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COMPLEXITY ANALYSIS OF A TRUST FUNNEL ALGORITHM
FOR EQUALITY CONSTRAINED OPTIMIZATION*

FRANK E. CURTIST, DANIEL P. ROBINSON*, AND MOHAMMADREZA SAMADI!

Abstract. A method is proposed for solving equality constrained nonlinear optimization prob-
lems involving twice continuously differentiable functions. The method employs a trust funnel ap-
proach consisting of two phases: a first phase to locate an e-feasible point and a second phase to
seek optimality while maintaining at least e-feasibility. A two-phase approach of this kind based on a
cubic regularization methodology was recently proposed along with a supporting worst-case iteration
complexity analysis. Unfortunately, however, in that approach, the objective function is completely
ignored in the first phase when e-feasibility is sought. The main contribution of the method proposed
in this paper is that the same worst-case iteration complexity is achieved, but with a first phase that
also accounts for improvements in the objective function. As such, the method typically requires
fewer iterations in the second phase, as the results of numerical experiments demonstrate.

Key words. equality constrained optimization, nonlinear optimization, nonconvex optimization,
trust funnel methods, worst-case iteration complexity
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1. Introduction. The purpose of this paper is to propose a new method for
solving equality constrained nonlinear optimization problems. As is well known, such
problems are important throughout science and engineering, arising in areas such as
network flow optimization [24, 30], optimal allocation with resource constraints [11,
25], maximum likelihood estimations with constraints [23], and optimization with
constraints defined by partial differential equations [1, 2, 31].

Contemporary methods for solving equality constrained optimization problems
are predominantly based on ideas of sequential quadratic optimization (commonly
known as SQP) [3, 13, 14, 18, 19, 20, 26, 29]. The design of such methods remains an
active area of research as algorithm developers aim to propose new methods that attain
global convergence guarantees under weak assumptions about the problem functions.
Recently, however, researchers are being drawn to the idea of designing algorithms
that also offer improved worst-case iteration complexity bounds. This is due to the fact
that, at least for convex optimization, algorithms designed with complexity bounds
in mind have led to methods with improved practical performance.

For solving equality constrained optimization problems, a cubic regularization
method is proposed in [8] with an eye toward achieving good complexity properties.
This is a two-phase approach with a first phase that seeks an e-feasible point and
a second phase that seeks optimality while maintaining e-feasibility. The number of
iterations that the method requires in the first phase to produce an e-feasible point
is O(e73/2), a bound that is known to be optimal for unconstrained optimization [6].
The authors of [8] then also propose a method for the second phase and analyze its
complexity properties. (For related work on cubic regularization methods for solving
constrained optimization problems, see [7, 9].)
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Unfortunately, however, the method in [8] represents a departure from the current
state-of-the-art SQP methods that offer the best practical performance. One of the
main reasons for this is that contemporary SQP methods seek feasibility and optimal-
ity simultaneously. By contrast, one of the main reasons that the approach from [8]
does not offer practical benefits is that the first phase of the algorithm entirely ignores
the objective function, meaning that numerous iterations might need to be performed
before the objective function influences the trajectory of the algorithm.

The algorithm proposed in this paper can be considered a next step in the design
of practical algorithms for equality constrained optimization with good worst-case
iteration complexity properties. Ours is also a two-phase approach, but is closer to the
SQP-type methods representing the state-of-the-art for solving equality constrained
problems. In particular, the first phase of our proposed approach follows a trust
funnel methodology that locates an e-feasible point in O(e~3/2) iterations while also
attempting to yield improvements in the objective function. Borrowing ideas from the
trust region method known as TRACE [15], we prove that our method attains the
same worst-case iteration complexity bounds as those offered by [8], and show with
numerical experiments that consideration of the objective function in the first phase
typically results in the second phase requiring fewer iterations.

1.1. Organization. In the remainder of this section, we introduce notation that
is used throughout the remainder of the paper and cover preliminary material on
equality constrained nonlinear optimization. In §2, we motivate and describe our
proposed “phase 1” method for locating an e-feasible point while also attempting to
reduce the objective function. An analysis of the convergence and worst-case iteration
complexity of this phase 1 method is presented in §3. Strategies and corresponding
convergence/complexity guarantees for “phase 2” are the subject of §4, the results of
numerical experiments are provided in §5, and concluding remarks are given in §6.

1.2. Notation. Let R denote the set of real numbers (i.e., scalars), let R, denote
the set of nonnegative real numbers, let R, , denote the set of positive real numbers,
and let N := {1,2,...} denote the set of natural numbers. For any of these quantities,
let a superscript N € N be used to indicate the N-dimensional extension of the set—
e.g., let RN denote the set of N-dimensional real vectors—and let a superscript M x N
with (M, N) € N x N be used to indicate the M-by-N-dimensional extension of the
set—e.g., let RM*N denote the set of M-by-N real matrices.

A vector with all elements equal to 1 is denoted as e and an identity matrix
is denoted as I, where, in each case, the size of the quantity is determined by the
context in which it appears. With real symmetric matrices A and B, let A = (>) B
indicate that A — B is positive definite (semidefinite); e.g., A > (>) 0 indicates that
A is positive definite (semidefinite). Given vectors {u,v} C RY, let u L v mean that
w;v; =0 for all i € {1,2,...,N}. Let ||z| denote the 2-norm of a vector x.

1.3. Preliminaries. Given an objective function f : RN — R and constraint

function ¢ : RN — RM | we study the equality constrained optimization problem

(1) min f(z) s.t. c(z) =0.

r€RN
At the outset, let us state the following assumption about the problem functions.
ASSUMPTION 1. The functions f and c are twice continuously differentiable.

In light of Assumption 1, we define g : RV — RY as the gradient function of
f,ie., g := Vf, and define J : RY — RM*XN 35 the Jacobian function of ¢, i.e.,
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J := VT, The function ¢; : RN — R denotes the ith element of the function c.

Our proposed algorithm follows a local search strategy that merely aims to com-
pute a first-order stationary point for problem (1). Defining the Lagrangian £ :
RY x RM — R as given by L(z,y) = f(z) + yTc(z), a first-order stationary point
(z,y) is one that satisfies 0 = V. L(z,y) = g(z) + J(x)y and 0 = V, L(z,y) = c(x).

Our proposed technique for solving problem (1) is iterative, generating, amongst
other quantities, a sequence of iterates {zj} indexed by k € N. For ease of expo-
sition, we also apply an iteration index subscript for function and other quantities
corresponding to the kth iteration; e.g., we write fi to denote f(xy).

2. Phase 1: Obtaining Approximate Feasibility. The goal of phase 1 is
to obtain an iterate that is (approximately) feasible. This can, of course, be accom-
plished by employing an algorithm that focuses exclusively on minimizing a measure
of constraint violation. However, we find this idea to be unsatisfactory since such an
approach would entirely ignore the objective function. Alternatively, in this section,
we present a trust funnel algorithm with good complexity properties for obtaining (ap-
proximate) feasibility that attempts to simultaneously reduce the objective function,
as is commonly done in contemporary nonlinear optimization algorithms.

2.1. Step computation. Similar to other trust funnel algorithms [21, 12], our
algorithm employs a step-decomposition approach wherein each trial step is composed
of a normal step aimed at reducing constraint violation (i.e., infeasibility) and a
tangential step aimed at reducing the objective function. The algorithm then uses
computed information, such as the reductions that the trial step yields in models
of the constraint violation and objective function, to determine which of two types
of criteria should be used for accepting or rejecting the trial step. To ensure that
sufficient priority is given to obtaining (approximate) feasibility, an upper bound on
a constraint violation measure is initialized, maintained, and subsequently driven
toward zero as improvements toward feasibility are obtained. The algorithm might
also nullify the tangential component of a trial step, even after it is computed, if it is
deemed too harmful in the algorithm’s pursuit toward (approximate) feasibility. In
this subsection, the details of our approach for computing a trial step are described.

2.1.1. Normal step. The purpose of the normal step is to reduce infeasibility.
The measure of infeasibility that we employ is v : RY — R defined by

(2) v(z) = gle@)lI*.

At an iterate xj, the normal step ny is defined as a minimizer of a second-order Taylor
series approximation of v at zj subject to a trust region constraint, i.e.,

(3) ng € arg min my(n) s.t. ||n|| < g,
neRN

where the scalar 6} € (0, 00) is the trust region radius and the model of the constraint
violation measure at xj, is mj, : RN — R defined by

(4) mi(n) = v, +go n + InTHin with gp = Vu(zy) = Ji ek,
M

(5) and H} = Vv(xy) = JE Jp + Zci(xk)vzci(xk).
i=1
3
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For any (zj,6}) € RY x R, a globally optimal solution to (3) exists [10, Corol-
lary 7.2.2] and ny has a corresponding dual variable A} € R, such that

(6a) g+ (H{ + Ap)ng = 0,
(6h) Hi + Al = 0,
(6¢) and 0 <AL L (6 — [lnk]) = 0.

In a standard trust region strategy, a trust region radius is given at the beginning
of an iteration, which ezplicitly determines the primal-dual solution of the subproblem.
Our method, on the other hand, might instead make use of a normal step that is
derived as a solution of (3) where the trust region radius is defined implicitly by a
given dual variable A}. In particular, given A} € [0, 00) that is strictly larger than the
negative of the leftmost eigenvalue of Hy/, our algorithm might compute n; from

(7) QLA = min vk + gt g0 (HY + A T)n.

The unique solution to (7), call it ng(A}), is the solution of the nonsingular linear
system (H} + A} I)n = —g}, and is the global solution of (3) for 6} = ||ng(A})||-

2.1.2. Tangential step. The purpose of the tangential step is to reduce the ob-
jective function. Specifically, when requested by the algorithm, the tangential step ¢,
is defined as a minimizer of a quadratic model of the objective function in the null
space of the constraint Jacobian subject to a trust region constraint, i.e.,

(8) i) € arg tm]]g%’ mi(nk +1t) st. Jet=0 and |ng+t]| <5z,
€
RNXN

where 07 € (0,00) is a trust region radius and, with some symmetric Hy, €
the objective function model m£ : RN — R is defined by

(9) mi(s) = fi + gL s+ 35T Hys.

Following other trust funnel strategies, one desires J; to be set such that the trust
region describes the area in which the models of the constraint violation and objective
function are accurate. In particular, with a trust region radius 6}: € (0,00) for the
objective function, our algorithm employs, for some scalar ks € (1,00), the value

(10) op = min{f@;é};,ég}.

Due to this choice of trust region radius, it is deemed not worthwhile to compute a
nonzero tangential step if the feasible region of (8) is small. Specifically, our algorithm
only computes a nonzero tx when |[ng| < £,0; for some £, € (0,1). In addition, it
only makes sense to compute a tangential step when reasonable progress in reducing f
in the null space of Ji can be expected. To predict the potential progress, we define

(11) 9b = ZnZ{ (g + Hypny),

where the columns of Z;, form an orthonormal basis for Null(Jy). If ||gh|] < &pllgt|l
for some k, € (0,00), then computing a tangential step is not worthwhile and we
simply set the primal-dual solution (estimate) for (8) to zero.

4
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For any (wy,0;, Hr) € RY x R, x RN*N 4 globally optimal solution to (8)
exists [10, Corollary 7.2.2] and ¢; has corresponding dual variables y,{ € RM and
)\£ € R, (for the null space and trust region constraints, respectively) such that

(12a) Hy+MI ! tf; _oe+ (He+ MI)ny,
Jk 0 Yi 0 ’

(12b) ZUHWZ), + M1 - 0,

(12c) and 0 <A L (5% — ||ng, + tx])) > 0.

Similarly as for the normal step computation, our algorithm potentially computes ¢,
not as a solution of (8) for a given J;, but as a solution of a regularized subproblem
for a given dual variable for the trust region constraint. Specifically, for /\£ € 10, 00)
that is strictly larger than the negative of the leftmost eigenvalue of Z] HyZj,, our
algorithm might solve the following subproblem for the tangential step:

(13)  9l(\]): min (g5 + (Hy + M) Tt + LT (Hy + NIt st it =0.

The unique solution tk()\ﬁ) of (13) is a global solution of (8) for §; = ||ng + tk(A£)||.

There are situations in which our algorithm discards a computed tangential step
after one is computed, i.e., situations when the algorithm resets t; < 0. Specifically,
this occurs when any of the following conditions fails to hold:

(14a)  my(0) — mp(ng + tk) > Kom (ME(0) — mi(ng))  for some Ky € (0,1);
(14b) [nk + trll = Knenllnell for some Kpe, € (0,1);
(14c) |HE ]| < fonellng + te|? for some kp; € (0,00).

The first of these conditions requires that the reduction in the constraint violation
model for the full step s := ny + t is sufficiently large with respect to that obtained
by the normal step; the second requires that the full step is sufficiently large in norm
compared to the normal step; and the third requires that the action of the tangential
step on the Hessian of the constraint violation model is not too large compared to the
squared norm of the full step. It is worthwhile to mention that all of these conditions
are satisfied automatically when HY = JI'J; (recall (5)), which occurs, e.g., when c
is affine. However, since this does not hold in general, our algorithm requires these
conditions explicitly, or else resets the tangential step to zero (which satisfies (14)).

2.2. Step acceptance. After computing a normal step nj and potentially a tan-
gential step ¢, the algorithm determines whether to accept the full step s := ng +t.
The strategy that it employs is based on first using the obtained reductions in the
models of constraint violation and the objective, as well as other related quantities, to
determine what should be the main goal of the iteration: reducing constraint violation
or the objective function. Since the primary goal of phase 1 is to obtain (approximate)
feasibility, the algorithm has a preference toward reducing constraint violation unless
the potential reduction in the objective function is particularly compelling. Specifi-
cally, if the following conditions hold, indicating good potential progress in reducing

5
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the objective, then the algorithm performs an F-ITERATION (see §2.2.1):

(15a) tr #0 with |[tg]l > #stllskl] for some k4 € (0,1),
(15b) mi(O) - mi(sk) > Hfm(mi(nk) - mi(sk)), for some K¢, € (0,1),
(15¢) v(g + k) < vE = kylskl? for some x, € (0,1),
(15d) nite > — 6 |tel? for some fnee € (0,1),
(15¢) A < opllngll and

(151) ||(Hk — V2f(xk))skH < ,‘<;hs||sk||2 for some £y € (0, 00).

Conditions (15a)—(15¢) are similar to those employed in other trust funnel algorithms,
except that (15a) and (15¢) are stronger (than the common, weaker requirements that
tr # 0 and v(zg + sx) < vp*). Employed here is a scalar sequence {vp*} updated
dynamically by the algorithm that represents an upper bound on constraint violation;
for this sequence, the algorithm ensures (see Lemma 6) that v, < vp** and vy < vp
for all k¥ € N. Condition (15d) ensures that, for an F-ITERATION, the inner product
between the normal and tangential steps is not too negative (or else the tangential
step might undo too much of the progress toward feasibility offered by the normal
step). Finally, conditions (15¢) and (15f) are essential for achieving good complexity
properties, requiring that any F-ITERATION involves a normal step that is sufficiently
large compared to the Lagrange multiplier for the trust region constraint and that
the action of the full step on Hy, does not differ too much from its action on V2 f(zx).
If any condition in (15) does not hold, then a V-ITERATION is perfomed (see §2.2.2).

Viewing (15f), it is worthwhile to reflect on the choice of Hy in the algorithm.
With the attainment of optimality (not only feasibility) in mind, standard practice
would suggest that it is desirable to choose Hj as the Hessian of the Lagrangian of
problem (1) for some multiplier vector y, € RM. This multiplier vector could be
obtained, e.g., as the QP multipliers from some previous iteration or least squares
multipliers using current derivative information. For our purposes of obtaining good
complexity properties for phase 1, we do not require a particular choice of Hy, but
this discussion and (15f) do offer some guidance. Specifically, one might choose Hy, as
an approximation of the Hessian of the Lagrangian, potentially with the magnitude
of the multiplier vector restricted in such a way that, after the full step is computed,
the action of it on Hj, will not differ too much with its action on V2 f(zy).

2.2.1. F-iteration. If (15) holds, then we determine that the kth iteration is
an F-ITERATION. In this case, we begin by calculating the quantity

(16) ol (fr — @+ s))/ sl

which is a measure of the decrease in f. Using this quantity, acceptance or rejection
of the step and the rules for updating the trust region radius are similar as in [15]. As
for updating the trust funnel radius, rather than the update in [21, Algorithm 2.1],
we require a modified update to obtain our complexity result; in particular, we use

max max max

(17) Vpy1 min{max{x,1 v}, y UV — ’ip||5k||3}vvk+1 + "%2(1% —Vr41)}

for some {Ky1, K2} C (0,1).

2.2.2. V-iteration. When any one of the conditions in (15) does not hold, the
kth iteration is a V-ITERATION, during which the main focus is to decrease the measure

6
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of infeasibility v. In this case, we calculate
(18) pi = (vlzx) = v(zk + si))/llsk]®,

which provides a measure of the decrease in constraint violation. The rules for accept-
ing or rejecting the trial step and for updating the trust region radius are the same as
those in [15]. One addition is that during a successful V-ITERATION, the trust funnel
radius is updated, using the same constants as in (17), as

max

(19) vy « min{max{r,1 V5™, Vet+1 + Ko2(Vk — Vks1) }, Vi1 + Koz (V5™ — Vpg1) )

2.3. Algorithm statement. Our complete algorithm for finding an (approxi-
mately) feasible point can now be stated as Algorithm 1 on page 8, which in turn calls
the F-ITERATION subroutine stated as Algorithm 2 on page 9 and the V-ITERATION
subroutine stated as Algorithm 3 on page 10.

3. Convergence and Complexity Analyses for Phase 1. The analyses that
we present require the following assumption related to the iterate sequence.

ASSUMPTION 2. The sequence of iterates {x} is contained in a compact set. In
addition, the sequence {||Hg||} is bounded over k € N.

Our analysis makes extensive use of the following mutually exclusive and exhaus-
tive subsets of the iteration index sequence generated by Algorithm 1:

T:={keN:|gpl > e},
F :={k € T : iteration k is an F-ITERATION},
and V:= {k € T : iteration k is a V-ITERATION}.

It will also be convenient to define the index set of iterations for which tangential
steps are computed and not reset to zero by our method:

T' .= {k €T :t, # 0 when Step 8 of Algorithm 1 is reached}
={k €T : Step 23 of Algorithm 1 is reached and all conditions in (14) hold}.

3.1. Convergence analysis for phase 1. The goal of our convergence analysis
is to prove that Algorithm 1 terminates finitely, i.e., |Z| < co. Our analysis to prove
this fact requires a refined examination of the subsets F and V of Z. For these
purposes, we define disjoint subsets of F as

St ::{ke]—':piz,‘ﬁp} and ¢/ ::{k€f:p£</ip},
and disjoint subsets of V as

S§":={k eV :p] >k, and either A}, < o||ni|| or ||n| = AL},
C':={keV:p, <Ky},
and £’ :={keV:k¢S"UC"}

We further partition the set SV into the two disjoint subsets
SR i={keS":||nkl|=A}} and S :={keS": k¢ SR}

Finally, for convenience, we also define the unions

S:={kecZ:kecS'US"} and C:={keT:kec/uc’}.
7
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Algorithm 1 Trust Funnel Algorithm for Phase 1

Require: {kn, Kum, fntn, Kps K fm, Ksty Bntt, Ko, ko2, Ve } C (0,1),
{va Khty Khs) 67Q} - (07 00)7 {/f(;,fye,’y)\} € (17 OO)> and 7 € [Q7 OO);
F-1TERATION (Algorithm 2, page 9) and V-ITERATION (Algorithm 3, page 10)

1: procedure TRUST_FUNNEL

2 choose zo € RY, v§** € [max{1,vo},00), and 0§ € [z,

3:  choose {65, A4, } C (0,00) such that 6 < AY

4 for k € N do

5: if ||g;|| < € then

6: return

7 (g, tr, A2, M) < COMPUTE_STEPS (21, 67, 65

8 set s < nk + tk

9: set o < COMPUTE_SIGMA (nk, AL, 0f_1, Ph—_1)
10: if (15) is satisfied then
11: set pl by (16)
12: (Trt1, V507, 5,’:+1) < F-ITERATION(2, ng, sk,v,;“""‘,é,ﬁ, )\i, pi)
13: set dpy 1 < 0, Ay + AR, and pg < o0
14: else
15: set pj, by (18)
16: (wklea vlrcn-i}L 6%-&-17 Az+1) — V'ITERATION('TIW Moy Sky Vi Okt s Doy ARy Ok pZ)
17: set 5,{“ — 5}: and p£ — o0

18: procedure COMPUTE_STEPS(x, 0y, 0})

19: set (nk, A}) as a primal-dual solution to (3)

20: set (ti, A]) < (0,0)

21 f [lnal < £udt and gbll > wyllgt] then

22: set (tg, y,]:, /\ﬁ) as a primal-dual solution to (8)

23: if any condition in (14) fails to hold then set (t, \]) « (0,0)
24: return (ny,tg, AL, )\i)

25: procedure COMPUTE_SIGMA (nk, AL, 05 _1, Ph—1)

26: if iteration (k — 1) was an F-ITERATION then

27: set o < 0p_q

28: else

29: if p;_; < Kk, then set o} + max{op_1,\}/||nk||} else set o} « o,_
30: return o}

282 Due to the updates for the primal iterate and/or trust region radii in the algorithm,
283 we often refer to iterations with indices in S as successful steps, those with indices
284 in C as contractions, and those with indices in £ as expansions.

285 Basic relationships between all of these sets are summarized in our first lemma.
286 LEMMA 3. The following relationships hold:
287 (i) FNV =0 and FUV =1;

288 (ii) ST NCr =0 and SFUCH = F;
289 (ii) SY, C?, and EY are mutually disjoint and S* UCY UEY =V; and
290 (iv) if k€ Z\TI', thenk € V.

291 Proof. The fact that F NV = @ follows from the two cases resulting from the
292 conditional statement in Step 10 of Algorithm 1. The rest of part (i), part (ii), and
293 part (iii) follow from the definitions of the relevant sets. Part (iv) can be seen to hold

8
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Algorithm 2 F-ITERATION subroutine

1: procedure F-ITERATION(Zk, Nk, Sk, Vi ™™, 5,’:, )\£, p,’:)

2 if p£ > kp then [accept step]
3 set Ti41 < Tk + Sk

4 set v} according to (17)

5: set (5,{_‘_1 — max{6], vo||sx |}

6 else (i.e., if p£ < Kp) [contract trust region]
7 set Ti41 < Tk

8 set vl < v

9 set 0], < F-CONTRACT(n, sk, 01, \])

10: return (ziy1, Vi, 5£+1)

11: procedure F-CONTRACT(ng, sk, 01, Al)
12: if A/ < a||si|| then

13: set A > A/ so the solution t(A) of Qf (\f) yields o < A /||nk + t(\)]|
14: return 5,{“ — |lng +t(AD)|

15: else (i.e., if A > a||si]))

16: return (5,{“ — Yellskll

as follows. If k € T\ T, then t;, = 0 so that (15a) does not hold. It now follows from
the logic in Algorithm 1 that & € V as claimed. ]

The results in the next lemma are consequences of Assumptions 1 and 2.

LEMMA 4. The following hold:
(1) there exists 87 € (1,00) so max{||gkll, llckll, |k, [HP |} < bfc for all k € I;
(ii) lgtll = 1TF ex]l < Opellcell for all k € I; and
(iii) g° : RN — RY defined by g*(z) = J(z)Te(z) (recall (4)) is Lipschitz contin-
uous with Lipschitz constant g7;, > 0 over an open set containing {zx}.

Proof. Part (i) follows from Assumptions 1 and 2. Part (ii) follows since, by the
Cauchy-Schwarz inequality, ||J7 cxl| < |[Jkllllck]l < Ofcllcx]|. Part (iii) follows since
the first derivative of gV is uniformly bounded under Assumptions 1 and 2. 0

We now summarize properties associated with the normal and tangential steps.

LEMMA 5. The following hold for all k € Z:

(i) ng #0 and sy # 0; and

(i) in Step 8 of Algorithm 1, the vector ty, satisfies (14).

Proof. We first prove part (i). Since k € Z, it follows that [|gy|| > €, which
combined with (6a) implies that n; # 0, as claimed. Now, in order to derive a

contradiction, suppose that 0 = s = ny + tg, which means that —t; = ny # 0. From
gp # 0 and (6a), it follows that (H} + AJI)ny = —gp # 0, which gives

(20) ni (HY + M\eD)ny, = —nigb = —n} JE e = —(Jeng) T ex = 0,

where the last equality follows from ng = —tj, and Jit, = 0 (see (12a)). It now follows
from (20), symmetry of Hy + A} I, and (6b) that 0 = (H} + A} I)ny = —gj, which is
a contradiction. This completes the proof of part (i).

To prove part (ii), first observe that the conditions in (14) are trivially satisfied if
tr = 0. On the other hand, if Step 8 is reached with t; # 0, then Step 23 must have

9
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Algorithm 3 V-ITERATION subroutine

1: procedure V-ITERATION(Zk, Nk, Sk, Vi, 0py AL, iy Ok s PR)

2 if p; > Kk, and either A} < o} ||nk|| or ||nk|| = A}, then [accept step]
3 set Tip41 < Tk + Sk

4: set v} according to (19)

5: set Ay + max{A},ve|nrl }

6 set Opy 1 ¢ min{A},;, max{0y,ve| x| }}

7 else if p; < k, then [contract trust region]
8 set Ti41 < Tk

9: set vl < v
10: set Apyy — A}
11: set 0,1 ¢ V-CONTRACT(ng, Sk, 0k, AL)
12: else (i.e., if pg > Kk, A} > of||nk||, and ||nk|| < AR) [expand trust region]
13: set Tip41 < Tk
14: set vpity v
15: set AYq — A}
16: set Opy 1 ¢ min{A}, 1, /o }
17: return (Try1, Vit 01, Dia1)

18: procedure V-CONTRACT(ng, Sk, 0, A\L)

19:  if A} < gflnk| then

20: set A" = Ap + (allgi )/

21: set AV < A

22: set n(\”) as the solution of Q}(\")
23: if A?/||n(A")]| <7 then

24: return ¢, < |[|[n(A%)]|

25: else

26: set AV € (AY, A?) so the solution n(A¥) of Q(A?) yields o < AV/|[n(A")|| < &
27: return d;,, < |[|n(A%)]|

28: else (i.e., if A} > o||nk|)

29: set AV <— yaAg

30: set n(\”) as the solution of Qf(\Y)
31: if |[n(A")] > ~e|lnk|| then

32: return &g, < [|n(A%)]|

33: else

34: return 0, < vc|[nx||

been reached, at which point it must have been determined that all of the conditions
in (14) held true (or else ¢; would have been reset to the zero vector). |

A key role in Algorithm 1 is played by the sequence of trust funnel radii {vp*}.
The next result establishes that it is a monotonically decreasing upper bound for the
constraint violation, as previously claimed.

LEMMA 6. For all k € Z, it follows that v, < v and 0 < vy < opt.

Proof. The result holds trivially if Z = (). Thus, let us assume that Z # (), which
ensures that 0 € Z. Let us now use induction to prove the first inequality, as well as
positivity of vp** for all k € Z. From the initialization in Algorithm 1, it follows that
vg < vg** and vg*™ > 0. Now, to complete the induction step, let us assume that
v < op and v > 0 for some k € Z, then consider three cases.

Case 1: k € S7. When k € S/, let us consider the two possibilities based on the
procedure for setting v’y stated in (17). If (17) sets vpy = vpy1 + Koz (VE™ — vky1),

10
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then the fact that k € S C F, (15¢), and Lemma 5(i) imply that

max ( max

VR = Ut F K2 (UF™ — Upg1) = Up1 + Ko2kpl|sk|® > vgs1 > 0.

On the other hand, if (17) sets v = max{k,1 V™, vp™ — k,||sk[*}, then using the
induction hypothesis, the fact that k € S C F, and (15¢), it follows that

ax

VET] 2 K10 >0 and vpTy > op™ — I<&p||SkH3 > vgy1 > 0.

This case is complete since, in each scenario, vy > vg41 and vEyy > 0.

Case 2: k € §’. When k € §Y, let us consider the two possibilities based on the
procedure for setting v’y stated in (19). If (19) sets vpy = vpy1 + Koz (VE™ —Uky1),
then it follows from the induction hypothesis and the fact that pj > x, for k € S

(which, in particular, implies that vi11 < vg for k € S”) that
VT = Vg1 + Fo2(UF™ = Uky1) > Uk + Ko2(Vk — Upy1) > g1 > 0.

On the other hand, if (19) sets vP) = max{ry1 VP, Vkq1 + Koz (Vk — Vkg1)}, then the
induction hypothesis and the fact that vip41 < vy for k € §Y implies that

max

VEP] > Korop™ >0 and o) > vggr + Ke2(Vk — Vkg1) > vrgr > 0.

This case is complete since, in each scenario, vi'¥ ] > vg41 and vy > 0.

Case 3: k ¢ STUSY. When k ¢ STUS", it follows that k € CUEY, which may be
combined with the induction hypothesis and the updating procedures for z; and vy**
in Algorithms 2 and 3 to deduce that 0 < vp** = vETy and vgy1 = vp < VP = (ep

Combining the conclusions of the three cases above, it follows by induction that
the first inequality of the lemma holds true and v > 0 for all k € Z.

Let us now prove that vy < v for all k € Z, again by considering three cases.
First, if k € S/, then vy is set using (17) such that

max max max

U] < max{k, v vpt — /@p||sk||3} < v,

where the strict inequality follows by #,1 € (0,1) and Lemma 5(i). Second, if k € §Y,
then viy1 < v < V™, where we have used the proved fact that vy < vp*; thus,

VR — vpy1 > 0. Then, since v§y is set using (19), it follows that
UE = O 2 U = Ugr — Ro2(0F™ — vpg1) = (1 = Ko2) (V™ — vkg1) > 0.

Third, if k& ¢ Sf USY, then, by construction in Algorithms 2 and 3, it follows that
vy = vp™. This completes the proof. O

Our next lemma gives a lower bound for the decrease in the trust funnel radius
as a result of a successful iteration.

LEMMA 7. If k € S, then vp™ — vy > k(1 — kuz) |l si||®.
Proof. 1f k € 87, then v is set using (17). In this case,

UEY = VR Z U~ Okgr — Rua (08 — Vi)

= (1= o) (V™ = vra1) = £p(1 = r02)[lse] I,
11
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where the last inequality follows from (15¢) (since k € S C F). If k € S?, then U]
is set using (19). In this case, by Lemma 6 and the fact that p}, > x, for k € S,

OFT = 0RTY 2 0™ = Urgr — K2 (08" — Vk41)
= (1 = Ru2) (0™ = 1) 2 (1= ko2) (0 — vit1) 2 Kp(l — hoa)[[si %,
which completes the proof. ]
Subsequently in our analysis, it will be convenient to consider an alternative
formulation of problem (8) that arises from an orthogonal decomposition of the normal
step ng into its projection onto the range space of J,CT , call it nkR, and its projection
onto the null space of J, call it n}y. Specifically, considering

(21) th € argtjgréi]gN m{(nquLtN) st. JptV =0 and [tV] <4/ (65)2 — |Inf||2,

we can recover the solution of (8) as tj « t —nl'. Similarly, for any )\£ € [0,0)
that is strictly greater than the left-most eigenvalue of Z] HyZy, let us define

(22) Ol(\): min (gr + Hen)TtN + LT (Hy + MDY st Tt = 0.

In the next lemma, we formally establish the equivalence between problems (21)
and (8), as well as between problems (22) and (13).

LEMMA 8. For all k € Z, the following problem equivalences hold:

(i) if ||kl < 65, then problems (21) and (8) are equivalent in that (t,AN)
is part of a primal-dual solution of problem (21) if and only if (tk,/\i) =
(tN —nl',AN) is part of a primal-dual solution of problem (8); and

(ii) if ZL Hy Z), + )\i[ = 0, then problems (22) and (13) are equivalent in that t
solves problem (22) if and only if tj, =t —nlY solves problem (13).

Proof. To prove part (i), first note that ||ng| < 0} ensures that problems (21)
and (8) are feasible. Then, by Jxt™ = 0 in (21), the vector nff € Range(J]) is
orthogonal with any feasible solution of (21), meaning that the trust region constraint
in (21) is equivalent to |[nff + V|| < 6. Thus, as (12) are the optimality conditions
of (8), the optimality conditions of problem (21) (with this modified trust region
constraint) are that there exists (£, yN, A\l) € RN x RM x R such that

(23a) Hy+ T JEV ] e+ (He + A Dnf
(23b) ZEHZe + M T = 0,
(25¢) and A L (8] — [lnff +£)]) > 0.

From equivalence of the systems (23) and (12), it is clear that (t,yn,\l) is a
primal-dual solution of (21) (with the modified trust region constraint) if and only if
(tk, y,{, )\i) = (¢t —nd,yN, AY) is a primal-dual solution of (8). This proves part (i).
Part (ii) follows in a similar manner from the orthogonal decomposition nj, = nly +nlt
and the fact that Jt = 0 in (22) ensures that ¢ € Null(Jj). ad

The next lemma reveals important properties of the tangential step. In particular,
it shows that the procedure for performing a contraction of the trust region radius in
an F-ITERATION that results in a rejected step is well-defined.

12
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LEMMA 9. If k € Cf and the condition in Step 12 of Algorithm 2 tests true, then
there exists A > )\i such that o < M /||ng +t(\)]|, where t(\) solves Qi()\f),

Proof. Since the condition in Step 12 of Algorithm 2 is assumed to test true, it
follows that /\g < o||sk||. Second, letting t(A\f) denote the solution of Qi(/\f)7 it follows
by Lemma 8(ii) that limys_, |k +t(A)]| = |0, meaning that limys_,o A /s +
t(A)|| = co. It follows from these observations and standard theory for trust region
methods [10, Chapter 7] that the result is true. 0

The next lemma reveals properties of the normal step trust region radii along
with some additional observations about the sequences {A}}, {A}}, and {0} }.

LeEmMA 10. The following hold:
(i) if k €C”, then 0 <6, <6 and N, > A5
(ii) if k € T, then 5y < AL < AV, ,;
(iii) if k € SYUEY, then 6}, > 6;; and
(iv) if k € F, then 6}, = 6} and o}, = 0}.

Proof. The proof of part (i) follows as that of [15, Lemma 3.4]. In particular,
since the V-CONTRACT procedure follows exactly that of CONTRACT in [15], it follows
that any call of V-CONTRACT results in a contraction of the trust region radius for
the normal subproblem and non-decrease of the corresponding dual variable.

For part (ii), the result is trivial if Z = (). Thus, let us assume that Z # (}, which
ensures that 0 € Z. We now first prove 6;; < A} for all k£ € Z using induction. By the
initialization procedure of Algorithm 1, it follows that d5 < Af. Hence, let us proceed
by assuming that §; < A} for some k € Z. If k € S, then Step 6 of Algorithm 3
shows that 67, < Ay, ;. If k € £, then Step 16 of Algorithm 3 gives 6}, < A}, ;.
If k € CY, then part (i), Step 10 of Algorithm 3, and the induction hypothesis yield
Opr1 < 0p <Ay = Ap,,. Lastly, if £ € F, then Step 13 of Algorithm 1 and the
inductive hypothesis give 07, ; = 6y < A} = A}, ;. The induction step has now been
completed since we have overall proved that 6, ; < A} |, which means that we have
proved the first inequality in part (ii). To prove A} < A}, consider two cases. If
k € 8, then Step 5 of Algorithm 3 gives A}, > Aj. Otherwise, if k¥ ¢ SV, then
according to Step 13 of Algorithm 1 and Steps 10 and 15 of Algorithm 3, it follows
that A}, = A}. Combining both cases, the proof of part (ii) is now complete.

For part (iii), first observe from part (ii) and Step 6 of Algorithm 3 that if k € S§Y,
then 07, | = min{A} ;, max{d},ve||nx|}} > 0. On the other hand, if k € £, then
the conditions that must hold true for Step 12 of Algorithm 3 to be reached ensure that
A}, > 0, meaning that ||ng|| = 6} (see (6¢)). From this and the fact that the conditions
in Step 12 of Algorithm 3 must hold true, it follows that A} /o) > ||nk| = 6; and
k]| < Af. Combining these observations with A}, = A} for k € £V (see Step 15
of Algorithm 3) it follows from Step 16 of Algorithm 3 that 0y, > [|ng|| = 0.

Finally, part (iv) follows from Steps 13 and 27 of Algorithm 1. d

The next result reveals similar properties for the other radii and {\}.
LeEMMA 11. The following hold:
(i) if k € Cl, then 8], <} and if, in addition, (k+1) € T, then A, > A].;

(ii) if k € ST, then (5}:“ > 6,]: and 63, > 0f; and

(iii) if k € V, then 5], = 4].

Proof. For part (i), notice that 6,{“ is set in Step 9 of Algorithm 2 and that
(Thy1,0541) < (w1,0;) and ngqq = ny, for all k € Cf. Let us proceed by considering

13
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two cases depending on the condition in Step 12 of Algorithm 2.

Case 1: )\i < al|sk||- In this case, 5,’:“ is set in Step 14 of Algorithm 2, which
from Step 13 of Algorithm 2 and Lemma 9 implies that A/ > )\i. Combining this
with Lemma 8 and standard theory for trust region methods leads to the fact that the
solution ¢V (A7) of Qﬁ()\f) satisfies [tV (A)| < [[t2]]. Thus, 5,’:“ = [|nk + t(M)| =
B+ tN )| < InE+ V]| = |Isi]l < 5,{, where the last inequality comes from (10).

If, in addition, (k + 1) € Z! so that a nonzero tangential step is computed and not

f
k+1

for this case since it has already been shown above that A/ > )\£ .

Case 2: )\£ > o|sk]l- In this case, 6};_1 is set in Step 16 of Algorithm 2 and,
from (10) and 7. € (0,1), it follows that 6£+1 = Ye|lskl] < %5,{ < 5}:. Consequently,
from Step 13 of Algorithm 1 and (10), one finds that 67, , < 3. It then follows from
Lemma 8 and standard trust region theory that if (k4 1) € Z%, then Ai+1 > /\g.

To prove part (ii), notice that for k € S7 it follows by Step 5 of Algorithm 2 that
5{;1 = max{6], e[ sk}, so 5,{“ > /. From this, Step 13 of Algorithm 1, and (10)
it follows that 6;,, > d;. These conclusions complete the proof of part (ii).

Finally, part (iii) follows from Step 17 of Algorithm 1. d

reset to zero, it follows that A]_ , = Af. This establishes the last conclusion of part (i)

Next, we show that after a V-ITERATION with either a contraction or an expansion
of the trust region radius, the subsequent iteration cannot result in an expansion.

LEMMA 12. Ifk € C* UEY, then (k+1) € FUSYUCY.

Proof. If (k+1) € F, then there is nothing left to prove. Otherwise, if (k+1) € V,
then the proof follows using the same logic as for [15, Lemma 3.7], which shows that
one of three cases holds: (i) k € C¥, which yields A}, < o} [|ngy1l], so (E+1) ¢ EY;
(ii) k € & and A} > \]/o}, which also yields A} | < o} ||nrq1ll, so (B +1) & EY;
or (i13) k € &Y and A} < A} /oy, which implies (k+1) e SYUCY,s0 (k+1) ¢ &Y. O

Our goal now is to expand upon the conclusions of Lemma 12. To do this, it
will be convenient to define the first index in a given index set following an earlier
index k € Z in that index set (or the initial index 0). In particular, let us define

ks(k) :=min{k € S: k >k} and ksuyp(k) :=min{k € SUV : k >k}
along with the associated sets
Is(k):={ke€T:k<k<ks(k) and Zsuyp(k):={ke€T:k<k<ksup(k)}.

The following lemma shows one important property related to these quantities.
LEMMA 13. For all k € SU{0}, it follows that |£¥ NZs(k)| < 1.

Proof. In order to derive a contradiction, suppose that there exists ke Su{o}
such that [£¥ NZs(k)| > 1, which means that one can choose ks, and ks, as the first

two distinct indices in €Y N Zs(k); in particular,
{ksl,k'53} cer ﬁIS(E) and k < ks, <ks, < k’s(E)

By Lemma 12 and the fact that ks, € £, it follows that {ks, +1,... ks, — 1} # 0.
Let us proceed by considering two cases, deriving a contradiction in each case.
Case 1: VN {ks, +1,...,ks, — 1} = 0. In this case, by the definitions of kg, ,
ks,, and Zs(k), it follows that {ks, + 1,...ks, — 1} C C/. Then, since oy, = 0}
14
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and o}, = o} for all k € C/ C F, it follows that &y = O)s, +1 and Ths, = Oks, 1"
In particular, using the fact that 5};53 = 5};31 41, it follows along with the fact that
Tpy1 = xp for all k ¢ S that |[ngg, || = [[nks, +1] and Aks, = Mis,+1- Now, since
(ks, +1) € C7, it follows with Step 10 of Algorithm 1 and (15¢) that

N, Mg, |l = Mg o1/ Inns, 11l < 0, 1 = ok,

which implies that ks, ¢ £Y, a contradiction.

Case 2: VNi{ks +1,...,ks, — 1} # 0. In this case, by the definitions of
ks,, ks, and Zs(k), it follows that {ks, + 1,...,ks, — 1} € €/ UC?. In addition,
by the condition of this case, it also follows that there exists a greatest index ks, €
C’N{ks,+1,...,ks,—1}. In particular, for the index ks, € C?, it follows that ks, +1 <
ks, < ks, —1and {ks, +1,...,ks, —1} CC/. By ks, € C” and Lemma 12, it follows
that ks, + 1 ¢ £Y; hence, since ks, € £, it follows that {ks, + 1,...,ks, — 1} # 0.
We may now apply the same argument as for Case 1, but with ks, replaced by ks,,
to arrive at the contradictory conclusion that ks, ¢ £¥, completing the proof. 0

The next lemma reveals lower bounds for the norms of the normal and full steps.

LEMMA 14. For all k € Z, the following hold:

(i) lnll = min {6, [|gill /Il HE [} > 0 and

() [kl = e min {6y, [[gill/[|HE ]|} > O

Proof. The proof of part (i) follows as that for [15, Lemma 3.2]. Part (ii) follows
from part (i) and (14b), the latter of which holds because of Lemma 5(ii). ad

We now provide a lower bound for the decrease in the model of infeasibility.

LEMMA 15. For all k € I, the quantities ny, A}, and s salisfy

Inf (HY + X Dnk + 27 nk || > 0,
nvm(%nf(H;j + A Dng + %)\};anHZ) >0, and
3 Kom|lgpll min {67, [lgp ]l /|| HE ||} > 0.
Proof. The proof of (24a) follows as for that of [15, Lemma 3.3] and the fact that
llgi || > €, which holds since k € Z. The inequalities in (24b) follow from (24a) and

(14a), the latter of which holds because of Lemma 5(ii). To prove (24c), first observe
from standard trust region theory (e.g., see [10, Theorem 6.3.1]) that

(25) ve —mi(nk) = gllggllmin {65, [lgg[l/I-H][} > 0.

By combining (25) and (14a) (which holds by Lemma 5(ii)), one obtains (24c). |

The next lemma reveals that if the dual variable for the normal step trust region
is beyond a certain threshold, then the trust region constraint must be active and the
step will either be an F-ITERATION or a successful V-ITERATION. Consequently, this
reveals an upper bound for the dual variable for any unsuccessful V-ITERATION.

LEMMA 16. For all k € T, if the trial step s, and the dual variable A} satisfy

2
Ks

(26) Ab 2 —=(20Lip + b5 + 26,5k l)),

K/vm

then ||ng|| = 6y and p} > K,.
15
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Proof. For all k € Z, it follows from the definition of m}] and the Mean Value
Theorem that there exists a point Z;; € RY on the line segment [k, 2k + sk] such that

my(sk) — v(xk + k) = (90 — gv(ffk:))T Sk + %SfH;?Sk

(27) =llgx = g" @)kl = 3 IHZ el

Y]

By (26) and (6¢), it follows that ||ng|| = 65. Combining this fact with (27), (24b),
(6b), Lemma 4, (26), and the fact that |[sg| < 5 < K50} = Ks||nk||, one obtains
v — v(zk + Si) = vk — mi(sk) + mp(sk) — v(xg + sg)
> shom Ml l® = llgk = 9" @O skl — 31 H s
stombs A lsell® = gk = g° @olllsell = 31 HL skl

(3Rombs N = ghip — 307 lIsell = mpllsell®,

Y IV

which, by Steps 13 and 15 in Algorithm 1 and (18), completes the proof. d

Recall that our main goal in this section is to prove that |Z| < co. Ultimately,
this result is attained by deriving contradictions under the assumption that |Z| = co
For example, if |Z| = co and the iterations corresponding to all sufficiently large k € Z
involve contractions of a trust region radius, then the following lemma helps to lead
to contradictions in subsequent results. In particular, it reveals that, under these
conditions, a corresponding dual variable tends to infinity.

LEMMA 17. The following hold:

(t) If k ¢ S for all large k € T and |C¥| = oo, then {5y} — 0 and {\}} — oc.

(i) If k € C1 for all large k € T, then {5}:} — 0 and {)\i} — 00.

Proof. By Lemma 10, Lemma 13, and the fact that k ¢ S for all large k € Z, the
proof of part (i) follows as that of [15 Lemma 3.9].

To prove part (ii), let us assume, without loss of generality, that k € C/ for all
k € Z. It then follows that k € Z* for all k € Z, since otherwise it would follow that
t, « 0, which by (15a) means k € V, a contradiction to k € C¥. Thus,

(28) kec/ NIt forall kel

Next, we claim that the condition in Step 12 of Algorithm 2 can hold true for at most
one iteration. If it never holds true, then there is nothing left to prove. Otherwise,
let k. € T be the first index for which the condition holds true. The structure
of Algorithm 2 (see Step 13) and (28) then ensure that )\£C+1/H5kc+1” > g. From
Lemma 11(i), one may conclude that {)\£ /lIsk||} is nondecreasing. From this, it follows
that the condition in Step 12 of Algorithm 2 will never be true for any k > k.. Thus, we
may now proceed, without loss of generality, under the abbumptlon that the condition
in Step 12 of Algorithm 2 always tests false. This means that o i1 18 set in Step 16 of
Algorithm 2 for all k € Z, yielding 5k+1 — Yellsk]l < ’yC(Sk, where the last inequality

comes from (10). Therefore, {6}:} — 0 for all k¥ € Z, and consequently {)\i} —o0. O
We now show that the sequences {A}} and {ny} are bounded above.

LEMMA 18. There exists a scalar Al .. € (0,00) such that A} = A for all
sufficiently large k € Z. In addition, |SX| < 0o and there exists a scalar Nyax € (0, 00)
such that |ng|| < nmax for all k € T.

16
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Proof. First, in order to derive a contradiction, assume that there is no AY

max
such that A} = Ap ., for all sufficiently large & € Z. This, in turn, means that
Step 5 of Algorithm 3 is reached infinitely often, meaning that |S¥| = oo. For all
keS8 C S, it follows from Lemma 7 that vp™ — vpiy > k(1 — ky2)|skl|®. Now,
using the monotonicity of {vp*} and the fact that vp* > 0 (see Lemma 6), one may
conclude that {vp*} converges; therefore {sg}res» — 0. From this fact, Lemma 5(ii),
and (14b) it follows that {ny}resv — 0. Thus, there exists an iteration index k%
such that for all £ € S¥ with k > kX, one finds ve||ng| < Af < A}, where the
last inequality follows from Lemma 10(ii). From this and Steps 5, 10, and 15 of
Algorithm 3, it follows that A} | < A} for all k > k}, a contradiction. The proof of
the second part of the lemma follows as in that for [15, Lemma 3.11]. 0

In the next lemma, a uniform lower bound on {6} } is provided.

LEMMA 19. There exists a scalar 0%, € (0,00) such that 6} > 62, for allk € T.

Proof. If |C?| < oo, then the result follows from Lemma 10(iii)—(iv). Thus,
let us proceed under the assumption that [CY| = oco. As in the beginning of the

proof of Lemma 16, it follows that (27) holds. Then, using (27), (24c), Lemma 4(i),
Lemma 4(iii), ||gp|| > € for k € Z, and ||sk|| < 5 < ksdp, it follows that
v — v(Tk + Sk)
= v —mp(sk) + my(sg) — v(xg + sk)
> hiomllgi | min {og, [lgill /1 HLIY = llgx — g" @alllsll — 311 HE s
%/{vmemin {0k, 6/efc} - (QZip + %ch)HskHQ
ghomemin {05, e/0pc} — (9L, + 5070)55(67)°.

AV

Considering these inequalities and ||sg|| < 07 < ksd}, it must hold that p, > &, for
any k € 7 as long as 0} € (0,€/6y.] is sufficiently small such that

%vaaﬂi - (gzip + %ch)/-”»?(diif > KpH§(5Z)3 2 ’fp||3k‘|3~

This fact implies the existence of a positive threshold 83}, € (0,€/0¢.] such that,
for any k € Z with 6] € (0,0},,..4), one finds pj > k,. Along with the fact that
P < K, if and only if k € CV (see Step 2, 7, and 12 of Algorithm 3 and Step 13 of
Algorithm 1), it follows that

(29) 80 > 8%, ., for all k € CV.

Since the normal step subproblem trust region radius is only decreased when k € C?,
we will complete the proof by showing a lower bound on ¢;,, when k € C".
Suppose that k € C¥. If Step 24 of Algorithm 3 is reached, then

X A+ (allgpl)

. ” (allgplD*? _ (ge)*/?
Spy1 < [In(A")] > = . -,

>
o] o] o]

2>
where the last inequality follows since k € Z means ||gp|| > €. If Step 27 is reached,
then the algorithm chooses AV € (A}, A?) to find n(A?) that solves Q7 (AV) such that
a < A?/|n(AY)|| < 7. For this case and the cases when Step 32 or 34 is reached, the
existence of d7;, € (0,00) such that 0y, > dp;, for all & € C” follows in the same
manner as in the proof of [15, Lemma 3.12]. Combining these facts with (29) and
Lemma 10(iii)—(iv), the proof is complete. d
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The next result shows that there are finitely many successful iterations.
LEMMA 20. The following hold: |S°| < oo and |S7| < occ.

Proof. Lemma 19, ||g}|| > € for all k¥ € Z, Lemma 14(i), and Lemma 4(i) imply
the existence of npyin € (0,00) such that ||ng|| > nmin for all k € Z, i.e.,

(30) llgrll > € and ||ngl| > nmin >0 for all k € 7.

In order to reach a contradiction to the first desired conclusion, suppose that |S¥| = oo.
For any k € S?, it follows from Lemma 7, Lemma 5(ii), and (14b) that

(31) Opt = opty > Kp(L = ko) [[skll® = kp(1 = Ko2) kg lInl|®.

By Lemma 6, 0 < vy < op™ for all k € Z, meaning that {vp™ — vy} — 0, which
together with (31) shows that {||ng||}xesw — 0, contradicting (30). This proves that
|S¥] < oco. Now, in order to reach a contradiction to the second desired conclusion,
suppose that |Sf| = co. Since |S”| < oo, we can assume without loss of generality
that S = Sf. This means that the sequence {f;} is monotonically nonincreasing.
Combining this with the fact that {fx} is bounded below under Assumptions 1 and 2,
it follows that {fr} — fiow for some fio, € (—00,00) and {fx — fr+1} — 0. Us-
ing these facts, the inequality p/ > k, for all k € S/, and |S/| = oo, it follows
that {rlls4* eess < Lfs — fisn tress — 0, which gives {|lsel|}gess — 0. This, in
turn, implies that {||ng||}ress — 0 because of Lemma 5(ii) and (14b), which contra-
dicts (30). Hence, |S7| < oo. O

We are now prepared to prove that Algorithm 1 terminates finitely.
THEOREM 21. Algorithm 1 terminates finitely, i.e., |I| < oo.

Proof. Suppose by contradiction that |Z| = co. Let us consider two cases.

Case 1: |V| = oo. Since |S| < oo, it follows that [V \ §Y| = [CY UEY| = oo, which
along with Lemma 13 implies that |£¥| < co while |CY| = oo. It now follows from
Lemma 17(i) that {6} — 0, which contradicts Lemma 19.

Case 2: |V| < co. For this case, we may assume without loss of generality that
F =1Z. This implies with Lemma 5(i) that 6y = and ng, =ng # 0 for all k € Z. Tt
also implies from Step 10 of Algorithm 1 that (15) holds for all ¥ € Z; in particular,
from (15a) it means that ¢, # 0 for all £k € Z. Now, from |V| < oo, |S| < oo, and
Lemma 17(ii), it follows that {6/} — 0, which by (10) yields {6} — 0. It then
follows from Step 21 of Algorithm 1 and F = Z that {n;} — 0, which contradicts our
previous conclusion that ng = ng # 0 for all k € Z. 0

3.2. Complexity analysis for phase 1. Our goal in this subsection is to prove
an upper bound on the total number of iterations required until phase 1 terminates,
i.e., until the algorithm reaches k£ € N such that ||g}|| < e. To prove such a bound,
we require the following additional assumption.

ASSUMPTION 22. The Hessian functions H'(z) := V?v(z) and V*f(x) are Lip-
schitz continuous with constants Hy,, € (0,00) and Hy;p € (0,00), respectively, on a
path defined by the sequence of iterates and trial steps computed in the algorithm.

Our first result in this subsection can be seen as a similar conclusion to that given
by Lemma 16, but with this additional assumption in hand.

LEMMA 23. For all k € Z, if the trial step s, and dual variable A, satisfy

(32) N = 656 (H Ly + 26, Ikl
18
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then ||ng|| = 6y and p} > K,.
Proof. For all k € Z, there exists Tj on the line segment [z, zx + Sx] such that
(33) my(sk) — v(zk + s) = 3si (HY — H* (k) sk > —5Hillsell®.
From this, (24b), and (6b), one deduces that
v(zk) — v(zk + sk) = v(@k) — my(sk) + my(sk) — vk + si)
> SRomAp el = $HE skl

From Lemma 5(i), (32), and (6c¢), it follows that |ng|| = J5, which along with (10)
means that ||sg|| < 07 < ksdp = Ks||nkll, so, from above,

(34) v(zk) = v(zk + s1) > gRomby Agllskll? = GHLpllsel®.

From here, by Steps 13 and 15 of Algorithm 1 and under (32), the result follows. 0O

The next lemma reveals upper and lower bounds for an important ratio that will
hold during the iteration immediately following a V-ITERATION contraction.

LEMMA 24. For all k € C?, it follows that

)\'U v
(35) o< —FL < max {J, (’y)\) )\’“} .

gl e/ NIl

Proof. The result follows using the same logic as the proof of [15, Lemma 3.17].
In particular, there are four cases to consider.

Case 1. Suppose that Step 24 of Algorithm 3 is reached. Then, 6, = ||npy1]| =
[n(A”)|| and AL, = AV, where (n(A\"), A") is computed in Steps 20-22 of Algorithm 3.
As Step 24 of Algorithm 3 is reached, the condition in Step 23 of Algorithm 3 holds.
Therefore, A}, /||ni+1]] < @. To find a lower-bound on the ratio, let HY = V,E}V,!
where V}, is an orthonormal matrix of eigenvectors and I} = diag(f};l, . 7512@) with
§e1 < o0 < &, Is a diagonal matrix of eigenvalues of Hy. Since k € C” C T,

llgpll > € > 0; therefore, AV = AV > AL, leading to HY + A" = 0. Thus,
In)P = IVi(E} + A DTV Gi 17 = g2 Vi EL + 2D 72V gy
From orthonormality of Vi and Steps 20-22 of Algorithm 3, it follows that

In) 2 _ g2 Vi(Eg + 1D 2V g, -
oir = e < (& A+ (g DY?)
log IViTal
k k Jk

Hence, since A} > max{0, ¢} ;}, one finds

Akt A N (ellgrID ) (R + A + (ellgrD'?)
_ >0

Ik ll— ln(A)IF = lgxl

Case 2. Suppose that Step 27 of Algorithm 3 is reached. Then, 6} | = |41l =
[ln(AY)]] where (n(A?), A?) is computed in Step 26 of Algorithm 3, meaning that
)\U )\'u )\U
LAR where 0 < ———— < G.
ksl [In(A)] [n(A°)]l
19
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The other two cases that may occur correspond to situations in which the condi-
tion in Step 19 of Algorithm 3 tests false, in which case A}, > 0 and the pair (n(A?), AV)
is computed in Steps 29-30 of Algorithm 3. This means, in particular, that

AV AY

(36) C= el = e

where the latter inequality follows since A¥ = vy A} > A} , which, in turn, implies by
standard trust region theory that ||[n(A?)| < |[ng||. Let us now consider the cases.
Case 3. Suppose that Step 32 of Algorithm 3 is reached. Then, A}, ; = A" and
Ink41ll = 0541 In conjunction with (36), it follows that
g < ki1 AY A Mk

Isnll IO In)E = ellmall”

where the last inequality follows from the condition in Step 31 in Algorithm 3.

Case 4. Suppose that Step 34 of Algorithm 3 is reached, so 6}, = 7el[nl|-
According to standard trust region theory, since [|n(AY)|| < ~c||nkll, one can conclude
that A} < Aj; < AY =\, Hence, with (36), it follows that

a /\Z Xlé+1 ’Y))\%

e = el = Ml = el

o<

The result follows since we have obtained the desired inequalities in all cases. 0O
Now, we prove that the sequence {o} } is bounded.

€ (0,00) such that o}, < ol forallk € T.

max

LEMMA 25. There exists o

max

Proof. 1f k ¢ CV, then Steps 27 and 29 of Algorithm 1 give 0}, < o}. Otherwise,
if kK € C¥, meaning that p} < k,, then there are two cases to consider. If k € C” and
A} < allngl|, then, by Steps 23-27 of Algorithm 3, Step 29 of Algorithm 1, and the
fact that A} ; = AY and npy1 = n(\”), where (n(\”, \”) are computed either in
Steps 21-22 or Step 26 of Algorithm 3, it follows that o}, ; < max{c},7}. Finally, if
k € C? and A} > g||ng]|, then it follows from Lemma 23 that

N < 853 bm (H iy + 265 |5t

From the fact that A} > g|lng||, Lemma 5(i), (6¢), and (10), it follows that ||sg| <
07 < ks0} = Ks||nkl|. Hence, by Step 29 of Algorithm 1 and Lemma 24, one finds

\? T I€3
Op.1 ¢ max< oy ktl } < max {UU T () S (HY. + 2k } .
k+1 { k> an+1H = k)Y Ye "ivm( Lip P)

Combining the results of these cases gives the desired conclusion. ]
We now give a lower-bound for the norm of some types of successful steps.

LEMMA 26. For all k € SY USY, the accepted step sy, satisfies
(37) skl > (HE i + ke + O/ Finen) 2 g2 172

Proof. Let k € SYUS/. Tt follows from (6a), the Mean Value Theorem, the fact
that s = ny + tr, Assumption 22, Lemma 5(ii), and (14c¢) that there exists a vector

20
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T on the line segment [xy, xx + sx| such that

ka1l = llgper — gr — (HE 4 IAp)n|
= |(H"(Z) — Hy)sk + Hyty — Apngl|

A’U
(38) < Hpgpllsull® + nellsil® + - el .

[l

From Step 2 of Algorithm 3 (if k € S2) and (15¢) (if k € S7), one finds A /||ng| < ob.
Combining this with (38), Lemma 5(ii), (14b), and Lemma 25, it follows that

gkl < HEgpllsell® + nellsell® + opllnnll* < (HLyp, + fne + O/ Bnen) 156112,
which gives the desired result. |
We now give an iteration complexity result for a subset of successful iterations.
LEMMA 27. For any € € (0,00), the total number of elements in
K(e):={keZ:k>0and(k—1)ecS US’}

s at most

UI!IZLX
39 0 32| . K. (e) > 0.
(39) {(Hp(l—Hv2)(H£ip+tht—|—0’3_lax/ﬁ%tn)—3/2> (€) >

Proof. From Lemma 7 and Lemma 26, it follows that, for all k € K(e) C Z,

U = o > k(1 — Kug)llsk—1|?
> Kp(1 = Ko2) (HY i + Knt + O/ Kion) > 290127
> K’p(l - KUQ)(HZip + Kht + U%ax/mitn)—3/2€3/2.

In addition, since |K(e)| < oo follows by Theorem 21, the reduction in vj** obtained
up to the largest index in KC(e€), call it k(e), satisfies

ke
Up = o = D (R —op) = D (o — up)
k=1 keK(e)

> Ko (L = ku2) (i + e + O/ ) >/,
Rearranging this inequality to yield an upper bound for |K(e)| and using the fact that
vpe >0 for all k € Z (see Lemma 6), the desired result follows. |

In order to bound the total number of successful iterations in Z, we also need an
upper bound for the cardinality of SX. This is the subject of our next lemma.

LEMMA 28. The cardinality of the set S} is bounded above by
e
o3
Kok (1 = Ku2) (AF)

Proof. For all k € S C S, it follows from Lemma 7, Lemma 5(ii), (14b), and
Lemma 10(ii) that the decrease in the trust funnel radius satisfies

(40)

=KX >0.

Op™ =Pty > Kp(1— ko2 llskll® = Kpki i (1= Ko2) Ikl
= Kphipm (1 = K2) (AF) > ki3, (1 — ku2) (AD)°
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Now, using the fact that {v;*} is bounded below by zero (see Lemma 6), one finds

Upt 2 D (W™ = upth) 2 ISR lRpkin (1= Ku2) (AF),
kESY

which gives the desired result. |

Having now provided upper bounds for the numbers of successful iterations, we
need to bound the number of unsuccessful iterations in Z. To this end, first we prove
that a critical ratio increases by at least a constant factor after an iteration in C?.

LEMMA 29. If k € CY and A}, > al|in||, then

AL 1 A}
e o2} ()
[k e ) \linkll

Proof. The proof follows the same logic as in [15, Lemma 3.23]. In particular,
since k € CV and, with Lemma 5(i), it follows that A} > g|lng| > 0, one finds that
the condition in Step 19 of Algorithm 3 tests false. Hence, (n(A?), A?) is computed in
Steps 29-30 of Algorithm 3 so that AV = 1\ A}, > A} and n(AY) solves Qf(AV). Let us
now consider the two cases that may occur.

Case 1. Suppose that Step 32 of Algorithm 3 is reached, meaning that ||n(AY)|| >
Yellng|l. It follows that |[ngi1]| = 65,y < 0y = |[nell and A}, =AY, e,

(41) )\Z+1 ,YAAZ
kel = [l

Case 2. Suppose that Step 34 of Algorithm 3 is reached, meaning that ||n(A\Y)|| <
Yellngll. Tt follows that [[ng 1]l = 65, = vellnkl and A, > A}, Consequently,

el — vellnll
The result now follows from the conclusions of these two cases. 0

We are now able to provide an upper bound on the number of unsuccessful iter-
ations in C” that may occur between any two successful iterations.

LeEMMA 30. If k € SU{0}, then

— 1 o?
43 C'NZsk) <1 1 Hmax =: K; >0.

Proof. The result holds trivially if |C” NZs(k)| = 0. Thus, we may proceed under
the assumption that [C* NZs(k)| > 1. Let k¢v be the smallest element in C¥ N Zs (k).
It then follows from Lemma 10(i)-(ii), Lemma 12, and Step 13 of Algorithm 1 that

for all k € 7 satistying kev + 1 < k < ks(k) we have

Inell < 0} < i1 < 0feu < AR, <AV

which for k = ks(k) means that ks(k) € S’ U SY. From Lemma 24, it follows that
Meeot1 2 @llnkeo 41|, which by ks(k) € STUSY, Lemma 25, Lemma 29, (15¢), Step 2
of Algorithm 3, and the fact that (ng41, ;) = (nx, A}) for any k € Cf means

AV 1 |cvNZs (k)|—1
U;Unax Z UU R Z M Z min TN, — g,
ks (k) 176 (1) I Ve
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from which the desired result follows. O

For our ultimate complexity result, the main component that remains to prove is
a bound on the number of unsuccessful iterations in Cf between any two successful
iterations. To this end, we first need some preliminary results pertaining to the trial
step and related quantities during an F-ITERATION. Our first such result pertains to
the change in the objective function model yielded by the tangential step.

LEmMA 31. For any k € Z, the vectors ny and ty and dual variable )\i satisfy
(44) mi(ni) = mj (g + t) = 3t (Hi + Ntk + A6 + Moo te.

Proof. If k ¢ I* so that t;, = 0 and )\£ = 0 (by the COMPUTE_STEPS subroutine
in Algorithm 1), then (44) trivially holds. Thus, for the remainder of the proof, let
us assume that k € Z¢. It now follows from the definition of m£ that

mi(nk) - mg(nk + t)

= gin + 3ng Hyng — g (g + te) — 3 (g + te) " Hi(ng, + ti)
= — (gr + Hinw) "ty — S5 Hyty,
= — (gx + (Hp + M.Dnp, + (Hy + M Dty + JEy)) Tt
T
+ 360 (Hoo+ MDDtk + 3N te]” + Mnf te + () Jitw
L (Hy, + M Dt + I 1|2 + Monlty,

where the last equality follows from (12a). 0

The next lemma reveals that, for an F-ITERATION, if the dual variable for the
tangential step trust region constraint is large enough, then the trust region constraint
is active and the iteration will be successful.

LEMMA 32. For all k € F, if the trial step sy and the dual variable )\i satisfy
(45) AL 2 (R (U= o)) ™ (s + Heap + 2650) ]

then ||si|| = 63 and p£ > Kp.

Proof. Observe from (45) and Lemma 5(i) that )\£ > 0, which along with (12c)
proves that ||si|| = 0;. Next, since k € F, it must mean that (15) is satisfied. It then
follows from (15b), Lemma 31, (12), (15d), and (15a) that

mf(0) = mf () > K pm(mf () — mi(s1))
= Kpm (3t (He + X Dt + SNt + Monk tr,)
(46) > K3 = Shne) Mt = 36 pmi2 (1 — s ) MLl swe]|?.

Next, the Mean Value Theorem gives the existence of an T € [zy, xk + sk] such that
23
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f(@k + sk) = fe + gf sk + 257 V2 f(Z) s, which with (15f) and Assumption 22 gives

mi (k) = f(ax + sx)

fo+ gb sk + 2sh Hese — fio — gl s — 25 V2 f(T)sk

(sf Hysp — sp V2 f(an)sk + si V2 f(ar)se — s VAF(T)sk)

sp (He — V2 f(z1)) sk + 35t (V2 f(zr) — V(@) sk

= 5 [[(Hx = V£ () s lsell = 5 [[(V2 (k) = V2F(@)) si| sl
3 (Kns + Hiip) skl

NI—= D=

AV,

Finally, combining the previous inequality, fi = m£ (0), and (46), one finds

fo — flan + s) = fro — mi(s) +mi (si) — flzx, + sx)

> Lk gk (1= Knee) M |Isw ] = L (kns + Hrp)|lsull®,

which combined with (45) shows that p£ > K, as desired. d

We now show that a critical ratio increases by at least a constant factor after any
unsuccessful F-ITERATION followed by an iteration in which a nonzero tangential step
is computed and not reset to zero.

LEMMA 33. Ifk € Cf, A > ol|sil, and (k+1) € T, then

Mot ><1>>¢
Iskrall = \ve / llsll
Proof. With Lemma 5(i), it follows that )\i > g||sk|| > 0, meaning that ||sg| = J;.
In addition, since k € Cf, one finds that the condition in Step 12 of Algorithm 2 tests
false in iteration k. Hence, Step 16 of Algorithm 2 is reached, meaning, with (10),
that 6£+1 = Yellskll < Yersdy. Then, from the facts that v, < 1 and 07, < &} (see
Step 13 of Algorithm 1), it follows that 6,{+1 < k46} 4, Consequently, again with (10),
it follows that |sgi1] = 63, = (5£+1 = 7Yc|lskl|. Combining this with the fact that
Lemma 11(i) yields A£+1 > )\};, the result follows. a
LEMMA 34. Ifk € Cf and (k+1) € I', then o < X, /||sps1 -
Proof. Since k € C/, there are two cases to consider.
Case 1: Step 14 of Algorithm 2 is reached. In this case, it follows that ||sx1|| =
5,’;_1 = ||ng + t(\)|| with (¢(AF),\f) computed in Step 13 of Algorithm 2. Together
with the fact that (k + 1) € Z¢, it follows that A, /[[sp41] = A /|y, + t(M)]| > .

Case 2: Step 14 of Algorithm 2 is not reached. This only happens if the condition
in Step 12 of Algorithm 2 tested false, meaning that A£/||sk|| > o. Hence, from

Lemma 33, it follows that )\£+1/Hsk+1|| > A£/7C||sk||, which by the facts that v, < 1
and )\i/HSk” > o gives the desired result. d

Next, we provide a bound on the number of iterations in Cf that may occur before
the first or between consecutive iterations in the set SU V.

LEMMA 35. If k € SUVU{0}, then

7 1 Khs + Hpip + 2K f
47 T k| <2+ lo d p)J =K, >0.
7 Hsuw (&)l Log(%_l) & (fmfm'f?t(l — Kntt) ¢
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Proof. Let k € SUV U{0}. Then, Zsuy(k) C Cf. The result follows trivially
if [Zsuy(k)] < 1. Therefore, for the remainder of the proof, let us assume that
|Zsuy (k)| > 2. Tt follows from Lemma 34, k +1 € C/, and k + 2 € ¢/ C F (meaning

that tz,, # 0 and (k +2) € Z) that o < )‘£+2/||3E+2||' Combining this inequality

with Lemma 32, Lemma 33, the fact that and (ksuy (k) — 1) € C/ to get

a

B—1)—(k !
<1>(ksu"(k) D-(kt2) < Nesow (B)-1 < (/ihs"‘HLip"‘Ql{p)'

Ve B ||3k5UV(E)—1|| =\ fpmbz (1 = Fnee)

The desired result now follows since |Zs y (k)| = ksuy (k) — k — 1. |
We have now arrived at our complexity result for phase 1.

THEOREM 36. For a scalar € € (0,00), the cardinality of T is at most
(48) K(e) = 1+ (Kq(e) + KR) (K& + 1)KL,

where K, (¢), K}, K¢, and Kg are defined in Lemmas 27, 28, 30, and 35, respectively.
Consequently, for any € € (0,00), it follows that K(e) = O(e=3/2) for all € € (0,€).

Proof. Without loss of generality, let us assume that at least one iteration is
performed. Then, Lemmas 27 and 28 guarantee that at most K, (¢) + K} successful
iterations are included in Z. In addition, Lemmas 13, 30, and 35 guarantee that, before
each successful iteration, there can be at most (K} + I)Kg unsuccessful iterations.
Also accounting for the first iteration, the desired result follows. ]

If the constraint Jacobians encountered by the algorithm are not rank deficient
(and do not tend toward rank deficiency), then the following corollary gives a similar
result as that above, but for an infeasibility measure.

COROLLARY 37. Suppose that, for all k € N, the constraint Jacobian Jy has full
row rank with singular values bounded below by (min € (0,00). Then, for € € (0,00),
the cardinality of I, := {k € N : ||cg|| > €/Cmin}, s at most K(e) defined in (48).
Consequently, for any € € (0,00), the cardinality of I.. is O(e~3/?) for all € € (0, €).

Proof. Under the stated conditions, ||g¢|| = [|JL ckl| > Cminllck|| for all k € T.
Thus, since ||gp|| < € implies ||ck|| < €/Cmin, the result follows from Theorem 36. 0O

4. Phase 2: Obtaining Optimality. A complete algorithm for solving prob-
lem (1) proceeds as follows. The phase 1 method, Algorithm 1, is run until either an
approximate feasible point or approximate infeasible stationary point is found, i.e.,
for some (€feqs, €iny) € (0,00) X (0,00), the method is run until, for some k € N,

(49a) llexll < €eas
(49b) or [|Ji er]l < eingller]l-

If phase 1 terminates with (49a) failing to hold and (49b) holding, then the entire
algorithm is terminated with a declaration of having found an infeasible (approxi-
mately) stationary point. Otherwise, if (49a) holds, then a phase 2 method is run
that maintains at least €y.qs-feasibility while seeking optimality.

With this idea in mind, how should the termination tolerance € in Algorithm 1
be set so that (49) is achieved within at most O(e~3/2) iterations, as is guaranteed by
the analysis in the previous section? Given (€yeqs, €ins) € (0,00) x (0,00), we claim
that Algorithm 1 should be employed with € = €feqs€ing. Indeed, with this choice,
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if the final point produced by phase 1, call it xy, does not yield (49a), then it must
satisfy ||g2ll = | ckll/llckll < €/€feas = €ing, Which is exactly (49b).
There are various options for phase 2, three of which are worth mentioning.
e Respecting the current state-of-the-art nonlinear optimization methods, one

can run a trust funnel method such as that in [21]. One can even run such a
1 1.2

method with the initial trust funnel radius for v(z) = 3||c(z)||? set at 7€ eas
so that €qs-feasibility will be maintained as optimality is sought. We do not
claim worst-case iteration complexity guarantees for such a method, though
empirical evidence suggests that such a method would perform well. This is
the type of approach for which experimental results are provided in §5.

With an eye toward attaining good complexity properties, one can run the
objective-target-following approach proposed as [8, Alg. 4.1, Phase 2]. This
approach essentially applies an ARC algorithm for unconstrained optimization
[4, 5] (see also the previous work in [22, 28, 32]) to minimize the residual
function ® : RNV x R — R defined by ®(z,t) = ||c(2)||?> + || f(z) — ¢t||>. In
iteration k € N, the subsequent iterate x4 is computed to reduce ®(-,tx) as
in ARC while the subsequent target t;41 is chosen to ensure, amongst other
relationships, that ¢511 <ty and |fi — tg| < €feqs for all k € N, where it is
assumed that €feqs € (0,1). In [8], it is shown that, for the phase 2 algorithm
with € € (0,6}228], the number of iterations required to generate a primal
iterate x, satisfying (49a) and either the relative KKT error condition

g + i yill < €ll(y, DI for some gy, € RY

or the constraint violation stationarity condition
175 cxll < ellex]

is at most O(e~3/2 71/2) This should be viewed in two ways. First, if

€ .
feas
€ = e%is, then the overall complexity is O(e}ja/f ), though of course this

corresponds to a looser tolerance on the relative KKT error than on feasibility.
Second, if € = €fcqs (s0 that the two tolerances are equal), then the overall
complexity is (’)(e}fas). We claim that an approach based on TRACE [15]
(instead of ARC) could instead be employed yielding the same worst-case
iteration complexity properties; see Appendix A.

Finally, let us point out that in cases that c is affine, one could run an opti-
mization method, such as the ARC method from [4, 5] or the TRACE method
from [15], where steps toward reducing the objective function are restricted to
the null space of the constraint Jacobian. For such a reduced-space method,
€ feqs-feasibility will be maintained while the analyses in [4, 5, 15] guarantee
that the number of iterations required to reduce the norm of the reduced

gradient below a given tolerance €,y € (0,00) is at most (’)(e;p?;/ %). With
€ = €opt = €feas, this gives an overall (phase 1 + phase 2) complexity of

(’)(6_3/ 2), which matches the optimal complexity for the unconstrained case.

5. Numerical Experiments. Our goal in this section is to demonstrate that
instead of having a phase 1 method that solely seeks (approximate) feasibility (such
as in [8]), it is beneficial to employ a phase 1 method such as ours that simultaneously
attempts to reduce the objective function. To show this, a Matlab implementation
of our phase 1 method, Algorithm 1, has been written. The implementation has two
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modes: one following the procedures of Algorithm 1 and one employing the same
procedures except that the tangential step ¢ is set to zero for all £k € N so that all
iterations are V-ITERATIONs. We refer to the former implementation as TF and the
latter as TF-V-0oNLY. For phase 2 for both methods, following the current state-of-
the-art, we implemented a trust funnel method based on that proposed in [21] with
the modification that the normal step computation is never skipped. In both phases 1
and 2, all subproblems are solved to high accuracy using a Matlab implementation
of the trust region subproblem solver described as [10, Alg. 7.3.4], which in large
part goes back to the work in [27]. The fact that the normal step computation is
never skipped and the subproblems are always solved to high accuracy allows our
implementation to ignore so-called “y-iterations” [21].
Phase 1 in each implementation terminates in iteration k € N if either

JLerlloo < 107 max{||JL cols0, 1
(50)  llexllo < 105 maxfflcooe. 1} or 4 Tk Cllee = 3 {18 coll oo, 1}
and el > 10 mase{ o oc, 1}

whereas Phase 2 terminates in iteration k € N if either the latter pair of conditions
above holds or, with y; computed as least squares multipliers for all k € N if

gk + Ji yrlloo < 1070 max{|lgo + Jg yolloo. 1}-

Input parameters used in the code are stated in Table 1. The only values that do not
appear are k, and .. For k,, for simplicity we employed this constant in (15¢) and
(17) as well as in the step acceptance conditions in Step 2 in Algorithm 2 and Step 2 in
Algorithm 3. That said, our convergence analysis is easily adapted to handle different
values in these places: our code uses k, = 107'? in (15¢) and (17) but x, = 1078
in the step acceptance conditions. For ~,, our code uses 0.5 in the context of an F-
ITERATION (Algorithm 2) and 1072 in the context of a V-ITERATION (Algorithm 3),
where again our analysis easily allows using different constants in these places.

TABLE 1
Input parameters for TF and TF-V-ONLY.

K, 9e-01 Kt le-12 Kp 1e-06 ks | 1le+02
Kom | 1€=12 || knpee | 1-(2e-12) Kne | 1e+20 || 7o | 2e+00
Kntn | 1e—12 Kol 9e-01 Khs | 1e+20 || vx | 2e+00
Kfm | 1e=12 || Ky2 9e-01 e le-12 || ¢ 1e+20

We ran TF and TF-V-ONLY to solve the equality constrained problems in the
CUTEst test set [17]. Among 190 such problems, we removed 78 that had a constant
(or null) objective, 13 for which phase 1 of both algorithms terminated immediately at
the initial point due to the former condition in (50), three for which both algorithms
terminated phase 1 due to the latter pair of conditions in (50) (in each case within
one iteration), two on which both algorithms encountered a function evaluation error,
and one on which both algorithms failed due to small stepsizes (less than 1072%) in
phase 1. We also removed all problems on which neither algorithm terminated within
one hour. The remaining set consisted of 33 problems.

The results we obtained are provided in Table 2. For each problem, we indi-
cate the number of variables (n), number of equality constraints (m), number of
V-ITERATIONS (#V), number of F-ITERATIONs (#F), objective function value at the
end of phase 1 (f), and dual infeasibility value at the end of phase 1 (||g+ J7y|). We
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TABLE 2
Numerical results for TF and TF-V-ONLY.

TF TF-V-onNLY
Phase 1 Phase 2 Phase 1 Phase 2
Problem n m | wv | wF f Ng+ JTy) | #v | #F #y f g+ Ty #v #F
BT1 7 T [ 4| o | -8.0%01 +4.79e-01 | 0 | 139 4 | -8.00e-01 +7.046-01 7 | 136
BT10 2 2 | 10 | 0 | -1.00e+00 +5.39e-04 | 1 0 10 | -1.00e+00 +6.746-05 1 0
BTiL 5 3| 6 T [ +8.250-01 +4.84603 | 2 0 1 | +4.550%04 +2.576+04 16 36
BT12 5 3 | 12 1 | +6.19e+00 +1.186-05 | 0 0 16 | +3.34e+01 +4.156+00 4 B
BT2 3 T [ 22 | 8 | +1.45e+03 +3.30ev02 | 3 | 12 21 | +6.14e+04 +1.826+04 0 20
BT3 5 3 | 1| 0 | +4.09e+00 +6.430+02 | 1 0 T | +1.01e+05 +8.89e+02 0 1
BT4 3 2 | 1| 0 | -1.86ev01 +1.00e01 | 20 | 12 T | -1.86e%01 +1.00e+01 20 P
BTS 3 2 | 16 | 2 | +9.62e+02 +2.80e+00 | 14 2 5 | +9.620%02 +3.830-01 3 1
BT6 5 2 | 11 | 45 | +2.77e-01 +4.646-02 | 1 0 14 | +5.81e%02 +4.506+02 5 59
BT7 5 3 | 156 | 6 | +1.3lev0l +5.57e+00 | 5 1 12 | +1.8le+01 +1.026+01 19 28
BT8 5 2 [ 50 | 26 | +1.00+00 +7.646-08 | 1 1 10 | +2.006%00 +2.006+00 1 97
BT9 4 > | it T | -1.00e+00 +8.56e-05 | 1 0 10 | -9.69e-01 +2.26e-01 5 1
BYRDSPHR 3 2 [ 29 | 2 | -4.68e+00 +1.280-05 | © 0 19 | -5.00e-01 +1.006+00 16 5
CHAIN 800 | 401 | 9 | O | +5.12e+00 +2.35e-04 | 3 | 20 9 | +5.120+00 +2.35e-04 3 20
FLT 2 2 [ 15 | 4 | +2.680+10 +3.280+05 | 0 | 13 19 | +2.68e+10 +3.286+05 0 7
GENHS28 10 8 | 1 | 0 | +9.27e-01 +5.88e+01 | 0 0 T | +2.46e+03 +9.95e+01 0 1
HS100LNP 7 2 [ 16 | 2 | +6.89e+02 Fi.74ev01 | 4 1 5 | +7.086%02 +1.936+01 12 3
HS111LNP 10 3| o 1 | -4.78e+01 +4.916-06 | 2 0 10 | -4.62e+01 +7.49e-01 10 1
HS27 3 T [ 2 | o | #8.77e%01 +2.03e+02 | 3 5 T | +2.54e%01 +1.416+02 1 3
HS39 1 2 | 1t T | -1.00e+00 +8.56e-05 | 1 0 10 | -9.69e-01 +2.266-01 5 1
HS40 Z 3 | 4| 0 | -2.50e-01 +1.956-06 | 0 0 3 | —2.49-01 +3.356-02 2 1
HS42 Z 2 | 4 T | +1.39e+01 +3.946-04 | 1 0 T | +1.50e+01 +2.00e+00 3 1
HS52 5 3 | 1 | 0 | +5.33e+00 +1.64ev02 | 1 0 T | +8.07e+03 +4.096+02 0 1
HS6 2 1 1T | 0 | +4.84e%00 +1.56e+00 | 32 | 136 T | +4.84e+00 +1.566+00 32 | 136
HS7 2 T 7| t | —2.3501 +1.18ev00 | 7 2 8 | +3.79e-01 +1.076+00 5 2
HST7 5 2 | 13 | 30 | +2.42e-01 +1.26e-02 | 0 0 17 | +5.500+02 +4.546+02 3 11
HS78 5 3 | 6 | 0 | —2.92e+00 +3.650-04 | 1 0 10 | -1.79e%00 +1.776+00 2 30
HST9 5 3 | 13 | 21 | +7.88e-02 +5.51e-02 | 0 2 10 | +9.70e+01 +1.21e+02 0 24
VMARATOS ) T [ 4] 0 | -1.00e+00 +8.59e-06 | 1 0 3 | -9.96e-01 +9.026-02 2 1
MSS3 2070 | 1981 | 12 | 0 | -4.99e+01 +2.51e-01 | 50 0 12 | -4.99e+01 +2.51e-01 50 0
MWRIGHT 5 3 [ 17 | 6 | +2.31e01 +5.78605 | 1 0 7 [ ¥5.07e%01 +1.046+01 12 20
ORTHREGB 27 6 | 10 | 15 | +7.02e-05 +4.23¢-04 | 0 6 10 | +2.73+00 +1.60e+00 0 10
SPIN20P 102 | 100 | 57 | 18 | +2.04e-08 +2.746-02 | 0 T | time | +1.67e%01 +3.036-01 | time | time

use time for SPIN20P for TF-V-0ONLY to indicate that it hit the one hour time limit
(after 350 phase 1 iterations) without terminating. The results illustrate that, within
a comparable number of iterations, our trust funnel algorithm, represented by TF,
typically yields better final points from phase 1. This can be seen in the fact that
the objective at the end of phase 1, dual infeasibility at the end of phase 1, and the
number of iterations required in phase 2 are all typically smaller for TF than they
are for TF-V-0ONLY. Note that for some problems, such as BT1, TF only performs
V-ITERATIONS in phase 1, yet yields a better final point than does TF-V-ONLY; this
occurs since the phase 1 iterations in TF may involve nonzero tangential steps.

6. Conclusion. An algorithm has been proposed for solving equality constrained
optimization problems. Following the work in [8], but based on trust funnel and trust
region ideas from [15, 21], the algorithm represents a next step toward the design
of practical methods for solving constrained optimization problems that offer strong
worst-case iteration complexity properties. In particular, the algorithm involves two
phases, the first seeking (approximate) feasibility and the second seeking optimality,
where a key contribution is the fact that improvement in the objective function is
sought in both phases. If a phase 2 method such as that proposed in [8] is employed,
then the overall algorithm attains the same complexity properties as the method
in [8]. The results of numerical experiments show that the proposed method benefits
by respecting the objective function in both phases.
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Appendix A. Phase 2 Details.

The goal of this appendix is to show that a phase 2 method can be built upon
the TRACE algorithm from [15] yielding the same worst-case iteration complexity
properties as the ARC-based method in [8]. We state a complete phase 2 algorithm,
then prove similar properties for it as those proved for the method in [8]. For the
algorithm and our analysis of it, we make the following additional assumption.

ASSUMPTION 38. For all z € RY with |lc(x)| < €feas € (0,00), the objective
function f is bounded from below and above by fuin € R and fiax € R, respectively.
In addition, the problem functions f and ¢ and their first and second derivatives are
Lipschitz continuous on the path defined by all phase 2 iterates.

As previously mentioned, the phase 2 method is in many ways based on applying
an algorithm for solving unconstrained optimization problems to minimize the residual
function ®(z,t) = 1|r(z,t)||?> where r : RY x R — R is defined by

(51) P, t) = (f(‘;(;f)_ t) .

Updated dynamically by the algorithm, the parameter ¢ may be viewed as a target
value for reducing the objective function value.
The phase 2 algorithm is stated as Algorithm 4. We refer the reader to [8] for
further details on the design of the algorithm and to [15] for further details on TRACE.
The following lemma, whose proof follows that of [8, Lemma 4.1], states some
useful properties of the generated sequences.

LEMMA 39. For all k € N, it follows that

(52a) th1 < t,

(52b) 0 < f(xr) =tk < €feass
(52c) [r(zk, ti) || = €feas.
(52d) and ||c(zy)| < €feqs-

Proof. Note that, in TRACE, the objective function is monotonically nonincreas-
ing; see [15, Eq. (2.5); Alg. 1, Step 5]. Hence, each acceptable step s; computed
in Algorithm 4 yields ®(xg41,tx) < ®(2,tx), from which it follows that the value
for tx41 in Step 10 is well-defined. Then, since all definitions and procedures in Al-
gorithm 4 that yield (52) are exactly the same as in [8, Alg. 4.1], a proof for the
inequalities in (52) is given by the proof of [8, Lemma 4.1]. d
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Algorithm 4 TRACE Algorithm for Phase 2

Require: termination tolerance € € (0,00) and xg € RY with ||co|| < €feas € (0, 00)

1: procedure TRACE_PHASE_2

2 set to  fo — \/€Foqs — llcoll?

3 for £ € N do

4 perform one iteration of TRACE toward minimizing ®(z,tx) to compute si
5: if sk is an acceptable step then

6: set Zx+1 < T + sk (and other quantities following TRACE)

7 if T(Ik+1,tk) 75 0 and ||VI(ID($k+17tk)|| < e\|r(wk+1,tk)|| then

8 terminate

9: else
10: set trt1  f(Trt1) — \/H?“(ﬂfkﬂfk)||2 — [Pk, te)|1? + (f (@h1) — i)
11: else
12: set xx+1 < 2k (and other quantities following TRACE)
13: set tpy1 <tk

In the next lemma, we recall a critical result from [15], arguing that it remains
true for Algorithm 4 under our assumptions about the problem functions.

LEMMA 40. Let {0} be generated as in TRACE [15]. Then, there exists a scalar
constant omax € (0,00) such that o < omax for all k € N.

Proof. The result follows in a similar manner as [15, Lem. 3.18]. Here, similar to
[8, §5], it is important to note that Assumption 38 ensures that ® and its first and
second derivatives are globally Lipschitz continuous on a path defined by the phase 2
iterates. This ensures that results of the kind given as [15, Lem. 3.16-3.17] hold true,
which are necessary for proving [15, Lem. 3.18]. 0

We now argue that the number of iterations taken for any fixed value of the target
for the objective function is bounded above by a positive constant.

LEMMA 41. The number of iterations required before the first accepted step or
between two successive accepted steps with a fized target t is bounded above by

1 o
K :2+{ - — log( max)J,
' log(min{y,7e '}) o

where the constants vy € (0,00), 7. € (0,1), are o € (0,00) are parameters used by
TRACE (see [15, Alg. 1]) that are independent of k and satisfy ¢ < omax-

Proof. The properties of TRACE corresponding to so-called contraction and ex-
pansion iterations all hold for Algorithm 4 for sequences of iterations in which a target
value is held fixed. Therefore, the result follows by [15, Lem. 3.22 and Lem. 3.24],
which combined show that the maximum number of iterations of interest is equal to
the maximum number of contractions that may occur plus one. ]

The next lemma merely states a fundamental property of TRACE.

LEMMA 42. Let Hgp € (0,00) be the Lipschitz constant for the Hessian function
of ® along the path of phase 2 iterates and let n € (0,1) be the acceptance constant
from TRACE. Then, for xpy1 following an accepted step sy, it follows that

D(wp, te) — P(Tps1, te) = N(Ho + Omax) 2| Va®(@hs1, )]/
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Proof. With Lemma 40 and adapting the conclusion of [15, Lem. 3.19], the result
follows as in the beginning of the proof of [15, Lem. 3.20]. d

The preceding lemma allows us to prove the following useful result.

LEMMA 43. For xy41 following an accepted step sy yielding

(53) IVa®(@hr1, )| > €llr(zrrr, i)l
with € the constant used in Algorithm /, it follows that

(i, )| = (@, )| > e min{e/2e}2 € eas ),

where 3 € (0,1) is any fized problem-independent constant, w := n(Hg + omax) /2 €
(0,00) is the constant appearing in Lemma 42, and rk; := min{wﬁ3/2, 1-p3}.

Proof. Along with the result of Lemma 42, it follows that
I (s t)l1* = 7 (whens t) P 2 20| Vo @ (@, 1) |2

Vo ®(apr, t)l| >
:2”<|V@Hfmm IrCenen, )

> 2w€3/2||r(xk+1,tk)||3/2.

Then, if [|r(zr41, k)| > Blr(xk, te)]], it follows with (52¢) that

(54)  lIr(@esti) > = lIr(@pss, to)l* = 2062832 r (g, 1) |/ = 206283232

6feas’
from which it follows along with ||r(zx11,tk)|| < ||r(2k, tr)| that

[§

7 (zgs te) 1> = llr(wp1, t)

(e, ti) | = I (@rs1s te) | = Tt I @ren tol
7 (r, i) I* =l (@psns te) 1P

- 2| (k. ti) |l

_ r@@es te) 2 — llr (@, )1

26feas

> w€3/2/83/2€}/2

eas”

On the other hand, if ||r(zk+1,tk)|| < Bl (2, tx)]|, then using (52¢) it follows that

7 (@, te) || = |7 (Zrs 1, )l = (1= B) |17 (2, t) | = (1 — B)€eas-

Combining the results of both cases, the desired conclusion follows. 0

The following is an intermediate result used to prove the subsequent lemma. We
merely state the result for ease of reference; see [8, Lemma 5.2] and its proof.

LEMMA 44. Consider the following optimization problem in two variables:
min  —f+vVe2—c2 st 24P <7
(f;c)ER?
where 0 < 7 < €. The global minimum of this problem is attained at (fi,c.) = (7,0)
with the optimal value given by —7 + €.

We next prove a lower bound on the decrease of the target value.
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LEMMA 45. Suppose that the termination tolerance is set so that € < e%is. Then,
for xpy1 following an accepted step sy such that the termination conditions in Step 7
are not satisfied, it follows that, with k; € (0,1) defined as in Lemma 43,

(55) te — tpy1 > /ﬁteS/ze}/eis.

Proof. A proof follows similarly to that of [8, Lem. 5.3]. In particular, if the reason
that the termination conditions in Step 7 are not satisfied is because (53) holds, then

Lemma 43 and the fact that ¢ < e}/ is imply that

(<1
(e till = Ir(@en )l = remin{e?el% efeas} = mee”ejln,.
On the other hand, if the reason the termination conditions in Step 7 are not satisfied

is because ||r(zg+1,tx)|| = 0, it follows from (52¢), k¢ € (0,1), and € < ¢¥/? that

feas

(@, )| = (@i, t)l| = €feas > ree®2el/2,

Combining these two cases, (51), and (52c), one finds that

(f(@re1) = te)? + lle(@rrn)* = [r (@ )| < (efeas — e el )2,

Now, from Step 10 of Algorithm 4, (51), and (52c), it follows that

te =t = —(f(@h41) —te) + \/||T(l“kﬂfk)||2 — (@1, ) |2 + (f (@rs1) — ta)?
= —(f@rr1) = ti) + V(e )12 = le(zee)|?

= = (f(@rr1) = te) + \/ €Feas — lle(@rra) 2.

Overall, it follows that Lemma 44 can be applied (with “f” = f(axg41) — t, “c”
= |le(xzk+1)l, “€” = €feqs, and “T" = €feqs — Iite‘?’/ze}éis) to obtain the result. |

We now show that if the termination condition in Step 7 of Algorithm 4 is never
satisfied, then the algorithm takes infinitely many accepted steps.

LEMMA 46. If Algorithm /J does mot terminate finitely, then it takes infinitely
many accepted steps.

Proof. To derive a contradiction, suppose that the number of accepted steps is
finite. Then, since it does not terminate finitely, there exists k € N such that s, is not
acceptable for all k > k. Therefore, by the construction of the algorithm, it follows
that ¢, = t; for all k > k. This means that the algorithm proceeds as if the TRACE
algorithm from [15] is being employed to minimize ®(-,?;), from which it follows by
[15, Lemmas 3.7, 3.8, and 3.9] that, for some sufficiently large & > k, an acceptable
step s, will be computed. This contradiction completes the proof. 0

Before proceeding, let us discuss the situation in which the termination conditions
in Step 7 of Algorithm 4 are satisfied. This discussion, originally presented in [8],
justifies the use of these termination conditions.

Suppose [[r(@e 1, te)| # 0 and [V, @ (s, )]l < ellr(@esn, i)l I S = b,
then these mean that ||cp41]| # 0 and ||V ®(2k41, k)| < €||ck+1], which along with
Ve ®(Tpq1,tr) = Sl cks1 + (fes1 — tk)gr41 would imply that

1752 Sl

ller+1
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1195

1196
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1198
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That is, under these conditions, x;y1 is an approximate first-order stationary point
for minimizing ||¢||. If fx+1 # tk, then the satisfied termination conditions imply that

[T ki + (ferr — tr)grra |
[ (zpt1s )|

By dividing the numerator and denominator of the left-hand side of this inequality
by f(zr+1) —tx > 0 (recall (52b)), defining

(56) Y(@rp1,te) = c(@ri1)/(f (@he1) — te) € RM,

and substituting y(zx+1,tx) back into the inequality, one finds that

[ JE v (@rsr te) + graall
[(y(@e+1te), DI

As argued in [8], one may use a perturbation argument to say that (41, y(Zr41,tk))
satisfying the relative KKT error conditions (57) and |[cx41|| < €feqs corresponds to
a first-order stationary point for problem (1). Specifically, consider z = =, + J, and
Yy = Y« + 0y where (x4, y.) is a primal-dual pair satisfying the KKT conditions for
problem (1). Then, a first-order Taylor expansion of J(x,)Ty. + g(z.) to estimate its
value at (r,y) yields the estimate (V2 f(z.) + Ziﬂil[yi]*v%i(m*))éz + J(z*)T6,. The
presence of the dual variable y* in this estimate confirms that the magnitude of the
dual variable should not be ignored in a relative KKT error condition such as (57).
We now prove our worst-case iteration complexity result for phase 2.

(57)

1/3

THEOREM 47. Suppose that the termination tolerances are set so that € < € feas

With €feqs € (0,1). Then, Algorithm 4 requires at most 0(6_3/26;61(1/52) iterations until

the termination condition in Step 7 is satisfied, at which point either

||Jg+1y($k+1’ ti) + grr1l]

o (y(zr+1,tr), 1) <eand |[cpi1] < €feas
or
”JT Crs1]]
(59) T T < e and ||ep | < €feas
ekl

is satisfied, with y(zp41,tx) defined in (56).

Proof. Recall that if the termination condition in Step 7 is satisfied for some
k € N, then, by the arguments prior to the lemma, either (58) or (59) will be satisfied.
Thus, we aim to show an upper bound on the number of iterations required by the
algorithm until the termination condition in Step 7 is satisfied.

Without loss of generality, let us suppose that the algorithm performs at least
one iteration. Then, we claim that there exists some k£ € N such that the termination
condition does not hold for (zg,tx—1), but does hold for (zxi1,tx). To see this,
suppose for contradiction that the termination condition is never satisfied. Then, by
Lemma 45, it follows that for all k¥ € N such that s is acceptable one finds that (55)
holds. This, along with Lemma 46, implies that {t;} \, —oco. However, this along
with (52b) implies that {fi} \y —oo, which contradicts Assumption 38.

Now, since the termination condition is satisfied at (41, tx), but not in the itera-
tion before, it follows that s must be an acceptable step. Hence, from Assumption 38,
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(52b), Lemma 45, Step 2, it follows that

1/2
fmin < fk: <t + €feas <ty — KAK,tGS/sz/eaS + €feas

< f((EO) - KAﬁt63/2€}/is + €feas

e

where K 4 is the number of accepted steps prior to iteration (k+1). Rearranging and
since €feqs € (0,1), one finds along with Assumption 38 that

max — Jmin 1
(60) K< % )
I{teg/Qefeas
From (60) and Lemma 41, the desired result follows. O
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