, such as the reductions that the trial step yields in models108

of the constraint violation and objective function, to determine which of two types109

of criteria should be used for accepting or rejecting the trial step. To ensure that110

su�cient priority is given to obtaining (approximate) feasibility, an upper bound on111

a constraint violation measure is initialized, maintained, and subsequently driven112

toward zero as improvements toward feasibility are obtained. The algorithm might113

also nullify the tangential component of a trial step, even after it is computed, if it is114

deemed too harmful in the algorithm’s pursuit toward (approximate) feasibility. In115

this subsection, the details of our approach for computing a trial step are described.116

2.1.1. Normal step. The purpose of the normal step is to reduce infeasibility.117

The measure of infeasibility that we employ is v : RN ! R defined by118

(2) v(x) = 1

2

kc(x)k2.119

At an iterate x
k

, the normal step n
k

is defined as a minimizer of a second-order Taylor120

series approximation of v at x
k

subject to a trust region constraint, i.e.,121

(3) n
k

2 arg min
n2RN

mv

k

(n) s.t. knk  �v
k

,122

where the scalar �v
k

2 (0,1) is the trust region radius and the model of the constraint123

violation measure at x
k

is mv

k

: RN ! R defined by124

mv

k

(n) = v
k

+ gv
k

Tn+ 1

2

nTHv

k

n with gv
k

:= rv(x
k

) = JT

k

c
k

,(4)125

and Hv

k

:= r2v(x
k

) = JT

k

J
k

+
MX

i=1

c
i

(x
k

)r2c
i

(x
k

).(5)126

127

3

This manuscript is for review purposes only.

For any (x
k

, �v
k

) 2 RN ⇥ R
+

, a globally optimal solution to (3) exists [10, Corol-128

lary 7.2.2] and n
k

has a corresponding dual variable �v

k

2 R
+

such that129

gv
k

+ (Hv

k

+ �v

k

I)n
k

= 0,(6a)130

Hv

k

+ �v

k

I ⌫ 0,(6b)131

and 0  �v

k

? (�v
k

� kn
k

k) � 0.(6c)132

133

In a standard trust region strategy, a trust region radius is given at the beginning134

of an iteration, which explicitly determines the primal-dual solution of the subproblem.135

Our method, on the other hand, might instead make use of a normal step that is136

derived as a solution of (3) where the trust region radius is defined implicitly by a137

given dual variable �v

k

. In particular, given �v

k

2 [0,1) that is strictly larger than the138

negative of the leftmost eigenvalue of Hv

k

, our algorithm might compute n
k

from139

(7) Qv

k

(�v

k

) : min
n2RN

v
k

+ gv
k

Tn+ 1

2

nT (Hv

k

+ �v

k

I)n.140

The unique solution to (7), call it n
k

(�v

k

), is the solution of the nonsingular linear141

system (Hv

k

+ �v

k

I)n = �gv
k

, and is the global solution of (3) for �v
k

= kn
k

(�v

k

)k.142

2.1.2. Tangential step. The purpose of the tangential step is to reduce the ob-143

jective function. Specifically, when requested by the algorithm, the tangential step t
k

144

is defined as a minimizer of a quadratic model of the objective function in the null145

space of the constraint Jacobian subject to a trust region constraint, i.e.,146

(8) t
k

2 arg min
t2RN

mf

k

(n
k

+ t) s.t. J
k

t = 0 and kn
k

+ tk  �s
k

,147

where �s
k

2 (0,1) is a trust region radius and, with some symmetric H
k

2 RN⇥N ,148

the objective function model mf

k

: RN ! R is defined by149

(9) mf

k

(s) = f
k

+ gT
k

s+ 1

2

sTH
k

s.150

Following other trust funnel strategies, one desires �s
k

to be set such that the trust151

region describes the area in which the models of the constraint violation and objective152

function are accurate. In particular, with a trust region radius �f
k

2 (0,1) for the153

objective function, our algorithm employs, for some scalar 
�

2 (1,1), the value154

(10) �s
k

:= min{
�

�v
k

, �f
k

}.155

Due to this choice of trust region radius, it is deemed not worthwhile to compute a156

nonzero tangential step if the feasible region of (8) is small. Specifically, our algorithm157

only computes a nonzero t
k

when kn
k

k  
n

�s
k

for some 
n

2 (0, 1). In addition, it158

only makes sense to compute a tangential step when reasonable progress in reducing f159

in the null space of J
k

can be expected. To predict the potential progress, we define160

(11) gp
k

:= Z
k

ZT

k

(g
k

+H
k

n
k

),161

where the columns of Z
k

form an orthonormal basis for Null(J
k

). If kgp
k

k < 
p

kgv
k

k162

for some 
p

2 (0,1), then computing a tangential step is not worthwhile and we163

simply set the primal-dual solution (estimate) for (8) to zero.164

4

This manuscript is for review purposes only.

For any (x
k

, �s
k

, H
k

) 2 RN ⇥ R
+

⇥ RN⇥N , a globally optimal solution to (8)165

exists [10, Corollary 7.2.2] and t
k

has corresponding dual variables yf
k

2 RM and166

�f

k

2 R
+

(for the null space and trust region constraints, respectively) such that167


H

k

+ �f

k

I JT

k

J
k

0

� 
t
k

yf
k

�
= �


g
k

+ (H
k

+ �f

k

I)n
k

0

�
,(12a)168

ZT

k

H
k

Z
k

+ �f

k

I ⌫ 0,(12b)169

and 0  �f

k

? (�s
k

� kn
k

+ t
k

k) � 0.(12c)170

171

Similarly as for the normal step computation, our algorithm potentially computes t
k

172

not as a solution of (8) for a given �s
k

, but as a solution of a regularized subproblem173

for a given dual variable for the trust region constraint. Specifically, for �f

k

2 [0,1)174

that is strictly larger than the negative of the leftmost eigenvalue of ZT

k

H
k

Z
k

, our175

algorithm might solve the following subproblem for the tangential step:176

(13) Qf

k

(�f

k

) : min
t2RN

(g
k

+ (H
k

+ �f

k

I)n
k

)T t+ 1

2

tT (H
k

+ �f

k

I)t s.t. J
k

t = 0.177

The unique solution t
k

(�f

k

) of (13) is a global solution of (8) for �s
k

= kn
k

+ t
k

(�f

k

)k.178

There are situations in which our algorithm discards a computed tangential step179

after one is computed, i.e., situations when the algorithm resets t
k

 0. Specifically,180

this occurs when any of the following conditions fails to hold:181

mv

k

(0)�mv

k

(n
k

+ t
k

) � 
vm

(mv

k

(0)�mv

k

(n
k

)) for some 
vm

2 (0, 1);(14a)182

kn
k

+ t
k

k � 
ntn

kn
k

k for some 
ntn

2 (0, 1);(14b)183

kHv

k

t
k

k  
ht

kn
k

+ t
k

k2 for some 
ht

2 (0,1).(14c)184

185

The first of these conditions requires that the reduction in the constraint violation186

model for the full step s
k

:= n
k

+ t
k

is su�ciently large with respect to that obtained187

by the normal step; the second requires that the full step is su�ciently large in norm188

compared to the normal step; and the third requires that the action of the tangential189

step on the Hessian of the constraint violation model is not too large compared to the190

squared norm of the full step. It is worthwhile to mention that all of these conditions191

are satisfied automatically when Hv

k

= JT

k

J
k

(recall (5)), which occurs, e.g., when c192

is a�ne. However, since this does not hold in general, our algorithm requires these193

conditions explicitly, or else resets the tangential step to zero (which satisfies (14)).194

2.2. Step acceptance. After computing a normal step n
k

and potentially a tan-195

gential step t
k

, the algorithm determines whether to accept the full step s
k

:= n
k

+t
k

.196

The strategy that it employs is based on first using the obtained reductions in the197

models of constraint violation and the objective, as well as other related quantities, to198

determine what should be the main goal of the iteration: reducing constraint violation199

or the objective function. Since the primary goal of phase 1 is to obtain (approximate)200

feasibility, the algorithm has a preference toward reducing constraint violation unless201

the potential reduction in the objective function is particularly compelling. Specifi-202

cally, if the following conditions hold, indicating good potential progress in reducing203

5

This manuscript is for review purposes only.

the objective, then the algorithm performs an F-iteration (see §2.2.1):204

t
k

6= 0 with kt
k

k � 
st

ks
k

k for some 
st

2 (0, 1),(15a)205

mf

k

(0)�mf

k

(s
k

) � 
fm

(mf

k

(n
k

)�mf

k

(s
k

)), for some 
fm

2 (0, 1),(15b)206

v(x
k

+ s
k

)  vmax

k

� 
⇢

ks
k

k3 for some 
⇢

2 (0, 1),(15c)207

nT

k

t
k

� � 1

2


ntt

kt
k

k2 for some 
ntt

2 (0, 1),(15d)208

�v

k

 �v

k

kn
k

k and(15e)209

��(H
k

�r2f(x
k

))s
k

��  
hs

ks
k

k2 for some 
hs

2 (0,1).(15f)210

211

Conditions (15a)–(15c) are similar to those employed in other trust funnel algorithms,212

except that (15a) and (15c) are stronger (than the common, weaker requirements that213

t
k

6= 0 and v(x
k

+ s
k

)  vmax

k

). Employed here is a scalar sequence {vmax

k

} updated214

dynamically by the algorithm that represents an upper bound on constraint violation;215

for this sequence, the algorithm ensures (see Lemma 6) that v
k

 vmax

k

and vmax

k+1

 vmax

k

216

for all k 2 N. Condition (15d) ensures that, for an F-iteration, the inner product217

between the normal and tangential steps is not too negative (or else the tangential218

step might undo too much of the progress toward feasibility o↵ered by the normal219

step). Finally, conditions (15e) and (15f) are essential for achieving good complexity220

properties, requiring that any F-iteration involves a normal step that is su�ciently221

large compared to the Lagrange multiplier for the trust region constraint and that222

the action of the full step on H
k

does not di↵er too much from its action on r2f(x
k

).223

If any condition in (15) does not hold, then a V-iteration is perfomed (see §2.2.2).224

Viewing (15f), it is worthwhile to reflect on the choice of H
k

in the algorithm.225

With the attainment of optimality (not only feasibility) in mind, standard practice226

would suggest that it is desirable to choose H
k

as the Hessian of the Lagrangian of227

problem (1) for some multiplier vector y
k

2 RM . This multiplier vector could be228

obtained, e.g., as the QP multipliers from some previous iteration or least squares229

multipliers using current derivative information. For our purposes of obtaining good230

complexity properties for phase 1, we do not require a particular choice of H
k

, but231

this discussion and (15f) do o↵er some guidance. Specifically, one might choose H
k

as232

an approximation of the Hessian of the Lagrangian, potentially with the magnitude233

of the multiplier vector restricted in such a way that, after the full step is computed,234

the action of it on H
k

will not di↵er too much with its action on r2f(x
k

).235

2.2.1. F-iteration. If (15) holds, then we determine that the kth iteration is236

an F-iteration. In this case, we begin by calculating the quantity237

(16) ⇢f
k

 (f
k

� f(x
k

+ s
k

))/ks
k

k3,238

which is a measure of the decrease in f . Using this quantity, acceptance or rejection239

of the step and the rules for updating the trust region radius are similar as in [15]. As240

for updating the trust funnel radius, rather than the update in [21, Algorithm 2.1],241

we require a modified update to obtain our complexity result; in particular, we use242

(17) vmax

k+1

 min{max{
v1

vmax

k

, vmax

k

� 
⇢

ks
k

k3}, v
k+1

+ 
v2

(vmax

k

� v
k+1

)}243

for some {
v1

,
v2

} ⇢ (0, 1).244

2.2.2. V-iteration. When any one of the conditions in (15) does not hold, the245

kth iteration is aV-iteration, during which the main focus is to decrease the measure246

6

This manuscript is for review purposes only.

of infeasibility v. In this case, we calculate247

(18) ⇢v
k

 (v(x
k

)� v(x
k

+ s
k

))/ks
k

k3,248

which provides a measure of the decrease in constraint violation. The rules for accept-249

ing or rejecting the trial step and for updating the trust region radius are the same as250

those in [15]. One addition is that during a successful V-iteration, the trust funnel251

radius is updated, using the same constants as in (17), as252

(19) vmax

k+1

 min{max{
v1

vmax

k

, v
k+1

+ 
v2

(v
k

� v
k+1

)}, v
k+1

+ 
v2

(vmax

k

� v
k+1

)}.253

2.3. Algorithm statement. Our complete algorithm for finding an (approxi-254

mately) feasible point can now be stated as Algorithm 1 on page 8, which in turn calls255

the F-iteration subroutine stated as Algorithm 2 on page 9 and the V-iteration256

subroutine stated as Algorithm 3 on page 10.257

3. Convergence and Complexity Analyses for Phase 1. The analyses that258

we present require the following assumption related to the iterate sequence.259

Assumption 2. The sequence of iterates {x
k

} is contained in a compact set. In260

addition, the sequence {kH
k

k} is bounded over k 2 N.261

Our analysis makes extensive use of the following mutually exclusive and exhaus-262

tive subsets of the iteration index sequence generated by Algorithm 1:263

I := {k 2 N : kgv
k

k > ✏},
F := {k 2 I : iteration k is an F-iteration},

and V := {k 2 I : iteration k is a V-iteration}.
264

It will also be convenient to define the index set of iterations for which tangential265

steps are computed and not reset to zero by our method:266

It := {k 2 I : t
k

6= 0 when Step 8 of Algorithm 1 is reached}
= {k 2 I : Step 23 of Algorithm 1 is reached and all conditions in (14) hold}.267

3.1. Convergence analysis for phase 1. The goal of our convergence analysis268

is to prove that Algorithm 1 terminates finitely, i.e., |I| < 1. Our analysis to prove269

this fact requires a refined examination of the subsets F and V of I. For these270

purposes, we define disjoint subsets of F as271

Sf := {k 2 F : ⇢f
k

� 
⇢

} and Cf := {k 2 F : ⇢f
k

< 
⇢

},272

and disjoint subsets of V as273

Sv := {k 2 V : ⇢v
k

� 
⇢

and either �v

k

 �v

k

kn
k

k or kn
k

k = �v

k

},274

Cv := {k 2 V : ⇢v
k

< 
⇢

},275

and Ev := {k 2 V : k /2 Sv [Cv}.276

277

We further partition the set Sv into the two disjoint subsets278

Sv

�

:= {k 2 Sv : kn
k

k = �v

k

} and Sv

�

:= {k 2 Sv : k /2 Sv

�

}.279

Finally, for convenience, we also define the unions280

S := {k 2 I : k 2 Sf [Sv} and C := {k 2 I : k 2 Cf [Cv}.281

7

This manuscript is for review purposes only.

Algorithm 1 Trust Funnel Algorithm for Phase 1

Require: {
n

,

vm

,

ntn

,

⇢

,

fm

,

st

,

ntt

,

v1,v2, �c} ⇢ (0, 1),

{
p

,

ht

,

hs

, ✏,�} ⇢ (0,1), {
�

, �e, ��} 2 (1,1), and � 2 [�,1);

F-iteration (Algorithm 2, page 9) and V-iteration (Algorithm 3, page 10)

1: procedure Trust Funnel

2: choose x0 2 RN

, v

max

0 2 [max{1, v0},1), and �

v

0 2 [�,�]

3: choose {�v0 ,�v

0 , �
f

0 } ⇢ (0,1) such that �

v

0  �

v

0

4: for k 2 N do

5: if kgv
k

k  ✏ then

6: return x

k

7: (n

k

, t

k

,�

v

k

,�

f

k

) Compute Steps(x

k

, �

v

k

, �

s

k

)

8: set s

k

 n

k

+ t

k

9: set �

v

k

 Compute Sigma(n

k

,�

v

k

,�

v

k�1, ⇢
v

k�1)

10: if (15) is satisfied then

11: set ⇢

f

k

by (16)

12: (x

k+1, v
max

k+1, �
f

k+1) F-iteration(x

k

, n

k

, s

k

, v

max

k

, �

f

k

,�

f

k

, ⇢

f

k

)

13: set �

v

k+1 �

v

k

, �

v

k+1 �

v

k

, and ⇢

v

k

 1
14: else

15: set ⇢

v

k

by (18)

16: (x

k+1, v
max

k+1, �
v

k+1,�
v

k+1) V-iteration(x

k

, n

k

, s

k

, v

max

k

, �

v

k

,�

v

k

,�

v

k

,�

v

k

, ⇢

v

k

)

17: set �

f

k+1 �

f

k

and ⇢

f

k

 1

18: procedure Compute Steps(x

k

, �

v

k

, �

s

k

)

19: set (n

k

,�

v

k

) as a primal-dual solution to (3)

20: set (t

k

,�

f

k

) (0, 0)

21: if kn
k

k  

n

�

s

k

and kgp
k

k � 

p

kgv
k

k then
22: set (t

k

, y

f

k

,�

f

k

) as a primal-dual solution to (8)

23: if any condition in (14) fails to hold then set (t

k

,�

f

k

) (0, 0)

24: return (n

k

, t

k

,�

v

k

,�

f

k

)

25: procedure Compute Sigma(n

k

,�

v

k

,�

v

k�1, ⇢
v

k�1)

26: if iteration (k � 1) was an F-iteration then

27: set �

v

k

 �

v

k�1

28: else

29: if ⇢

v

k�1 < 

⇢

then set �

v

k

 max{�v

k�1,�
v

k

/kn
k

k} else set �

v

k

 �

v

k�1

30: return �

v

k

Due to the updates for the primal iterate and/or trust region radii in the algorithm,282

we often refer to iterations with indices in S as successful steps, those with indices283

in C as contractions, and those with indices in Ev as expansions.284

Basic relationships between all of these sets are summarized in our first lemma.285

Lemma 3. The following relationships hold:286

(i) F \ V = ; and F [V = I;287

(ii) Sf \ Cf = ; and Sf [Cf = F ;288

(iii) Sv, Cv, and Ev are mutually disjoint and Sv [Cv [Ev = V; and289

(iv) if k 2 I \ It, then k 2 V.290

Proof. The fact that F \ V = ; follows from the two cases resulting from the291

conditional statement in Step 10 of Algorithm 1. The rest of part (i), part (ii), and292

part (iii) follow from the definitions of the relevant sets. Part (iv) can be seen to hold293

8

This manuscript is for review purposes only.

Algorithm 2 F-iteration subroutine

1: procedure F-iteration(x

k

, n

k

, s

k

, v

max

k

, �

f

k

,�

f

k

, ⇢

f

k

)

2: if ⇢

f

k

� 

⇢

then [accept step]

3: set x

k+1 x

k

+ s

k

4: set v

max

k+1 according to (17)

5: set �

f

k+1 max{�f
k

, �ekskk}
6: else (i.e., if ⇢

f

k

< 

⇢

) [contract trust region]

7: set x

k+1 x

k

8: set v

max

k+1 v

max

k

9: set �

f

k+1 F-contract(n

k

, s

k

, �

f

k

,�

f

k

)

10: return (x

k+1, v
max

k+1, �
f

k+1)

11: procedure F-contract(n

k

, s

k

, �

f

k

,�

f

k

)

12: if �

f

k

< �ks
k

k then
13: set �

f

> �

f

k

so the solution t(�

f

) of Qf

k

(�

f

) yields �  �

f

/kn
k

+ t(�

f

)k
14: return �

f

k+1 knk

+ t(�

f

)k
15: else (i.e., if �

f

k

� �ks
k

k)
16: return �

f

k+1 �ckskk

as follows. If k 2 I \ It, then t
k

= 0 so that (15a) does not hold. It now follows from294

the logic in Algorithm 1 that k 2 V as claimed.295

The results in the next lemma are consequences of Assumptions 1 and 2.296

Lemma 4. The following hold:297

(i) there exists ✓
fc

2 (1,1) so max{kg
k

k, kc
k

k, kJ
k

k, kHv

k

k}  ✓
fc

for all k 2 I;298

(ii) kgv
k

k ⌘ kJT

k

c
k

k  ✓
fc

kc
k

k for all k 2 I; and299

(iii) gv : RN ! RN defined by gv(x) = J(x)T c(x) (recall (4)) is Lipschitz contin-300

uous with Lipschitz constant gv
Lip

> 0 over an open set containing {x
k

}.301

Proof. Part (i) follows from Assumptions 1 and 2. Part (ii) follows since, by the302

Cauchy–Schwarz inequality, kJT

k

c
k

k  kJ
k

kkc
k

k  ✓
fc

kc
k

k. Part (iii) follows since303

the first derivative of gv is uniformly bounded under Assumptions 1 and 2.304

We now summarize properties associated with the normal and tangential steps.305

Lemma 5. The following hold for all k 2 I:306

(i) n
k

6= 0 and s
k

6= 0; and307

(ii) in Step 8 of Algorithm 1, the vector t
k

satisfies (14).308

Proof. We first prove part (i). Since k 2 I, it follows that kgv
k

k > ✏, which309

combined with (6a) implies that n
k

6= 0, as claimed. Now, in order to derive a310

contradiction, suppose that 0 = s
k

= n
k

+ t
k

, which means that �t
k

= n
k

6= 0. From311

gv
k

6= 0 and (6a), it follows that (Hv

k

+ �v

k

I)n
k

= �gv
k

6= 0, which gives312

(20) nT

k

(Hv

k

+ �v

k

I)n
k

= �nT

k

gv
k

= �nT

k

JT

k

c
k

= �(J
k

n
k

)T c
k

= 0,313

where the last equality follows from n
k

= �t
k

and J
k

t
k

= 0 (see (12a)). It now follows314

from (20), symmetry of Hv

k

+ �v

k

I, and (6b) that 0 = (Hv

k

+ �v

k

I)n
k

= �gv
k

, which is315

a contradiction. This completes the proof of part (i).316

To prove part (ii), first observe that the conditions in (14) are trivially satisfied if317

t
k

= 0. On the other hand, if Step 8 is reached with t
k

6= 0, then Step 23 must have318

9

This manuscript is for review purposes only.

Algorithm 3 V-iteration subroutine

1: procedure V-iteration(x

k

, n

k

, s

k

, v

max

k

, �

v

k

,�

v

k

,�

v

k

,�

v

k

, ⇢

v

k

)

2: if ⇢

v

k

� 

⇢

and either �

v

k

 �

v

k

kn
k

k or kn
k

k = �

v

k

then [accept step]

3: set x

k+1 x

k

+ s

k

4: set v

max

k+1 according to (19)

5: set �

v

k+1 max{�v

k

, �eknk

k}
6: set �

v

k+1 min{�v

k+1,max{�v
k

, �eknk

k}}
7: else if ⇢

v

k

< 

⇢

then [contract trust region]

8: set x

k+1 x

k

9: set v

max

k+1 v

max

k

10: set �

v

k+1 �

v

k

11: set �

v

k+1 V-contract(n

k

, s

k

, �

v

k

,�

v

k

)

12: else (i.e., if ⇢

v

k

� 

⇢

, �

v

k

> �

v

k

kn
k

k, and kn
k

k < �

v

k

) [expand trust region]

13: set x

k+1 x

k

14: set v

max

k+1 v

max

k

15: set �

v

k+1 �

v

k

16: set �

v

k+1 min{�v

k+1,�
v

k

/�

v

k

}
17: return (x

k+1, v
max

k+1, �
v

k+1,�
v

k+1)

18: procedure V-contract(n

k

, s

k

, �

v

k

,�

v

k

)

19: if �

v

k

< �kn
k

k then
20: set

ˆ

�

v �

v

k

+ (�kgv
k

k)1/2
21: set �

v ˆ

�

v

22: set n(�

v

) as the solution of Qv

k

(�

v

)

23: if �

v

/kn(�v

)k  � then

24: return �

v

k+1 kn(�v

)k
25: else

26: set �

v 2 (�

v

k

,

ˆ

�

v

) so the solution n(�

v

) of Qv

k

(�

v

) yields �  �

v

/kn(�v

)k  �

27: return �

v

k+1 kn(�v

)k
28: else (i.e., if �

v

k

� �kn
k

k)
29: set �

v �

�

�

v

k

30: set n(�

v

) as the solution of Qv

k

(�

v

)

31: if kn(�v

)k � �cknk

k then
32: return �

v

k+1 kn(�v

)k
33: else

34: return �

v

k+1 �cknk

k

been reached, at which point it must have been determined that all of the conditions319

in (14) held true (or else t
k

would have been reset to the zero vector).320

A key role in Algorithm 1 is played by the sequence of trust funnel radii {vmax

k

}.321

The next result establishes that it is a monotonically decreasing upper bound for the322

constraint violation, as previously claimed.323

Lemma 6. For all k 2 I, it follows that v
k

 vmax

k

and 0 < vmax

k+1

 vmax

k

.324

Proof. The result holds trivially if I = ;. Thus, let us assume that I 6= ;, which325

ensures that 0 2 I. Let us now use induction to prove the first inequality, as well as326

positivity of vmax

k

for all k 2 I. From the initialization in Algorithm 1, it follows that327

v
0

 vmax

0

and vmax

0

> 0. Now, to complete the induction step, let us assume that328

v
k

 vmax

k

and vmax

k

> 0 for some k 2 I, then consider three cases.329

Case 1: k 2 Sf . When k 2 Sf , let us consider the two possibilities based on the330

procedure for setting vmax

k+1

stated in (17). If (17) sets vmax

k+1

= v
k+1

+
v2

(vmax

k

� v
k+1

),331

10

This manuscript is for review purposes only.

then the fact that k 2 Sf ✓ F , (15c), and Lemma 5(i) imply that332

vmax

k+1

= v
k+1

+ 
v2

(vmax

k

� v
k+1

) � v
k+1

+ 
v2


⇢

ks
k

k3 > v
k+1

� 0.333

On the other hand, if (17) sets vmax

k+1

= max{
v1

vmax

k

, vmax

k

� 
⇢

ks
k

k3}, then using the334

induction hypothesis, the fact that k 2 Sf ✓ F , and (15c), it follows that335

vmax

k+1

� 
v1

vmax

k

> 0 and vmax

k+1

� vmax

k

� 
⇢

ks
k

k3 � v
k+1

� 0.336

This case is complete since, in each scenario, vmax

k+1

� v
k+1

and vmax

k+1

> 0.337

Case 2: k 2 Sv. When k 2 Sv, let us consider the two possibilities based on the338

procedure for setting vmax

k+1

stated in (19). If (19) sets vmax

k+1

= v
k+1

+
v2

(vmax

k

� v
k+1

),339

then it follows from the induction hypothesis and the fact that ⇢v
k

� 
⇢

for k 2 Sv

340

(which, in particular, implies that v
k+1

< v
k

for k 2 Sv) that341

vmax

k+1

= v
k+1

+ 
v2

(vmax

k

� v
k+1

) � v
k+1

+ 
v2

(v
k

� v
k+1

) > v
k+1

� 0.342

On the other hand, if (19) sets vmax

k+1

= max{
v1

vmax

k

, v
k+1

+
v2

(v
k

� v
k+1

)}, then the343

induction hypothesis and the fact that v
k+1

< v
k

for k 2 Sv implies that344

vmax

k+1

� 
v1

vmax

k

> 0 and vmax

k+1

� v
k+1

+ 
v2

(v
k

� v
k+1

) > v
k+1

� 0.345

This case is complete since, in each scenario, vmax

k+1

� v
k+1

and vmax

k+1

> 0.346

Case 3: k /2 Sf [Sv. When k /2 Sf [Sv, it follows that k 2 C[Ev, which may be347

combined with the induction hypothesis and the updating procedures for x
k

and vmax

k

348

in Algorithms 2 and 3 to deduce that 0 < vmax

k

= vmax

k+1

and v
k+1

= v
k

 vmax

k

= vmax

k+1

.349

Combining the conclusions of the three cases above, it follows by induction that350

the first inequality of the lemma holds true and vmax

k

> 0 for all k 2 I.351

Let us now prove that vmax

k+1

 vmax

k

for all k 2 I, again by considering three cases.352

First, if k 2 Sf , then vmax

k+1

is set using (17) such that353

vmax

k+1

 max{
v1

vmax

k

, vmax

k

� 
⇢

ks
k

k3} < vmax

k

,354

where the strict inequality follows by 
v1

2 (0, 1) and Lemma 5(i). Second, if k 2 Sv,355

then v
k+1

< v
k

 vmax

k

, where we have used the proved fact that v
k

 vmax

k

; thus,356

vmax

k

� v
k+1

> 0. Then, since vmax

k+1

is set using (19), it follows that357

vmax

k

� vmax

k+1

� vmax

k

� v
k+1

� 
v2

(vmax

k

� v
k+1

) = (1� 
v2

)(vmax

k

� v
k+1

) > 0.358

Third, if k /2 Sf [Sv, then, by construction in Algorithms 2 and 3, it follows that359

vmax

k+1

= vmax

k

. This completes the proof.360

Our next lemma gives a lower bound for the decrease in the trust funnel radius361

as a result of a successful iteration.362

Lemma 7. If k 2 S, then vmax

k

� vmax

k+1

� 
⇢

(1� 
v2

)ks
k

k3.363

Proof. If k 2 Sf , then vmax

k+1

is set using (17). In this case,364

vmax

k

� vmax

k+1

� vmax

k

� v
k+1

� 
v2

(vmax

k

� v
k+1

)

= (1� 
v2

)(vmax

k

� v
k+1

) � 
⇢

(1� 
v2

)ks
k

k3,365

11

This manuscript is for review purposes only.

where the last inequality follows from (15c) (since k 2 Sf ✓ F). If k 2 Sv, then vmax

k+1

366

is set using (19). In this case, by Lemma 6 and the fact that ⇢v
k

� 
⇢

for k 2 Sv,367

vmax

k

� vmax

k+1

� vmax

k

� v
k+1

� 
v2

(vmax

k

� v
k+1

)

= (1� 
v2

)(vmax

k

� v
k+1

) � (1� 
v2

)(v
k

� v
k+1

) � 
⇢

(1� 
v2

)ks
k

k3,368

which completes the proof.369

Subsequently in our analysis, it will be convenient to consider an alternative370

formulation of problem (8) that arises from an orthogonal decomposition of the normal371

step n
k

into its projection onto the range space of JT

k

, call it nR

k

, and its projection372

onto the null space of J
k

, call it nN

k

. Specifically, considering373

(21) tN
k

2 arg min
t

N2RN
mf

k

(nR

k

+ tN) s.t. J
k

tN = 0 and ktNk 
q
(�s

k

)2 � knR

k

k2,374

we can recover the solution of (8) as t
k

 tN
k

� nN

k

. Similarly, for any �f

k

2 [0,1)375

that is strictly greater than the left-most eigenvalue of ZT

k

H
k

Z
k

, let us define376

(22) Q̄f

k

(�f

k

) : min
t

N2RN
(g

k

+H
k

nR

k

)T tN + 1

2

(tN)T (H
k

+ �f

k

I)tN s.t. J
k

tN = 0.377

In the next lemma, we formally establish the equivalence between problems (21)378

and (8), as well as between problems (22) and (13).379

Lemma 8. For all k 2 I, the following problem equivalences hold:380

(i) if kn
k

k  �s
k

, then problems (21) and (8) are equivalent in that (tN
k

,�N

k

)381

is part of a primal-dual solution of problem (21) if and only if (t
k

,�f

k

) =382

(tN
k

� nN

k

,�N

k

) is part of a primal-dual solution of problem (8); and383

(ii) if ZT

k

H
k

Z
k

+ �f

k

I � 0, then problems (22) and (13) are equivalent in that tN
k

384

solves problem (22) if and only if t
k

= tN
k

� nN

k

solves problem (13).385

Proof. To prove part (i), first note that kn
k

k  �s
k

ensures that problems (21)386

and (8) are feasible. Then, by J
k

tN = 0 in (21), the vector nR

k

2 Range(JT

k

) is387

orthogonal with any feasible solution of (21), meaning that the trust region constraint388

in (21) is equivalent to knR

k

+ tNk  �s
k

. Thus, as (12) are the optimality conditions389

of (8), the optimality conditions of problem (21) (with this modified trust region390

constraint) are that there exists (tN
k

, yN
k

,�N

k

) 2 RN ⇥ RM ⇥ R such that391


H

k

+ �N

k

I JT

k

J
k

0

� 
tN
k

yN
k

�
= �


g
k

+ (H
k

+ �N

k

I)nR

k

0

�
,(23a)392

ZT

k

H
k

Z
k

+ �N

k

I ⌫ 0,(23b)393

and �N

k

? (�s
k

� knR

k

+ tN
k

k) � 0.(23c)394

395

From equivalence of the systems (23) and (12), it is clear that (tN
k

, yN
k

,�N

k

) is a396

primal-dual solution of (21) (with the modified trust region constraint) if and only if397

(t
k

, yf
k

,�f

k

) = (tN
k

�nN

k

, yN
k

,�N

k

) is a primal-dual solution of (8). This proves part (i).398

Part (ii) follows in a similar manner from the orthogonal decomposition n
k

= nN

k

+nR

k

399

and the fact that J
k

tN = 0 in (22) ensures that tN
k

2 Null(J
k

).400

The next lemma reveals important properties of the tangential step. In particular,401

it shows that the procedure for performing a contraction of the trust region radius in402

an F-iteration that results in a rejected step is well-defined.403

12

This manuscript is for review purposes only.

Lemma 9. If k 2 Cf and the condition in Step 12 of Algorithm 2 tests true, then404

there exists �f > �f

k

such that �  �f/kn
k

+ t(�f)k, where t(�f) solves Qf

k

(�f).405

Proof. Since the condition in Step 12 of Algorithm 2 is assumed to test true, it406

follows that �f

k

< �ks
k

k. Second, letting t(�f) denote the solution ofQf

k

(�f), it follows407

by Lemma 8(ii) that lim
�

f!1 knk

+ t(�f)k = knR

k

k, meaning that lim
�

f!1 �f/kn
k

+408

t(�f)k = 1. It follows from these observations and standard theory for trust region409

methods [10, Chapter 7] that the result is true.410

The next lemma reveals properties of the normal step trust region radii along411

with some additional observations about the sequences {�v

k

}, {�v

k

}, and {�v

k

}.412

Lemma 10. The following hold:413

(i) if k 2 Cv, then 0 < �v
k+1

< �v
k

and �v

k+1

� �v

k

;414

(ii) if k 2 I, then �v
k

 �v

k

 �v

k+1

;415

(iii) if k 2 Sv [Ev, then �v
k+1

� �v
k

; and416

(iv) if k 2 F , then �v
k+1

= �v
k

and �v

k+1

= �v

k

.417

Proof. The proof of part (i) follows as that of [15, Lemma 3.4]. In particular,418

since the V-contract procedure follows exactly that of contract in [15], it follows419

that any call of V-contract results in a contraction of the trust region radius for420

the normal subproblem and non-decrease of the corresponding dual variable.421

For part (ii), the result is trivial if I = ;. Thus, let us assume that I 6= ;, which422

ensures that 0 2 I. We now first prove �v
k

 �v

k

for all k 2 I using induction. By the423

initialization procedure of Algorithm 1, it follows that �v
0

 �v

0

. Hence, let us proceed424

by assuming that �v
k

 �v

k

for some k 2 I. If k 2 Sv, then Step 6 of Algorithm 3425

shows that �v
k+1

 �v

k+1

. If k 2 Ev, then Step 16 of Algorithm 3 gives �v
k+1

 �v

k+1

.426

If k 2 Cv, then part (i), Step 10 of Algorithm 3, and the induction hypothesis yield427

�v
k+1

< �v
k

 �v

k

= �v

k+1

. Lastly, if k 2 F , then Step 13 of Algorithm 1 and the428

inductive hypothesis give �v
k+1

= �v
k

 �v

k

= �v

k+1

. The induction step has now been429

completed since we have overall proved that �v
k+1

 �v

k+1

, which means that we have430

proved the first inequality in part (ii). To prove �v

k

 �v

k+1

, consider two cases. If431

k 2 Sv, then Step 5 of Algorithm 3 gives �v

k+1

� �v

k

. Otherwise, if k /2 Sv, then432

according to Step 13 of Algorithm 1 and Steps 10 and 15 of Algorithm 3, it follows433

that �v

k+1

= �v

k

. Combining both cases, the proof of part (ii) is now complete.434

For part (iii), first observe from part (ii) and Step 6 of Algorithm 3 that if k 2 Sv,435

then �v
k+1

= min{�v

k+1

,max{�v
k

, �
e

kn
k

k}} � �v
k

. On the other hand, if k 2 Ev, then436

the conditions that must hold true for Step 12 of Algorithm 3 to be reached ensure that437

�v

k

> 0, meaning that kn
k

k = �v
k

(see (6c)). From this and the fact that the conditions438

in Step 12 of Algorithm 3 must hold true, it follows that �v

k

/�v

k

> kn
k

k = �v
k

and439

kn
k

k < �v

k

. Combining these observations with �v

k+1

= �v

k

for k 2 Ev (see Step 15440

of Algorithm 3) it follows from Step 16 of Algorithm 3 that �v
k+1

> kn
k

k = �v
k

.441

Finally, part (iv) follows from Steps 13 and 27 of Algorithm 1.442

The next result reveals similar properties for the other radii and {�f

k

}.443

Lemma 11. The following hold:444

(i) if k 2 Cf , then �f
k+1

< �f
k

and if, in addition, (k + 1) 2 It, then �f

k+1

� �f

k

;445

(ii) if k 2 Sf , then �f
k+1

� �f
k

and �s
k+1

� �s
k

; and446

(iii) if k 2 V, then �f
k+1

= �f
k

.447

Proof. For part (i), notice that �f
k+1

is set in Step 9 of Algorithm 2 and that448

(x
k+1

, �v
k+1

) (x
k

, �v
k

) and n
k+1

= n
k

for all k 2 Cf . Let us proceed by considering449

13

This manuscript is for review purposes only.

two cases depending on the condition in Step 12 of Algorithm 2.450

Case 1: �f

k

< �ks
k

k. In this case, �f
k+1

is set in Step 14 of Algorithm 2, which451

from Step 13 of Algorithm 2 and Lemma 9 implies that �f > �f

k

. Combining this452

with Lemma 8 and standard theory for trust region methods leads to the fact that the453

solution tN (�f) of Q̄f

k

(�f) satisfies ktN (�f)k < ktN
k

k. Thus, �f
k+1

= kn
k

+ t(�f)k =454

knR

k

+ tN (�f)k < knR

k

+ tN
k

k = ks
k

k  �f
k

, where the last inequality comes from (10).455

If, in addition, (k + 1) 2 It so that a nonzero tangential step is computed and not456

reset to zero, it follows that �f

k+1

= �f . This establishes the last conclusion of part (i)457

for this case since it has already been shown above that �f > �f

k

.458

Case 2: �f

k

� �ks
k

k. In this case, �f
k+1

is set in Step 16 of Algorithm 2 and,459

from (10) and �
c

2 (0, 1), it follows that �f
k+1

= �
c

ks
k

k  �
c

�f
k

< �f
k

. Consequently,460

from Step 13 of Algorithm 1 and (10), one finds that �s
k+1

 �s
k

. It then follows from461

Lemma 8 and standard trust region theory that if (k + 1) 2 It, then �f

k+1

� �f

k

.462

To prove part (ii), notice that for k 2 Sf it follows by Step 5 of Algorithm 2 that463

�f
k+1

= max{�f
k

, �
e

ks
k

k}, so �f
k+1

� �f
k

. From this, Step 13 of Algorithm 1, and (10)464

it follows that �s
k+1

� �s
k

. These conclusions complete the proof of part (ii).465

Finally, part (iii) follows from Step 17 of Algorithm 1.466

Next, we show that after aV-iteration with either a contraction or an expansion467

of the trust region radius, the subsequent iteration cannot result in an expansion.468

Lemma 12. If k 2 Cv [Ev, then (k + 1) 2 F [Sv [Cv.469

Proof. If (k+1) 2 F , then there is nothing left to prove. Otherwise, if (k+1) 2 V,470

then the proof follows using the same logic as for [15, Lemma 3.7], which shows that471

one of three cases holds: (i) k 2 Cv, which yields �v

k+1

 �v

k+1

kn
k+1

k, so (k+1) /2 Ev;472

(ii) k 2 Ev and �v

k

� �v

k

/�v

k

, which also yields �v

k+1

 �v

k+1

kn
k+1

k, so (k + 1) /2 Ev;473

or (iii) k 2 Ev and �v

k

< �v

k

/�v

k

, which implies (k + 1) 2 Sv [Cv, so (k + 1) /2 Ev.474

Our goal now is to expand upon the conclusions of Lemma 12. To do this, it475

will be convenient to define the first index in a given index set following an earlier476

index k 2 I in that index set (or the initial index 0). In particular, let us define477

kS(k) := min{k 2 S : k > k} and kS[V(k) := min{k 2 S [V : k > k}478

479

along with the associated sets480

IS(k) := {k 2 I : k < k < kS(k)} and IS[V(k) := {k 2 I : k < k < kS[V(k)}.481

482

The following lemma shows one important property related to these quantities.483

Lemma 13. For all k 2 S [{0}, it follows that |Ev \ IS(k)|  1.484

Proof. In order to derive a contradiction, suppose that there exists k 2 S [{0}485

such that |Ev \ IS(k)| > 1, which means that one can choose kS
1

and kS
3

as the first486

two distinct indices in Ev \ IS(k); in particular,487

{kS
1

, kS
3

} ✓ Ev \ IS(k) and k < kS
1

< kS
3

< kS(k).488

By Lemma 12 and the fact that kS
1

2 Ev, it follows that {kS
1

+ 1, . . . , kS
3

� 1} 6= ;.489

Let us proceed by considering two cases, deriving a contradiction in each case.490

Case 1: V \ {kS
1

+ 1, . . . , kS
3

� 1} = ;. In this case, by the definitions of kS
1

,491

kS
3

, and IS(k), it follows that {kS
1

+ 1, . . . kS
3

� 1} ✓ Cf . Then, since �v
k+1

= �v
k

492

14

This manuscript is for review purposes only.

and �v

k+1

= �v

k

for all k 2 Cf ✓ F , it follows that �v
kS

3

= �v
kS

1

+1

and �v

kS
3

= �v

kS
1

+1

.493

In particular, using the fact that �v
kS

3

= �v
kS

1

+1

, it follows along with the fact that494

x
k+1

= x
k

for all k /2 S that kn
kS

3

k = kn
kS

1

+1

k and �v

kS
3

= �v

kS
1

+1

. Now, since495

(kS
1

+ 1) 2 Cf , it follows with Step 10 of Algorithm 1 and (15e) that496

�v

kS
3

/kn
kS

3

k = �v

kS
1

+1

/kn
kS

1

+1

k  �v

kS
1

+1

= �v

kS
3

,497

which implies that kS
3

/2 Ev, a contradiction.498

Case 2: V \ {kS
1

+ 1, . . . , kS
3

� 1} 6= ;. In this case, by the definitions of499

kS
1

, kS
3

, and IS(k), it follows that {kS
1

+ 1, . . . , kS
3

� 1} ✓ Cf [Cv. In addition,500

by the condition of this case, it also follows that there exists a greatest index kS
2

2501

Cv\{kS
1

+1, . . . , kS
3

�1}. In particular, for the index kS
2

2 Cv, it follows that kS
1

+1 502

kS
2

 kS
3

� 1 and {kS
2

+1, . . . , kS
3

� 1} ✓ Cf . By kS
2

2 Cv and Lemma 12, it follows503

that kS
2

+ 1 /2 Ev; hence, since kS
3

2 Ev, it follows that {kS
2

+ 1, . . . , kS
3

� 1} 6= ;.504

We may now apply the same argument as for Case 1, but with kS
1

replaced by kS
2

,505

to arrive at the contradictory conclusion that kS
3

/2 Ev, completing the proof.506

The next lemma reveals lower bounds for the norms of the normal and full steps.507

Lemma 14. For all k 2 I, the following hold:508

(i) kn
k

k � min {�v
k

, kgv
k

k/kHv

k

k} > 0 and509

(ii) ks
k

k � 
ntn

min {�v
k

, kgv
k

k/kHv

k

k} > 0.510

Proof. The proof of part (i) follows as that for [15, Lemma 3.2]. Part (ii) follows511

from part (i) and (14b), the latter of which holds because of Lemma 5(ii).512

We now provide a lower bound for the decrease in the model of infeasibility.513

Lemma 15. For all k 2 I, the quantities n
k

, �v

k

, and s
k

satisfy514

v
k

�mv

k

(n
k

) = 1

2

nT

k

(Hv

k

+ �v

k

I)n
k

+ 1

2

�v

k

kn
k

k2 > 0,(24a)515

v
k

�mv

k

(s
k

) � 
vm

(1
2

nT

k

(Hv

k

+ �v

k

I)n
k

+ 1

2

�v

k

kn
k

k2) > 0, and(24b)516

v
k

�mv

k

(s
k

) � 1

2


vm

kgv
k

kmin {�v
k

, kgv
k

k/kHv

k

k} > 0.(24c)517

518

Proof. The proof of (24a) follows as for that of [15, Lemma 3.3] and the fact that519

kgv
k

k > ", which holds since k 2 I. The inequalities in (24b) follow from (24a) and520

(14a), the latter of which holds because of Lemma 5(ii). To prove (24c), first observe521

from standard trust region theory (e.g., see [10, Theorem 6.3.1]) that522

(25) v
k

�mv

k

(n
k

) � 1

2

kgv
k

kmin {�v
k

, kgv
k

k/kHv

k

k} > 0.523

By combining (25) and (14a) (which holds by Lemma 5(ii)), one obtains (24c).524

The next lemma reveals that if the dual variable for the normal step trust region525

is beyond a certain threshold, then the trust region constraint must be active and the526

step will either be an F-iteration or a successful V-iteration. Consequently, this527

reveals an upper bound for the dual variable for any unsuccessful V-iteration.528

Lemma 16. For all k 2 I, if the trial step s
k

and the dual variable �v

k

satisfy529

(26) �v

k

� 2

�


vm

(2gv
Lip

+ ✓
fc

+ 2
⇢

ks
k

k),530

then kn
k

k = �v
k

and ⇢v
k

� 
⇢

.531

15

This manuscript is for review purposes only.

Proof. For all k 2 I, it follows from the definition of mv

k

and the Mean Value532

Theorem that there exists a point x̄
k

2 RN on the line segment [x
k

, x
k

+s
k

] such that533

mv

k

(s
k

)� v(x
k

+ s
k

) = (gv
k

� gv(x̄
k

))T s
k

+ 1

2

sT
k

Hv

k

s
k

534

� �kgv
k

� gv(x̄
k

)kks
k

k � 1

2

kHv

k

kks
k

k2.(27)535

536

By (26) and (6c), it follows that kn
k

k = �v
k

. Combining this fact with (27), (24b),537

(6b), Lemma 4, (26), and the fact that ks
k

k  �s
k

 
�

�v
k

= 
�

kn
k

k, one obtains538

v
k

� v(x
k

+ s
k

) = v
k

�mv

k

(s
k

) +mv

k

(s
k

)� v(x
k

+ s
k

)

� 1

2


vm

�v

k

kn
k

k2 � kgv
k

� gv(x̄
k

)kks
k

k � 1

2

kHv

k

kks
k

k2
� 1

2


vm

�2

�

�v

k

ks
k

k2 � kgv
k

� gv(x̄
k

)kks
k

k � 1

2

kHv

k

kks
k

k2
� (1

2


vm

�2

�

�v

k

� gv
Lip

� 1

2

✓
fc

)ks
k

k2 � 
⇢

ks
k

k3,

539

which, by Steps 13 and 15 in Algorithm 1 and (18), completes the proof.540

Recall that our main goal in this section is to prove that |I| < 1. Ultimately,541

this result is attained by deriving contradictions under the assumption that |I| =1.542

For example, if |I| =1 and the iterations corresponding to all su�ciently large k 2 I543

involve contractions of a trust region radius, then the following lemma helps to lead544

to contradictions in subsequent results. In particular, it reveals that, under these545

conditions, a corresponding dual variable tends to infinity.546

Lemma 17. The following hold:547

(i) If k /2 S for all large k 2 I and |Cv| =1, then {�v
k

}! 0 and {�v

k

}!1.548

(ii) If k 2 Cf for all large k 2 I, then {�f
k

}! 0 and {�f

k

}!1.549

Proof. By Lemma 10, Lemma 13, and the fact that k /2 S for all large k 2 I, the550

proof of part (i) follows as that of [15, Lemma 3.9].551

To prove part (ii), let us assume, without loss of generality, that k 2 Cf for all552

k 2 I. It then follows that k 2 It for all k 2 I, since otherwise it would follow that553

t
k

 0, which by (15a) means k 2 V, a contradiction to k 2 Cf . Thus,554

(28) k 2 Cf \ It for all k 2 I.555

Next, we claim that the condition in Step 12 of Algorithm 2 can hold true for at most556

one iteration. If it never holds true, then there is nothing left to prove. Otherwise,557

let k
c

2 I be the first index for which the condition holds true. The structure558

of Algorithm 2 (see Step 13) and (28) then ensure that �f

kc+1

/ks
kc+1

k � �. From559

Lemma 11(i), one may conclude that {�f

k

/ks
k

k} is nondecreasing. From this, it follows560

that the condition in Step 12 of Algorithm 2 will never be true for any k > k
c

. Thus, we561

may now proceed, without loss of generality, under the assumption that the condition562

in Step 12 of Algorithm 2 always tests false. This means that �f
k+1

is set in Step 16 of563

Algorithm 2 for all k 2 I, yielding �f
k+1

 �
c

ks
k

k  �
c

�f
k

, where the last inequality564

comes from (10). Therefore, {�f
k

}! 0 for all k 2 I, and consequently {�f

k

}!1.565

We now show that the sequences {�v

k

} and {n
k

} are bounded above.566

Lemma 18. There exists a scalar �v

max

2 (0,1) such that �v

k

= �v

max

for all567

su�ciently large k 2 I. In addition, |Sv

�

| <1 and there exists a scalar n
max

2 (0,1)568

such that kn
k

k  n
max

for all k 2 I.569

16

This manuscript is for review purposes only.

Proof. First, in order to derive a contradiction, assume that there is no �v

max

570

such that �v

k

= �v

max

for all su�ciently large k 2 I. This, in turn, means that571

Step 5 of Algorithm 3 is reached infinitely often, meaning that |Sv| = 1. For all572

k 2 Sv ✓ S, it follows from Lemma 7 that vmax

k

� vmax

k+1

� 
⇢

(1 � 
v2

)ks
k

k3. Now,573

using the monotonicity of {vmax

k

} and the fact that vmax

k

� 0 (see Lemma 6), one may574

conclude that {vmax

k

} converges; therefore {s
k

}
k2Sv ! 0. From this fact, Lemma 5(ii),575

and (14b) it follows that {n
k

}
k2Sv ! 0. Thus, there exists an iteration index kv

�

576

such that for all k 2 Sv with k � kv
�

, one finds �
e

kn
k

k < �v

0

 �v

k

, where the577

last inequality follows from Lemma 10(ii). From this and Steps 5, 10, and 15 of578

Algorithm 3, it follows that �v

k+1

 �v

k

for all k � kv
�

, a contradiction. The proof of579

the second part of the lemma follows as in that for [15, Lemma 3.11].580

In the next lemma, a uniform lower bound on {�v
k

} is provided.581

Lemma 19. There exists a scalar �v
min

2 (0,1) such that �v
k

� �v
min

for all k 2 I.582

Proof. If |Cv| < 1, then the result follows from Lemma 10(iii)–(iv). Thus,583

let us proceed under the assumption that |Cv| = 1. As in the beginning of the584

proof of Lemma 16, it follows that (27) holds. Then, using (27), (24c), Lemma 4(i),585

Lemma 4(iii), kgv
k

k > ✏ for k 2 I, and ks
k

k  �s
k

 
�

�v
k

, it follows that586

v
k

� v(x
k

+ s
k

)

= v
k

�mv

k

(s
k

) +mv

k

(s
k

)� v(x
k

+ s
k

)

� 1

2


vm

kgv
k

kmin {�v
k

, kgv
k

k/kHv

k

k}� kgv
k

� gv(x̄
k

)kks
k

k � 1

2

kHv

k

kks
k

k2
� 1

2


vm

✏min {�v
k

, ✏/✓
fc

}� (gv
Lip

+ 1

2

✓
fc

)ks
k

k2
� 1

2


vm

✏min {�v
k

, ✏/✓
fc

}� (gv
Lip

+ 1

2

✓
fc

)2

�

(�v
k

)2.

587

Considering these inequalities and ks
k

k  �s
k

 
�

�v
k

, it must hold that ⇢v
k

� 
⇢

for588

any k 2 I as long as �v
k

2 (0, ✏/✓
fc

] is su�ciently small such that589

1

2


vm

✏�v
k

� (gv
Lip

+ 1

2

✓
fc

)2

�

(�v
k

)2 � 
⇢

3

�

(�v
k

)3 � 
⇢

ks
k

k3.590

This fact implies the existence of a positive threshold �v
thresh

2 (0, ✏/✓
fc

] such that,591

for any k 2 I with �v
k

2 (0, �v
thresh

), one finds ⇢v
k

� 
⇢

. Along with the fact that592

⇢v
k

< 
⇢

if and only if k 2 Cv (see Step 2, 7, and 12 of Algorithm 3 and Step 13 of593

Algorithm 1), it follows that594

(29) �v
k

� �v
thresh

for all k 2 Cv.595

Since the normal step subproblem trust region radius is only decreased when k 2 Cv,596

we will complete the proof by showing a lower bound on �v
k+1

when k 2 Cv.597

Suppose that k 2 Cv. If Step 24 of Algorithm 3 is reached, then598

�v
k+1

 kn(�v)k � �v

�
=

�v

k

+ (�kgv
k

k)1/2
�

� (�kgv
k

k)1/2
�

� (�✏)1/2

�
,599

where the last inequality follows since k 2 I means kgv
k

k � ✏. If Step 27 is reached,600

then the algorithm chooses �v 2 (�v

k

, �̂v) to find n(�v) that solves Qv

k

(�v) such that601

�  �v/kn(�v)k  �. For this case and the cases when Step 32 or 34 is reached, the602

existence of �v
min

2 (0,1) such that �v
k+1

� �v
min

for all k 2 Cv follows in the same603

manner as in the proof of [15, Lemma 3.12]. Combining these facts with (29) and604

Lemma 10(iii)–(iv), the proof is complete.605

17

This manuscript is for review purposes only.

The next result shows that there are finitely many successful iterations.606

Lemma 20. The following hold: |Sv| <1 and |Sf | <1.607

Proof. Lemma 19, kgv
k

k > ✏ for all k 2 I, Lemma 14(i), and Lemma 4(i) imply608

the existence of n
min

2 (0,1) such that kn
k

k � n
min

for all k 2 I, i.e.,609

(30) kgv
k

k > ✏ and kn
k

k � n
min

> 0 for all k 2 I.610

In order to reach a contradiction to the first desired conclusion, suppose that |Sv| =1.611

For any k 2 Sv, it follows from Lemma 7, Lemma 5(ii), and (14b) that612

(31) vmax

k

� vmax

k+1

� 
⇢

(1� 
v2

)ks
k

k3 � 
⇢

(1� 
v2

)3

ntn

kn
k

k3.613

By Lemma 6, 0 < vmax

k+1

 vmax

k

for all k 2 I, meaning that {vmax

k

� vmax

k+1

}! 0, which614

together with (31) shows that {kn
k

k}
k2Sv ! 0, contradicting (30). This proves that615

|Sv| < 1. Now, in order to reach a contradiction to the second desired conclusion,616

suppose that |Sf | = 1. Since |Sv| < 1, we can assume without loss of generality617

that S = Sf . This means that the sequence {f
k

} is monotonically nonincreasing.618

Combining this with the fact that {f
k

} is bounded below under Assumptions 1 and 2,619

it follows that {f
k

} ! f
low

for some f
low

2 (�1,1) and {f
k

� f
k+1

} ! 0. Us-620

ing these facts, the inequality ⇢f
k

� 
⇢

for all k 2 Sf , and |Sf | = 1, it follows621

that {
⇢

ks
k

k3}
k2Sf  {f

k

� f
k+1

}
k2Sf ! 0, which gives {ks

k

k}
k2Sf ! 0. This, in622

turn, implies that {kn
k

k}
k2Sf ! 0 because of Lemma 5(ii) and (14b), which contra-623

dicts (30). Hence, |Sf | <1.624

We are now prepared to prove that Algorithm 1 terminates finitely.625

Theorem 21. Algorithm 1 terminates finitely, i.e., |I| <1.626

Proof. Suppose by contradiction that |I| =1. Let us consider two cases.627

Case 1: |V| =1. Since |S| <1, it follows that |V \ Sv| = |Cv [Ev| =1, which628

along with Lemma 13 implies that |Ev| < 1 while |Cv| = 1. It now follows from629

Lemma 17(i) that {�v
k

}! 0, which contradicts Lemma 19.630

Case 2: |V| < 1. For this case, we may assume without loss of generality that631

F = I. This implies with Lemma 5(i) that �v
k

= �v
0

and n
k

= n
0

6= 0 for all k 2 I. It632

also implies from Step 10 of Algorithm 1 that (15) holds for all k 2 I; in particular,633

from (15a) it means that t
k

6= 0 for all k 2 I. Now, from |V| < 1, |S| < 1, and634

Lemma 17(ii), it follows that {�f
k

} ! 0, which by (10) yields {�s
k

} ! 0. It then635

follows from Step 21 of Algorithm 1 and F = I that {n
k

}! 0, which contradicts our636

previous conclusion that n
k

= n
0

6= 0 for all k 2 I.637

3.2. Complexity analysis for phase 1. Our goal in this subsection is to prove638

an upper bound on the total number of iterations required until phase 1 terminates,639

i.e., until the algorithm reaches k 2 N such that kgv
k

k  ✏. To prove such a bound,640

we require the following additional assumption.641

Assumption 22. The Hessian functions Hv(x) := r2v(x) and r2f(x) are Lip-642

schitz continuous with constants Hv

Lip

2 (0,1) and H
Lip

2 (0,1), respectively, on a643

path defined by the sequence of iterates and trial steps computed in the algorithm.644

Our first result in this subsection can be seen as a similar conclusion to that given645

by Lemma 16, but with this additional assumption in hand.646

Lemma 23. For all k 2 I, if the trial step s
k

and dual variable �v

k

satisfy647

(32) �v

k

� 2

�

�1

vm

(Hv

Lip

+ 2
⇢

)ks
k

k,648

18

This manuscript is for review purposes only.

then kn
k

k = �v
k

and ⇢v
k

� 
⇢

.649

Proof. For all k 2 I, there exists x
k

on the line segment [x
k

, x
k

+ s
k

] such that650

(33) mv

k

(s
k

)� v(x
k

+ s
k

) = 1

2

sT
k

(Hv

k

�Hv(x
k

)) s
k

� � 1

2

Hv

Lip

ks
k

k3.651

From this, (24b), and (6b), one deduces that652

v(x
k

)� v(x
k

+ s
k

) = v(x
k

)�mv

k

(s
k

) +mv

k

(s
k

)� v(x
k

+ s
k

)

� 1

2


vm

�v

k

kn
k

k2 � 1

2

Hv

Lip

ks
k

k3.653

From Lemma 5(i), (32), and (6c), it follows that kn
k

k = �v
k

, which along with (10)654

means that ks
k

k  �s
k

 
�

�v
k

= 
�

kn
k

k, so, from above,655

(34) v(x
k

)� v(x
k

+ s
k

) � 1

2


vm

�2

�

�v

k

ks
k

k2 � 1

2

Hv

Lip

ks
k

k3.656

From here, by Steps 13 and 15 of Algorithm 1 and under (32), the result follows.657

The next lemma reveals upper and lower bounds for an important ratio that will658

hold during the iteration immediately following a V-iteration contraction.659

Lemma 24. For all k 2 Cv, it follows that660

(35) �  �v

k+1

kn
k+1

k  max

⇢
�,

✓
�
�

�
c

◆
�v

k

kn
k

k
�
.661

Proof. The result follows using the same logic as the proof of [15, Lemma 3.17].662

In particular, there are four cases to consider.663

Case 1. Suppose that Step 24 of Algorithm 3 is reached. Then, �v
k+1

= kn
k+1

k =664

kn(�v)k and �v

k+1

= �v, where (n(�v),�v) is computed in Steps 20–22 of Algorithm 3.665

As Step 24 of Algorithm 3 is reached, the condition in Step 23 of Algorithm 3 holds.666

Therefore, �v

k+1

/kn
k+1

k  �. To find a lower-bound on the ratio, let Hv

k

= V
k

⌅v

k

V T

k

667

where V
k

is an orthonormal matrix of eigenvectors and ⌅v

k

= diag(⇠v
k,1

, . . . , ⇠v
k,n

) with668

⇠v
k,1

 · · ·  ⇠v
k,n

is a diagonal matrix of eigenvalues of Hv

k

. Since k 2 Cv ✓ I,669

kgv
k

k � ✏ > 0; therefore, �v = �̂v > �v

k

, leading to Hv

k

+ �vI � 0. Thus,670

kn(�v)k2 = kV
k

(⌅v

k

+ �vI)�1V T

k

gv
k

k2 = gv
k

TV
k

(⌅v

k

+ �vI)�2V T

k

g
k

.671

From orthonormality of V
k

and Steps 20–22 of Algorithm 3, it follows that672

kn(�v)k2
kgv

k

k2 =
gv
k

TV
k

(⌅v

k

+ �vI)�2V T

k

g
k

kV T

k

gv
k

k2 
⇣
⇠v
k,1

+ �v

k

+ (�kgv
k

k)1/2
⌘�2

.673

Hence, since �v

k

� max{0,�⇠v
k,1

}, one finds674

�v

k+1

kn
k+1

k =
�v

kn(�v)k �
(�v

k

+ (�kgv
k

k)1/2)(⇠v
k,1

+ �v

k

+ (�kgv
k

k)1/2)
kgv

k

k � �.675

Case 2. Suppose that Step 27 of Algorithm 3 is reached. Then, �v
k+1

= kn
k+1

k =676

kn(�v)k where (n(�v),�v) is computed in Step 26 of Algorithm 3, meaning that677

�v

k+1

kn
k+1

k =
�v

kn(�v)k where �  �v

kn(�v)k  �.678

19

This manuscript is for review purposes only.

The other two cases that may occur correspond to situations in which the condi-679

tion in Step 19 of Algorithm 3 tests false, in which case �v

k

> 0 and the pair (n(�v),�v)680

is computed in Steps 29–30 of Algorithm 3. This means, in particular, that681

(36) �  �v

k

kn
k

k 
�v

kn(�v)k ,682

where the latter inequality follows since �v = �
�

�v

k

> �v

k

, which, in turn, implies by683

standard trust region theory that kn(�v)k < kn
k

k. Let us now consider the cases.684

Case 3. Suppose that Step 32 of Algorithm 3 is reached. Then, �v

k+1

= �v and685

kn
k+1

k = �v
k+1

. In conjunction with (36), it follows that686

�  �v

k+1

kn
k+1

k =
�v

kn(�v)k =
�
�

�v

k

kn(�v)k 
�
�

�v

k

�
c

kn
k

k ,687

where the last inequality follows from the condition in Step 31 in Algorithm 3.688

Case 4. Suppose that Step 34 of Algorithm 3 is reached, so �v
k+1

= �
c

kn
k

k.689

According to standard trust region theory, since kn(�v)k < �
c

kn
k

k, one can conclude690

that �v

k

 �v

k+1

 �v = �
�

�v

k

. Hence, with (36), it follows that691

� <
�

�
c

 �v

k

�
c

kn
k

k 
�v

k+1

kn
k+1

k 
�
�

�v

k

�
c

kn
k

k .692

The result follows since we have obtained the desired inequalities in all cases.693

Now, we prove that the sequence {�v

k

} is bounded.694

Lemma 25. There exists �v

max

2 (0,1) such that �v

k

 �v

max

for all k 2 I.695

Proof. If k /2 Cv, then Steps 27 and 29 of Algorithm 1 give �v

k+1

 �v

k

. Otherwise,696

if k 2 Cv, meaning that ⇢v
k

< 
⇢

, then there are two cases to consider. If k 2 Cv and697

�v

k

< �kn
k

k, then, by Steps 23–27 of Algorithm 3, Step 29 of Algorithm 1, and the698

fact that �v

k+1

= �v and n
k+1

= n(�v), where (n(�v,�v) are computed either in699

Steps 21–22 or Step 26 of Algorithm 3, it follows that �v

k+1

 max{�v

k

,�}. Finally, if700

k 2 Cv and �v

k

� �kn
k

k, then it follows from Lemma 23 that701

�v

k

< 2

�

�1

vm

(Hv

Lip

+ 2
⇢

)ks
k

k.702

From the fact that �v

k

� �kn
k

k, Lemma 5(i), (6c), and (10), it follows that ks
k

k 703

�s
k

 
�

�v
k

= 
�

kn
k

k. Hence, by Step 29 of Algorithm 1 and Lemma 24, one finds704

�v

k+1

 max

⇢
�v

k

,
�v

k+1

kn
k+1

k
�
 max

⇢
�v

k

,�,

✓
�
�

�
c

◆
3

�


vm

(Hv

Lip

+ 2
⇢

)

�
.705

Combining the results of these cases gives the desired conclusion.706

We now give a lower-bound for the norm of some types of successful steps.707

Lemma 26. For all k 2 Sv

�

[Sf , the accepted step s
k

satisfies708

(37) ks
k

k � (Hv

Lip

+ 
ht

+ �v

max

/2

ntn

)�1/2kgv
k+1

k1/2.709

Proof. Let k 2 Sv

�

[Sf . It follows from (6a), the Mean Value Theorem, the fact710

that s
k

= n
k

+ t
k

, Assumption 22, Lemma 5(ii), and (14c) that there exists a vector711

20

This manuscript is for review purposes only.

x on the line segment [x
k

, x
k

+ s
k

] such that712

kgv
k+1

k = kgv
k+1

� gv
k

� (Hv

k

+ I�v

k

)n
k

k713

= k(Hv(x)�Hv

k

)s
k

+Hv

k

t
k

� �v

k

n
k

k714

 Hv

Lip

ks
k

k2 + 
ht

ks
k

k2 + �v

k

kn
k

kknk

k2.(38)715

716

From Step 2 of Algorithm 3 (if k 2 Sv

�

) and (15e) (if k 2 Sf), one finds �v

k

/kn
k

k  �v

k

.717

Combining this with (38), Lemma 5(ii), (14b), and Lemma 25, it follows that718

kgv
k+1

k  Hv

Lip

ks
k

k2 + 
ht

ks
k

k2 + �v

k

kn
k

k2  (Hv

Lip

+ 
ht

+ �v

max

/2

ntn

)ks
k

k2,719

which gives the desired result.720

We now give an iteration complexity result for a subset of successful iterations.721

Lemma 27. For any ✏ 2 (0,1), the total number of elements in722

K(✏) := {k 2 I : k � 0 and (k � 1) 2 Sv

�

[Sf}723

is at most724

(39)

$
vmax

0


⇢

(1� 
v2

)(Hv

Lip

+ 
ht

+ �v

max

/2

ntn

)�3/2

!
✏�3/2

%
=: K

�

(✏) � 0.725

Proof. From Lemma 7 and Lemma 26, it follows that, for all k 2 K(✏) ✓ I,726

vmax

k�1

� vmax

k

� 
⇢

(1� 
v2

)ks
k�1

k3
� 

⇢

(1� 
v2

)(Hv

Lip

+ 
ht

+ �v

max

/2

ntn

)�3/2kgv
k

k3/2
� 

⇢

(1� 
v2

)(Hv

Lip

+ 
ht

+ �v

max

/2

ntn

)�3/2✏3/2.

727

In addition, since |K(✏)| <1 follows by Theorem 21, the reduction in vmax

k

obtained728

up to the largest index in K(✏), call it k(✏), satisfies729

vmax

0

� vmax

k(✏)

=
k✏X

k=1

(vmax

k�1

� vmax

k

) �
X

k2K(✏)

(vmax

k�1

� vmax

k

)

� |K(✏)|
⇢

(1� 
v2

)(Hv

Lip

+ 
ht

+ �v

max

/2

ntn

)�3/2✏3/2.

730

Rearranging this inequality to yield an upper bound for |K(✏)| and using the fact that731

vmax

k

� 0 for all k 2 I (see Lemma 6), the desired result follows.732

In order to bound the total number of successful iterations in I, we also need an733

upper bound for the cardinality of Sv

�

. This is the subject of our next lemma.734

Lemma 28. The cardinality of the set Sv

�

is bounded above by735

(40)

$
vmax

0


⇢

3

ntn

(1� 
v2

)(�v

0

)3

%
:= Kv

�

� 0.736

Proof. For all k 2 Sv

�

✓ S, it follows from Lemma 7, Lemma 5(ii), (14b), and737

Lemma 10(ii) that the decrease in the trust funnel radius satisfies738

vmax

k

� vmax

k+1

� 
⇢

(1� 
v2

)ks
k

k3 � 
⇢

3

ntn

(1� 
v2

)kn
k

k3
= 

⇢

3

ntn

(1� 
v2

)(�v

k

)3 � 
⇢

3

ntn

(1� 
v2

)(�v

0

)3.
739

21

This manuscript is for review purposes only.

Now, using the fact that {vmax

k

} is bounded below by zero (see Lemma 6), one finds740

vmax

0

�
X

k2Sv
�

(vmax

k

� vmax

k+1

) � |Sv

�

|
⇢

3

ntn

(1� 
v2

)(�v

0

)3,741

which gives the desired result.742

Having now provided upper bounds for the numbers of successful iterations, we743

need to bound the number of unsuccessful iterations in I. To this end, first we prove744

that a critical ratio increases by at least a constant factor after an iteration in Cv.745

Lemma 29. If k 2 Cv and �v

k

� �kn
k

k, then746

�v

k+1

kn
k+1

k � min

⇢
�
�

,
1

�
c

�✓
�v

k

kn
k

k
◆
.747

Proof. The proof follows the same logic as in [15, Lemma 3.23]. In particular,748

since k 2 Cv and, with Lemma 5(i), it follows that �v

k

� �kn
k

k > 0, one finds that749

the condition in Step 19 of Algorithm 3 tests false. Hence, (n(�v),�v) is computed in750

Steps 29–30 of Algorithm 3 so that �v = �
�

�v

k

> �v

k

and n(�v) solves Qv

k

(�v). Let us751

now consider the two cases that may occur.752

Case 1. Suppose that Step 32 of Algorithm 3 is reached, meaning that kn(�v)k �753

�
c

kn
k

k. It follows that kn
k+1

k = �v
k+1

< �v
k

= kn
k

k and �v

k+1

= �
�

�v

k

, i.e.,754

(41)
�v

k+1

kn
k+1

k >
�
�

�v

k

kn
k

k .755

Case 2. Suppose that Step 34 of Algorithm 3 is reached, meaning that kn(�v)k <756

�
c

kn
k

k. It follows that kn
k+1

k = �v
k+1

= �
c

kn
k

k and �v

k+1

� �v

k

. Consequently,757

(42)
�v

k+1

kn
k+1

k �
�v

k

�
c

kn
k

k .758

The result now follows from the conclusions of these two cases.759

We are now able to provide an upper bound on the number of unsuccessful iter-760

ations in Cv that may occur between any two successful iterations.761

Lemma 30. If k 2 S [{0}, then762

(43) |Cv \ IS(k)|  1 +

�
1

log(min{�
�

, ��1

c

}) log
✓
�v

max

�

◆⌫
=: Kv

C � 0.763

Proof. The result holds trivially if |Cv \IS(k)| = 0. Thus, we may proceed under764

the assumption that |Cv \ IS(k)| � 1. Let kCv be the smallest element in Cv \ IS(k).765

It then follows from Lemma 10(i)-(ii), Lemma 12, and Step 13 of Algorithm 1 that766

for all k 2 I satisfying kCv + 1  k  kS(k) we have767

kn
k

k  �v
k

 �v
kCv

+1

< �v
kCv  �v

kCv  �v

kS(k)

,768

which for k = kS(k) means that kS(k) 2 Sf [Sv

�

. From Lemma 24, it follows that769

�v

kCv
+1

� �kn
kCv

+1

k, which by kS(k) 2 Sf [Sv

�

, Lemma 25, Lemma 29, (15e), Step 2770

of Algorithm 3, and the fact that (n
k+1

,�v

k+1

) = (n
k

,�v

k

) for any k 2 Cf means771

�v

max

� �v

kS(k)

�
�v

kS(k)

kn
kS(k)

k �
✓
min

⇢
�
�

,
1

�
c

�◆|Cv\IS(k)|�1

�,772

22

This manuscript is for review purposes only.

from which the desired result follows.773

For our ultimate complexity result, the main component that remains to prove is774

a bound on the number of unsuccessful iterations in Cf between any two successful775

iterations. To this end, we first need some preliminary results pertaining to the trial776

step and related quantities during an F-iteration. Our first such result pertains to777

the change in the objective function model yielded by the tangential step.778

Lemma 31. For any k 2 I, the vectors n
k

and t
k

and dual variable �f

k

satisfy779

(44) mf

k

(n
k

)�mf

k

(n
k

+ t
k

) = 1

2

tT
k

(H
k

+ �f

k

I)t
k

+ 1

2

�f

k

kt
k

k2 + �f

k

nT

k

t
k

.780

Proof. If k /2 It so that t
k

= 0 and �f

k

= 0 (by the Compute Steps subroutine781

in Algorithm 1), then (44) trivially holds. Thus, for the remainder of the proof, let782

us assume that k 2 It. It now follows from the definition of mf

k

that783

mf

k

(n
k

)�mf

k

(n
k

+ t
k

)

= gT
k

n
k

+ 1

2

nT

k

H
k

n
k

� gT
k

(n
k

+ t
k

)� 1

2

(n
k

+ t
k

)TH
k

(n
k

+ t
k

)

= � (g
k

+H
k

n
k

)T t
k

� 1

2

tT
k

H
k

t
k

= � (g
k

+ (H
k

+ �f

k

I)n
k

+ (H
k

+ �f

k

I)t
k

+ JT

k

yf
k

)T t
k

+ 1

2

tT
k

(H
k

+ �f

k

I)t
k

+ 1

2

�f

k

kt
k

k2 + �f

k

nT

k

t
k

+ (yf
k

)
T

J
k

t
k

= 1

2

tT
k

(H
k

+ �f

k

I)t
k

+ 1

2

�f

k

kt
k

k2 + �f

k

nT

k

t
k

,

784

where the last equality follows from (12a).785

The next lemma reveals that, for an F-iteration, if the dual variable for the786

tangential step trust region constraint is large enough, then the trust region constraint787

is active and the iteration will be successful.788

Lemma 32. For all k 2 F , if the trial step s
k

and the dual variable �f

k

satisfy789

(45) �f

k

� (
fm

2

st

(1� 
ntt

))�1(
hs

+H
Lip

+ 2
⇢

)ks
k

k,790

then ks
k

k = �s
k

and ⇢f
k

� 
⇢

.791

Proof. Observe from (45) and Lemma 5(i) that �f

k

> 0, which along with (12c)792

proves that ks
k

k = �s
k

. Next, since k 2 F , it must mean that (15) is satisfied. It then793

follows from (15b), Lemma 31, (12), (15d), and (15a) that794

mf

k

(0)�mf

k

(s
k

) � 
fm

(mf

k

(n
k

)�mf

k

(s
k

))795

= 
fm

(1
2

tT
k

(H
k

+ �f

k

I)t
k

+ 1

2

�f

k

kt
k

k2 + �f

k

nT

k

t
k

)796

� 
fm

(1
2

� 1

2


ntt

)�f

k

kt
k

k2 � 1

2


fm

2

st

(1� 
ntt

)�f

k

ks
k

k2.(46)797

798

Next, the Mean Value Theorem gives the existence of an x 2 [x
k

, x
k

+ s
k

] such that799

23

This manuscript is for review purposes only.

f(x
k

+ s
k

) = f
k

+ gT
k

s
k

+ 1

2

sT
k

r2f(x)s
k

, which with (15f) and Assumption 22 gives800

mf

k

(s
k

)� f(x
k

+ s
k

)

= f
k

+ gT
k

s
k

+ 1

2

sT
k

H
k

s
k

� f
k

� gT
k

s
k

� 1

2

sT
k

r2f(x)s
k

= 1

2

�
sT
k

H
k

s
k

� sT
k

r2f(x
k

)s
k

+ sT
k

r2f(x
k

)s
k

� sT
k

r2f(x)s
k

�

= 1

2

sT
k

�
H

k

�r2f(x
k

)
�
s
k

+ 1

2

sT
k

�r2f(x
k

)�r2f(x)
�
s
k

� � 1

2

���H
k

�r2f(x
k

)
�
s
k

�� ks
k

k � 1

2

���r2f(x
k

)�r2f(x)
�
s
k

�� ks
k

k
� � 1

2

(
hs

+H
Lip

) ks
k

k3.

801

Finally, combining the previous inequality, f
k

= mf

k

(0), and (46), one finds802

f
k

� f(x
k

+ s
k

) = f
k

�mf

k

(s
k

) +mf

k

(s
k

)� f(x
k

+ s
k

)

� 1

2


fm

2

st

(1� 
ntt

)�f

k

ks
k

k2 � 1

2

(
hs

+H
Lip

)ks
k

k3,
803

which combined with (45) shows that ⇢f
k

� 
⇢

as desired.804

We now show that a critical ratio increases by at least a constant factor after any805

unsuccessful F-iteration followed by an iteration in which a nonzero tangential step806

is computed and not reset to zero.807

Lemma 33. If k 2 Cf , �f

k

� �ks
k

k, and (k + 1) 2 It, then808

�f

k+1

ks
k+1

k �
✓

1

�
c

◆
�f

k

ks
k

k .809

Proof. With Lemma 5(i), it follows that �f

k

� �ks
k

k > 0, meaning that ks
k

k = �s
k

.810

In addition, since k 2 Cf , one finds that the condition in Step 12 of Algorithm 2 tests811

false in iteration k. Hence, Step 16 of Algorithm 2 is reached, meaning, with (10),812

that �f
k+1

= �
c

ks
k

k  �
c


�

�v
k

. Then, from the facts that �
c

< 1 and �v
k+1

 �v
k

(see813

Step 13 of Algorithm 1), it follows that �f
k+1

 
�

�v
k+1

. Consequently, again with (10),814

it follows that ks
k+1

k = �s
k+1

= �f
k+1

= �
c

ks
k

k. Combining this with the fact that815

Lemma 11(i) yields �f

k+1

� �f

k

, the result follows.816

Lemma 34. If k 2 Cf and (k + 1) 2 It, then �  �f

k+1

/ks
k+1

k.817

Proof. Since k 2 Cf , there are two cases to consider.818

Case 1: Step 14 of Algorithm 2 is reached. In this case, it follows that ks
k+1

k =819

�f
k+1

= kn
k

+ t(�f)k with (t(�f),�f) computed in Step 13 of Algorithm 2. Together820

with the fact that (k + 1) 2 It, it follows that �f

k+1

/ks
k+1

k = �f/kn
k

+ t(�f)k � �.821

Case 2: Step 14 of Algorithm 2 is not reached. This only happens if the condition822

in Step 12 of Algorithm 2 tested false, meaning that �f

k

/ks
k

k � �. Hence, from823

Lemma 33, it follows that �f

k+1

/ks
k+1

k � �f

k

/�
c

ks
k

k, which by the facts that �
c

< 1824

and �f

k

/ks
k

k � � gives the desired result.825

Next, we provide a bound on the number of iterations in Cf that may occur before826

the first or between consecutive iterations in the set S [V .827

Lemma 35. If k 2 S [V [{0}, then828

(47) |IS[V(k)|  2 +

�
1

log(��1

c

)
log

✓

hs

+H
Lip

+ 2
⇢

�
fm

2

st

(1� 
ntt

)

◆⌫
=: Kf

C � 0.829

24

This manuscript is for review purposes only.

Proof. Let k 2 S [V [{0}. Then, IS[V(k) ✓ Cf . The result follows trivially830

if |IS[V(k)|  1. Therefore, for the remainder of the proof, let us assume that831

|IS[V(k)| � 2. It follows from Lemma 34, k + 1 2 Cf , and k + 2 2 Cf ✓ F (meaning832

that t
k+2

6= 0 and (k + 2) 2 It) that �  �f

k+2

/ks
k+2

k. Combining this inequality833

with Lemma 32, Lemma 33, the fact that and (kS[V(k)� 1) 2 Cf to get834

�

✓
1

�
c

◆
(kS[V(k)�1)�(k+2)


�f

kS[V(k)�1

ks
kS[V(k)�1

k 
✓

hs

+H
Lip

+ 2
⇢


fm

2

st

(1� 
ntt

)

◆
.835

The desired result now follows since |IS[V(k)| = kS[V(k)� k � 1.836

We have now arrived at our complexity result for phase 1.837

Theorem 36. For a scalar ✏ 2 (0,1), the cardinality of I is at most838

(48) K(✏) := 1 + (K
�

(✏) +Kv

�

)(Kv

C + 1)Kf

C ,839

where K
�

(✏), Kv

�

, Kv

C , and Kf

C are defined in Lemmas 27, 28, 30, and 35, respectively.840

Consequently, for any ✏̄ 2 (0,1), it follows that K(✏) = O(✏�3/2) for all ✏ 2 (0, ✏̄).841

Proof. Without loss of generality, let us assume that at least one iteration is842

performed. Then, Lemmas 27 and 28 guarantee that at most K
�

(✏) +Kv

�

successful843

iterations are included in I. In addition, Lemmas 13, 30, and 35 guarantee that, before844

each successful iteration, there can be at most (Kv

C + 1)Kf

C unsuccessful iterations.845

Also accounting for the first iteration, the desired result follows.846

If the constraint Jacobians encountered by the algorithm are not rank deficient847

(and do not tend toward rank deficiency), then the following corollary gives a similar848

result as that above, but for an infeasibility measure.849

Corollary 37. Suppose that, for all k 2 N, the constraint Jacobian J
k

has full850

row rank with singular values bounded below by ⇣
min

2 (0,1). Then, for ✏ 2 (0,1),851

the cardinality of I
c

:= {k 2 N : kc
k

k > ✏/⇣
min

}, is at most K(✏) defined in (48).852

Consequently, for any ✏̄ 2 (0,1), the cardinality of I
c

is O(✏�3/2) for all ✏ 2 (0, ✏̄).853

Proof. Under the stated conditions, kgv
k

k ⌘ kJT

k

c
k

k � ⇣
min

kc
k

k for all k 2 I.854

Thus, since kgv
k

k  ✏ implies kc
k

k  ✏/⇣
min

, the result follows from Theorem 36.855

4. Phase 2: Obtaining Optimality. A complete algorithm for solving prob-856

lem (1) proceeds as follows. The phase 1 method, Algorithm 1, is run until either an857

approximate feasible point or approximate infeasible stationary point is found, i.e.,858

for some (✏
feas

, ✏
inf

) 2 (0,1)⇥ (0,1), the method is run until, for some k 2 N,859

kc
k

k  ✏
feas

(49a)860

or kJT

k

c
k

k  ✏
inf

kc
k

k.(49b)861

862

If phase 1 terminates with (49a) failing to hold and (49b) holding, then the entire863

algorithm is terminated with a declaration of having found an infeasible (approxi-864

mately) stationary point. Otherwise, if (49a) holds, then a phase 2 method is run865

that maintains at least ✏
feas

-feasibility while seeking optimality.866

With this idea in mind, how should the termination tolerance ✏ in Algorithm 1867

be set so that (49) is achieved within at most O(✏�3/2) iterations, as is guaranteed by868

the analysis in the previous section? Given (✏
feas

, ✏
inf

) 2 (0,1) ⇥ (0,1), we claim869

that Algorithm 1 should be employed with ✏ = ✏
feas

✏
inf

. Indeed, with this choice,870

25

This manuscript is for review purposes only.

if the final point produced by phase 1, call it x
k

, does not yield (49a), then it must871

satisfy kgv
k

k ⌘ kJT

k

c
k

k/kc
k

k  ✏/✏
feas

= ✏
inf

, which is exactly (49b).872

There are various options for phase 2, three of which are worth mentioning.873

• Respecting the current state-of-the-art nonlinear optimization methods, one874

can run a trust funnel method such as that in [21]. One can even run such a875

method with the initial trust funnel radius for v(x) = 1

2

kc(x)k2 set at 1

2

✏2
feas

876

so that ✏
feas

-feasibility will be maintained as optimality is sought. We do not877

claim worst-case iteration complexity guarantees for such a method, though878

empirical evidence suggests that such a method would perform well. This is879

the type of approach for which experimental results are provided in §5.880

• With an eye toward attaining good complexity properties, one can run the881

objective-target-following approach proposed as [8, Alg. 4.1, Phase 2]. This882

approach essentially applies an arc algorithm for unconstrained optimization883

[4, 5] (see also the previous work in [22, 28, 32]) to minimize the residual884

function � : RN ⇥ R ! R defined by �(x, t) = kc(x)k2 + kf(x) � tk2. In885

iteration k 2 N, the subsequent iterate x
k+1

is computed to reduce �(·, t
k

) as886

in arc while the subsequent target t
k+1

is chosen to ensure, amongst other887

relationships, that t
k+1

 t
k

and |f
k

� t
k

|  ✏
feas

for all k 2 N, where it is888

assumed that ✏
feas

2 (0, 1). In [8], it is shown that, for the phase 2 algorithm889

with ✏ 2 (0, ✏1/3
feas

], the number of iterations required to generate a primal890

iterate x
k

satisfying (49a) and either the relative KKT error condition891

kg
k

+ JT

k

y
k

k  ✏k(y
k

, 1)k for some y
k

2 RM

892

or the constraint violation stationarity condition893

kJT

k

c
k

k  ✏kc
k

k894

is at most O(✏�3/2✏
�1/2

feas

). This should be viewed in two ways. First, if895

✏ = ✏
2/3

feas

, then the overall complexity is O(✏�3/2

feas

), though of course this896

corresponds to a looser tolerance on the relative KKT error than on feasibility.897

Second, if ✏ = ✏
feas

(so that the two tolerances are equal), then the overall898

complexity is O(✏�2

feas

). We claim that an approach based on trace [15]899

(instead of arc) could instead be employed yielding the same worst-case900

iteration complexity properties; see Appendix A.901

• Finally, let us point out that in cases that c is a�ne, one could run an opti-902

mization method, such as the arc method from [4, 5] or the trace method903

from [15], where steps toward reducing the objective function are restricted to904

the null space of the constraint Jacobian. For such a reduced-space method,905

✏
feas

-feasibility will be maintained while the analyses in [4, 5, 15] guarantee906

that the number of iterations required to reduce the norm of the reduced907

gradient below a given tolerance ✏
opt

2 (0,1) is at most O(✏�3/2

opt

). With908

✏ = ✏
opt

= ✏
feas

, this gives an overall (phase 1 + phase 2) complexity of909

O(✏�3/2), which matches the optimal complexity for the unconstrained case.910

5. Numerical Experiments. Our goal in this section is to demonstrate that911

instead of having a phase 1 method that solely seeks (approximate) feasibility (such912

as in [8]), it is beneficial to employ a phase 1 method such as ours that simultaneously913

attempts to reduce the objective function. To show this, a Matlab implementation914

of our phase 1 method, Algorithm 1, has been written. The implementation has two915

26

This manuscript is for review purposes only.

modes: one following the procedures of Algorithm 1 and one employing the same916

procedures except that the tangential step t
k

is set to zero for all k 2 N so that all917

iterations are V-iterations. We refer to the former implementation as TF and the918

latter as TF-V-only. For phase 2 for both methods, following the current state-of-919

the-art, we implemented a trust funnel method based on that proposed in [21] with920

the modification that the normal step computation is never skipped. In both phases 1921

and 2, all subproblems are solved to high accuracy using a Matlab implementation922

of the trust region subproblem solver described as [10, Alg. 7.3.4], which in large923

part goes back to the work in [27]. The fact that the normal step computation is924

never skipped and the subproblems are always solved to high accuracy allows our925

implementation to ignore so-called “y-iterations” [21].926

Phase 1 in each implementation terminates in iteration k 2 N if either927

(50) kc
k

k1  10�6 max{kc
0

k1, 1} or

(
kJT

k

c
k

k1  10�6 max{kJT

0

c
0

k1, 1}
and kc

k

k1 > 10�3 max{kc
0

k1, 1}928

whereas Phase 2 terminates in iteration k 2 N if either the latter pair of conditions929

above holds or, with y
k

computed as least squares multipliers for all k 2 N, if930

kg
k

+ JT

k

y
k

k1  10�6 max{kg
0

+ JT

0

y
0

k1, 1}.931

Input parameters used in the code are stated in Table 1. The only values that do not932

appear are 
⇢

and �
c

. For 
⇢

, for simplicity we employed this constant in (15c) and933

(17) as well as in the step acceptance conditions in Step 2 in Algorithm 2 and Step 2 in934

Algorithm 3. That said, our convergence analysis is easily adapted to handle di↵erent935

values in these places: our code uses 
⇢

= 10�12 in (15c) and (17) but 
⇢

= 10�8

936

in the step acceptance conditions. For �
c

, our code uses 0.5 in the context of an F-937

iteration (Algorithm 2) and 10�2 in the context of a V-iteration (Algorithm 3),938

where again our analysis easily allows using di↵erent constants in these places.939

Table 1

Input parameters for TF and TF-V-only.


n

9e-01 
st

1e-12 
p

1e-06 
�

1e+02


vm

1e-12 
ntt

1-(2e-12) 
ht

1e+20 �
e

2e+00


ntn

1e-12 
v1

9e-01 
hs

1e+20 �
�

2e+00


fm

1e-12 
v2

9e-01 � 1e-12 � 1e+20

We ran TF and TF-V-only to solve the equality constrained problems in the940

CUTEst test set [17]. Among 190 such problems, we removed 78 that had a constant941

(or null) objective, 13 for which phase 1 of both algorithms terminated immediately at942

the initial point due to the former condition in (50), three for which both algorithms943

terminated phase 1 due to the latter pair of conditions in (50) (in each case within944

one iteration), two on which both algorithms encountered a function evaluation error,945

and one on which both algorithms failed due to small stepsizes (less than 10�20) in946

phase 1. We also removed all problems on which neither algorithm terminated within947

one hour. The remaining set consisted of 33 problems.948

The results we obtained are provided in Table 2. For each problem, we indi-949

cate the number of variables (n), number of equality constraints (m), number of950

V-iterations (#V), number of F-iterations (#F), objective function value at the951

end of phase 1 (f), and dual infeasibility value at the end of phase 1 (kg+JT yk). We952

27

This manuscript is for review purposes only.

Table 2

Numerical results for TF and TF-V-only.

TF TF-V-only

Phase 1 Phase 2 Phase 1 Phase 2

Problem n m #V #F f kg + JT yk #V #F #V f kg + JT yk #V #F

BT1 2 1 4 0 -8.02e-01 +4.79e-01 0 139 4 -8.00e-01 +7.04e-01 7 136

BT10 2 2 10 0 -1.00e+00 +5.39e-04 1 0 10 -1.00e+00 +6.74e-05 1 0

BT11 5 3 6 1 +8.25e-01 +4.84e-03 2 0 1 +4.55e+04 +2.57e+04 16 36

BT12 5 3 12 1 +6.19e+00 +1.18e-05 0 0 16 +3.34e+01 +4.15e+00 4 8

BT2 3 1 22 8 +1.45e+03 +3.30e+02 3 12 21 +6.14e+04 +1.82e+04 0 40

BT3 5 3 1 0 +4.09e+00 +6.43e+02 1 0 1 +1.01e+05 +8.89e+02 0 1

BT4 3 2 1 0 -1.86e+01 +1.00e+01 20 12 1 -1.86e+01 +1.00e+01 20 12

BT5 3 2 15 2 +9.62e+02 +2.80e+00 14 2 8 +9.62e+02 +3.83e-01 3 1

BT6 5 2 11 45 +2.77e-01 +4.64e-02 1 0 14 +5.81e+02 +4.50e+02 5 59

BT7 5 3 15 6 +1.31e+01 +5.57e+00 5 1 12 +1.81e+01 +1.02e+01 19 28

BT8 5 2 50 26 +1.00e+00 +7.64e-04 1 1 10 +2.00e+00 +2.00e+00 1 97

BT9 4 2 11 1 -1.00e+00 +8.56e-05 1 0 10 -9.69e-01 +2.26e-01 5 1

BYRDSPHR 3 2 29 2 -4.68e+00 +1.28e-05 0 0 19 -5.00e-01 +1.00e+00 16 5

CHAIN 800 401 9 0 +5.12e+00 +2.35e-04 3 20 9 +5.12e+00 +2.35e-04 3 20

FLT 2 2 15 4 +2.68e+10 +3.28e+05 0 13 19 +2.68e+10 +3.28e+05 0 17

GENHS28 10 8 1 0 +9.27e-01 +5.88e+01 0 0 1 +2.46e+03 +9.95e+01 0 1

HS100LNP 7 2 16 2 +6.89e+02 +1.74e+01 4 1 5 +7.08e+02 +1.93e+01 14 3

HS111LNP 10 3 9 1 -4.78e+01 +4.91e-06 2 0 10 -4.62e+01 +7.49e-01 10 1

HS27 3 1 2 0 +8.77e+01 +2.03e+02 3 5 1 +2.54e+01 +1.41e+02 11 34

HS39 4 2 11 1 -1.00e+00 +8.56e-05 1 0 10 -9.69e-01 +2.26e-01 5 1

HS40 4 3 4 0 -2.50e-01 +1.95e-06 0 0 3 -2.49e-01 +3.35e-02 2 1

HS42 4 2 4 1 +1.39e+01 +3.94e-04 1 0 1 +1.50e+01 +2.00e+00 3 1

HS52 5 3 1 0 +5.33e+00 +1.54e+02 1 0 1 +8.07e+03 +4.09e+02 0 1

HS6 2 1 1 0 +4.84e+00 +1.56e+00 32 136 1 +4.84e+00 +1.56e+00 32 136

HS7 2 1 7 1 -2.35e-01 +1.18e+00 7 2 8 +3.79e-01 +1.07e+00 5 2

HS77 5 2 13 30 +2.42e-01 +1.26e-02 0 0 17 +5.52e+02 +4.54e+02 3 11

HS78 5 3 6 0 -2.92e+00 +3.65e-04 1 0 10 -1.79e+00 +1.77e+00 2 30

HS79 5 3 13 21 +7.88e-02 +5.51e-02 0 2 10 +9.70e+01 +1.21e+02 0 24

MARATOS 2 1 4 0 -1.00e+00 +8.59e-05 1 0 3 -9.96e-01 +9.02e-02 2 1

MSS3 2070 1981 12 0 -4.99e+01 +2.51e-01 50 0 12 -4.99e+01 +2.51e-01 50 0

MWRIGHT 5 3 17 6 +2.31e+01 +5.78e-05 1 0 7 +5.07e+01 +1.04e+01 12 20

ORTHREGB 27 6 10 15 +7.02e-05 +4.23e-04 0 6 10 +2.73e+00 +1.60e+00 0 10

SPIN2OP 102 100 57 18 +2.04e-08 +2.74e-04 0 1 time +1.67e+01 +3.03e-01 time time

use time for SPIN2OP for TF-V-only to indicate that it hit the one hour time limit953

(after 350 phase 1 iterations) without terminating. The results illustrate that, within954

a comparable number of iterations, our trust funnel algorithm, represented by TF,955

typically yields better final points from phase 1. This can be seen in the fact that956

the objective at the end of phase 1, dual infeasibility at the end of phase 1, and the957

number of iterations required in phase 2 are all typically smaller for TF than they958

are for TF-V-only. Note that for some problems, such as BT1, TF only performs959

V-iterations in phase 1, yet yields a better final point than does TF-V-only; this960

occurs since the phase 1 iterations in TF may involve nonzero tangential steps.961

6. Conclusion. An algorithm has been proposed for solving equality constrained962

optimization problems. Following the work in [8], but based on trust funnel and trust963

region ideas from [15, 21], the algorithm represents a next step toward the design964

of practical methods for solving constrained optimization problems that o↵er strong965

worst-case iteration complexity properties. In particular, the algorithm involves two966

phases, the first seeking (approximate) feasibility and the second seeking optimality,967

where a key contribution is the fact that improvement in the objective function is968

sought in both phases. If a phase 2 method such as that proposed in [8] is employed,969

then the overall algorithm attains the same complexity properties as the method970

in [8]. The results of numerical experiments show that the proposed method benefits971

by respecting the objective function in both phases.972

REFERENCES973

[1] L. T. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waanders. Real-974

Time PDE-Constrained Optimization, volume 3. SIAM, 2007.975

[2] G. Biros and O. Ghattas. Parallel Lagrange–Newton–Krylov–Schur Methods for PDE-976

Constrained Optimization. Part I: The Krylov–Schur Solver. SIAM Journal on Scientific977

28

This manuscript is for review purposes only.

Computing, 27(2):687–713, 2005.978

[3] R. H. Byrd, F. E. Curtis, and J. Nocedal. An Inexact SQP Method for Equality Constrained979

Optimization. SIAM Journal on Optimization, 19(1):351–369, 2008.980

[4] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive Cubic Regularisation Methods for Un-981

constrained Optimization. Part I: Motivation, Convergence and Numerical Results. Math-982

ematical Programming, 127:245–295, 2011.983

[5] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive Cubic Regularisation Methods for Un-984

constrained Optimization. Part II: Worst-Case Function- and Derivative-Evaluation Com-985

plexity. Mathematical Programming, 130:295–319, 2011.986

[6] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Optimal Newton-type Methods for Nonconvex987

Smooth Optimization Problems. Technical Report ERGO Technical Report 11-009, School988

of Mathematics, University of Edinburgh, 2011.989

[7] C. Cartis, N. I. M. Gould, and Ph. L. Toint. An Adaptive Cubic Regularization Algorithm for990

Nonconvex Optimization with Convex Constraints and its Function-Evaluation Complex-991

ity. IMA Journal of Numerical Analysis, 32(4):1662–1695, 2012.992

[8] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the Evaluation Complexity of Cubic Regu-993

larization Methods for Potentially Rank-Deficient Nonlinear Least-Squares Problems and994

its Relevance to Constrained Nonlinear Optimization. SIAM Journal on Optimization,995

23(3):1553–1574, 2013.996

[9] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the Complexity of Finding First-Order Critical997

Points in Constrained Nonlinear Programming. Mathematical Programming Series A,998

144(2):93–106, 2014.999

[10] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia,1000

PA, 2000.1001

[11] L. Cui, W. Kuo, H. T. Loh, and M. Xie. Optimal Allocation of Minimal & Perfect Repairs1002

under Resource Constraints. IEEE Transactions on Reliability, 53(2):193–199, 2004.1003

[12] F. E. Curtis, N. I. M. Gould, D. P. Robinson, and Ph. L. Toint. An Interior-Point Trust-Funnel1004

Algorithm for Nonlinear Optimization. Mathematical Programming, DOI: 10.1007/s10107-1005

016-1003-9, 2016.1006

[13] F. E. Curtis, T. C. Johnson, D .P. Robinson, and A. Wächter. An Inexact Sequential Quadratic1007

Optimization Algorithm for Nonlinear Optimization. SIAM Journal on Optimization,1008

24(3):1041–1074, 2014.1009

[14] F. E. Curtis, J. Nocedal, and A. Wächter. A Matrix-Free Algorithm for Equality Constrained1010

Optimization Problems with Rank-Deficient Jacobians. SIAM Journal on Optimization,1011

20(3):1224–1249, 2009.1012

[15] F. E. Curtis, D. P. Robinson, and M. Samadi. A Trust Region Algorithm with a Worst-Case It-1013

eration Complexity of O(✏�3/2
) for Nonconvex Optimization. Mathematical Programming,1014

DOI: 10.1007/s10107-016-1026-2, 2016.1015

[16] F. E. Curtis, D. P. Robinson, and M. Samadi. Complexity Analysis of a Trust Funnel Algorithm1016

for Equality Constrained Optimization. Technical Report 16T-013, COR@L Laboratory,1017

Department of ISE, Lehigh University, 2017.1018

[17] N. I. M. Gould, D. Orban, and Ph. Toint. CUTEst: A Constrained and Unconstrained Testing1019

Environment with Safe Threads. Technical Report RAL-TR-2013-005, STFC Rutherford1020

Appleton Laboratory, 2013.1021

[18] N. I. M. Gould and D. P. Robinson. A Second Derivative SQP Method: Global Convergence.1022

SIAM Journal on Optimization, 20(4):2023–2048, 2010.1023

[19] N. I. M. Gould and D. P. Robinson. A Second Derivative SQP Method: Local Convergence1024

and Practical Issues. SIAM Journal on Optimization, 20(4):2049–2079, 2010.1025

[20] N. I. M. Gould and D. P. Robinson. A Second Derivative SQP Method with a “Trust-Region-1026

Free” Predictor Step. IMA Journal of Numerical Analysis, 32(2):580–601, 2012.1027

[21] N. I. M. Gould and Ph. L. Toint. Nonlinear Programming Without a Penalty Function or a1028

Filter. Mathematical Programming, 122(1):155–196, 2008.1029

[22] A. Griewank. The Modification of Newton’s Method for Unconstrained Optimization by Bound-1030

ing Cubic Terms. Technical Report NA/12, Department of Applied Mathematics and1031

Theoretical Physics, University of Cambridge, 1981.1032

[23] R. J. Hathaway. A Constrained Formulation of Maximum-Likelihood Estimation for Normal1033

Mixture Distributions. The Annals of Statistics, 13(2):795–800, 1985.1034

[24] N.-S. Hsu and K.-W. Cheng. Network Flow Optimization Model for Basin-Scale Water Supply1035

Planning. Journal of Water Resources Planning and Management, 128(2):102–112, 2002.1036

[25] P. Marti, C. Lin, S. A. Brandt, M. Velasco, and J. M. Fuertes. Optimal State Feedback1037

Based Resource Allocation for Resource-Constrained Control Tasks. In Real-Time Systems1038

Symposium, 2004. Proceedings. 25th IEEE International, pages 161–172. IEEE, 2004.1039

29

This manuscript is for review purposes only.

[26] J. L. Morales, J. Nocedal, and Y. Wu. A Sequential Quadratic Programming Algorithm with an1040

Additional Equality Constrained Phase. IMA Journal of Numerical Analysis, 32(2):553–1041

579, 2011.1042

[27] J. J. Moré and D. C. Sorensen. Computing a Trust Region Step. SIAM Journal on Scientific1043

and Statistical Computing, 4(3):553–572, 1983.1044

[28] Yu. Nesterov and B. T. Polyak. Cubic Regularization of Newton’s Method and its Global1045

Performance. Mathematical Programming, 108(1):117–205, 2006.1046

[29] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research1047

and Financial Engineering. Springer, Second edition, 2006.1048

[30] K. E. Nygard, P. R. Chandler, and M. Pachter. Dynamic Network Flow Optimization Models1049

for Air Vehicle Resource Allocation. In American Control Conference, 2001. Proceedings1050

of the 2001, volume 3, pages 1853–1858. IEEE, 2001.1051

[31] T. Rees, H. S. Dollar, and A. J. Wathen. Optimal Solvers for PDE-Constrained Optimization.1052

SIAM Journal on Scientific Computing, 32(1):271–298, 2010.1053

[32] M. Weiser, P. Deuflhard, and B. Erdmann. A�ne Conjugate Adaptive Newton Methods for1054

Nonlinear Elastomechanics. Optimization Methods and Software, 22(3):413–431, 2007.1055

Appendix A. Phase 2 Details.1056

The goal of this appendix is to show that a phase 2 method can be built upon1057

the trace algorithm from [15] yielding the same worst-case iteration complexity1058

properties as the arc-based method in [8]. We state a complete phase 2 algorithm,1059

then prove similar properties for it as those proved for the method in [8]. For the1060

algorithm and our analysis of it, we make the following additional assumption.1061

Assumption 38. For all x 2 RN with kc(x)k  ✏
feas

2 (0,1), the objective1062

function f is bounded from below and above by f
min

2 R and f
max

2 R, respectively.1063

In addition, the problem functions f and c and their first and second derivatives are1064

Lipschitz continuous on the path defined by all phase 2 iterates.1065

As previously mentioned, the phase 2 method is in many ways based on applying1066

an algorithm for solving unconstrained optimization problems to minimize the residual1067

function �(x, t) = 1

2

kr(x, t)k2 where r : RN ⇥ R ! R is defined by1068

(51) r(x, t) =

✓
c(x)

f(x)� t

◆
.1069

Updated dynamically by the algorithm, the parameter t may be viewed as a target1070

value for reducing the objective function value.1071

The phase 2 algorithm is stated as Algorithm 4. We refer the reader to [8] for1072

further details on the design of the algorithm and to [15] for further details on trace.1073

The following lemma, whose proof follows that of [8, Lemma 4.1], states some1074

useful properties of the generated sequences.1075

Lemma 39. For all k 2 N, it follows that1076

t
k+1

 t
k

,(52a)1077

0  f(x
k

)� t
k

 ✏
feas

,(52b)1078

kr(x
k

, t
k

)k = ✏
feas

,(52c)1079

and kc(x
k

)k  ✏
feas

.(52d)1080

1081

Proof. Note that, in trace, the objective function is monotonically nonincreas-1082

ing; see [15, Eq. (2.5); Alg. 1, Step 5]. Hence, each acceptable step s
k

computed1083

in Algorithm 4 yields �(x
k+1

, t
k

)  �(x
k

, t
k

), from which it follows that the value1084

for t
k+1

in Step 10 is well-defined. Then, since all definitions and procedures in Al-1085

gorithm 4 that yield (52) are exactly the same as in [8, Alg. 4.1], a proof for the1086

inequalities in (52) is given by the proof of [8, Lemma 4.1].1087

30

This manuscript is for review purposes only.

Algorithm 4 trace Algorithm for Phase 2

Require: termination tolerance ✏ 2 (0,1) and x0 2 RN

with kc0k  ✏

feas

2 (0,1)

1: procedure trace phase 2

2: set t0 f0 �
q

✏

2
feas

� kc0k2

3: for k 2 N do

4: perform one iteration of trace toward minimizing �(x, t

k

) to compute s

k

5: if s

k

is an acceptable step then

6: set x

k+1 x

k

+ s

k

(and other quantities following trace)

7: if r(x

k+1, tk) 6= 0 and kr
x

�(x

k+1, tk)k  ✏kr(x
k+1, tk)k then

8: terminate

9: else

10: set t

k+1 f(x

k+1)�
q
kr(x

k

, t

k

)k2 � kr(x
k+1, tk)k2 + (f(x

k+1)� t

k

)

2

11: else

12: set x

k+1 x

k

(and other quantities following trace)

13: set t

k+1 t

k

In the next lemma, we recall a critical result from [15], arguing that it remains1088

true for Algorithm 4 under our assumptions about the problem functions.1089

Lemma 40. Let {�
k

} be generated as in trace [15]. Then, there exists a scalar1090

constant �
max

2 (0,1) such that �
k

 �
max

for all k 2 N.1091

Proof. The result follows in a similar manner as [15, Lem. 3.18]. Here, similar to1092

[8, §5], it is important to note that Assumption 38 ensures that � and its first and1093

second derivatives are globally Lipschitz continuous on a path defined by the phase 21094

iterates. This ensures that results of the kind given as [15, Lem. 3.16–3.17] hold true,1095

which are necessary for proving [15, Lem. 3.18].1096

We now argue that the number of iterations taken for any fixed value of the target1097

for the objective function is bounded above by a positive constant.1098

Lemma 41. The number of iterations required before the first accepted step or1099

between two successive accepted steps with a fixed target t is bounded above by1100

K
t

:= 2 +

�
1

log(min{�
�

, ��1

c

}) log
✓
�
max

�

◆⌫
,1101

where the constants �
�

2 (0,1), �
c

2 (0, 1), are � 2 (0,1) are parameters used by1102

trace (see [15, Alg. 1]) that are independent of k and satisfy �  �
max

.1103

Proof. The properties of trace corresponding to so-called contraction and ex-1104

pansion iterations all hold for Algorithm 4 for sequences of iterations in which a target1105

value is held fixed. Therefore, the result follows by [15, Lem. 3.22 and Lem. 3.24],1106

which combined show that the maximum number of iterations of interest is equal to1107

the maximum number of contractions that may occur plus one.1108

The next lemma merely states a fundamental property of trace.1109

Lemma 42. Let H
�

2 (0,1) be the Lipschitz constant for the Hessian function1110

of � along the path of phase 2 iterates and let ⌘ 2 (0, 1) be the acceptance constant1111

from trace. Then, for x
k+1

following an accepted step s
k

, it follows that1112

�(x
k

, t
k

)� �(x
k+1

, t
k

) � ⌘(H
�

+ �
max

)�3/2kr
x

�(x
k+1

, t
k

)k3/2.1113

31

This manuscript is for review purposes only.

Proof. With Lemma 40 and adapting the conclusion of [15, Lem. 3.19], the result1114

follows as in the beginning of the proof of [15, Lem. 3.20].1115

The preceding lemma allows us to prove the following useful result.1116

Lemma 43. For x
k+1

following an accepted step s
k

yielding1117

(53) kr
x

�(x
k+1

, t
k

)k > ✏kr(x
k+1

, t
k

)k1118

with ✏ the constant used in Algorithm 4, it follows that1119

kr(x
k

, t
k

)k � kr(x
k+1

, t
k

)k � 
t

min{✏3/2✏1/2
feas

, ✏
feas

},1120

where � 2 (0, 1) is any fixed problem-independent constant, ! := ⌘(H
�

+ �
max

)�3/2 21121

(0,1) is the constant appearing in Lemma 42, and 
t

:= min{!�3/2, 1� �}.1122

Proof. Along with the result of Lemma 42, it follows that1123

kr(x
k

, t
k

)k2 � kr(x
k+1

, t
k

)k2 � 2!kr
x

�(x
k+1

, t
k

)k3/2

= 2!

✓kr
x

�(x
k+1

, t
k

)k
kr(x

k+1

, t
k

)k
◆

3/2

kr(x
k+1

, t
k

)k3/2

� 2!✏3/2kr(x
k+1

, t
k

)k3/2.

1124

Then, if kr(x
k+1

, t
k

)k > �kr(x
k

, t
k

)k, it follows with (52c) that1125

(54) kr(x
k

, t
k

)k2 � kr(x
k+1

, t
k

)k2 � 2!✏3/2�3/2kr(x
k

, t
k

)k3/2 = 2!✏3/2�3/2✏
3/2

feas

,1126

from which it follows along with kr(x
k+1

, t
k

)k  kr(x
k

, t
k

)k that1127

kr(x
k

, t
k

)k � kr(x
k+1

, t
k

)k = kr(xk

, t
k

)k2 � kr(x
k+1

, t
k

)k2
kr(x

k

, t
k

)k+ kr(x
k+1

, t
k

)k
� kr(xk

, t
k

)k2 � kr(x
k+1

, t
k

)k2
2kr(x

k

, t
k

)k
=
kr(x

k

, t
k

)k2 � kr(x
k+1

, t
k

)k2
2✏

feas

� !✏3/2�3/2✏
1/2

feas

.

1128

On the other hand, if kr(x
k+1

, t
k

)k  �kr(x
k

, t
k

)k, then using (52c) it follows that1129

kr(x
k

, t
k

)k � kr(x
k+1

, t
k

)k � (1� �)kr(x
k

, t
k

)k = (1� �)✏
feas

.1130

Combining the results of both cases, the desired conclusion follows.1131

The following is an intermediate result used to prove the subsequent lemma. We1132

merely state the result for ease of reference; see [8, Lemma 5.2] and its proof.1133

Lemma 44. Consider the following optimization problem in two variables:1134

min
(f,c)2R2

�f +
p

✏2 � c2 s.t. f2 + c2  ⌧2,1135

where 0 < ⌧ < ✏. The global minimum of this problem is attained at (f⇤, c⇤) = (⌧, 0)1136

with the optimal value given by �⌧ + ✏.1137

We next prove a lower bound on the decrease of the target value.1138

32

This manuscript is for review purposes only.

Lemma 45. Suppose that the termination tolerance is set so that ✏  ✏
1/3

feas

. Then,1139

for x
k+1

following an accepted step s
k

such that the termination conditions in Step 71140

are not satisfied, it follows that, with 
t

2 (0, 1) defined as in Lemma 43,1141

(55) t
k

� t
k+1

� 
t

✏3/2✏
1/2

feas

.1142

Proof. A proof follows similarly to that of [8, Lem. 5.3]. In particular, if the reason1143

that the termination conditions in Step 7 are not satisfied is because (53) holds, then1144

Lemma 43 and the fact that ✏  ✏
1/3

feas

imply that1145

kr(x
k

, t
k

)k � kr(x
k+1

, t
k

)k � 
t

min{✏3/2✏1/2
feas

, ✏
feas

} � 
t

✏3/2✏
1/2

feas

.1146

On the other hand, if the reason the termination conditions in Step 7 are not satisfied1147

is because kr(x
k+1

, t
k

)k = 0, it follows from (52c), 
t

2 (0, 1), and ✏  ✏
1/3

feas

that1148

kr(x
k

, t
k

)k � kr(x
k+1

, t
k

)k = ✏
feas

� 
t

✏3/2✏
1/2

feas

.1149

Combining these two cases, (51), and (52c), one finds that1150

(f(x
k+1

)� t
k

)2 + kc(x
k+1

)k2 = kr(x
k+1

, t
k

)k2  (✏
feas

� 
t

✏3/2✏
1/2

feas

)2.1151

Now, from Step 10 of Algorithm 4, (51), and (52c), it follows that1152

t
k

� t
k+1

= �(f(x
k+1

)� t
k

) +
q
kr(x

k

, t
k

)k2 � kr(x
k+1

, t
k

)k2 + (f(x
k+1

)� t
k

)2

= �(f(x
k+1

)� t
k

) +
p
kr(x

k

, t
k

)k2 � kc(x
k+1

)k2

= �(f(x
k+1

)� t
k

) +
q
✏2
feas

� kc(x
k+1

)k2.
1153

Overall, it follows that Lemma 44 can be applied (with “f” = f(x
k+1

) � t
k

, “c”1154

= kc(x
k+1

)k, “✏” = ✏
feas

, and “⌧” = ✏
feas

� 
t

✏3/2✏
1/2

feas

) to obtain the result.1155

We now show that if the termination condition in Step 7 of Algorithm 4 is never1156

satisfied, then the algorithm takes infinitely many accepted steps.1157

Lemma 46. If Algorithm 4 does not terminate finitely, then it takes infinitely1158

many accepted steps.1159

Proof. To derive a contradiction, suppose that the number of accepted steps is1160

finite. Then, since it does not terminate finitely, there exists k 2 N such that s
k

is not1161

acceptable for all k � k. Therefore, by the construction of the algorithm, it follows1162

that t
k

= t
k

for all k � k. This means that the algorithm proceeds as if the trace1163

algorithm from [15] is being employed to minimize �(·, t
k

), from which it follows by1164

[15, Lemmas 3.7, 3.8, and 3.9] that, for some su�ciently large k � k, an acceptable1165

step s
k

will be computed. This contradiction completes the proof.1166

Before proceeding, let us discuss the situation in which the termination conditions1167

in Step 7 of Algorithm 4 are satisfied. This discussion, originally presented in [8],1168

justifies the use of these termination conditions.1169

Suppose kr(x
k+1

, t
k

)k 6= 0 and kr
x

�(x
k+1

, t
k

)k  ✏kr(x
k+1

, t
k

)k. If f
k+1

= t
k

,1170

then these mean that kc
k+1

k 6= 0 and kr
x

�(x
k+1

, t
k

)k  ✏kc
k+1

k, which along with1171

r
x

�(x
k+1

, t
k

) = JT

k+1

c
k+1

+ (f
k+1

� t
k

)g
k+1

would imply that1172

kJT

k+1

c
k+1

k
kc

k+1

k  ✏.1173

33

This manuscript is for review purposes only.

That is, under these conditions, x
k+1

is an approximate first-order stationary point1174

for minimizing kck. If f
k+1

6= t
k

, then the satisfied termination conditions imply that1175

kJT

k+1

c
k+1

+ (f
k+1

� t
k

)g
k+1

k
kr(x

k+1

, t
k

)k  ✏.1176

By dividing the numerator and denominator of the left-hand side of this inequality1177

by f(x
k+1

)� t
k

> 0 (recall (52b)), defining1178

(56) y(x
k+1

, t
k

) := c(x
k+1

)/(f(x
k+1

)� t
k

) 2 RM ,1179

and substituting y(x
k+1

, t
k

) back into the inequality, one finds that1180

(57)
kJT

k+1

y(x
k+1

, t
k

) + g
k+1

k
k(y(x

k+1

, t
k

), 1)k  ✏.1181

As argued in [8], one may use a perturbation argument to say that (x
k+1

, y(x
k+1

, t
k

))1182

satisfying the relative KKT error conditions (57) and kc
k+1

k  ✏
feas

corresponds to1183

a first-order stationary point for problem (1). Specifically, consider x = x⇤ + �
x

and1184

y = y⇤ + �
y

where (x⇤, y⇤) is a primal-dual pair satisfying the KKT conditions for1185

problem (1). Then, a first-order Taylor expansion of J(x⇤)T y⇤ + g(x⇤) to estimate its1186

value at (x, y) yields the estimate (r2f(x⇤)+
P

M

i=1

[y
i

]⇤r2c
i

(x⇤))�
x

+ J(x⇤)T �
y

. The1187

presence of the dual variable y⇤ in this estimate confirms that the magnitude of the1188

dual variable should not be ignored in a relative KKT error condition such as (57).1189

We now prove our worst-case iteration complexity result for phase 2.1190

Theorem 47. Suppose that the termination tolerances are set so that ✏  ✏
1/3

feas

1191

with ✏
feas

2 (0, 1). Then, Algorithm 4 requires at most O(✏�3/2✏
�1/2

feas

) iterations until1192

the termination condition in Step 7 is satisfied, at which point either1193

(58)
kJT

k+1

y(x
k+1

, t
k

) + g
k+1

k
k(y(x

k+1

, t
k

), 1)k  ✏ and kc
k+1

k  ✏
feas

1194

or1195

(59)
kJT

k+1

c
k+1

k
kc

k+1

k  ✏ and kc
k+1

k  ✏
feas

1196

is satisfied, with y(x
k+1

, t
k

) defined in (56).1197

Proof. Recall that if the termination condition in Step 7 is satisfied for some1198

k 2 N, then, by the arguments prior to the lemma, either (58) or (59) will be satisfied.1199

Thus, we aim to show an upper bound on the number of iterations required by the1200

algorithm until the termination condition in Step 7 is satisfied.1201

Without loss of generality, let us suppose that the algorithm performs at least1202

one iteration. Then, we claim that there exists some k 2 N such that the termination1203

condition does not hold for (x
k

, t
k�1

), but does hold for (x
k+1

, t
k

). To see this,1204

suppose for contradiction that the termination condition is never satisfied. Then, by1205

Lemma 45, it follows that for all k 2 N such that s
k

is acceptable one finds that (55)1206

holds. This, along with Lemma 46, implies that {t
k

} & �1. However, this along1207

with (52b) implies that {f
k

}& �1, which contradicts Assumption 38.1208

Now, since the termination condition is satisfied at (x
k+1

, t
k

), but not in the itera-1209

tion before, it follows that s
k

must be an acceptable step. Hence, from Assumption 38,1210

34

This manuscript is for review purposes only.

(52b), Lemma 45, Step 2, it follows that1211

f
min

 f
k

 t
k

+ ✏
feas

 t
0

�KAt

✏3/2✏
1/2

feas

+ ✏
feas

 f(x
0

)�KAt

✏3/2✏
1/2

feas

+ ✏
feas

,
1212

where KA is the number of accepted steps prior to iteration (k+1). Rearranging and1213

since ✏
feas

2 (0, 1), one finds along with Assumption 38 that1214

(60) KA 
&
f
max

� f
min

+ 1


t

✏3/2✏
1/2

feas

'
.1215

From (60) and Lemma 41, the desired result follows.1216

35

This manuscript is for review purposes only.

