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Abstract

When two independent means are compared, Hy : p; = o, Hy @ py # po, and Hp © gy > o are
the hypotheses of interest. This paper introduces the R package SSDbain (sample size
determination with bain), which can be used to determine the sample size needed to evaluate these
hypotheses using the Bayes factor. Both the Bayesian Student’s t-test and the Bayesian Welch’s
t-test are available in this software package. The sample size is determined such that the median
Bayes factor exceeds a user defined cut-off value. Topics that will receive attention are: SSD for
Hj versus an a priori point and an a priori distribution alternative; prior sensitivity; and, the use of
Bayes factor as a measure of support and as a decision criterion. Using the R package SSDbain
and/or the tables and figures provided in this paper, psychological researchers can easily

determine the required sample size.

Keywords: Bayesian Student’s t-test, Bayesian Welch’s t-test, SSDbain, Bayes Factor,

Sample Size Determination
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Sample Size Determination for the Bayesian t-tests Implemented in bain

Introduction

In the null-hypothesis significance testing framework (NHST), two hypotheses, the null and
alternative hypothesis, are compared. Suppose the mean body height of males and females are
denoted by u; and up. Three hypotheses are relevant: the null hypothesis Hy: p; = us, the
two-sided alternative hypothesis Hy: u; # uo, and the one-sided alternative hypothesis H>:

(1 > pa. The null hypothesis is rejected when the observed data or data that deviate even more
from Hj are too unlikely when Hj is true. Stated in other words: when the p-value is small.
Statistical power is the probability of finding an effect when it exists in the population. Power
analysis for NHST has been studied for more than 50 years. Cohen (1988, 1992) played a
pioneering role in the development of effect sizes and power analysis, and he provided
mathematical equations for the relation between effect size, sample size, Type I error rate and
power. For example, if one aims for a power of 0.8, the minimum sample size per group should be
392, 64 and 26 for small (d = 0.2), medium (d = 0.5) and large (d = 0.8) effect sizes, respectively
for a two-tailed independent two-sample t-test at Type I error rate @ = .05, where Cohen’s d is the
standardized difference between two means. To perform statistical power analyses for various
tests, the G*Power program was developed by Erdfelder, Faul, and Buchner (1996), Faul,
Erdfelder, Lang, and Buchner (2007) and Mayr, Erdfelder, Buchner, and Faul (2007). Despite the
availability of G*Power there is still a lot of underpowered research in the behavioral and social
sciences, even though criticism with respect to insufficient power is steadily increasing (Button

et al., 2013; Maxwell, 2004; Simonsohn, Nelson, & Simmons, 2014).

In recent years, numerous paper have criticized p-value (e.g., Cohen, 1994; Hubbard & Lindsay,
2008; Nickerson, 2000; Sellke, Bayarri, & Berger, 2001; Wagenmakers, 2007). As an alternative
to the p-value, Jeffreys (1961) and Kass and Raftery (1995) introduced the Bayes factor (BF). BF

quantifies the relative support in the data for one hypothesis against another, and in addition to
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that, cannot only provide evidence in favor of the alternative hypothesis, but, in contrast to the
p-value, also provides evidence in favor of the null hypotheses. This approach for Bayesian
hypothesis evaluation are increasingly receiving attention from psychological researchers, see for
example Van de Schoot, Winter, Ryan, Zondervan-Zwijnenburg, and Depaoli (2017),
Vandekerckhove, Rouder, and Kruschke (2018), Wagenmakers, Morey, and Lee (2016). Software
for Bayesian hypothesis evaluation are the R package BayesFactor (Rouder, Speckman, Sun,
Morey, & Iverson, 2009), that can be found at http://bayesfactorpcl.r-forge.r-project.org/, the R
package bain (Gu, Mulder, & Hoijtink, 2018) that can be found at
https://informative-hypotheses.sites.uu.nl/software/bain/, and the stand-alone software BIEMS
(Mulder, Hoijtink, De Leeuw, et al., 2012) that can be found at
https://informative-hypotheses.sites.uu.nl/software/biems/. Both BayesFactor and bain are

implemented in JASP (https://jasp-stats.org/).

Throughout this paper we focus on sample size determination for the comparison of two group
means using bain. There exist two specific cases in which variances are either equal or unequal
for the two groups: Student’s t-test and Welch’s t-test. Student’s t-test is well-known, while
Welch’s t-test is often extremely important and useful as demonstrated by Delacre, Lakens, and
Leys (2017), Rosopa, Schaffer, and Schroeder (2013), Ruscio and Roche (2012). In the NHST
framework, the formulae for calculating the sample size are given by an a priori power analysis for
Student’s t-test and Welch’s t-test (Cohen, 1992; Faul et al., 2007). There is not yet a solid body of
literature regarding sample size determination for Bayesian hypothesis evaluation, but Weiss
(1997) and De Santis (2004, 2007) give different sample size determination approaches for testing
one mean of the normal distribution with known variance, Kruschke (2013), Kruschke and
Liddell (2018) discuss parameter estimation and use the posterior distribution as a measure of
evidence strength, and Schonbrodt and Wagenmakers (2018) and Stefan, Gronau, Schonbrodt, and
Wagenmakers (2019) introduce Bayes factor design analysis applied to fixed-N and sequential
designs. This paper will elaborate on these approaches in the following manners: in addition to

the Bayesian Student’s t-test also the Bayesian Welch’s t-test will be considered; sample size will


http://bayesfactorpcl.r-forge.r-project.org/
https://informative-hypotheses.sites.uu.nl/software/bain/
https://informative-hypotheses.sites.uu.nl/software/biems/
https://jasp-stats.org/
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not only be considered versus an a priori fixed effect size under the alternative hypothesis, but also
against a prior distribution of effect sizes under the alternative hypothesis; sample size will be
determined when the median of the distribution of the BF under both the null and alternative
hypotheses reach a desired value; the role of error rates when using the BF to obtain a decision (as
opposed to using the BF to quantify support) will be highlighted; and the sensitivity of SSD with
respect to the specification of the prior will be highlighted. All this will be done for the Bayes
factor as implemented in the R package bain which is the only package that provides the Bayesian
Welch’s t-test. However, with small modifications, the approach proposed could also be applied to

the Bayes factors implemented in the R package BayesFactor.

The outline of this paper is as follows. First, we introduce the BF as implemented in the R
package bain, explain how to compute the BF, and how prior sensitivity analyses are conducted.
Subsequently, we will discuss the role of sample size determination in Bayesian inference.
Thereafter, the ingredients needed for sample size determination are introduced. Then, it is
elaborated how to determine the sample size based on these ingredients. Next, tables are
presented that will allow psychological researchers to determine their required sample sizes. Four
tables with regard to four different effect sizes present the sample sizes (including a sensitivity
analysis) required to obtain certain degrees of support when using the Bayesian Student’s t-test
and the Bayesian Welch’s t-test, respectively. A pair of tables present the corresponding Type 1
and Type II error rates if the Bayes factor is used to make a decision. Another pair of tables
presents error rates when a trichotomous decision is to be made. The paper ends with a short

conclusion. The Appendix describes the algorithms used in this paper to compute the sample size.
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Bayes Factor

In this paper, the means of two groups, u; and uy, are compared for both Model 1: the within

group variances for Group 1 and 2 are equal,
Yp = H1D1p + p2 Doy, + €, with €, ~ N(0, 0'2), (D)
and Model 2: the within group variances for Group 1 and 2 are not equal,
Yp = 1Dy + p2Dap, + €, with €, ~ N(0, D1p0'12 + D2,,0'22), 2)

where Dy, = 1 for person p = 1,---, N and O otherwise, Dy, = 1 for personp =N +1,--- ,2N
and 0 otherwise, N denotes the common sample size for Group 1 and 2, €, denotes the error in
prediction, o denotes the common within group variance for Group 1 and 2, and 0'12 and 0'22

denote the different within group variances for Group 1 and 2, respectively.

In this paper, the BF implemented in bain (Gu et al., 2018; Hoijtink, Gu, & Mulder, 2019) is used
to test hypotheses: Hy : u; = up against Hy : u; # uo or against Hy : u; > up, where Hj is the
unconstrained hypothesis. The BF quantifies the relative support in the data for a pair of
competing hypotheses. The BF comparing the constrained hypothesis H; (i = 0,2) with the

unconstrained hypothesis Hj, can be expressed in a simple form:

BF, = 2. )
l
and the BF for Hj against H; is:
BF
BF,, = orot _ fo/¢o. @)
BF21  fo/c

The interested reader is refered to Klugkist, Laudy, and Hoijtink (2005), where it was shown that,
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for the hypotheses considered in this paper, the Bayes factor in terms of the ratio of two marginal
likelihoods can be computed as in Equation 3. Specifically, if BF;; = 5, the support in the data is
five times stronger for H; than for H;. The complexity ¢; (a hypothesis with smaller complexity
provides more precise predictions) of H; describes how specific H; is, and the corresponding fit f;
(the higher the fit the more a hypothesis is supported by the data) describes how well the data

support H;.

The formulae of the fit and complexity are:

fi= / 1 |y, D1 Da)d, 5)
HEH;

¢ = / hi(p | y,D1,Dy)dp, (6)
MEH;

L

where g1(u | y, D1, D) denotes the posterior distribution, and i;(u | y, Dy, D>) the prior
distribution of u under H;. In case of H,, f> and c; are the proportions of the posterior
distribution g(.) and prior distribution /;(.) in agreement with H,, respectively; in case of H,
Equation 3 reduces to the Savage-Dickey density ratio (Dickey, 1971; Wetzels, Grasman, &

Wagenmakers, 2010).

In the bain package the posterior distribution is a normal approximation of the actual posterior
distribution of the two means. Using this approximation bain can also handle hypotheses
evaluation in a wide range of statistical models such as Structural Equation Modeling, logistic
regression, multivariate regression, AN(C)OVA, etc. Therefore, it is currently the most versatile
package for Bayesian hypotheses evaluation. The normal approximation of the posterior
distribution is constructed based on the sample means and variances. The specific formulae can

be expressed as:

1 G2/N 0
gi(u|y,Di,Dy)=N , , @)
J12) 0 &2/N
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when Model 1 is considered; and

. A2
M1 (o /N 0
gi(u|y,D1,Dy) =N ! , (8)

J5) 0 &3/N
when Model 2 is considered, where [i; and [, denote the maximum likelihood estimates of the
means of Group 1 and Group 2, respectively. &2, 6'12 and 6'22 denote unbiased estimates of the

within group variances.

In bain the prior distribution is based on the fractional Bayes factor approach (Mulder, 2014;
O’Hagan, 1995). It is constructed using a fraction of the information in the data. As elaborated in

Gu et al. (2018) and Hoijtink et al. (2019) this renders: the prior distribution is displayed as:

0 26%/] 0
hi(p|y,Di,Dy)=N , , 9)
0 0 26‘2/J

when Model 1 is considered; and

0 26%/J 0
hi(u | y,D1,D;) =N , , (10)
0 0 203/J

when Model 2 is considered.

It should be noted that the mean vector (0, 0) of the prior distribution is essential to obtain
consistent Bayes factors (Hoijtink et al., 2019). Comparing Equations 9 and 10 to Equations 7 and
8 it can be seen that the prior variance is obtained by the posterior variance multiplied by 2N/ J,
and this corresponds to using a fraction J/2N of the information in the data in each group to

construct the variance of the prior distribution.

The default value of J = 1 is used in bain. This choice is inspired by the minimal training sample

idea (Berger & Pericchi, 1996; Berger, Pericchi, et al., 2004) because the number of independent
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constraints used to specify the hypotheses in this paper is 1 and therefore there is 1 underlying
parameter (the difference between both means) that is of interest. Of course this choice is arbitrary
to some degree. It is in general common in Bayesian analyses to execute sensitivity (to the prior
distribution) analyses. Hence the choices of J = 2 and J = 3 are also considered. Since the choice
of J will also affect sample size determination, the SSDbain package always renders information

with respect to J = 1, 2, and 3.

As an illustration, Table 1 and Table 2 list the BF for the comparison of Hy with the two-sided
alternative H; and the one-sided alternative H,, respectively, when equal within groups variances
is considered (Model 1). From Table 1, we can see that when Hy is true (e.g., the entry with

J =1, where J will be elaborated in the next paragraph), the support in the observed data is 13
times larger for Hy than for Hi; when H; is true, the support in the observed data is 22 (1/0.045)
times larger for H; than for Hy. Table 2 shows that the data were nearly 18 times more likely to
support Hy when Hj is true; the support in the data is more than 45 (1/0.022) times more likely to
support H, when Hj is true. Therefore, for the same sample size per group, it is much easier to get
strong evidence for the one-sided than for the two-sided hypothesis. The fit is higher for the true
hypothesis (e.g., see column fy in Table 1, fy = 2.816 when Hj is true is larger than fy = 0.009
when Hj is true). The complexity is smaller for the more precise hypothesis (e.g, compare column
co with ¢, in Table 2, (¢o = 0.209) < (¢ = 0.500) for J = 1, (¢o = 0.295) < (¢ = 0.500) for

J =2,and (cg = 0.362) < (¢ = 0.500) for J = 3). As can be seen in Tables 1 and 2 (bottom two
panels) the BF is sensitive to the choice of J. The complexity ¢y becomes larger for Hy if J
increases (from 0.209 to 0.295, then to 0.362), while the complexity c; is not affected by J for H»
(0.5 for any value of J). This is because the complexity of a hypothesis specified using only
inequality constraints is independent of J (see Mulder (2014) for a proof). The corresponding BF
for Hy becomes smaller (e.g., in the column BFy;, BF decreases from 13.49 to 9.54, then to 7.79),

and the BF for H; does not change.

Aparting from quantifying the support for one hypothesis over another, BF can also be used for
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decision making. BF can be used to obtain a dichotomous decision if the cut off value ’1’ is
chosen. That is, if BF;; > 1, H; is accepted and if BF;; < 1, H; is accepted. However, if the BF is
close to 1, the evidence is insufficient to accept or reject either hypothesis. To address this issue,
dichotomous decision making can be replaced by trichotomous decision making, for example, if
BF;; > 3, the support for H; is convincing; if 1/3 < BF;; < 3, there is no convincing support for
either of the hypotheses; if BF;; < 1/3, the support for H; is convincing. Note that the choice for
1/3 and 3 are of course subjective. We arbitrarily used these numbers because they were suggested
by Kass and Raftery (1995), to demarcate non from positive findings. Of course researchers might

prefer other cut off values within their specific circumstances.

The Role of Sample Size Determination in Bayesian Inference

For NHST power analysis renders an indication of the sample sizes needed to reject the
null-hypothesis with a pre-specified probability if it is not true. If the sample sizes are sufficiently
large, under-powered studies can be avoided (Maxwell, 2004). An important step in power
analysis is the choice of the effect size under the alternative hypothesis. If the chosen effect size is
smaller than the unknown true effect size, the sample sizes will be larger than necessary (which
can be costly or unethical), and if the chosen effect size is larger than the unknown true effect size,
the sample sizes will be too small and the resulting study will be underpowered. In practice often
one of two approaches to choose the effect size is used: use the estimate of the effect size based on
the similar studies in the literature, experts’ opinion or a pilot study (Anderson, Kelley, &
Maxwell, 2017; Sakaluk, 2016); or, use the smallest effect size that is considered to be relevantly

different from zero for the study at hand (Perugini, Gallucci, & Costantini, 2014).

For Bayesian hypothesis evaluation sample size determination can be used to obtain a sample
large enough such that the BF sufficiently supports both the null and alternative hypotheses if they
are true. This will be further elaborated later in the paper, for now a simple example suffices:

BFy; should be at least 5 if the null-hypothesis Hj is true, that is, the support in the data should be
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5 times larger for Hy than for the alternative hypothesis H;; and BF, note the change in the order
of the indices, should be ate least 5 if the alternative hypothesis is true. Like for power analysis, an
important step is the choice of the effect size if the alternative hypothesis is true, and the same

considerations concerning misspecification of the effect size hold.

In the Bayesian framework, updating (Rouder, 2014; Schonbrodt & Wagenmakers, 2018;
Schonbrodt, Wagenmakers, Zehetleitner, & Perugini, 2017) can be seen as an alternative for
sample size determination that does not require specification of the effect size under the
alternative hypothesis. Bayesian updating proceeds along the following steps (see the references
given for more details): i) specify an initial sample size per group and the required support in
terms of the BF; ii) collect data with the initial sample size; iii) compute the BF; iv) if the support
in favor of either Hy or H is large enough the analysis is finished; if the support is not large
enough, increase the sample size and return to iii). Because in the Bayesian framework the goal is
not to control the Type I and Type II error probabilities (the goal is to quantify the support in the

data for the hypotheses under consideration) this is a valid procedure.

With the availability of Bayesian updating and sample size determination, three strategies can be
used to obtain sufficient support for the hypotheses under consideration: updating; sample size
determination; and sample size determination followed by updating. In the next three sub-sections
it will be elaborated in which circumstances each approach can be used and what problems may
be encounterd. It will be argued that both updating and sample size determination have an

imporant role in Bayesian inference.

Updating

If updating can be used, it is an approach that avoids pre-specification of the effect size under the
alternative hypothesis and is a worthwhile option to pursue. However, updating can not always be

used or sample size determination is a required step before updating can be executed. Consider
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the following situations. Situation 1. The population of interest is small, e.g., persons with a rare
disease or cognitive disorder. The control and treatment groups will very likely not contain more
than 22 persons. Updating is in this situation not an option. However, as will be elaborated in the
next section, sample size determination may proof to be valuable. Situation 2. Next month a
survey will start in which 100, currently single, men and women will be tracked for 21 years.
Again updating is not an option, but sample size determination may be valuable. Situation 3. You
have to submit your research plans to the (medical) ethical committee. You want to use updating,
but both you and they may want an indication of the sample size needed to obtain sufficient
support for different effect sizes under the alternative hypothesis. Only with these numbers you
can argue that you have sufficient funds and research time to execute you research plan. This

situation will be further elaborated in the next subsection.

Sample Size Determination

Sample size determination can always be used. However, having to specify the effect size under
the alternative hypothesis may have two undesirable consequences. Consider the following
situations. Situation 4. If the alternative hypothesis is true, you expect an effect size Cohen’s

d = .5. You determine the sample sizes (as will be shown later in Table 4 these are 65 per group)
such that BFy; is at least 5 when H, is true and that BF is at least 5 when H; is true. After
collecting data you compute BFy; = 2.5. This is a problem because you did not achieve the
desired support. However, as will be discussed in the next section, in some situations updating can
solve this problem. Situation 5. Analogous to Situation 4, but now you find BFy; = 11.3. Thisis a
problem in the sense that you spend more funds and research time than would have been
necessary. Situation 1 continued. Using sample size determination you find that with 22 persons
per group (as will be shown later in the paper in Table 5) you need a true Cohen’s d = .8 to obain
a Bayes factor of at least 5 if either Hy or H; is true. Since you expect that the effect of the

treatment is much smaller than a Cohen’s d of .8 you decide not the execute the experiment in this
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form. Situation 2 continued. Analogous to Situation 1 continued but now you find that you need
65 persons per group to detect an effect size of Cohen’s d = .5 with sufficient support. Since you
expect that the effect size will be about .5, you proceed with your plans because your sample size
is 100 persons per gender group. Situation 3 continued. Sample size determination can be used to
obtain an indication of the sample sizes needed to obtain sufficient support for different effect
sizes. These numbers can be included in your research proposal for the (medical) ethical

committee.

Sample Size Determination Followed by Updating

Arguably, when applicable, the combination of sample size determination and updating is the
most powerful approach. Situation 4 continued. The support you found was BFy; = 2.5 in favor
of the null-hypothesis. However, you required a support of minimally 5. You can remedy this by
updating, that is, increasing your sample size and recomputation of the Bayes factor. The latter is
only possible if updating is an option Sitations I and 2 highlight situation where this is not an
option. Situation 5 continued. You plan and are able to collect the data from 65 persons per
group. If your research design permits this (for example, usually yes for experiments and no for
panel studies) you can update until you reach the required support (which may be achieved at a

sample size smaller than 65 per group) which will save you funds and research time.

Ingredients for Sample Size Determination (SSD)

Sample size determination for the Bayesian Student’s t-test and the Bayesian Welch’s t-test is
implemented in the R package SSDbain available at https://github.com/Qianrao-Fu/SSDbain. In
this section we introduce and discuss the necessary input for analyses executed with the SSDbain
package. In the sections that follow we will provide: an accessible description of the algorithm

implemented in SSD; tables of sample sizes needed when the Bayes factor is used as a measure of


https://github.com/Qianrao-Fu/SSDbain
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support; tables relating the sample sizes to error rates when the Bayes factor is used to obtain a
dichotomous decision; and tables relating the sample sizes to error rates when the Bayes factor is
used to obtain a trichotomous decision. If these tables do not cover the reader’s needs: he or she

may use the SSDbain package.

To determine the sample size for a Bayesian evaluation of hypotheses with respect to two

independent means the following ingredients are needed:

1. Decide whether you want to execute a Bayesian Student’s t-test or a Bayesian Welch’s t-test.
If you expect (based on prior knowledge or prior evidence) that the two within group
variances are equal, choose the Bayesian Student’s t-test, otherwise, choose the Bayesian

Welch’s t-test (Delacre et al., 2017; Ruscio & Roche, 2012; Ruxton, 2006).

2. If you choose Student’s t-test, the default within group variances are (1, 1); If you choose
Welch’s t-test, the default within group variances are (4/3, 2/3). Of course, you can input the

variance relevant in your context freely through the ’var’ input ingredient.

3. Decide whether you want to use a two-sided (labelled H earlier in the paper) or a one-sided
(labelled H, earlier in the paper) alternative hypothesis. For example, one may wish to
compare a new drug with an existing drug. If one is not certain if the new drug will be more
or less effective than the existing drug, a two-sided alternative hypothesis should be chosen.
If one has strong reasons to believe the new drug is more effective than the old one, a

one-sided alternative hypothesis should be chosen.

4. Decide whether you want to determine the sample size for the comparison of Hy to H;
(where i can be 1 or 2) using a pre-specified effect size under H; or using a distribution of
effect sizes under H;. The required sample size depends on the size of the effect. For details
on how to choose the value of effect size, one can refer back to the previous section. If you
think a fix point value is too restrictive, an effect size distribution is also provided in this

paper. The default means of the two groups are (d,0) for effect size d and the default pooled
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variance is 1 if you have no further good evidence about the means. Of course you can input

the means and variances yourself if you can estimate or guess them.

5. Decide what the desired support in terms of the median BF (medBF) should be when either
of Hy and H; is true. If one chooses 5, then the sample size will be determined such that the
median BF either in a data set sampled from the null population Hy or from the alternative
H; (i = 1,2) is 5. We use the median because the distribution of the Bayes factor is very

skewed and median is a robust and stable measure of central tendency.

The choice for a cut-off value for the median BF is subjective meaning that different values
may be chosen by different researchers and in different fields of science. A large cut-off
value may be chosen in high-stakes research were the degree of support of a hypothesis
against another needs to be large. In pharmaceutical research for instance, the chances to
have a new drug for cancer to be approved may be larger if there is high support it increases
life expectancy as compared to an existing drug, especially so when the new drug may have
side-effects. A lower cut-off value may be chosen in low-stakes research. An example also
comes from the pharmaceutical research, where the pesticide effect may be faster of a new

headache drug than the existing drug.

SSD Using the Ingredients

Algorithm 1 used to compute the required sample size can be found in Figure 1. In the first four
steps the ingredients needed for SSD are specified. These ingredients have been discussed in the
previous section. In Step 5 from each of the populations of interest (e.g., Hy vs H; as specified in
Step 3) T = 10000 data sets are sampled, starting with a sample size N = 10 per group. In Step 6
the median BF observed for each hypothesis is computed. If both are larger than the desired
support specified in Step 4, the algorithm proceeds with Step 8 and output is provided. If one or

both are smaller than the desired support, N is increased by 1 and the algorithm restarts in Step 5.
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In the final step (Step 9) of the algorithm, a sensitivity analysis is executed. To decrease the
computation time of Algorithm 1, Algorithm 2 and the improved Algorithm 1 are employed to
reduce the number of iterations of Step 8 in Algorithm 1 to 10 (see the Appendix for a concise

description).

Sample Sizes Required when Using the Bayes Factor as a Measure of Support

Tables 3-6 provided in this section can be used to determine the sample size needed if the BF is
used to express support for the hypotheses entertained. In most situations these tables will be
sufficient to determine the required sample size if psychological researchers want to use the
Bayesian Student’s t-test or the Bayesian Welch’s t-test. If the tables do not cover the situation of
interest, the SSDbain package can be used to compute the required sample size. These tables can
be used in the following manner: if for example you choose Student’s t-test (02 = 1), two-sided,

d = 0.5, and medBF=5, the following can be learned from Table 4 (the entry with J = 1):
1. You need a sample size of 65 persons per group.

2. When H, is true, the median BFy; is 9.05; when H, is true, the median BF; is 5.34. This
implies that it is easier to find support for Hy than for H;. As can be seen looking at the
corresponding entries for J = 2 and J = 3: when J = 2, the corresponding median BF are
6.10 and 5.28, respectively; when J = 3, the corresponding median BF are 5.07 and 6.98,
respectively. The support for both hypotheses when they are true becomes more similar

with different J.

3. When H is true, the quantiles (5%, 10%, 20%, 80%, 90%, 95%) are 1.66, 2.91, 4.92,
11.02, 11.31, and 11.38; When H; is true, the quantiles (5%, 10%, 20%, 80%, 90%, 95%)
are 0.18, 0.30, 0.64, 91.43, 575.03, and 2722.79. we can see that the distribution of the BF
under the alternative hypothesis is more dispersed than the null hypothesis. As can be seen

when Hj is true, almost none of the Bayes factors in favor of Hy are smaller than 1; and,
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when H| is true more than 20% of the Bayes factors in favor of H; is smaller than 1. If the
latter proportion is considered to be too large, instead of medBF = 5 a larger required

median Bayes factor should be specified.

4. In terms of required sample size the results are not very sensitive with respect to the prior
because the sample sizes for J = 1, 2, 3 are 65, 59, 60 persons per group, respectively.
However, as elaborated under point 2. above, in terms of properties there may very well be

differences.

To give further insight in sample size determination, Figure 2 and Figure 3 depict the relation
between the sample size needed of Student’s t-test or Welch’s t-test needed and the median Bayes
factor for different J, different effect sizes, and two-sided and one-sided alternative hypothesis.

The results can be summarized as follows.

1. The sample size required drops as the effect size becomes larger.

2. The sensitivity of the sample size to the choice of J becomes larger as the median BF

increases.

3. The sample size needed increases with the increase of J for the null population, while the

opposite relation is found for the alternative population.

4. The cumulative evidence rate is faster for the alternative than the null hypothesis. But when
the effect size is small, the null hypothesis is easier to be accepted than the alternative

hypothesis.

5. If the sample sizes resulting from Tables 3-6 are too large, that is, impossible to achieve for
the research project envisaged, Figures 2 and 3 can be used to quickly determine which is
the highest median Bayes factor that is achievable for the researcher. If, for example, with a
two sided Bayesian t-test and d = 0.5, the maximum achievable sample size per group is 50,

then for J = 1, the maximum achievable median Bayes factor is about 2.5 (see, Figure 2,
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panel (¢)).

Using the Bayes Factor to Obtain a Dichotomous Decision

Instead of using the BF to quantify the relative support in the data for two hypotheses, it can also
be used to obtain a dichotomous decision, that is, to decide whether Hy or the alternative

hypothesis receives more support from the data.

When the BF is used to obtain a decision, like for NHST, it is important to control the Type I and
Type II error rates. A Type I error occurs if BFy; is smaller than 1 if Hy is true. The associated rate
is the probability p; = P(BFy; < 1|Hp). A Type II error occurs if BF;q is smaller than 1 if H; is
true. The associated rate is the probability p, = P(BF;y < 1|H;). These rates are displayed in

Table 7 and Table 8.

Using the example that we used (i.e., the Student’s t-test, two-sided testing, a median BF of 5, and

an effect size of .5 under the alternative hypothesis) the following can be observed in Table 7:

The Type I error rate is .03 and the Type II error rate is .26 for the Bayesian Student’s t-test. As
can be seen from the corresponding entries for J = 2 and J = 3: when J = 2, the Type I and Type
IT error rates are .04, and .25, respectively; when J = 3, the Type I and Type II error rates are .05,
and .21, respectively. For this example, the error rates do not change substantially if J = 1 is
replaced by J = 2, 3 (but note that with J = 2, 3 the sample size changes from 65 to 59, and then
to 60, see Table 4). Stated otherwise, the error rates are not very sensitive to the specification of
the prior distribution as long as the sample size is tailored to the change in the prior distribution.
But see column d = 0.8 in Table 8 (the other input ingredients are the same), the Type II error
rates change substantially (from .24 to .05, then to .01). If smaller error rates are desired a larger
median Bayes factor can be chosen. For example, if you choose the entry medBF=10, the Type I
and Type II error rates shrink to .02 and .19, respectively. The type II error rate is higher than type

I error rate. The reason is that the BF prefers to support the null hypothesis hypothesis when the
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sample size or effect size is small. When the effect size increases, the Type I error rate gets bigger,
while the Type II error rate gets smaller. Note that, similar observations apply if instead of the

Bayesian Student’s t-test the Bayesian Welch’s t-test is used.

Using the Bayes Factor to Obtain a Trichotomous Decision

The BF can not only be used to obtain a dichotomous decision, but also a trichotomous decision:
the support for a hypothesis is convincing (BFy; or BF;( larger than 3), the support for a hypothesis
is unclear (1/3 smaller than BF(; or BF;g which in turn is smaller than 3), or the support against a
hypothesis is convincing (BF; or BF;y smaller than 1/3). These translates into the following

probabilities: misleading evidence probabilities p’l"’ = P(BFy; < 1/3|Hy) and

py!' = P(BFjy < 1/3|H;), and weak evidence probability p" = P(1/3<BF°"<3|H°);P(l/3<BE°<3|H"), that

are reported in Table 9 and 10.

Let us revisit the example above (the Student’s t-test, two-sided testing, a median BF of 5, and an

effect size of .5 under the alternative hypothesis) the following can be observed:

The misleading evidence probability for convincing support for hypothesis H; is .01; the weak
evidence probability for support for either hypothesis is .20; the misleading evidence probability
for convincing support for hypothesis Hy is .11. These three probabilities do not change
substantially if J = 1 changes to J = 2, 3 (but note that with J = 2, 3 the sample size changes
from 65 to 59, and then to 60, see Table 4). Stated otherwise, the misleading and the weak
evidence probabilities are not very sensitive to the specification of the prior distribution as long as
the sample size is tailored to the change in the prior distribution. But see column d = 0.8 (the
other input ingredients are the same), the weak evidence probability becomes distinctly smaller as
J changes. If smaller misleading evidence probabilities or weak evidence are desired a larger
median can be chosen. For example, if medBF=10, the misleading evidence probabilities p’lw and

pg’[ are .01 and .08, and the weak evidence probability p* is .17. When the effect size increases,
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the weak evidence probability and the first misleading evidence probability pll"[ becomes bigger,
while the other misleading evidence probability pg/l becomes smaller. Note that, similar

observations apply if instead of the Bayesian Student’s t-test the Bayesian Welch’s t-test is used.

Conclusion

The R package SSDbain (https://github.com/Qianrao-Fu/SSDbain) is designed for two-sided and
one-sided hypotheses under a Bayesian Student’s t-test or Bayesian Welch’s t-test as implemented
in bain. User friendly tables (including sample size, median BF under both hypotheses, different
quantiles for BFy; and BF;g (i = 1, 2), Type I and Type II error rates, misleading and weak
evidence probabilities) are given as counterparts to the frequently used tables in Cohen (1992). If
not applicable the SSDbain package can be used. With the growing popularity of Bayesian
statistics (Van de Schoot et al., 2017), it is important tools for sample size determination in the
Bayesian framework becomes available. In this manuscript, we develop software to calculate
sample sizes within the framework of Bayesian t-test hypothesis using time-efficient algorithms.
However, the SSDbain also has its limitation: we focus on the default BF implemented in bain
(Gu et al., 2018), but there are other Bayes factors: e.g., the ones implemented in BIEMS (Mulder
etal., 2012), and BayesFactor (Rouder et al., 2009). In this paper we only focus on the Bayesian
t-test, but in our future research we will extend to other statistical models, such as Bayesian

ANOVA, ANCOVA, linear regression, and general multivariate SSD problems.


https://github.com/Qianrao-Fu/SSDbain
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Appendix: Simulation Algorithm

In Figure 1 we provided Algorithm 1 used to determine the sample size. In this appendix two
refinements of Algorithm 1 are described to reduce the computation time needed to determine the

sample size.

It is very time consuming to iterate Steps 5-6 many times in Algorithm 1, especially for one-sided
alternative hypothesis. The number of iterations will be reduced if Step 7 from Algorithm 1 is

replaced by Algorithm 2:

(1) If both medBF(y; and medBF;q (i = 1 or 2) are larger than medBF, set Nyax = Npiq; Otherwise,

set Nmin = Nmid, where Npiq = (Nmin + Nmax)/Z;

(2) If Nmig = Nmin + 1, then N = Npq, and continue with Step 8 in Algorithm 1; otherwise return

to Step 5 from Algorithm 1 with N equals to Npiq;

(3) The basic principle displayed in Algorithm 2 is to gradually adjust the sample size using a
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dichotomy algorithm until medBFy;, > medBF and medBF;o > medBF hold for sample sizes
ranging between Npin = 10 and Npyax = 1000. Using Algorithm 2 the number of iterations
will be at most 12 (O(log,(1000 — 10)) + 2 = 12)

https://en.wikipedia.org/wiki/Binary_search_algorithm.

To further reduce the computation time, an additional step is executed before running Algorithm

1. This step is identical to Steps 1-7 from Algorithm 1 with two modifications:

(1) In Step 5 one data set is generated in which Cohen’s d is exactly equal to the population value;

(2) In Step 6 the median BF is replaced by the Bayes factor computed for this one data set.

This modification of Algorithms 1 can be run quickly. The resulting value of N will be called Nj.
Subsequently, the full Algorithm 1 is executed to find N between the bounds Npin, = No — 100 and
Nmax = No + 100. This reduces the number of iterations needed to 10 (O(log, 200) + 2 = 10). If it

turns out that Ny.x is too small, its value will be increased.


https://en.wikipedia.org/wiki/Binary _ search _ algorithm
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Table 1

Fit and complexity when Hy is true or H\ is true. ¥ and y, are the sample means of the two groups, s

the sample variance of the two groups, N is the sample size per group.

yi 2 & N fi Co BFy,
Hy _ 0O 0 1 100 2816 0.209 13.488
H, B 05 0 1 100 0.009 0.209 0.045
Hy _ 0O 0 1 100 2816 0.295 9.537
H, B 05 0 1 100 0.009 0.295 0.032
Hy _ 0O 0 1 100 2816 0.362 7.787
H, B 05 0 1 100 0.009 0.362 0.026

2

27

is
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Table 2
Fit and complexity when Hy is true or H is true. ¥ and y, are the sample means of the two groups, s
the sample variance of the two groups, N is the sample size per group.

2 s

yio v s N Jo Co 5 &) BFy1 BF;; BFp
Hy =1 0 0O 1 100 2.816 0.209 0.379 0.500 13.488 0.758 17.788
H, 05 0 1 100 0.009 0.209 1.000 0.500 0.045 1.999 0.022
Hy J=9 0 0O 1 100 2.816 0.295 0.379 0.500 9.537 0.758 12.578
H, 05 0 1 100 0.009 0.295 1.000 0.500 0.032 1.999 0.016
Hj =3 0 0O 1 100 2.816 0.362 0.379 0.500 7.787 0.758 10.270
H, 05 0 1 100 0.009 0362 1.000 0.500 0.026 1.999 0.013
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Figure 2. The relation between sample size N and median BF for a two-sided alternative hypothesis.
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Figure 3. The relation between sample size N and median BF for one-sided hypothesis.
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