
A New Approach for Network Vulnerability
Analysis

Hai L. Vu∗, Kenneth K. Khaw∗, TY Chen and Fei-Ching Kuo
∗Centre for Advanced Internet Architectures (CAIA)

Faculty of ICT, Swinburne Univ. of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia
Email: h.vu@ieee.org

Abstract—We propose in this paper a novel approach to
analyze network vulnerability and to obtain a quantitative value
representing the level of security achieved in an arbitrary
network. Unlike previous graph-based algorithms that generate
attack trees (or graphs) to cover all possible sequences of
vulnerabilities and therefore are not scalable, our method utilizes
the attack graph’s principles, but directly analyzes and produces
the desired security measure for a network without building the
actual attack graph. The proposed approach relies on a unique
evaluation of vulnerability metric defined in this paper and is
demonstrated through an example of a network that provides
voice over IP services.

I. INTRODUCTION

Protecting a network against malicious intrusions is crucial
to the overall security of the network which becomes a
real challenge as the size of networks grows. Attackers can
combine multiple vulnerabilities (or exploits) on various hosts
in a network to achieve their goals such as gaining access
to or disrupting services offered by that network. In the past,
attack trees (or graphs) representing a collection of possible
sequences of vulnerabilities used to reach the attack goal are
constructed manually by a so-called Red team. Having such
an attack graph, system administrators can then improve the
security of their network by patching vulnerabilities and con-
figuration errors which pose the greatest risk to the network.
However, manual construction of attack graphs is error-prone
and impractical for large networks. Recent studies suggested
the use of model checking [8] to automate the process of
constructing attack graphs, and to ensure that they are exhaus-
tive and succinct [3], [4], [5]. Although automating makes it
easier to analyze and evaluate the overall vulnerabilities of a
network and its security, scalability remains the main concern
for graph-based network vulnerability analysis. It is because
the size of the attack graph quickly becomes too large to be
practical as the size of the network increases. For example, as
reported in [4], a network with 5 hosts and 8 vulnerabilities
would result in an attack graph of 5,948 nodes and 68,364
edges in a state space of 229 bits.

There have been two main approaches in the literature
attempting to address the scalability problem [1], [2]. In
particular, the authors in [1] introduce a monotonicity assump-
tion that dramatically reduces the size of the attack graph
without losing information that are required to facilitate the
network vulnerability analysis. The monotonicity assumption
assumes that the preconditions (as well as postconditions) of

a vulnerability are conjoined, and that the attacker will never
have to backtrack, i.e., relinquish a state that it has successfully
exploited before. A different approach is proposed in [2] where
the reachability matrix that represents the connectivity between
arbitrary node pair in a network is collapsed into smaller sub-
matrices and therefore reduces the computing cost. This is
done by grouping hosts that are treated identically by filtering
devices and therefore have the same reachability within the
subnet and cross different subnets of the network. The authors
in [2] report results for a real operational network consisting of
252 hosts; 3,777 ports and 8,585 vulnerabilities. The resulting
attack graph contains 8,901 nodes and 23,315 edges which
can be further simplified by grouping nodes together for better
visualization. But even then the attack graph is still too large
and complicated for a human to interpret and analyze.

In this paper we propose a framework for network vul-
nerability analysis based on a unique vulnerability metric
and operations that enables development of a more scalable
algorithm to analyze and compute the desired security measure
for a network without building the actual attack graph. To this
end, we will apply the monotonicity assumption and utilize the
principles of attack graph in analyzing network vulnerabilities;
however, the proposed algorithm itself will not depend on the
resulting attack graph and therefore make it more scalable.

The rest of the paper is organized as follows. We describe
the framework for network vulnerability analysis in Section
II where we define our vulnerability metric and related op-
erations. The main algorithm for assessing network security
based on these metric operations is also proposed in this
section. In Section III we demonstrate through an example
the applicability of our framework by assessing the level of
security of a network that provides voice over IP services.
Finally, we conclude our paper in Section IV.

II. PROPOSED FRAMEWORK FOR NETWORK

VULNERABILITY ANALYSIS

In this section we describe our framework for network
vulnerability analysis and propose a novel algorithm that
bypasses the construction of an attack graph and therefore
remains scalable as the size of networks grows. In order to
do so, however, we will start with a resulting attack graph
(or attack tree for a given objective) obtained from any of the
previous proposals in the literature to define our vulnerability
metric and its operations.

200978-1-4244-2413-9/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 26, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

A. Vulnerability metric and its operations

Without loss of generality, let us consider an attack tree
in Fig. 1 obtained from an automated generation technique
such as the one proposed in [4]. Note that an attack tree is
a graph in which each possible combination of vulnerabilities
(or exploit chain) ends in a leaf state that satisfies the attacker’s
goal. Attack graph, on another hand, is a collection of several
attack trees in which in some or all common states are merged.
When the objective (or goal) of the attacker is specific, then the
attack graph and attack tree both represent the same sequences
of exploits the attacker can take to achieve its goal. In the
example shown in Fig. 1, the attacker can utilize a number
of vulnerability sequences to reach the goal. In particular,
there are five vulnerabilities denoted by Vi, i = 0, ..., 4, and
the attacker can choose either of the following vulnerability
sequences to reach the goal G: {V1 → G; V0 → V1 →
G; V2 → V4 → G; V3 → V4 → G}.

c

Attack

Goal (G)

V4

V2 V3

d

e

V1

b

V1

V0

a

Fig. 1. Framework and concepts: an illustration example.

To analyze the attack tree shown in Fig. 1, we first define
a vulnerability metric for each of the vulnerability on the
tree. In principle, the vulnerability metric should represent the
intrinsic qualities of a vulnerability, but at the same time reflect
any characteristics of a vulnerability that change over time or
are unique to any users environment. The intrinsic qualities
of a vulnerability are those that are constant with time and
across user environments. These may include the availability,
complexity and whether or not extra conditions are required
to exploit the vulnerability. Each of these qualities should also
be considered in the context of the impact of the vulnerability
on services (if exploited) in terms of confidentiality, integrity
and availability. Furthermore, as the threat posed by the
vulnerability may change over time, the vulnerability metric
should also reflect factors such as the availability of exploit
code or the remediation status of the vulnerability. Finally, the
specific environment or service being offered can influence the
potential damage that the vulnerability could cause, and the
metric should allow users to alter its value correspondingly.
The choice of vulnerability metric may depend on the specific
network and application and we will show a concrete example
in Section III where we assess the level of security of a VoIP
network.

For a vulnerability metric that satisfies the above principles,
we define two operations to capture the dependency among
vulnerabilities within an exploit chain, and to reflect on the
relationship between different exploit chains within an attack
tree. These operations are defined based on the domain of
vulnerability metric denoted by V .

The first operation denoted by ∪ : (V × V) → V gives
a vulnerability metric that represents the overall vulnerability
value of an exploit chain consisting of several vulnerabilities.
For example, given the metrics {a, b, c, d, e} ∈ V associated
with vulnerabilities Vi, i = 0, ..., 4 as depicted in Fig. 1, the
metric of the V3 → V4 → G exploit chain is d ∪ e ∈ V . We
define the ∪ operation such that d ∪ e < d, e which indicates
the overall vulnerability measure of any chain is less than
an individual measure of exploits on that chain. It is because
within an exploit chain, one vulnerability has to take advantage
of the successful penetration of another vulnerability preceding
it in the chain, and only the last exploit achieves the attacker’s
goal.

The second operation denoted by ∩ : (V × V) → V gives
a vulnerability metric that represents the overall vulnerability
value of two or more vulnerabilities (or exploit chains) that in-
duce the same postcondition after the penetration is achieved.
For example, as shown in Fig. 1, both V2 and V3 vulnerabilities
reach the same node (V4) on the attack tree (i.e. induce the
same postcondition), and thus their overall vulnerability value
(metric) is calculated as c∩ d ∈ V . We define the ∩ operation
such that c ∩ d ≥ c, d reflecting the fact that the attacker
can choose any of the exploits to achieve the same objective
(postcondition) and therefore the overall metric is greater or
equal to vulnerability value of individual exploits. The list of
properties associated with the above two operations is given
below.

• a ∪ b < a, b and a ∩ b ≥ a, b
• ∪ is a commutative 1 and associative operation, i.e.,

a ∪ b = b ∪ a and a ∪ (b ∪ c) = (a ∪ b) ∪ c,
• and ∩ is a commutative and associative operation, i.e.,

a ∩ b = b ∩ a and a ∩ (b ∩ c) = (a ∩ b) ∩ c.

For many cases in network vulnerability analysis, however,
it is to find the most critical path or a chain of exploits that
poses the greatest risk to the system. For this purpose we
will apply in our framework the ∩ = max operation, i.e.,
a ∩ b = max{a, b} ∈ V . Let us define a minimum cut-set in
an arbitrary attack tree (or attack graph) by a set of exploits
such that the attacker’s goal will not be achieved if any
of the vulnerability is removed from the set. Clearly each
minimum cut-set is a chain of exploits, which we call a critical
path, within the attack tree that the attacker can follow to
achieve its goal. A non-critical path is a path that the attacker
can still achieve its objective if some of the vulnerabilities
are removed from that path. Generally, an attack tree (or
graph) consists of both critical and non-critical paths as model

1Although the commutative property holds, reversing the order in this
operation might not be valid as vulnerabilities usually follow a strict order on
an exploit chain.

201

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 26, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

checker generates every possible combination of exploits that
satisfies the attacker’s goal. Here we are interested in the most
critical path whose overall vulnerability metric can represent
the vulnerability measure of the network that the attack tree
modeled. The following lemma states an important result using
the above defined operations.

Lemma 1: For any attack tree consisting of nodes (network
states) and directed edges (vulnerability exploits), applying
the ∪ and ∩ operations over all possible goal-induced exploit
chains of the attack tree will yield the overall vulnerability
metric of the most critical path within that tree.

Lemma 1 implies that regardless of how many critical and
non-critical paths existed on the attack graph, the resulting
metric obtained via ∪ and ∩ operations over all possible
paths is the overall vulnerability metric of the most critical
path only. The rigorous proof of Lemma 1 is omitted in
this paper due to space limitations, but the fundamental
principles can be illustrated in the example shown in Fig. 1.
In particular, there are three critical paths (minimum cut-
sets): {V1 → G; V2 → V4 → G; V3 → V4 → G}, and one
non-critical path: V0 → V1 → G exist in Fig. 1. Observe that
both V1 and V0 → V1 reach the attacker’s goal, and their over-
all metric is calculated as (a ∪ b) ∩ b = max{(a ∪ b), b} = b,
which is a metric of the vulnerability V1. Thus the resulting
metric will only depend on V1 and not on the metric of
V0 → V1 attack chain. It is because exploiting V1 alone
satisfies the attacker’s objective regardless of whether V0 is
exploited or not, and from the vulnerability analysis point of
view, V1 is a critical path (or a minimum cut-set) that leads
to system compromise. Continuing the computation over the
remaining exploit chains V2 → V4 → G and V3 → V4 → G
will give the metric of the most critical path of the example
attack tree.

B. Framework for Network vulnerability Analysis

We describe in the following the framework for network
vulnerability analysis, and propose the main algorithm based
on the above defined metric operations. Our framework con-
sists of two parts and is described sequentially as follows.

The first part is to gather information from network admin-
istrators, and via scanning tools and other network discover
activities. Information provided by the network administrator,
which we call design information, include network topology
and connectivity, existing security measures in the network
such as policies, procedures and rules placed in firewalls,
routers/switches and other network devices. Note that some of
the design information might not be available in practice due
to one reason or another, and the framework will have to work
with information that are less specific. A bulk of information
which we call discovery information, however, come from
common available network scanning tools such as nmap [9],
Nessus [10], Retina [11] and Wireshark [12]. These
tools can be used to do a thorough scan the target network
(for open ports, OS, services, etc.) and gather any related data
available on that network. In particular, tools such a nmap or
Wireshark can be used to gather information on network’s

components such as open ports, OS versions and current run-
ning services but does not identify the vulnerabilities that are
associated with them. To specifically scan for vulnerabilities,
tools such as Nessus and Retina are designed to scan a
network and report all vulnerability(s) they can find within that
network. These tools, however, do not specify which network
component(s) the reported vulnerability is associated with.

Once the available information (design and discovery) are
collected, an attack graph is generated using a model checker
in the previous methods to represent all possible sequence
of exploits. The vulnerability analysis is then carried out
after obtaining the attack graph. As mentioned in Section I,
scalability is a serious problem in approaches that use model
checking. In contrast, we propose here in the second part of our
framework a direct approach for network vulnerability analysis
without building up the attack graph and is therefore more
scalable. Our algorithm utilizes results stated in Lemma 1
to search directly for the most critical path and its overall
vulnerability metric based on design and discovery information
that are available from part one of the framework.

In the second part of our framework, we define the following
notations that are required for the description of the proposed
algorithm. Let H = {H0, H1, H2, ...} be a set of network
devices (hosts) where Hi, i > 0 are basic components of the
targeted network such as computers, routers and telephone
devices, etc.. And H0 is a host (usually resides outside and
is connected to the targeted network through the Internet)
used by the attacker to launch the attack. Let R be a reach-
ability matrices representing the relation between network
devices and components which can be established based on
the available design information. Let V = {V1, V2, ...} be
a set of vulnerabilities that are associated with the targeted
network. The vulnerability set V is obtained from available
discovery information as described earlier. The vulnerabil-
ity Vi is represented by a tuple (source, target, α, C1, C2)
where target is a unique identifier of the host/device in the
targeted network where the vulnerability exists. Furthermore,
the vulnerability can not be executed unless the precondition
C1 of the target is satisfied. The postcondition C2 is a
condition that is satisfied after the vulnerability has been
exploited. The source is a unique identifier of the host/device
inside or outside the targeted network where the attack is
originated from. And finally, α ∈ V is a vulnerability
metric as defined in Section II.A. The chain of exploits
consisting of vulnerabilities Vi and Vj , i �= j is denoted as
Vi,j = (source(i), target(j), α(i)∪α(j), C1(i), C2(j)) which
indicates that the exploit chain starts from the source(i) of Vi

and finishes in the target(j) of Vj with the corresponding
pre- and postconditions and vulnerability metric. The length
of this exploit chain is denoted by |Vi,j | = 2 which indicates
that the attacker has to exploit two vulnerabilities Vi and Vj

sequentially to achieve its goal. Denote the maximum length
(in which we are still interested) of any exploits chain by
d > 0, and let G be the attacker’s goal (objective) in the
targeted network.

We consider here the worst case scenario where the attacker

202

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 26, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

knows about all vulnerabilities and will exploit them whenever
possible in the targeted network to achieve its goal. Further-
more, we also assume monotonicity to imply that the attacker
is sophisticated and will not backtrack during attack. We have
enforced the monotonicity mainly because this assumption will
help our algorithm find more meaningful critical paths that
need to be addressed in the targeted network. The proposed
algorithm is summarized as follows.

Algorithm 1 Algorithm for Assessing Network Vulnerability
Require: G, H, R, V, d > 0

1: O = {}, T = {}; ν = 0 // Initialization
2: Calculate a vulnerability metric ν of the most critical path
3: for Vi ∈ V do
4: if C2(i) = G then
5: for Hj ∈ H do
6: if Hj = source(i) then
7: Add Vi to O

8: end if
9: end for

10: end if
11: end for
12: while O �= ∅ do
13: for Vi ∈ O do
14: if source(i) = H0 then
15: add Vi to T

16: end if
17: end for
18: if T �= ∅ then
19: Find Vi with max α in T → k : α(k) = max
20: Remove all Vi�=k having α(i) ≤ α(k) from O

21: Set T = {}
22: end if
23: if ∃k & ∀Vi�=k ∈ O : α(k) ≥ α(i) or |Vk| > d then
24: Set ν = α(k) → FINISH
25: else
26: for Vi ∈ O (i �= k iff ∃k) do
27: Find Vj ∈ V : target(j) = source(i) &

C1(i) = C2(j)
28: iff ∃Vj → Find all source(j) ∈ H satisfying R

29: Set Vi = Vi,j

30: end for
31: end if
32: end while

III. ILLUSTRATION EXAMPLE AND DISCUSSION

In this section we demonstrate the utility of our framework
and show its effectiveness via an example of network vul-
nerability analysis of a real VoIP network. Our testbed (as
shown in Fig. 2) consists of 4 Cisco Unified 7960 IP Phones
with firmware version 7.9.2; 4 VoIP Softphones installed on
3 desktop computers and a laptop; a SIP proxy and a SIP
server for handling calls and a session initiation protocol
(SIP) signalling for VoIP. The SIP Proxy runs an open source
daemon, and the SIP registrar server runs an open source

application called Asterisk (version 1.2.1) [7]. The attacker’s
computer uses Fedora Core 7 OS operating system and has
various VoIP hacking tools installed. We have also installed old
version softwares on network components in order to introduce
more vulnerabilities into the example.

Fig. 2. A testbed for VoIP network.

As described in Section II.B., we first gather the information
from the testbed before carrying out the vulnerability analysis
using the algorithm proposed in our framework. The design
information, namely, the network topology and relations (con-
nectivity) between network components are given in Fig. 2.
Furthermore, we use Nessus program to scan and collect
vulnerabilities associated with all network components of the
testbed. The simplified outputs obtained from Nessus for
selected vulnerabilities that are important for our analysis are
summarized in Table I.

We also present in Table I different vulnerabilities using
the tuple as described earlier in our framework, namely,
V (source, target, α, C1, C2). Most of the parameters in the
tuple can be determined from the scanning outputs and avail-
able design information, however, the vulnerability metric
remains to be defined. In this example, we choose the vul-
nerability metric that relates to the score given by a common
vulnerability scoring system (CVSS) [6]. It is because the
CVSS score has all the qualities to represent a vulnerability
and is readily available from the Nessus scanning outputs. To
this end, we scale the CVSS score of a given vulnerability to
a value between 0 and 1, and assign it to that vulnerability
as a vulnerability metric. This vulnerability metric can be
interpreted as a measure of the likelihood (i.e., probability)
of that particular vulnerability to be exploited. The assigned
vulnerability metric is given in the tuples as shown in Table I.
Having the vulnerability metric, the ∪ operation can then be
defined as a multiplication operation of probabilities. Hence,
the vulnerability metric of an exploit chain is computed as a
product of vulnerability metrics of individual exploits in that
chain.

Combining both design and discovery information gives
the list of possible vulnerabilities in the testbed and the cor-
responding relations between network components based on
network topology as shown in Tables II and III, respectively.
Having collected all the information, we now progress to

203

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 26, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

TABLE I
SAMPLES FROM SCANNING OUTPUTS OF NESSUS .

Network Components
(target)

Nessus Vulnerability Output Vulnerability

SIP Proxy (H1) CVE Reference: CVE-2005-0449
Description: Allows attacker to bypass netfiler/iptables or
initiate a denial of service attack.
CVSS Base Score: 5.0
Pre-Condition: Linux, Kernel 2.6.x
Post-Condition: Denial of Service, bypassing firewall

V (source, H1, 0.50, Linux-kernel-2.6.1, bypassing firewall)

CVE Reference: CVE-2008-1483
Description: Attackers are able to hijack a SSH Session
CVSS Base Score: 6.2
Pre-Condition: OpenSSH-4.3p2 and earlier
Post-Condition: Allows remote connection, Gain access to system.

V (source, H1, 0.62, OpenSSH-4.3p2, hijack session)

Asterisk Server (H2) CVE Reference: CVE-2008-1483
Description: Attackers are able to hijack a SSH Session
CVSS Base Score: 6.2
Pre-Condition: OpenSSH-4.3p2 and earlier
Post-Condition: Allows remote connection, Gain access to system.

V (source, H2, 0.62, OpenSSH-4.3p2, hijack session)

CVE Reference: CVE-2008-0095
Description: Allows remote attackers to cause Denial of Service to
an Asterisk via a BYE message with an Also header
CVSS Base Score: 5.0
Pre-Condition: Asterisk, Open Source, 1.4.0 and previous
Post-Condition: Denial of Service to Asterisk//VoIP Services

V (source, H2, 0.50, Asterisk-1.2.1, DoS)

CVE Reference: CVE-2007-1306
Description: Allows remote attackers to cause Denial of Service to
an Asterisk using a SIP packet without a SIP-version header.
CVSS Base Score: 7.8
Pre-Condition: Asterisk, Open Source, 1.4.16 and previous
Post-Condition: Denial of Service to Asterisk//VoIP Services

V (source, H2, 0.78, Asterisk-1.2.1, DoS)

Cisco IP Phones (H3) CVE Reference: CVE-2007-4459
Description: Allows remote attackers to cause Denial of Service to
Cisco IP Phones using a SIP packet with 10 invalid SIP INVITE
and OPTIONS.
CVSS Base Score: 7.1
Pre-Condition: Cisco, VoIP Phone, CP-7960, 8.70 and previous
Post-Condition: Denial of Service to Cisco IP Phones/VoIP Ser-
vices

V (source, H3, 0.71, Cisco IP-7.90, DoS)

CVE Reference: CVE-2005-2181
Description: Allows remote attackers to bypass verifications with
a spoof NOTIFY message.
CVSS Base Score: 5.0
Pre-Condition: Cisco, VoIP Phone, CP-7960, 8.70 and previous
Post-Condition: Spoof Cisco IP Phones/Gain access to VoIP Ser-
vices

V (source, H3, 0.50, Cisco IP-7.90, spoof ciscophone)

CVE Reference: CVE-2008-0531
Description: Allows remote attackers to cause buffer overflow to
Cisco IP Phone and allow arbitrary code to be executed remotely
via a crafted message
CVSS Base Score: 9.3
Pre-Condition: Cisco, VoIP Phone, CP-7960, 8.70 and previous
Post-Condition: Gain access to Cisco IP Phones/VoIP Services

V (source, H3, 0.93, Cisco IP-7.90, buffer overflow)

TABLE II
LIST OF POSSIBLE VULNERABILITIES IN THE VOIP TESTBED AND THE CORRESPONDING RELATIONS.

Network Components
(source)

Relations Possible Vulnerabilities

Attacker’s PC (H0) H0 → H1 V1 (H0, H1, 0.50, Linux-kernel-2.6.1, bypassing firewall)
V2 (H0, H1, 0.62, OpenSSH-4.3p2, hijack session)

H0 → H3 V3 (H0, H3, 0.71, Cisco IP-7.90, DoS)
V4 (H0, H3, 0.50, Cisco IP-7.90, spoof ciscophone)
V5 (H0, H3, 0.93, Cisco IP-7.90, buffer overflow)

SIP Proxy (H1) H1 → H2 V6 (H1, H2, 0.62, OpenSSH-4.3p2, hijack session)
V7 (H1, H2, 0.50, Asterisk-1.2.1, DoS)
V8 (H1, H2, 0.78, Asterisk-1.2.1, DoS)

H1 → H3 V9 (H1, H3, 0.71, Cisco IP-7.90, DoS)
V10 (H1, H3, 0.50, Cisco IP-7.90, spoof ciscophone)
V11 (H1, H3, 0.93, Cisco IP-7.90, buffer overflow)

Asterisk Server (H2) H2 → H3 V12 (H2, H3, 0.71, Cisco IP-7.90, DoS)
V13 (H2, H3, 0.50, Cisco IP-7.90, spoof ciscophones)
V14 (H2, H3, 0.93, Cisco IP-7.90, buffer overflow)

204

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 26, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

Fig. 3. Vulnerability results for a VoIP testbed

Fig. 4. Vulnerability results for an upgraded VoIP testbed

TABLE III
RELATIONS BETWEEN NETWORK COMPONENTS AND THEIR

VULNERABILITIES.

Relations H0 H1 H2 H3
H0 - V1, V2 - V3, V4, V5
H1 V1, V2 - V6, V7, V8 V9, V10, V11
H2 - V6, V7, V8 - V12, V13, V14
H3 V3, V4, V5 V9, V10, V11 V12, V13, V14 -

the second part of the framework and evaluate the network
vulnerability using the proposed algorithm. In particular, given
that the attacker’s objective is to compromise the voice service
in this network, we apply the algorithm to find the most critical
path and to evaluate the overall vulnerability metric of that
path. Results obtained from our algorithm are illustrated in
Fig. 3. Just after one iteration, without building up a full-
scale attack tree, our algorithm points out that the most critical

path is consisting of only one vulnerability V5 (in Table II)
with the overall vulnerability metric is equal to 0.93. For a
given objective (i.e., compromising voice service) this result
indicates that from the network vulnerability analysis point of
view the attack that exploits buffer overflow vulnerability in
the Cisco IP phone is the most critical one. We also state that
the vulnerability of this network is high and is quantified by
a value of 0.93 based on a scale from 0 to 1.

To demonstrate further the capability of our framework,
let us consider a scenario where the firmware of the Cisco
IP phone is upgraded as a result of the above analysis. We
then apply the algorithm once again while keeping the same
objective. The results are shown in Fig. 4. Observe that after
the first iteration the most critical path is associated with V8

vulnerability. Since V8 is a later vulnerability on a chain of
exploits, the algorithm will run a second iteration to produce

205

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 26, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

the full exploit chain of V1 → V8. As a result, this chain
will now be represented as V1,8 vulnerability with the overall
vulnerability metric of 0.39 which is a product of the metrics
of V1 and V8 vulnerabilities. After the second iteration V2 now
becomes the most critical path. Therefore the vulnerability of
this network is now represented by the vulnerability metric of
V2 which is 0.62. This is a significant improvement compared
to that of the previous case which reflects the effectiveness
of the actions taken (i.e. upgrading the firmware of Cisco IP
phones) to improve network security. Note that the scalability
of our framework is achieved by examining only the most
critical path at any stage of the algorithm. By doing so, we do
not follow any exploit chain that is not critical to the security
of the network.

IV. CONCLUSION

We have developed in this paper a framework for network
vulnerability analysis and proposed a scalable algorithm to
evaluate the overall network vulnerability without generating
a full-scale attack graph. The framework gives a quantitative
value representing the level of security achieved in an arbitrary
network based on a new defined vulnerability metric and its
operations. Using the proposed algorithm we have analyzed
a real network offering voice over IP service to demonstrate
the effectiveness of our framework in network vulnerability
analysis. We have also shown that important insights can
be obtained from our analysis to identify the most critical
vulnerabilities and to improve the overall security in a network.

REFERENCES

[1] P. Ammann, D. Wijesekera and S. Kaushik, “Scalable, Graph-Based
Network Vulnerability Analysis,” in Proc. of the 9th ACM Conference
on Computer and Communications Security, 2002, pp. 217–224.

[2] K. Ingols, R. Lippmann and K. Piwowarski, “Practical Attack Graph
Generation for Network Defence,” in Proc. of the 22nd Annual Computer
Security Applications Conf., Dec. 2006.

[3] R.W. Ritchey and P. Ammann, “Using model checking to analyze network
vulnerabilities,” in Proc. of the IEEE Symposium on Security and Privacy,
May 2001, pp. 156–165.

[4] O. Sheyner, J. Haines, S. Jha, R. Lippman, and J. Wing, “Automated
Generation and Analysis of Attack Graphs,” in Proc. of the IEEE
Symposium on Security and Privacy, Oakland, CA, May 2002.

[5] T. Zhang, M. Hu, D. Li and L. Sun, “An Effective Method to Generate
Attack Graph,” in Proc. of the 4th International Conference on Machine
Learning and Cybernetics, August 2005, pp. 18-21.

[6] Common Vulnerability Scoring System (CVSS),
http://www.first.org/cvss/, 2008.

[7] Asterisk, http://www.asterisk.org/, 2008.
[8] NuSMV, http://nusmv.irst.itc.it/, 2008.
[9] Network Mapper (Nmap), http://nmap.org/, 2008.
[10] The Nessus vulnerability scanner, http://www.nessus.org/nessus/, 2008.
[11] Retina Network Security Scanner,

http://www.eeye.com/html/Products/Retina/index.html, 2008.
[12] Wireshark, http://www.wireshark.org/, 2008.

206

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 26, 2009 at 18:07 from IEEE Xplore. Restrictions apply.

