
Running head: SAMPLE SIZE DETERMINATION 1

Data Availability Statement: Data sharing is not applicable to this article as no new data were

created or analyzed in this study

Sample Size Determination for the Bayesian t-tests Implemented in bain

Qianrao Fu, Herbert Hoijtink, and Mirjam Moerbeek

Department of Methodology and Statistics, Utrecht University

Author Note

Qianrao Fu, Department of Methodology and Statistics, Utrecht University, P.O. Box 80140,

3508 TC, Utrecht, The Netherlands. E-mail: q.fu@uu.nl. The first author is supported by the

China Scholarship Council. Herbert Hoijtink, H.Hoijtink@uu.nl. The second author is supported

by the Consortium on Individual Development (CID) which is funded through the Gravitation

program of the Dutch Ministry of Education, Culture, and Science and the Netherlands

Organization for Scientific Research (NWO grant number 024.001.003). Mirjam Moerbeek,

M.Moerbeek@uu.nl. This paper was published in psyarxiv on February 26, 2019.

https://www.uu.nl/en/research/methodology-and-statistics


SAMPLE SIZE DETERMINATION 2

Abstract

When two independent means are compared, H0 : µ1 = µ2, H1 : µ1 , µ2, and H2 : µ1 > µ2 are

the hypotheses of interest. This paper introduces the R package SSDbain (sample size

determination with bain), which can be used to determine the sample size needed to evaluate these

hypotheses using the Bayes factor. Both the Bayesian Student’s t-test and the Bayesian Welch’s

t-test are available in this software package. The sample size is determined such that the median

Bayes factor exceeds a user defined cut-off value. Topics that will receive attention are: SSD for

H0 versus an a priori point and an a priori distribution alternative; prior sensitivity; and, the use of

Bayes factor as a measure of support and as a decision criterion. Using the R package SSDbain

and/or the tables and figures provided in this paper, psychological researchers can easily

determine the required sample size.

Keywords: Bayesian Student’s t-test, Bayesian Welch’s t-test, SSDbain, Bayes Factor,

Sample Size Determination
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Sample Size Determination for the Bayesian t-tests Implemented in bain

Introduction

In the null-hypothesis significance testing framework (NHST), two hypotheses, the null and

alternative hypothesis, are compared. Suppose the mean body height of males and females are

denoted by µ1 and µ2. Three hypotheses are relevant: the null hypothesis H0: µ1 = µ2, the

two-sided alternative hypothesis H1: µ1 , µ2, and the one-sided alternative hypothesis H2:

µ1 > µ2. The null hypothesis is rejected when the observed data or data that deviate even more

from H0 are too unlikely when H0 is true. Stated in other words: when the p-value is small.

Statistical power is the probability of finding an effect when it exists in the population. Power

analysis for NHST has been studied for more than 50 years. Cohen (1988, 1992) played a

pioneering role in the development of effect sizes and power analysis, and he provided

mathematical equations for the relation between effect size, sample size, Type I error rate and

power. For example, if one aims for a power of 0.8, the minimum sample size per group should be

392, 64 and 26 for small (d = 0.2), medium (d = 0.5) and large (d = 0.8) effect sizes, respectively

for a two-tailed independent two-sample t-test at Type I error rate α = .05, where Cohen’s d is the

standardized difference between two means. To perform statistical power analyses for various

tests, the G*Power program was developed by Erdfelder, Faul, and Buchner (1996), Faul,

Erdfelder, Lang, and Buchner (2007) and Mayr, Erdfelder, Buchner, and Faul (2007). Despite the

availability of G*Power there is still a lot of underpowered research in the behavioral and social

sciences, even though criticism with respect to insufficient power is steadily increasing (Button

et al., 2013; Maxwell, 2004; Simonsohn, Nelson, & Simmons, 2014).

In recent years, numerous paper have criticized p-value (e.g., Cohen, 1994; Hubbard & Lindsay,

2008; Nickerson, 2000; Sellke, Bayarri, & Berger, 2001; Wagenmakers, 2007). As an alternative

to the p-value, Jeffreys (1961) and Kass and Raftery (1995) introduced the Bayes factor (BF). BF

quantifies the relative support in the data for one hypothesis against another, and in addition to
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that, cannot only provide evidence in favor of the alternative hypothesis, but, in contrast to the

p-value, also provides evidence in favor of the null hypotheses. This approach for Bayesian

hypothesis evaluation are increasingly receiving attention from psychological researchers, see for

example Van de Schoot, Winter, Ryan, Zondervan-Zwijnenburg, and Depaoli (2017),

Vandekerckhove, Rouder, and Kruschke (2018), Wagenmakers, Morey, and Lee (2016). Software

for Bayesian hypothesis evaluation are the R package BayesFactor (Rouder, Speckman, Sun,

Morey, & Iverson, 2009), that can be found at http://bayesfactorpcl.r-forge.r-project.org/, the R

package bain (Gu, Mulder, & Hoijtink, 2018) that can be found at

https://informative-hypotheses.sites.uu.nl/software/bain/, and the stand-alone software BIEMS

(Mulder, Hoijtink, De Leeuw, et al., 2012) that can be found at

https://informative-hypotheses.sites.uu.nl/software/biems/. Both BayesFactor and bain are

implemented in JASP (https://jasp-stats.org/).

Throughout this paper we focus on sample size determination for the comparison of two group

means using bain. There exist two specific cases in which variances are either equal or unequal

for the two groups: Student’s t-test and Welch’s t-test. Student’s t-test is well-known, while

Welch’s t-test is often extremely important and useful as demonstrated by Delacre, Lakens, and

Leys (2017), Rosopa, Schaffer, and Schroeder (2013), Ruscio and Roche (2012). In the NHST

framework, the formulae for calculating the sample size are given by an a priori power analysis for

Student’s t-test and Welch’s t-test (Cohen, 1992; Faul et al., 2007). There is not yet a solid body of

literature regarding sample size determination for Bayesian hypothesis evaluation, but Weiss

(1997) and De Santis (2004, 2007) give different sample size determination approaches for testing

one mean of the normal distribution with known variance, Kruschke (2013), Kruschke and

Liddell (2018) discuss parameter estimation and use the posterior distribution as a measure of

evidence strength, and Schönbrodt and Wagenmakers (2018) and Stefan, Gronau, Schönbrodt, and

Wagenmakers (2019) introduce Bayes factor design analysis applied to fixed-N and sequential

designs. This paper will elaborate on these approaches in the following manners: in addition to

the Bayesian Student’s t-test also the Bayesian Welch’s t-test will be considered; sample size will

http://bayesfactorpcl.r-forge.r-project.org/
https://informative-hypotheses.sites.uu.nl/software/bain/
https://informative-hypotheses.sites.uu.nl/software/biems/
https://jasp-stats.org/
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not only be considered versus an a priori fixed effect size under the alternative hypothesis, but also

against a prior distribution of effect sizes under the alternative hypothesis; sample size will be

determined when the median of the distribution of the BF under both the null and alternative

hypotheses reach a desired value; the role of error rates when using the BF to obtain a decision (as

opposed to using the BF to quantify support) will be highlighted; and the sensitivity of SSD with

respect to the specification of the prior will be highlighted. All this will be done for the Bayes

factor as implemented in the R package bain which is the only package that provides the Bayesian

Welch’s t-test. However, with small modifications, the approach proposed could also be applied to

the Bayes factors implemented in the R package BayesFactor.

The outline of this paper is as follows. First, we introduce the BF as implemented in the R

package bain, explain how to compute the BF, and how prior sensitivity analyses are conducted.

Subsequently, we will discuss the role of sample size determination in Bayesian inference.

Thereafter, the ingredients needed for sample size determination are introduced. Then, it is

elaborated how to determine the sample size based on these ingredients. Next, tables are

presented that will allow psychological researchers to determine their required sample sizes. Four

tables with regard to four different effect sizes present the sample sizes (including a sensitivity

analysis) required to obtain certain degrees of support when using the Bayesian Student’s t-test

and the Bayesian Welch’s t-test, respectively. A pair of tables present the corresponding Type I

and Type II error rates if the Bayes factor is used to make a decision. Another pair of tables

presents error rates when a trichotomous decision is to be made. The paper ends with a short

conclusion. The Appendix describes the algorithms used in this paper to compute the sample size.
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Bayes Factor

In this paper, the means of two groups, µ1 and µ2, are compared for both Model 1: the within

group variances for Group 1 and 2 are equal,

yp = µ1D1p + µ2D2p + εp with εp ∼ N(0, σ2), (1)

and Model 2: the within group variances for Group 1 and 2 are not equal,

yp = µ1D1p + µ2D2p + εp with εp ∼ N(0,D1pσ
2
1 + D2pσ

2
2 ), (2)

where D1p = 1 for person p = 1, · · · , N and 0 otherwise, D2p = 1 for person p = N + 1, · · · , 2N

and 0 otherwise, N denotes the common sample size for Group 1 and 2, εp denotes the error in

prediction, σ2 denotes the common within group variance for Group 1 and 2, and σ2
1 and σ2

2

denote the different within group variances for Group 1 and 2, respectively.

In this paper, the BF implemented in bain (Gu et al., 2018; Hoijtink, Gu, & Mulder, 2019) is used

to test hypotheses: H0 : µ1 = µ2 against H1 : µ1 , µ2 or against H2 : µ1 > µ2, where H1 is the

unconstrained hypothesis. The BF quantifies the relative support in the data for a pair of

competing hypotheses. The BF comparing the constrained hypothesis Hi (i = 0, 2) with the

unconstrained hypothesis H1, can be expressed in a simple form:

BFi1 =
fi
ci
, (3)

and the BF for H0 against H2 is:

BF02 =
BF01
BF21

=
f0/c0
f2/c2

. (4)

The interested reader is refered to Klugkist, Laudy, and Hoijtink (2005), where it was shown that,
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for the hypotheses considered in this paper, the Bayes factor in terms of the ratio of two marginal

likelihoods can be computed as in Equation 3. Specifically, if BFi j = 5, the support in the data is

five times stronger for Hi than for Hj . The complexity ci (a hypothesis with smaller complexity

provides more precise predictions) of Hi describes how specific Hi is, and the corresponding fit fi

(the higher the fit the more a hypothesis is supported by the data) describes how well the data

support Hi.

The formulae of the fit and complexity are:

fi =
∫
µ∈Hi

g1(µ | y,D1,D2)dµ, (5)

ci =

∫
µ∈Hi

h1(µ | y,D1,D2)dµ, (6)

where g1(µ | y,D1,D2) denotes the posterior distribution, and h1(µ | y,D1,D2) the prior

distribution of µ under H1. In case of H2, f2 and c2 are the proportions of the posterior

distribution g1(.) and prior distribution h1(.) in agreement with H2, respectively; in case of H1

Equation 3 reduces to the Savage-Dickey density ratio (Dickey, 1971; Wetzels, Grasman, &

Wagenmakers, 2010).

In the bain package the posterior distribution is a normal approximation of the actual posterior

distribution of the two means. Using this approximation bain can also handle hypotheses

evaluation in a wide range of statistical models such as Structural Equation Modeling, logistic

regression, multivariate regression, AN(C)OVA, etc. Therefore, it is currently the most versatile

package for Bayesian hypotheses evaluation. The normal approximation of the posterior

distribution is constructed based on the sample means and variances. The specific formulae can

be expressed as:

g1(µ | y,D1,D2) = N
©­­«

µ̂1

µ̂2

 ,

σ̂2/N 0

0 σ̂2/N


ª®®¬ , (7)
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when Model 1 is considered; and

g1(µ | y,D1,D2) = N
©­­«

µ̂1

µ̂2

 ,

σ̂2

1 /N 0

0 σ̂2
2 /N


ª®®¬ , (8)

when Model 2 is considered, where µ̂1 and µ̂2 denote the maximum likelihood estimates of the

means of Group 1 and Group 2, respectively. σ̂2, σ̂2
1 and σ̂2

2 denote unbiased estimates of the

within group variances.

In bain the prior distribution is based on the fractional Bayes factor approach (Mulder, 2014;

O’Hagan, 1995). It is constructed using a fraction of the information in the data. As elaborated in

Gu et al. (2018) and Hoijtink et al. (2019) this renders: the prior distribution is displayed as:

h1(µ | y,D1,D2) = N
©­­«


0

0

 ,


2σ̂2/J 0

0 2σ̂2/J


ª®®¬ , (9)

when Model 1 is considered; and

h1(µ | y,D1,D2) = N
©­­«


0

0

 ,


2σ̂2
1 /J 0

0 2σ̂2
2 /J


ª®®¬ , (10)

when Model 2 is considered.

It should be noted that the mean vector (0, 0) of the prior distribution is essential to obtain

consistent Bayes factors (Hoijtink et al., 2019). Comparing Equations 9 and 10 to Equations 7 and

8 it can be seen that the prior variance is obtained by the posterior variance multiplied by 2N/J,

and this corresponds to using a fraction J/2N of the information in the data in each group to

construct the variance of the prior distribution.

The default value of J = 1 is used in bain. This choice is inspired by the minimal training sample

idea (Berger & Pericchi, 1996; Berger, Pericchi, et al., 2004) because the number of independent



SAMPLE SIZE DETERMINATION 9

constraints used to specify the hypotheses in this paper is 1 and therefore there is 1 underlying

parameter (the difference between both means) that is of interest. Of course this choice is arbitrary

to some degree. It is in general common in Bayesian analyses to execute sensitivity (to the prior

distribution) analyses. Hence the choices of J = 2 and J = 3 are also considered. Since the choice

of J will also affect sample size determination, the SSDbain package always renders information

with respect to J = 1, 2, and 3.

As an illustration, Table 1 and Table 2 list the BF for the comparison of H0 with the two-sided

alternative H1 and the one-sided alternative H2, respectively, when equal within groups variances

is considered (Model 1). From Table 1, we can see that when H0 is true (e.g., the entry with

J = 1, where J will be elaborated in the next paragraph), the support in the observed data is 13

times larger for H0 than for H1; when H1 is true, the support in the observed data is 22 (1/0.045)

times larger for H1 than for H0. Table 2 shows that the data were nearly 18 times more likely to

support H0 when H0 is true; the support in the data is more than 45 (1/0.022) times more likely to

support H2 when H2 is true. Therefore, for the same sample size per group, it is much easier to get

strong evidence for the one-sided than for the two-sided hypothesis. The fit is higher for the true

hypothesis (e.g., see column f0 in Table 1, f0 = 2.816 when H0 is true is larger than f0 = 0.009

when H1 is true). The complexity is smaller for the more precise hypothesis (e.g, compare column

c0 with c2 in Table 2, (c0 = 0.209) < (c2 = 0.500) for J = 1, (c0 = 0.295) < (c2 = 0.500) for

J = 2, and (c0 = 0.362) < (c2 = 0.500) for J = 3). As can be seen in Tables 1 and 2 (bottom two

panels) the BF is sensitive to the choice of J. The complexity c0 becomes larger for H0 if J

increases (from 0.209 to 0.295, then to 0.362), while the complexity c2 is not affected by J for H2

(0.5 for any value of J). This is because the complexity of a hypothesis specified using only

inequality constraints is independent of J (see Mulder (2014) for a proof). The corresponding BF

for H0 becomes smaller (e.g., in the column BF01, BF decreases from 13.49 to 9.54, then to 7.79),

and the BF for H2 does not change.

Aparting from quantifying the support for one hypothesis over another, BF can also be used for
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decision making. BF can be used to obtain a dichotomous decision if the cut off value ’1’ is

chosen. That is, if BFi j > 1, Hi is accepted and if BFi j < 1, Hj is accepted. However, if the BF is

close to 1, the evidence is insufficient to accept or reject either hypothesis. To address this issue,

dichotomous decision making can be replaced by trichotomous decision making, for example, if

BFi j > 3, the support for Hi is convincing; if 1/3 < BFi j < 3, there is no convincing support for

either of the hypotheses; if BFi j < 1/3, the support for Hj is convincing. Note that the choice for

1/3 and 3 are of course subjective. We arbitrarily used these numbers because they were suggested

by Kass and Raftery (1995), to demarcate non from positive findings. Of course researchers might

prefer other cut off values within their specific circumstances.

The Role of Sample Size Determination in Bayesian Inference

For NHST power analysis renders an indication of the sample sizes needed to reject the

null-hypothesis with a pre-specified probability if it is not true. If the sample sizes are sufficiently

large, under-powered studies can be avoided (Maxwell, 2004). An important step in power

analysis is the choice of the effect size under the alternative hypothesis. If the chosen effect size is

smaller than the unknown true effect size, the sample sizes will be larger than necessary (which

can be costly or unethical), and if the chosen effect size is larger than the unknown true effect size,

the sample sizes will be too small and the resulting study will be underpowered. In practice often

one of two approaches to choose the effect size is used: use the estimate of the effect size based on

the similar studies in the literature, experts’ opinion or a pilot study (Anderson, Kelley, &

Maxwell, 2017; Sakaluk, 2016); or, use the smallest effect size that is considered to be relevantly

different from zero for the study at hand (Perugini, Gallucci, & Costantini, 2014).

For Bayesian hypothesis evaluation sample size determination can be used to obtain a sample

large enough such that the BF sufficiently supports both the null and alternative hypotheses if they

are true. This will be further elaborated later in the paper, for now a simple example suffices:

BF01 should be at least 5 if the null-hypothesis H0 is true, that is, the support in the data should be
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5 times larger for H0 than for the alternative hypothesis H1; and BF10, note the change in the order

of the indices, should be ate least 5 if the alternative hypothesis is true. Like for power analysis, an

important step is the choice of the effect size if the alternative hypothesis is true, and the same

considerations concerning misspecification of the effect size hold.

In the Bayesian framework, updating (Rouder, 2014; Schönbrodt & Wagenmakers, 2018;

Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2017) can be seen as an alternative for

sample size determination that does not require specification of the effect size under the

alternative hypothesis. Bayesian updating proceeds along the following steps (see the references

given for more details): i) specify an initial sample size per group and the required support in

terms of the BF; ii) collect data with the initial sample size; iii) compute the BF; iv) if the support

in favor of either H0 or H1 is large enough the analysis is finished; if the support is not large

enough, increase the sample size and return to iii). Because in the Bayesian framework the goal is

not to control the Type I and Type II error probabilities (the goal is to quantify the support in the

data for the hypotheses under consideration) this is a valid procedure.

With the availability of Bayesian updating and sample size determination, three strategies can be

used to obtain sufficient support for the hypotheses under consideration: updating; sample size

determination; and sample size determination followed by updating. In the next three sub-sections

it will be elaborated in which circumstances each approach can be used and what problems may

be encounterd. It will be argued that both updating and sample size determination have an

imporant role in Bayesian inference.

Updating

If updating can be used, it is an approach that avoids pre-specification of the effect size under the

alternative hypothesis and is a worthwhile option to pursue. However, updating can not always be

used or sample size determination is a required step before updating can be executed. Consider



SAMPLE SIZE DETERMINATION 12

the following situations. Situation 1. The population of interest is small, e.g., persons with a rare

disease or cognitive disorder. The control and treatment groups will very likely not contain more

than 22 persons. Updating is in this situation not an option. However, as will be elaborated in the

next section, sample size determination may proof to be valuable. Situation 2. Next month a

survey will start in which 100, currently single, men and women will be tracked for 21 years.

Again updating is not an option, but sample size determination may be valuable. Situation 3. You

have to submit your research plans to the (medical) ethical committee. You want to use updating,

but both you and they may want an indication of the sample size needed to obtain sufficient

support for different effect sizes under the alternative hypothesis. Only with these numbers you

can argue that you have sufficient funds and research time to execute you research plan. This

situation will be further elaborated in the next subsection.

Sample Size Determination

Sample size determination can always be used. However, having to specify the effect size under

the alternative hypothesis may have two undesirable consequences. Consider the following

situations. Situation 4. If the alternative hypothesis is true, you expect an effect size Cohen’s

d = .5. You determine the sample sizes (as will be shown later in Table 4 these are 65 per group)

such that BF01 is at least 5 when H0 is true and that BF10 is at least 5 when H1 is true. After

collecting data you compute BF01 = 2.5. This is a problem because you did not achieve the

desired support. However, as will be discussed in the next section, in some situations updating can

solve this problem. Situation 5. Analogous to Situation 4, but now you find BF01 = 11.3. This is a

problem in the sense that you spend more funds and research time than would have been

necessary. Situation 1 continued. Using sample size determination you find that with 22 persons

per group (as will be shown later in the paper in Table 5) you need a true Cohen’s d = .8 to obain

a Bayes factor of at least 5 if either H0 or H1 is true. Since you expect that the effect of the

treatment is much smaller than a Cohen’s d of .8 you decide not the execute the experiment in this
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form. Situation 2 continued. Analogous to Situation 1 continued but now you find that you need

65 persons per group to detect an effect size of Cohen’s d = .5 with sufficient support. Since you

expect that the effect size will be about .5, you proceed with your plans because your sample size

is 100 persons per gender group. Situation 3 continued. Sample size determination can be used to

obtain an indication of the sample sizes needed to obtain sufficient support for different effect

sizes. These numbers can be included in your research proposal for the (medical) ethical

committee.

Sample Size Determination Followed by Updating

Arguably, when applicable, the combination of sample size determination and updating is the

most powerful approach. Situation 4 continued. The support you found was BF01 = 2.5 in favor

of the null-hypothesis. However, you required a support of minimally 5. You can remedy this by

updating, that is, increasing your sample size and recomputation of the Bayes factor. The latter is

only possible if updating is an option Sitations 1 and 2 highlight situation where this is not an

option. Situation 5 continued. You plan and are able to collect the data from 65 persons per

group. If your research design permits this (for example, usually yes for experiments and no for

panel studies) you can update until you reach the required support (which may be achieved at a

sample size smaller than 65 per group) which will save you funds and research time.

Ingredients for Sample Size Determination (SSD)

Sample size determination for the Bayesian Student’s t-test and the Bayesian Welch’s t-test is

implemented in the R package SSDbain available at https://github.com/Qianrao-Fu/SSDbain. In

this section we introduce and discuss the necessary input for analyses executed with the SSDbain

package. In the sections that follow we will provide: an accessible description of the algorithm

implemented in SSD; tables of sample sizes needed when the Bayes factor is used as a measure of

https://github.com/Qianrao-Fu/SSDbain
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support; tables relating the sample sizes to error rates when the Bayes factor is used to obtain a

dichotomous decision; and tables relating the sample sizes to error rates when the Bayes factor is

used to obtain a trichotomous decision. If these tables do not cover the reader’s needs: he or she

may use the SSDbain package.

To determine the sample size for a Bayesian evaluation of hypotheses with respect to two

independent means the following ingredients are needed:

1. Decide whether you want to execute a Bayesian Student’s t-test or a Bayesian Welch’s t-test.

If you expect (based on prior knowledge or prior evidence) that the two within group

variances are equal, choose the Bayesian Student’s t-test, otherwise, choose the Bayesian

Welch’s t-test (Delacre et al., 2017; Ruscio & Roche, 2012; Ruxton, 2006).

2. If you choose Student’s t-test, the default within group variances are (1, 1); If you choose

Welch’s t-test, the default within group variances are (4/3, 2/3). Of course, you can input the

variance relevant in your context freely through the ’var’ input ingredient.

3. Decide whether you want to use a two-sided (labelled H1 earlier in the paper) or a one-sided

(labelled H2 earlier in the paper) alternative hypothesis. For example, one may wish to

compare a new drug with an existing drug. If one is not certain if the new drug will be more

or less effective than the existing drug, a two-sided alternative hypothesis should be chosen.

If one has strong reasons to believe the new drug is more effective than the old one, a

one-sided alternative hypothesis should be chosen.

4. Decide whether you want to determine the sample size for the comparison of H0 to Hi

(where i can be 1 or 2) using a pre-specified effect size under Hi or using a distribution of

effect sizes under Hi. The required sample size depends on the size of the effect. For details

on how to choose the value of effect size, one can refer back to the previous section. If you

think a fix point value is too restrictive, an effect size distribution is also provided in this

paper. The default means of the two groups are (d,0) for effect size d and the default pooled
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variance is 1 if you have no further good evidence about the means. Of course you can input

the means and variances yourself if you can estimate or guess them.

5. Decide what the desired support in terms of the median BF (medBF) should be when either

of H0 and Hi is true. If one chooses 5, then the sample size will be determined such that the

median BF either in a data set sampled from the null population H0 or from the alternative

Hi (i = 1, 2) is 5. We use the median because the distribution of the Bayes factor is very

skewed and median is a robust and stable measure of central tendency.

The choice for a cut-off value for the median BF is subjective meaning that different values

may be chosen by different researchers and in different fields of science. A large cut-off

value may be chosen in high-stakes research were the degree of support of a hypothesis

against another needs to be large. In pharmaceutical research for instance, the chances to

have a new drug for cancer to be approved may be larger if there is high support it increases

life expectancy as compared to an existing drug, especially so when the new drug may have

side-effects. A lower cut-off value may be chosen in low-stakes research. An example also

comes from the pharmaceutical research, where the pesticide effect may be faster of a new

headache drug than the existing drug.

SSD Using the Ingredients

Algorithm 1 used to compute the required sample size can be found in Figure 1. In the first four

steps the ingredients needed for SSD are specified. These ingredients have been discussed in the

previous section. In Step 5 from each of the populations of interest (e.g., H0 vs H1 as specified in

Step 3) T = 10000 data sets are sampled, starting with a sample size N = 10 per group. In Step 6

the median BF observed for each hypothesis is computed. If both are larger than the desired

support specified in Step 4, the algorithm proceeds with Step 8 and output is provided. If one or

both are smaller than the desired support, N is increased by 1 and the algorithm restarts in Step 5.
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In the final step (Step 9) of the algorithm, a sensitivity analysis is executed. To decrease the

computation time of Algorithm 1, Algorithm 2 and the improved Algorithm 1 are employed to

reduce the number of iterations of Step 8 in Algorithm 1 to 10 (see the Appendix for a concise

description).

Sample Sizes Required when Using the Bayes Factor as a Measure of Support

Tables 3-6 provided in this section can be used to determine the sample size needed if the BF is

used to express support for the hypotheses entertained. In most situations these tables will be

sufficient to determine the required sample size if psychological researchers want to use the

Bayesian Student’s t-test or the Bayesian Welch’s t-test. If the tables do not cover the situation of

interest, the SSDbain package can be used to compute the required sample size. These tables can

be used in the following manner: if for example you choose Student’s t-test (σ2 = 1), two-sided,

d = 0.5, and medBF=5, the following can be learned from Table 4 (the entry with J = 1):

1. You need a sample size of 65 persons per group.

2. When H0 is true, the median BF01 is 9.05; when H1 is true, the median BF10 is 5.34. This

implies that it is easier to find support for H0 than for H1. As can be seen looking at the

corresponding entries for J = 2 and J = 3: when J = 2, the corresponding median BF are

6.10 and 5.28, respectively; when J = 3, the corresponding median BF are 5.07 and 6.98,

respectively. The support for both hypotheses when they are true becomes more similar

with different J.

3. When H0 is true, the quantiles (5%, 10%, 20%, 80%, 90%, 95%) are 1.66, 2.91, 4.92,

11.02, 11.31, and 11.38; When H1 is true, the quantiles (5%, 10%, 20%, 80%, 90%, 95%)

are 0.18, 0.30, 0.64, 91.43, 575.03, and 2722.79. we can see that the distribution of the BF

under the alternative hypothesis is more dispersed than the null hypothesis. As can be seen

when H0 is true, almost none of the Bayes factors in favor of H0 are smaller than 1; and,
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when H1 is true more than 20% of the Bayes factors in favor of H1 is smaller than 1. If the

latter proportion is considered to be too large, instead of medBF = 5 a larger required

median Bayes factor should be specified.

4. In terms of required sample size the results are not very sensitive with respect to the prior

because the sample sizes for J = 1, 2, 3 are 65, 59, 60 persons per group, respectively.

However, as elaborated under point 2. above, in terms of properties there may very well be

differences.

To give further insight in sample size determination, Figure 2 and Figure 3 depict the relation

between the sample size needed of Student’s t-test or Welch’s t-test needed and the median Bayes

factor for different J, different effect sizes, and two-sided and one-sided alternative hypothesis.

The results can be summarized as follows.

1. The sample size required drops as the effect size becomes larger.

2. The sensitivity of the sample size to the choice of J becomes larger as the median BF

increases.

3. The sample size needed increases with the increase of J for the null population, while the

opposite relation is found for the alternative population.

4. The cumulative evidence rate is faster for the alternative than the null hypothesis. But when

the effect size is small, the null hypothesis is easier to be accepted than the alternative

hypothesis.

5. If the sample sizes resulting from Tables 3-6 are too large, that is, impossible to achieve for

the research project envisaged, Figures 2 and 3 can be used to quickly determine which is

the highest median Bayes factor that is achievable for the researcher. If, for example, with a

two sided Bayesian t-test and d = 0.5, the maximum achievable sample size per group is 50,

then for J = 1, the maximum achievable median Bayes factor is about 2.5 (see, Figure 2,
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panel (c)).

Using the Bayes Factor to Obtain a Dichotomous Decision

Instead of using the BF to quantify the relative support in the data for two hypotheses, it can also

be used to obtain a dichotomous decision, that is, to decide whether H0 or the alternative

hypothesis receives more support from the data.

When the BF is used to obtain a decision, like for NHST, it is important to control the Type I and

Type II error rates. A Type I error occurs if BF0i is smaller than 1 if H0 is true. The associated rate

is the probability p1 = P(BF0i < 1|H0). A Type II error occurs if BFi0 is smaller than 1 if Hi is

true. The associated rate is the probability p2 = P(BFi0 < 1|Hi). These rates are displayed in

Table 7 and Table 8.

Using the example that we used (i.e., the Student’s t-test, two-sided testing, a median BF of 5, and

an effect size of .5 under the alternative hypothesis) the following can be observed in Table 7:

The Type I error rate is .03 and the Type II error rate is .26 for the Bayesian Student’s t-test. As

can be seen from the corresponding entries for J = 2 and J = 3: when J = 2, the Type I and Type

II error rates are .04, and .25, respectively; when J = 3, the Type I and Type II error rates are .05,

and .21, respectively. For this example, the error rates do not change substantially if J = 1 is

replaced by J = 2, 3 (but note that with J = 2, 3 the sample size changes from 65 to 59, and then

to 60, see Table 4). Stated otherwise, the error rates are not very sensitive to the specification of

the prior distribution as long as the sample size is tailored to the change in the prior distribution.

But see column d = 0.8 in Table 8 (the other input ingredients are the same), the Type II error

rates change substantially (from .24 to .05, then to .01). If smaller error rates are desired a larger

median Bayes factor can be chosen. For example, if you choose the entry medBF=10, the Type I

and Type II error rates shrink to .02 and .19, respectively. The type II error rate is higher than type

I error rate. The reason is that the BF prefers to support the null hypothesis hypothesis when the
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sample size or effect size is small. When the effect size increases, the Type I error rate gets bigger,

while the Type II error rate gets smaller. Note that, similar observations apply if instead of the

Bayesian Student’s t-test the Bayesian Welch’s t-test is used.

Using the Bayes Factor to Obtain a Trichotomous Decision

The BF can not only be used to obtain a dichotomous decision, but also a trichotomous decision:

the support for a hypothesis is convincing (BF0i or BFi0 larger than 3), the support for a hypothesis

is unclear (1/3 smaller than BF0i or BFi0 which in turn is smaller than 3), or the support against a

hypothesis is convincing (BF0i or BFi0 smaller than 1/3). These translates into the following

probabilities: misleading evidence probabilities pM
1 = P(BF0i < 1/3|H0) and

pM
2 = P(BFi0 < 1/3|Hi), and weak evidence probability pw = P(1/3<BF0i<3|H0)+P(1/3<BFi0<3|Hi)

2 , that

are reported in Table 9 and 10.

Let us revisit the example above (the Student’s t-test, two-sided testing, a median BF of 5, and an

effect size of .5 under the alternative hypothesis) the following can be observed:

The misleading evidence probability for convincing support for hypothesis H1 is .01; the weak

evidence probability for support for either hypothesis is .20; the misleading evidence probability

for convincing support for hypothesis H0 is .11. These three probabilities do not change

substantially if J = 1 changes to J = 2, 3 (but note that with J = 2, 3 the sample size changes

from 65 to 59, and then to 60, see Table 4). Stated otherwise, the misleading and the weak

evidence probabilities are not very sensitive to the specification of the prior distribution as long as

the sample size is tailored to the change in the prior distribution. But see column d = 0.8 (the

other input ingredients are the same), the weak evidence probability becomes distinctly smaller as

J changes. If smaller misleading evidence probabilities or weak evidence are desired a larger

median can be chosen. For example, if medBF=10, the misleading evidence probabilities pM
1 and

pM
2 are .01 and .08, and the weak evidence probability pw is .17. When the effect size increases,
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the weak evidence probability and the first misleading evidence probability pM
1 becomes bigger,

while the other misleading evidence probability pM
2 becomes smaller. Note that, similar

observations apply if instead of the Bayesian Student’s t-test the Bayesian Welch’s t-test is used.

Conclusion

The R package SSDbain (https://github.com/Qianrao-Fu/SSDbain) is designed for two-sided and

one-sided hypotheses under a Bayesian Student’s t-test or Bayesian Welch’s t-test as implemented

in bain. User friendly tables (including sample size, median BF under both hypotheses, different

quantiles for BF0i and BFi0 (i = 1, 2), Type I and Type II error rates, misleading and weak

evidence probabilities) are given as counterparts to the frequently used tables in Cohen (1992). If

not applicable the SSDbain package can be used. With the growing popularity of Bayesian

statistics (Van de Schoot et al., 2017), it is important tools for sample size determination in the

Bayesian framework becomes available. In this manuscript, we develop software to calculate

sample sizes within the framework of Bayesian t-test hypothesis using time-efficient algorithms.

However, the SSDbain also has its limitation: we focus on the default BF implemented in bain

(Gu et al., 2018), but there are other Bayes factors: e.g., the ones implemented in BIEMS (Mulder

et al., 2012), and BayesFactor (Rouder et al., 2009). In this paper we only focus on the Bayesian

t-test, but in our future research we will extend to other statistical models, such as Bayesian

ANOVA, ANCOVA, linear regression, and general multivariate SSD problems.

https://github.com/Qianrao-Fu/SSDbain
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Appendix: Simulation Algorithm

In Figure 1 we provided Algorithm 1 used to determine the sample size. In this appendix two

refinements of Algorithm 1 are described to reduce the computation time needed to determine the

sample size.

It is very time consuming to iterate Steps 5-6 many times in Algorithm 1, especially for one-sided

alternative hypothesis. The number of iterations will be reduced if Step 7 from Algorithm 1 is

replaced by Algorithm 2:

(1) If both medBF0i and medBFi0 (i = 1 or 2) are larger than medBF, set Nmax = Nmid; Otherwise,

set Nmin = Nmid, where Nmid = (Nmin + Nmax)/2;

(2) If Nmid = Nmin + 1, then N = Nmid, and continue with Step 8 in Algorithm 1; otherwise return

to Step 5 from Algorithm 1 with N equals to Nmid;

(3) The basic principle displayed in Algorithm 2 is to gradually adjust the sample size using a
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dichotomy algorithm until medBF0i > medBF and medBFi0 > medBF hold for sample sizes

ranging between Nmin = 10 and Nmax = 1000. Using Algorithm 2 the number of iterations

will be at most 12 (O(log2(1000 − 10)) + 2 = 12)

https://en.wikipedia.org/wiki/Binary_search_algorithm.

To further reduce the computation time, an additional step is executed before running Algorithm

1. This step is identical to Steps 1-7 from Algorithm 1 with two modifications:

(1) In Step 5 one data set is generated in which Cohen’s d is exactly equal to the population value;

(2) In Step 6 the median BF is replaced by the Bayes factor computed for this one data set.

This modification of Algorithms 1 can be run quickly. The resulting value of N will be called N0.

Subsequently, the full Algorithm 1 is executed to find N between the bounds Nmin = N0 − 100 and

Nmax = N0 + 100. This reduces the number of iterations needed to 10 (O(log2 200) + 2 = 10). If it

turns out that Nmax is too small, its value will be increased.

https://en.wikipedia.org/wiki/Binary _ search _ algorithm
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Table 1
Fit and complexity when H0 is true or H1 is true. ȳ1 and ȳ2 are the sample means of the two groups, s2 is
the sample variance of the two groups, N is the sample size per group.

ȳ1 ȳ2 s2 N f0 c0 BF01
H0 J = 1 0 0 1 100 2.816 0.209 13.488
H1 0.5 0 1 100 0.009 0.209 0.045
H0 J = 2 0 0 1 100 2.816 0.295 9.537
H1 0.5 0 1 100 0.009 0.295 0.032
H0 J = 3 0 0 1 100 2.816 0.362 7.787
H1 0.5 0 1 100 0.009 0.362 0.026
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Table 2
Fit and complexity when H0 is true or H2 is true. ȳ1 and ȳ2 are the sample means of the two groups, s2 is
the sample variance of the two groups, N is the sample size per group.

ȳ1 ȳ2 s2 N f0 c0 f2 c2 BF01 BF21 BF02
H0 J = 1 0 0 1 100 2.816 0.209 0.379 0.500 13.488 0.758 17.788
H2 0.5 0 1 100 0.009 0.209 1.000 0.500 0.045 1.999 0.022
H0 J = 2 0 0 1 100 2.816 0.295 0.379 0.500 9.537 0.758 12.578
H2 0.5 0 1 100 0.009 0.295 1.000 0.500 0.032 1.999 0.016
H0 J = 3 0 0 1 100 2.816 0.362 0.379 0.500 7.787 0.758 10.270
H2 0.5 0 1 100 0.009 0.362 1.000 0.500 0.026 1.999 0.013
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Figure 2. The relation between sample size N and median BF for a two-sided alternative hypothesis.
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Figure 3. The relation between sample size N and median BF for one-sided hypothesis.
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