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ABSTRACT

Data quality issues such as missing, erroneous, extreme and dupli-
cate values undermine analysis and are time-consuming to find and
fix. Automated methods can help identify anomalies, but determin-
ing what constitutes an error is context-dependent and so requires
human judgment. While visualization tools can facilitate this pro-
cess, analysts must often manually construct the necessary views,
requiring significant expertise. We present Profiler, a visual analy-
sis tool for assessing quality issues in tabular data. Profiler applies
data mining methods to automatically flag problematic data and
suggests coordinated summary visualizations for assessing the data
in context. The system contributes novel methods for integrated
statistical and visual analysis, automatic view suggestion, and scal-
able visual summaries that support real-time interaction with mil-
lions of data points. We present Profiler’s architecture — including
modular components for custom data types, anomaly detection rou-
tines and summary visualizations — and describe its application to
motion picture, natural disaster and water quality data sets.
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1. INTRODUCTION

Data sets regularly contain missing, extreme, duplicate or er-
roneous values that can undermine the results of analysis. These
anomalies come from various sources, including human data entry
error, inconsistencies between integrated data sets, and sensor inter-
ference. Flawed analyses due to dirty data are estimated to cost bil-
lions of dollars each year [6]. Discovering and correcting data qual-
ity issues can also be costly: some estimate cleaning dirty data to
account for 80 percent of the cost of data warehousing projects [5].

The statistics and database communities have contributed a num-
ber of automated routines for detecting dirty data, such as finding
outliers or duplicate records. While these techniques can reveal po-
tential issues, human judgment is required to determine if the issues
are in fact errors and how they should be treated. For example, out-
lier detection might flag a high temperature reading; an analyst then
needs to assess if the reading is an exceptional event or an error.
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Discovering a potential error is only the first step towards clean
data. Before manipulating the data, an analyst may investigate why
an anomaly has occurred to inform possible fixes. The analyst must
place the anomaly in context by scrutinizing its relationship with
other dimensions of the data. Appropriately-chosen visualizations
can help reveal and contextualize these anomalies. Histograms and
scatter plots, for instance, may reveal outlying values in a distribu-
tion. Analysts typically have to choose which views to construct:
they must determine which subset of data columns and rows to vi-
sualize, how to transform the data, choose visual encodings, and
specify other criteria such as sorting and grouping. Determining
which visualizations to construct may require significant domain
knowledge and expertise with a visualization tool.

In response we present Profiler, a visual analysis system to aid
discovery and assessment of data anomalies. Profiler uses type in-
ference and data mining routines to identify potential data quality
issues in tabular data. Profiler then suggests coordinated, multi-
view visualizations to help an analyst assess anomalies and contex-
tualize them within the larger data set.

Our first contribution is an extensible system architecture that
enables integrated statistical and visual analysis for data quality as-
sessment. This modular architecture supports plug-in APIs for data
types, anomaly detection routines and summary visualizations. We
populate this framework with commonly-needed data types and de-
tection routines. We focus primarily on univariate anomalies due
to their frequency, tractability, and relative ease of explanation.
We demonstrate how coupling automated anomaly detection with
linked summary visualizations allows an analyst to discover and
triage potential causes and consequences of anomalous data.

Our architecture also introduces novel visual analysis compo-
nents. We contribute a technique for automatic view suggestion
based on mutual information. Profiler analyzes the mutual infor-
mation between table columns and the output of anomaly detection
to suggest sets of coordinated summary visualizations. Our model
recommends both table columns and aggregation functions to pro-
duce visual summaries that aid assessment of anomalies in context.

We also contribute the design of scalable summary visualiza-
tions that support brushing and linking to assess detected anoma-
lies. Through linked selections, analysts can project anomalies in
one column onto other dimensions. Our aggregate-based summary
views bin values to ensure that the number of visual marks de-
pends on the number of groups, not the number of data records. We
provide optimizations for query execution and rendering to enable
real-time interaction with data sets in excess of a million rows.

2. RELATED WORK

Profiler draws on three areas of related work: anomaly detection,
data cleaning tools, and visual analysis systems.
2.1 Classifying Data Anomalies

The database and statistics literature includes many taxonomies
of anomalous data [5, 7, 10, 19, 24, 33]. These taxonomies inform
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Figure 1: The Profiler User Interface. The UI contains (clockwise from top-left): (a) schema browser, (b) formula editor, (c) canvas of
linked summary visualizations, and (d) anomaly browser. Profiler generates a set of linked views for each identified anomaly. Here,
we investigate possible causes of missing MPAA movie ratings. The grey bar above the MPAA rating chart indicates missing values;
we select it to highlight matching records. The Release Date chart shows that missing ratings correlate with earlier release dates.

a variety of algorithms for detecting outliers [4, 10, 12, 33], dupli-
cate records [7], and key violations [13]. While these routines flag
potential issues, most types of error require some form of human in-
tervention to assess and correct [19]. Here, we focus on errors that
arise within a single relational table. Guided by prior taxonomies,
we identified five categories of anomalies to address in Profiler:

Missing data results from a number of sources, including in-
complete collection or redaction due to privacy concerns. Miss-
ing data can take the form of missing records or missing attributes.
These issues can lead to a loss of statistical power if too many cases
are unobserved and can introduce bias into model estimates, espe-
cially when data is not missing at random [1].

Erroneous data can arise because of error during data entry,
measurement, or distillation [10]. Obviously, analysis of incorrect
data can lead to incorrect conclusions.

Inconsistent data refers to variable encodings of the same value.
Examples include variations in spelling or formatting, measure-
ment units, or coding schemes (e.g., names vs. abbreviations).

Extreme values such as outliers can undermine robust analysis
and may be erroneous. Extreme values may be standard univariate
outliers, or may be type specific. For example, time-series outliers
generally take two forms [33]: an additive outlier is an unexpected,
transient movement in a measured value over time, whereas an in-
novation outlier is an unexpected movement that persists over time.

Key violations refer to data that violate primary key constraints.
For example, having two employees with the same social security
number violates the assumption that SSN is a key.

Observed issues can fall into multiple categories: a numeric out-
lier may result from an accurate measurement of an extreme value,
a data entry error, or from inconsistent units (feet vs. meters).

2.2 Data Cleaning Tools

Motivated by the issues above, database and HCI researchers
have created interactive systems for data cleaning. Many of these
interfaces focus on data integration [9, 15, 21, 27, 34] or entity res-
olution [17]. Here we focus on data quality issues in a single table.
Profiler does include detectors for duplicate values, but we do not
attempt to address the general problem of entity resolution.

Other interfaces support mass reformatting of raw input data [14,
16, 25, 29]. A common form of discrepancy detection is provided
by data type definitions that specify constraints for legal values [16,
25, 29]. These systems are usually limited to finding formatting
discrepancies for individual values. Profiler’s data types are similar
to domains in Potter’s Wheel [25] and Scaffidi et al.’s Topes [29].
However, Profiler detects a broader range of discrepancies, includ-
ing distribution-dependent outliers and duplicate values. Unlike
these prior tools, Profiler also generates scalable interactive visual
summaries to aid anomaly assessment.

Perhaps most comparable to Profiler is Google Refine [14], which
supports both faceted browsing and text clustering to identify data
quality issues. Refine users must manually specify which facets
and clusters to create. In contrast, Profiler automatically suggests
visualizations to aid discovery and assessment of discrepancies.

Profiler is integrated with the Wrangler [16] data transformation
tool. An analyst can transform raw data using Wrangler. Once the
data is properly formatted as a relational table, Profiler can leverage
type information to automate anomaly detection and visualization.

2.3 Visual Analysis Systems

Visualization can support discovery of patterns in data, includ-
ing anomalies [18]. Aggregation, clustering and sorting have been
used in various contexts to support scalable visualization for large



data sets [3, 20, 28, 35]. Through linked highlighting (“brushing
& linking”), coordinated multiple views enable assessment of rela-
tionships between data dimensions [22, 36]. Profiler’s visualization
layer extends this prior work with a set of type-specific aggregate
visualizations that aid assessment of data quality issues.

Visual analytic tools such as Tableau [31], GGobi [32], and Im-
provise [36] enable analysts to construct multi-dimensional views
of data. However, these tools generally require users to choose
which variables to visualize. As the number of data subsets ex-
plodes combinatorially, analysts must often rely on significant do-
main expertise to identify variables that may contain or help explain
anomalies. To facilitate the view selection process, Profiler auto-
matically suggests both data subsets and appropriate summary vi-
sualizations based on identified anomalies and inferred data types.
‘While other tools support general exploratory analysis, Profiler pro-
vides guided analytics to enable rapid quality assessment.

Others have explored interfaces for guiding analysis and suggest-
ing appropriate views. Social Action [23] uses a wizard-like inter-
face to guide users through social network analysis. Seo and Shnei-
derman’s rank-by-feature framework [30] sorts histograms and scat-
terplots of numeric data according to user-selected criteria. Oth-
ers have used dimensionality reduction, clustering and sorting to
aid visualization of multidimensional data [8, 11, 37]. In Profiler,
we use anomaly detection followed by mutual information analysis
to suggest a set of coordinated summary views for assessing data
quality issues. Our suggestion engine automates the choice of data
columns, aggregation functions and visual encodings.

3. USAGE SCENARIO

Before describing Profiler’s architecture, we begin with a repre-
sentative usage scenario. Consider an example task, using movie
data compiled from IMDB, Rotten Tomatoes and The Numbers.
This data set contains 16 columns and over 3,000 movies. The data
includes metadata such as the title, primary production location, di-
rector, MPAA rating, and release date; financial information such
as DVD sales and worldwide gross; and IMDB ratings.

An analyst is interested in which factors affect a movie’s eventual
revenue. She first loads the data into Profiler to assess overall data
quality. The interface shows a schema browser, anomaly browser,
formula editor and an empty canvas (Figure 1). The schema browser
shows the column names in the data set; the analyst could double-
click column names or drag them into the canvas to visualize the
corresponding column. Instead, she examines the anomaly browser.

The anomaly browser displays potential quality issues, grouped
by issue type and sorted by severity. For each issue, Profiler lists the
columns containing the issue and the name of the detection routine
that flagged the anomaly. The analyst clicks the MPAA Rating
label in the missing values group. In response, Profiler displays the
MPAA Rating data as a categorical bar chart showing the counts
for each rating type. The chart title includes a data summary bar:
green bars indicate parsed values, red bars indicate type verification
errors, and indicate missing values.

Curious why so many values are missing, the analyst adds re-
lated visualizations by selecting the ‘Anomaly’ option in the re-
lated views menu— this operation requests views that might ex-
plain the observed anomaly. She then selects the grey bar in the
MPAA Rating chart to see how missing values project across other
columns (Figure 1). She finds that missing ratings correlate with
early release dates. While this is interesting, she determines that
the missing values don’t have a strong relationship with any finan-
cial figures. This result holds for other columns with missing data.

The analyst next decides to look at extreme values in financial
figures and clicks Worldwide Gross in the ‘Extreme’ anomaly list.
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Figure 2: Automatically generated views to help assess World-
wide Gross. Worldwide Gross correlates with high US Gross
and Production Budgets. High gross also coincides with Action
& Adventure movies and the Summer & Winter seasons. Pro-
filer chose to bin Release Date by month instead of by year.
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Figure 3: Map assessing 2D outliers in a binned scatter plot. Se-
lected in the scatter plot are movies with high Worldwide Gross
but low US Gross (in orange). Linked highlights on the map
confirm that the movies were released outside of the US.
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Figure 4: Conditioned duplicate detection. Left: Movie titles
clustered by Levenshtein distance reveal over 200 potential du-
plicates. Right: Conditioning the clustering routine on ‘Release
Year’ reduces the number of potential duplicates to 10.

A histogram reveals a small number of high grossing movies. To
generate explanatory visualizations, the analyst selects ‘Data Val-
ues’ from the related views menu— this operation requests views
that might help explain the total distribution of Worldwide Gross,
not just flagged anomalies. She mouses over the bars at the high
end of the Worldwide Gross histogram and sees that these values
correlate with high values in other financial figures, such as U.S.
Gross (Figure 2). She notices that Action and Adventure movies
account for a disproportionate number of highly grossing movies.
The time-series view reveals that these films spike during the sum-
mer and holiday seasons. The view groups release dates by month
rather than year, as binning by month produces a stronger relation-
ship with Worldwide Gross. The analyst is now confident that the
outliers represent exceptional performance, not errors in the data.



The analyst decides to explore the seemingly strong relationship
between Worldwide Gross and U.S. Gross. The analyst first se-
lects ‘None’ in the related views menu to de-clutter the canvas. She
drags U.S. Gross from the schema viewer onto the histogram dis-
playing Worldwide Gross to create a binned scatterplot. The data
appear to be log-normally distributed so she uses the chart menu to
set log scales for the axes. She notes outlying cells containing very
low U.S Gross values compared to Worldwide Gross. She adds a
map visualization by dragging Release Location to the canvas and
confirms that most of these movies were released outside the U.S
(Figure 3). The analyst decides to filter these data points from the
data set so she chooses a filter transform from the transformation
menu. The formula editor shows a predicate based on the current
selection criteria and the analyst hits return to filter the points.

The analyst notices that the Release Location map contains a red
bar indicating erroneous country values. She decides to toggle the
map visualization to a bar chart to inspect the erroneous values. She
clicks the small arrow at the top-right of the chart to open the chart
menu and changes the visualization type. She filters the bar chart
to only show erroneous values and sees a few ‘None’ and ‘West
Germany’ values. To fix these errors, the analyst selects a replace
transform in the formula editor menu and then specifies parameters;
e.g., replace(Release Location, ‘West Germany’, ‘Germany’).

Next, the analyst inspects the ‘Inconsistency’ list in the anomaly
browser. The analyst clicks on Title in order to spot potential dupli-
cate records. Profiler responds by showing a grouped bar chart with
movie titles clustered by textual similarity (Figure 4). Unsurpris-
ingly, the analyst sees that movies and their sequels are clustered
together. There also appear to be potential remakes of classic films.
The analyst worries that there might also be misspellings of some
films, but does not want to verify all the clusters by hand. The
analyst reasons that true duplicates are likely to have the same Re-
lease Date and so decides to condition the text clustering anomaly
detector on Release Date. The analyst clicks ‘Levenshtein’ next
to Title in the anomaly browser. A menu appears which includes
selection widgets for conditioning anomaly detection on another
column. After rerunning the detector, there are significantly fewer
anomalies to check. The analyst is satisfied that there are no dupli-
cate entries and continues with her analysis.

4. SYSTEM ARCHITECTURE

Underlying the Profiler application is an extensible architecture
that combines statistical algorithms and coordinated visualizations.
The system is implemented in JavaScript, and is intended to run
inside browsers with optimized JavaScript execution engines. The
architecture consists of five major components.

First, Profiler represents data tables using a memory-resident
column-oriented relational database. The database supports stan-
dard SQL-style queries for filtering, aggregation, and generating
derived columns. Unlike standard SQL databases, Profiler uses a
relaxed type system: values can deviate from their column’s de-
fined type. Profiler flags these values as inconsistent; they appear
in red within a chart’s quality summary bar. The same database sys-
tem also powers the Wrangler [16] data transformation tool. Pro-
filer has access to the Wrangler data transformation language and
extends it with additional transforms, including more advanced ag-
gregation operations such as binning numeric data to compute his-
tograms and mathematical operations for deriving new columns.

The rest of the Profiler architecture consists of four modular
components (Figure 5). The Type Registry contains data type def-
initions and a type inference engine. Profiler uses types to choose
appropriate anomaly detection routines and visualizations. The De-
tector performs anomaly detection by combining type-aware fea-
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Figure 5: The Profiler Architecture. An (a) input table is an-
alyzed to (b) infer types for each column. Type information is
used to (c) generate features prior to running (d) anomaly de-
tection routines. The results of anomaly detection and mutual
information analysis are used to perform (e) view recommen-
dation and populate a set of (f) interactive visualizations.

ture extractors and a set of data mining routines. Using detected
anomalies and the mutual information between columns, the Rec-
ommender suggests visualizations to help an analyst assess poten-
tial issues. The View Manager presents linked summary visualiza-
tions; it generates type-specific visualizations and executes coor-
dinated queries across views to support brushing and linking. We
now describe each of these components in detail.

4.1 Type Registry

The Type Registry consists of a set of type definitions and rou-
tines for type inference. Each column in a data table is assigned a
type, whether automatically via inference or manually by the user.

At minimum, a Profiler type is defined by a binary verification
function: given an input value, the function returns true if the value
is a member of the type and false otherwise. Verification functions
include regular expression matches, set membership (e.g., dictio-
nary lookup of country names) and range constraints (e.g., pH be-
tween 0-14). Profiler associates a type with an entire column, but
not all values in the column necessarily satisfy the type definition.

Profiler includes built-in support for primitive types — boolean,
string, and numeric (int, double)—and higher-order types such
as dates and geographic entities; e.g., state/country names, FIPS
codes, zip codes. Profiler’s detector and view manager components
require that all columns be assigned to a data type. The type system
is extensible: as new types are defined, anomaly detection and vi-
sualization methods can be specified in terms of pre-existing types
or new components (e.g., a novel type-specific visualization) that
plug-in to the Profiler architecture.

A type definition may also include a set of type transforms and
group-by functions. A type transform is a function that maps be-
tween types (e.g., zip code to lat-lon coordinate). These functions
form a graph of possible type conversions, some of which may be
lossy. User-defined types can include type transforms to built-in
types to leverage Profiler’s existing infrastructure. Group-by func-
tions determine how values can be grouped to drive scalable visu-
alizations. For instance, numeric types can be binned at uniform
intervals to form histograms, while dates may be aggregated into
meaningful units such as days, weeks, months or years.

Type inference methods automatically assign a type to each col-
umn in a data table based on the Minimum Description Length
principle (MDL) [26]. MDL selects the type that minimizes the
number of bits needed to encode the values in a column. MDL has
been used effectively in prior data cleaning systems, such as Pot-
ter’s Wheel [25]. We use the same MDL formulation in Profiler.

4.2 Detector

Profiler’s Detector applies a collection of type-specific data min-
ing routines to identify anomalies in data.
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Figure 6: Taxonomy of Data Quality Issues. We list classes
of methods for detecting each issue, example routines used in
Profiler, and visualizations for assessing their output.

4.2.1 The Detection Pipeline

The Detector determines which anomaly detection routines to
apply, runs them, and produces output for visualization. This pro-
cess has two phases: feature generation and anomaly detection.

During feature generation, the Detector derives features of the
input columns to use as input to anomaly detection routines. Fea-
tures are extracted using unary transformations called generators.
For example, a generator might compute the lengths of string val-
ues; an anomaly detector might then compute z-scores to flag ab-
normally long strings. The Detector maintains a list of appropri-
ate generators (including the identity function) for each type in the
Type Registry. Given an input table, the Detector applies genera-
tors to each input column according to its type signature. The result
is a set of feature columns that serve as input to anomaly detectors.

Detection routines then analyze the feature columns. Detection
routines accept columns as input and output two columns: a class
column and a certainty column. The class column contains inte-
gers; 0 indicates that no anomaly was found in that row. Non-zero
values indicate the presence of an anomaly and distinct integers in-
dicate distinct classes of anomaly. For example, the z-score routine
outputs a class column where each value is either O (within 2 stan-
dard deviations from the mean), -1 (< 2 stdev), or 1 (> 2 stdev). The
certainty column represents the strength of the routine’s prediction.
For z-scores, these values indicate the distance from the mean.

The Detector organizes detection routines by the data types they
can process. After feature generation, the system visits each col-
umn in the data table (including derived columns) and runs all rou-
tines with a compatible type. For instance, the z-score routine is
applied to all numeric columns. The standardized output of class
and certainty columns is then handled in a general fashion by the
downstream Recommender and View Manager components.

The Detector’s output appears in the anomaly browser. This
browser lists any result of a detection routine that contains at least
one anomalous value (i.e., a non-zero value in the class column),
grouped by the type of detection routine and sorted by decreasing
anomaly count. The browser displays the columns containing the
anomaly and which routines detected the anomaly. When a user
clicks an item, relevant views appear in the canvas.

4.2.2 Detection Routines

Profiler incorporates a variety of detection routines to flag data
anomalies (Figure 6), and can easily be extended with new rou-

tines. The following list focuses on the most common needs and
demonstrates the diversity of routines that the system supports.

Missing value detection identifies cells that do not contain data.

Type verification functions identify values inconsistent with a
given column type (Sec. 4.1). Verification can flag incorrect use of
physical types (e.g., strings vs. integers) or constraint violations.

Clustering is used to detect a variety of errors relative to a cho-
sen distance metric. Euclidean distance is useful for detecting nu-
meric outliers and inconsistent measurement units. Character-based
(Levenshtein distance), token-based (Atomic Strings), and phonetic-
based (soundex) distances are useful for detecting inconsistencies
in text such as misspellings, different term orderings, and phonet-
ically similar words [7]. We use nearest neighbor agglomerative
hierarchical clustering with each distance metric.

Univariate outlier detection routines identify extreme and pos-
sibly incorrect values for numeric and time-based data. We apply
both z-scores and Hampel X84 — a routine based on median abso-
lute deviation — to detect univariate quantitative outliers [10].

Frequency outlier detection identifies values that appear in a set
more or less often then expected. Frequency outliers are commonly
used to detect primary key violations. Profiler uses the unique value
ratio to detect primary keys [10]. We use numerical outlier routines
on aggregated counts to detect other types of anomalies, such as
gaps in ranges which may indicate missing observations.

Profiler supports two methods of multivariate outlier detection.
First, detection routines can accept multiple columns as input. For
example, Mahalanobis distance can be used to detect multivariate
numeric outliers [10]. Second, conditioning is a general method
for converting any routine into a multivariate routine. Conditioning
applies an existing routine to subsets of data, grouped by one or
more variables (e.g., categorical or binned quantitative values). For
instance, conditioning the z-score routine on genre calculates the
scores for values within each genre separately. To support condi-
tioning, Profiler uses a partitioner that applies any transformation
to data subsets formed by applying specified group-by functions.

The space of possible routines is combinatorially large and the
results of these routines can be difficult to interpret. As a result,
Profiler does not automatically run multivariate outlier detection
routines by default. Users can initiate multivariate outlier detection
by adding conditioning columns to existing univariate detectors.

4.3 View Recommendation

For a given anomaly, the Recommender automatically populates
the View Manager (discussed next) with relevant visual summaries.
Generating summary views requires recommending a view specifi-
cation — a set of columns to visualize and type-appropriate group-
by functions for aggregation. A view specification can also include
anomaly class and certainty columns to parameterize a view. The
recommender always specifies a primary view that visualizes the
column(s) that contain the anomaly. The recommender also deter-
mines a set of related views using a model based on mutual infor-
mation. The Recommender supports two types of related views.
Anomaly-oriented views show columns that predict the presence of
anomalies. Value-oriented views show columns that best explain
the overall distribution of values in the primary column(s). Users
select which type of view to show with the related view menu.

4.3.1 Mutual Information

The mutual information of two variables quantifies how much
knowing the value of one variable reduces the uncertainty in pre-
dicting a second variable. It is equivalent to the reduction in entropy
attained by knowing a second variable. Mutual information is non-
negative and has a minimum of 0 when variables are independent.



To compare mutual information across pairs of variables, we de-
fine a distance metric D that is 0 for completely dependent vari-
ables and increases as the mutual information between variables
decreases. For variables X and ¥ with mutual information /(X,Y)
and entropies H(X) and H(Y), we define D as:

DIX,¥) = 1— < I1(X,Y) >

max(H(X),H(Y)) M

4.3.2 Recommendation

We use the metric D to recommend both the primary view and
related views. A view specification determines how data is aggre-
gated for a visual summary by assigning each row of input a group
id (e.g., a bin in a histogram or binned scatterplot). In this way, we
can derive a column of group ids from a view specification. We de-
fine ViewToColumn as a function that converts a view specification
into a column of group ids. For a set of columns C, we use VS¢
to refer to the set of all possible view specifications containing one
column from C and a type-appropriate group-by function.

The primary view always displays the set of columns that contain
the anomaly. Our goal is to produce a summary view with bins that
minimize the overlap of anomalies and non-anomalies so that ana-
lysts can better discriminate them. Recall that the class column out-
put by the Detector indicates the presence of anomalies. We enu-
merate pairs of {column, group-by functions} and select the pair
that best predicts the class column. More formally, if A is the set of
columns containing the anomaly, we recommend the view specifi-
cation vs € VS that minimizes the quantity D(ViewToColumn(vs),
class). This primary view specification (denoted pvs) is assigned
the class and certainty columns as parameters.

To suggest anomaly-oriented views, we find other columns that
best predict the class column. We consider the set of all columns R
that exclude the columns in C. We then choose view specifications
from V Sk that predict the class column. We sort specifications vs €
VSg by increasing values of D(ViewToColumn(vs), class). The
Recommender populates the View Manager with the corresponding
visual summaries in sort order until the canvas is full, discarding
summaries that contain columns already visualized.

We use a similar process to recommend value-oriented views.
Value-oriented views show visualizations related to the entire dis-
tribution of values in the primary view, not just anomalies. In-
stead of predicting the class column, we predict the group ids gen-
erated by the primary view specification. We sort specifications
vs € VSg by D(ViewToColumn(vs), ViewToColumn(pvs)). Be-
cause V Sk only contains view specifications with one column, only
univariate summaries are suggested. Our approach extends to mul-
tiple columns if we augment R to include larger subsets of columns.

4.4 View Manager

The View Manager converts view specifications into a set of
linked visual summaries. The View Manager creates type-specific
views to reveal patterns such as gaps, clusters and outliers. A query
engine for filtering and aggregating data supports rapid brushing
and linking across summaries, allowing an analyst to determine
how subsets of data project across other dimensions. In addition to
automatic view recommendation, analysts can manually construct
views through drag-and-drop and menu-based interactions. Pro-
filer visualizations are implemented in SVG using the D3 library
[2]. We now detail the design of the View Manager, including op-
timizations for rendering and query performance.

4.4.1 Summary Visualizations

Visualizing “raw” data is increasingly difficult with even mod-
erately sized data—even a few hundred data points may make a

Figure 7: Adding perceptual discontinuity to summary views.
Left: A binned scatter plot using a naive opacity ramp from
0-1. Right: An opacity scale with a minimum non-zero opacity
ensures perception of bins containing relatively few data points.

scatter plot difficult to read due to overplotting. Profiler’s sum-
mary visualizations use aggregation to scale to a large number of
records [3, 14, 20, 28, 35]: the number of marks in each view de-
pends primarily on the number of bins, not the number of records.

To compute aggregates, each view requires a group-by function
that specifies a binning strategy. For automatically generated views,
bins are determined by the Recommender. When a user manually
selects columns to visualize, Profiler chooses a group-by function
based on the range of data values. Users can also select group-by
functions or type transformations through a view’s context menu.

Histograms (numeric data), area charts (temporal data), choro-
pleth maps (geographic data) and binned scatter plots (2D nu-
meric or temporal data) visualize counts of values within binned
ranges. Though Carr [3] recommends hexagonal binning of scatter
plots for improved density estimation, we currently use rectangular
binning to enable better query and rendering performance.

Profiler uses bar charts to visualize the frequencies of distinct
nominal values. Sorting the bars by frequency helps analysts assess
the distribution of values within a set. Grouped bar charts display
the frequencies of clustered values (e.g., clusters of possible dupli-
cate values). For columns with high cardinality, it is not feasible to
show all the bars at once. In response, Profiler also visualizes the
distribution in the chart’s scroll bar. We perform windowed aggre-
gation over contiguous bars to form summary counts; the window
size is adjusted as needed to match the available pixel resolution.

Data quality bars summarize column values as valid, type er-
rors, or Profiler annotates each visualization with one
or more quality bars to indicate missing or non-conforming data.
Quality bars also act as input regions for brushing and linking.

Higher-dimensional views are depicted using small multiples.
Any Profiler visualization can be used in a trellis plot, with subplots
showing data subdivided by one or more conditioning variables.
Finally, Profiler’s table display presents the raw data. Analysts
can filter table rows by brushing summary visualizations.

Profiler visualizations also incorporate design considerations for
varying levels of scale. Naive scaling of bar heights and color
ramps can result in low-frequency bins that are essentially invisible
due to minuscule bars or near-white colors. This is unacceptable,
as outliers often reside in low-frequency bins. We induce a percep-
tual discontinuity in these scales so that low-frequency bins remain
identifiable: we give small bars a minimum height and make col-
ors for any non-zero values suitably distinguishable from the back-
ground (Figure 7). In addition, different tasks may require visu-
alizing data at different levels of detail. Profiler time-series charts
support binning by a variety of time spans (day, month, year, etc).
Maps include panning and zooming controls.
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Figure 8: Performance (in ms) of linked highlighting in a scat-
ter plot matrix (SPLOM). Orange bars represent query pro-
cessing time, blue bars represent rendering time. We varied the
number of dimensions, bins per dimension and data set size. In
most cases we achieve interactive (sub-100ms) response rates.

Each view can be parameterized using the class and certainty
columns generated by an anomaly detector. The bar chart and small
multiples views enable sorting by class and certainty. By default
we sort in descending order to reveal anomalies with higher cer-
tainty; e.g., a grouped bar chart will sort clusters of similar words
by the certainty that the cluster contains misspelled items, with
groupings determined by the c/ass column.

4.4.2 Scalable Linked Highlighting

When a user selects a range of values (e.g., by mouse hover),
Profiler highlights the projection of that data across all views. To
do so, Profiler first filters the backing data table to include only
the selected range. For each view Profiler then computes an ag-
gregate query to determine the count of selected items in each bin.
These data points are visualized as orange highlights overlaid over
the original view (see Figure 1). Linked selection extends to all
visualizations, including quality bars, scrollbars, and table views.

To support scalable, real-time interaction we addressed two per-
formance challenges: query execution and rendering. To reduce the
query load we first simplify the data. Multiple records in the input
data often map to the same bin. In response we pre-aggregate the
data, grouping by the bins for all visualized attributes. With a suit-
able number of bins per dimension (typically 10-30) this step can
reduce the number of records by one to two orders of magnitude.

To further reduce query time, we encode non-numeric types as
zero-based integers. Integer codes speed element comparisons and
simplify the calculation of dimensional indices during aggregation.
The original values are encoded in sort order and stored in a lookup
table for reference. To facilitate optimization by the browser’s just-
in-time compiler, the inner loop of the query executor avoids func-
tion calls. We also cache query results to eliminate redundant com-
putation. For example, in a scatter plot matrix (SPLOM) cross-
diagonal plots visualize the same data, only transposed.

Rendering bottlenecks also limit performance. Even with aggre-
gated views, the number of marks on-screen can grow large: a4 x 4
SPLOM containing plots with 50 x 50 bins requires rendering up
to 40,000 marks. To speed rendering we minimize modifications
to the Document Object Model (DOM) in each interactive update.
To avoid churn, we introduce all SVG DOM elements (including
highlights) upon initialization. Each update then toggles a minimal
set of visibility and style properties. We also try to take advantage
of optimized rendering pathways, for example by using squares in-
stead of hexagons in binned scatter plots.

4.4.3 Performance Benchmarks

We benchmarked query and render times during interactive brush-
ing and linking. For our test data, we sample from random dis-
tributions for up to five columns. Three of the columns are in-

dependently normally distributed. The others are linearly or log-
linearly dependent with the first column. We visualize the data
as a SPLOM with univariate histograms along the diagonal. We
then programmatically brush the bins in each univariate histogram.
This approach provides a conservative estimate of performance, as
brushing scatter plot bins results in smaller selections and hence
faster processing. We varied the number of visualized columns (3,
4, 5), bin count (10, 20, 30), and data set size (10K, 100K, 1M
rows). For each condition, we averaged the query and render times
across 5 runs. The benchmarks were performed in Google Chrome
v.16.0.912.75 on a quad-core 2.66 GHz MacPro (OS X 10.6.8) with
per-core 256K L2 caches, a shared 8MB L3 cache and 8GB RAM.

Our results demonstrate interactive rates with million-element
data sets (Figure 8). We see that the number of columns and num-
ber of bins have a greater impact on performance than the num-
ber of data points. We also performed an analysis of variance
(ANOVA) to assess the contribution of each factor to the average
response time. We found significant effects for SPLOM dimension
(F220=21.4, p<0.0001) and bin count (F3 29 =14.8, p=0.0001).
However, we failed to find a significant effect of data set size (F 0 =
1.2, p=0.3114), lending credence to our claim of scalability.

S. INITIAL USAGE

We have conducted informal evaluations of Profiler on a variety
of data sets—including water quality data, a disasters database,
obesity data, a world wide quality-of-life index, and public govern-
ment data. We now describe two concrete examples of how Profiler
has enabled rapid assessment of these data sets.

The disasters database contains 11 columns, including the type,
location, and consequences (cost, number affected) of the disaster.
Profiler identified 13 data quality issues. These include 2 columns
containing duplicates due to inconsistent capitalization, 6 columns
with missing values, and 3 columns with extreme values. For ex-
ample, Profiler detected disasters with extremely high monetary
cost. The recommended views include the Type column. Upon
selecting large values in the Cost histogram, it became evident that
the vast majority of these outliers were floods, storms or droughts.
By selecting these values in the Type bar chart, we confirmed that
these disaster types typically lead to higher cost. For columns with
missing values, Profiler primarily recommends columns with co-
occurrences of missing values. For instance, rows missing values
in a Killed column also tend to have missing values in the Cost, Sub
Type, and Affected columns. Because of this, the recommended
views for each of these anomalies were very similar. Assessing
data quality in this data set took just a few minutes.

We also tested Profiler on World Water Monitoring Day data.
Each year, thousands of people collect water quality data using test
kits; they manually record the name and location of the body of
water as well as measurements such as Turbidity and pH. The data
contains 34 columns. Profiler identifies 23 columns with missing
data, 2 with erroneous values, 5 containing outliers and 5 contain-
ing duplicates. For instance, the Air Temperature column contains
extremely low temperatures. Profiler recommends a world map and
a visualization of the date of collection, revealing that the extreme
lows were collected in Russia during winter. The data set also con-
tains many duplicates. Data collectors often refer to the same city
by slightly different names, resulting in hundreds of potential du-
plicates. After inspecting a few duplicate sets, we conditioned text
clustering on the State column to simplify the clustered bar charts
significantly. However, Profiler also flagged possible duplicates in
the State column itself, prompting us to resolve duplicates there
first. Profiler also flagged the Site Country name for containing er-
roneous country names; a recommended bar chart shows that peo-



ple enter extra specifics, such as “Congo, Republic of (Brazaav-
ille).” We then corrected these values to enable proper aggregation.

6. CONCLUSION

In this paper we presented Profiler, an extensible system for data
quality assessment. Our system architecture can support a flexible
set of data types, anomaly detection routines and summary visual-
izations. Our view recommendation model facilitates assessment of
data mining routines by suggesting relevant visual data summaries
according to the mutual information between data columns and de-
tected anomalies. We demonstrated how the appropriate selection
of linked summary views aids evaluation of potential anomalies and
their causes. We also discussed optimizations for scaling query
and rendering performance to provide interactive response times
for million element data sets within modern web browsers. By in-
tegrating statistical and visual analysis, we have found that Profiler
can reduce the time spent diagnosing data quality issues, allowing
domain experts to discover issues and spend more time performing
meaningful analysis.

In future work, we plan to evaluate Profiler through both con-
trolled studies and public deployments on the web. We intend to
develop a tool for end users to define custom types (c.f., [29]) and
to incorporate detectors and visualizations for additional data types
such as free-form text. Our query engine is currently limited to
data that fits within a browser’s memory limit. Future work might
examine hybrid approaches that combine server-side aggregation
with client-side interactive querying. Our model for view recom-
mendation currently uses pairwise mutual information, which is in-
sensitive to redundant dependencies between data. Other methods,
such as structure learning of Bayesian networks, might account for
conditional dependencies between sets of columns to side-step re-
dundancy and further improve view ranking.
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