
RETAIL STORE MANAGEMENT

PROBLEM STATEMENT

The Retail Store Management System is a system designed for managing i.e. for

ordering, arranging and selling goods.

The Retailer checks for the availability of goods in the store. If the stock of goods is

less then retailer places order for goods. While ordering the goods, goods area received at

store, the retailer then arrange them by product or by price, then retailer makes payment. If

the stock of goods is available then he will arrange goods for selling.

The retailer then sales the goods directly to the customer. The customer buys the

items from retailer. The retailer prepares bill for goods purchased by the customer, he

receives amount by credit or by cash from customer. The supplier supplies the goods to the

store in the system. The overall system is used to manage the goods in the store.

RETAIL STORE MANAGEMENT

INTRODUCTION

Retail involves the sale of goods from a single point (malls, markets, department

stores etc) directly to the consumer in small quantities for his end use

Retail consists of the sale of goods or merchandise from a fixed location, such as a

department store, boutique or kiosk, or by mail, in small or individual lots for direct

consumption by the purchaser

http://en.wikipedia.org/wiki/Sales
http://en.wikipedia.org/wiki/Department_store
http://en.wikipedia.org/wiki/Kiosk
http://en.wikipedia.org/wiki/Mail
http://en.wikipedia.org/wiki/Consumption_(economics)

Class diagram for Retail Store Management System

Use case diagram for Retail Store Management System

Deployment diagramfor Retail Store Management System

Component diagramfor Retail Store Management System

State Chart diagram :Order Goods

Activity diagram for Managing Goods

Sequence Diagram :: Managing Goods

Package diagram for Retail Store Management System

Retailer
Supplier

Goods
Customer

The User Interface Layer for Retail Store Management System

It represents the user interface components such as web, customer, supplier, retailer,

goods. Web provides the interface through which each component each access like customer,

supplier, retailer, goods.

Web:

1. First Provides the login option

i. Provides username & password.

1. Provides options such as customer, supplier, retailer and goods

2. Select any one option at a time.

Customer:

1. Select the list

2. Buy the product

3. Making the payment

i. By cash

ii. By credit card

 Enter the valid credit card number.

Customer 1 Supplier

Retailer

1

Web

User Interface Layer

Goods

Supplier:

1. Order the goods from manufacturer

2. Supply goods to retailer

Retailer:

1. Order and purchase the goods from supplier.

2. Arranged the goods.

3. Displayed the goods.

4. Sell the goods

Goods:

1. List is available to customer.

i. Categories of goods.

The domain layer for Retail Store Management System

It has major actions such as order and purchase goods, arrange goods and sell goods.

The retailer order and purchase the goods from supplier then he arrange goods and sell to the

customer.

Order and purchase goods:

1. Retailer orders the goods from supplier.

2. Purchase the goods.

Arrange goods:

1. Retailers arrange the goods.

2. Display the list of goods.

Sell goods:

1. Sell the goods to customer.

2. Provides the payment options

i. By cash

j. By credit card

Domain Object Layer

Order and

purchase goods

Arrange goods

Sell goods

Technical Services Layer for Retail Store Management System

All uml models and diagrams are organized into package. A package diagram in

unified modeling language that depicts the dependencies between the packages that make up

a model. A Package Diagram (PD) shows a grouping of elements in the OO model, and is a

Cradle extension to UML. PDs can be used to show groups of classes in Class Diagrams,

groups of components or processes in Component Diagrams, or groups of processors in

Deployment Diagrams (DPDs).

There are three types of layer. They are

 User interface layer

 Domain layer

 Technical services layer

Technical service layer:

Authenticated user only can access the technical services. In the diagram there are

three package includes in the technical service layer namely login, retailer, customer. Retailer

and customer can login through web and access the services.

Technical Service Layer

Login

Retailer

Customer

Login:

1. Provide the username and.

2. Provide password option.

3. Verify the username and password.

4. If valid then also allows to change password

Retailer:

1. Order and purchase the goods from supplier.

2. Arranged the goods.

3. Displayed the goods.

4. Sell the goods.

Customer:

1. Order the goods.

2. Purchase the goods.

3. Make the payment

i. By cash.

ii. By credit card.

VISITOR DESIGN PATTERN

Design Patterns

Design patterns provide solutions to common software design problems. In the case of

object-oriented programming, design patterns are generally aimed at solving the problems of

object generation and interaction, rather than the larger scale problems of overall software

architecture. They give generalised solutions in the form of templates that may be applied to

real-world problems.

Design patterns are a powerful tool for software developers. However, they should not

be seen as prescriptive specifications for software. It is more important to understand the

http://www.blackwasp.co.uk/CSharpObjectOriented.aspx

concepts that design patterns describe, rather than memorising their exact classes, methods

and properties. It is also important to apply patterns appropriately. Using the incorrect pattern

for a situation or applying a design pattern to a trivial solution can overcomplicate your code

and lead to maintainability issues.

The Gang of Four

The Gang of Four are the authors of the book, "Design Patterns: Elements of Reusable

Object-Oriented Software". This important book describes various development techniques

and pitfalls in addition to providing twenty-three object-oriented programming design

patterns. The four authors were Erich Gamma, Richard Helm, Ralph Johnson and John

Vlissides.

VISITOR PATTERN

The visitor pattern is a design pattern that separates a set of structured data from the

functionality that may be performed upon it. This promotes loose coupling and enables

additional operations to be added without modifying the data classes.

The visitor pattern is a Gang of Four design pattern. This is a behavioural pattern as it

defines a manner for controlling communication between classes or entities. The visitor

pattern is used to separate a relatively complex set of structured data classes from the

functionality that may be performed upon the data that they hold. This allows the creation of

a data model with limited internal functionality and a set of visitors that perform operations

upon the data.

The pattern specifically allows each of the elements of a data structure to be visited in

turn without knowing the details of the structure beforehand. The key benefit of separating

the data model from the algorithms that may be applied to it is the ability to add new

operations easily. The classes of the data structure are initially created with the inclusion of a

method that may be called by a visitor object. This method performs a callback to the visitor,

passing itself to the visitor's method as a parameter. The visitor can then perform operations

upon the data object. To add a new operation, a new visitor class is created with the

appropriate callback method. The data classes need no further modification.

http://www.blackwasp.co.uk/CSharpSimpleClass.aspx
http://www.blackwasp.co.uk/CSharpMethods.aspx
http://www.blackwasp.co.uk/CSharpClassProperties.aspx
http://en.wikipedia.org/wiki/Design_Patterns_(book)
http://en.wikipedia.org/wiki/Design_Patterns_(book)
http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Richard_Helm
http://en.wikipedia.org/wiki/Ralph_Johnson
http://en.wikipedia.org/wiki/John_Vlissides
http://en.wikipedia.org/wiki/John_Vlissides
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/CSharpSimpleClass.aspx
http://www.blackwasp.co.uk/CSharpMethods.aspx
http://www.blackwasp.co.uk/CSharpMethodParameters.aspx

A second benefit of the design pattern is that a single visitor object is used to visit all

elements of the data structure. The visitor object can maintain state between calls to

individual data objects.

An example of the use of the visitor design pattern could be used within a personnel

system. The data structure could define a hierarchy of managers and employees, each with a

salary property. This system could include two visitor algorithms. The first would traverse

the hierarchy and generate monthly salary payments. The second could apply a standard pay

increase to each employee.

Implementing the Visitor Pattern

The UML class diagram above shows an implementation of the visitor design pattern. The

items in the diagram are described below:

 Client The Client class is a consumer of the classes of the visitor design pattern. It has

access to the data structure objects and can instruct them to accept a Visitor to

perform the appropriate processing.

 ObjectStructure The ObjectStructure class holds all of the elements of the data

structure that can be used by visitors. The elements may be held in a simple collection

or a more complex structure. The class includes a method, in the above diagram

named "Accept", that can be called by the client with a Visitor object passed as a

http://www.blackwasp.co.uk/CSharpClassProperties.aspx
http://www.blackwasp.co.uk/CollectionInterfaces.aspx

parameter. The ObjectStructure class then enumerates the contained elements, calling

the Accept method of each and passing the provided Visitor. This allows each element

to be processed without the client requiring any knowledge of the elements

beforehand.

 ElementBase This abstract class is the base class for all element objects. It defines

the accept method that each element must implement in order to be visited.

 ConcreteElement A/B Concrete element objects are those that hold real information

in the data structure. To enable their use with the visitor design pattern, each must

implement the Accept method. Usually the Accept method simply performs a callback

to the visitor object. When the callback is made, the element object is passed to the

visitor's Visit method so that it may execute an algorithm using the element's data.

 VisitorBase This class is the abstract base class for all concrete visitors. It defines a

method, in the above diagram named "Visit", that can be called by element objects

during the callback process. The method is generally overloaded with a version that is

capable of processing any of the concrete element types.

 ConcreteVisitor A/B The concrete visitor classes contain the operations that are

applied to the concrete element objects. They implement the various overloaded Visit

methods defined in the VisitorBase class.

TEMPLATE METHOD DESIGN PATTERN

The template method pattern is a design pattern that allows a group of

interchangeable, similarly structured, multi-step algorithms to be defined. Each algorithm

follows the same series of actions but provides a different implementation of the steps.

The template method pattern is a Gang of Four design pattern. This is a behavioural

pattern as it defines a manner for controlling communication between classes or entities. The

template method pattern is used to define the basic steps of an algorithm and allow the

implementation of the individual steps to be changed. This is similar to the strategy design

http://www.blackwasp.co.uk/AbstractClasses.aspx
http://www.blackwasp.co.uk/Inheritance.aspx
http://www.blackwasp.co.uk/CSharpMethodOverloading.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/CSharpSimpleClass.aspx
http://www.blackwasp.co.uk/Strategy.aspx

pattern. The key difference is the ability to vary parts of the algorithm rather than replacing

the algorithm in its entirety.

The overall structure of the basic algorithm is defined in an abstract base class. This

class may include some real functionality but often just defines the order in which the

overridable steps will be executed. The implementations for the steps are defined in

subclasses. This use of inheritance promotes loose coupling, as the calling function need not

know which algorithm is to be executed. Correct use of the pattern also reduces duplication

of code.

For example, in the game being scored the players run around a circuit that includes

checkpoints. At each checkpoint the player throws projectiles at a target, scoring points for

each hit. The player's score is reduced if they complete the circuit in a slow time. The

algorithms for calculating the score differ according to the sex and age of the player.

Implementing the Template Method Pattern

The UML class diagram above describes an implementation of the template method design

pattern. The items in the diagram are described below:

 AlgorithmBase. This abstract class is the base class for all concrete versions of the

algorithm. The class defines abstract methods for each of the steps that may be adjusted

by subclasses. It also includes a single method that controls the algorithm and calls the

individual steps. This method, in the diagram named "TemplateMethod", is the one that

is called by consumers of the class.

http://www.blackwasp.co.uk/Strategy.aspx
http://www.blackwasp.co.uk/Inheritance.aspx
http://www.blackwasp.co.uk/CSharpMethods.aspx

 ConcreteAlgorithm A/B. The concrete algorithms inherit from the AlgorithmBase

class. These algorithms override the abstract step methods to provide real

implementations. They do not override the template method.

ITERATOR DESIGN PATTERN

The iterator pattern is a design pattern that provides a means for the elements of an

aggregate object to be accessed sequentially without knowledge of its structure. This allows

traversing of lists, trees and other structures in a standard manner.

The iterator pattern is a Gang of Four design pattern. This is a behavioural pattern as

it defines a manner for controlling communication between classes or entities. The iterator

http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/CSharpSimpleClass.aspx

pattern is used to provide a standard interface for traversing a collection of items in an

aggregate object without the need to understand the underlying structure of that object. The

interface provided is generally simplistic, providing methods to move to the next item, return

to the beginning of the list, retrieve the current item and determine if the end of the list has

been reached.

A variation upon the iterator design pattern is used extensively within C# and the

.NET framework. Iterators are included in the standard array and collection classes and can

easily be added to your own classes by implementing the IEnumerable and IEnumerator

interfaces. C# version 2.0 also includes the yield keyword to simplify the process of creating

iterators.

We will firstly implement a classic version of the pattern. We will then modify this to

use the IEnumerator and IEnumerable interfaces and review the differences.

Implementing the Classic Iterator Pattern

The UML class diagram above describes a classic implementation of the iterator design

pattern. The items in the diagram are described below:

 Client. Objects of this type are the consumers of the iterator design pattern. They

request an iterator from an aggregate object when they wish to loop through the items

that it holds. The methods of the iterator are then used to retrieve items from the

aggregate in an appropriate sequence.

http://www.blackwasp.co.uk/CSharpMethods.aspx
http://www.blackwasp.co.uk/CSharpFundamentals.aspx
http://www.blackwasp.co.uk/CSharpArrays.aspx
http://www.blackwasp.co.uk/CollectionInterfaces.aspx
http://www.blackwasp.co.uk/CSharpIterators.aspx
http://www.blackwasp.co.uk/CSharpIterators.aspx
http://www.blackwasp.co.uk/Interfaces.aspx

 AggregateBase. This abstract class is the base class for aggregate objects. It includes

a method that generates an iterator, which can be used to obtain references to the

objects that subclasses contain. This class is often implemented as an interface.

 ConcreteAggregate. The concrete aggregate classes provide the real functionality for

aggregate objects that contain collections of items that can be traversed using an

iterator.

 IteratorBase. This abstract class is the base class for iterators. It defines a standard

interface that includes methods to allow the elements of the aggregate that generated

it to be looped through in sequence. This class is often implemented as a simple

interface.

 ConcreteIterator. Concrete iterators implement the interface defined by the

IteratorBase class. They provide functionality specific to the ConcreteAggregate class

used to generate them, hiding the implementation of the aggregate from the client.

OBSERVER DESIGN PATTERN

The observer pattern is a design pattern that defines a link between objects so that

when one object's state changes, all dependent objects are updated automatically. This pattern

allows communication between objects in a loosely coupled manner.

The observer pattern is a Gang of Four design pattern. This is a behavioural pattern as

it defines a manner for controlling communication between classes or entities. The observer

pattern is used to allow a single object, known as the subject, to publish changes to its state.

http://www.blackwasp.co.uk/AbstractClasses.aspx
http://www.blackwasp.co.uk/Inheritance.aspx
http://www.blackwasp.co.uk/GofPatterns.aspx
http://www.blackwasp.co.uk/CSharpSimpleClass.aspx

Many other observer objects that depend upon the subject can subscribe to it so that they are

immediately and automatically notified of any changes to the subject's state.

The pattern gives loose coupling between the subject and its observers. The subject

holds a collection of observers that are set only at run-time. Each observer may be of any

class that inherits from a known base class or implements a common interface. The actual

functionality of the observers and their use of the state data need not be known by the subject.

A variation upon the observer pattern is seen in the .NET framework's event model. In

this model, many objects may subscribe to an event and automatically be notified when the

event is triggered. The observer pattern is also used widely in user interface development,

particularly with data binding functionality.

An example of the pattern, which will be demonstrated in a simple form later in this

article, could be used in a logging system. A central logging module could be used to receive

errors, warnings and other messages from a variety of services. This would be the subject

object, whose publicly visible state included details of the last message received. The logging

module itself would not perform any additional processing of the messages received. Instead,

it would raise a notification to its observers for each new message.

The observers in this example could be varied in functionality but all would receive

the same notifications. There could be an observer that formatted the last message into an

email and sent this to an administrator. Another observer may store the message in the

server's event log. A third could record it in a database. In each case, the subject object would

be unaware of the actions being undertaken. The observers in use could be selected by a user

at run-time or via a configuration system to allow control of the logger's behaviour without

modification to the source code.

Implementing the Observer Pattern

http://www.blackwasp.co.uk/Inheritance.aspx
http://www.blackwasp.co.uk/Interfaces.aspx
http://www.blackwasp.co.uk/CSharpEvents.aspx
http://www.blackwasp.co.uk/WPFDataBinding.aspx
http://www.blackwasp.co.uk/SendSmtpEmail.aspx
http://www.blackwasp.co.uk/EventLog.aspx

The UML class diagram above describes an implementation of the observer design pattern.

The items in the diagram are described below:

 SubjectBase. This is the abstract base class for concrete subjects. It contains a

private collection of the observers that are subscribed to a subject and methods to

allow new subscriptions to be added and existing ones to be removed. It also

includes a method that can be called by concrete subjects to notify their observers of

state changes. This Notify method loops through all of the registered observers,

calling their Update methods.

 ConcreteSubject. Each concrete subject maintains its own state. When a change is

made to that state, the object calls the base class's Notify method to indicate this to

all of its observers. As the functionality of the observers is unknown, the concrete

subjects also provide the means for the observers to read the updated state, in this

case via a GetState method.

 ObserverBase. This is the abstract base class for all observers. It defines a method to

be called when the subject's state changes. In many cases this Update method will be

abstract, in which case you may decide to implement the base class as an interface

instead.

 ConcreteObserver. The concrete observer objects are the subscribers that react to

changes in the subject's state. When the Update method for an observer is called, it

examines the subject to determine which information has changed. It can then take

appropriate action.

http://www.blackwasp.co.uk/CollectionInterfaces.aspx
http://www.blackwasp.co.uk/CSharpMethods.aspx
http://www.blackwasp.co.uk/CSharpForEachLoop.aspx
http://www.blackwasp.co.uk/AbstractClasses.aspx

