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Definition

The unitary event (UE) analysis is a statistical method that detects conspicuous patterns of synchro-
nous spiking activity among simultaneously recorded spike trains. Significant patterns are identified
by comparison of their occurrence counts to the null hypothesis of statistical independence based on
the activity of the neurons.

Detailed Description

It has been proposed that cortical neurons organize dynamically into functional groups (“cell
assemblies”) by the temporal structure of their joint spiking activity. The unitary event analysis
method is designed to detect such patterns of coincident spiking activity occurring more often than
expected by chance among simultaneously recorded single neurons. To this end, the spiking activity
of all simultaneously recorded neurons is represented, after appropriate time discretization
(e.g., h ¼ 1 ms), as parallel sequences of zeros and ones, “1” indicating the existence of at least
one spike (clipping) and “0” the absence of spikes (Fig. 1a). From this representation, the number of
occurrences for each of the individual 0–1 patterns across the neurons is counted. There are at most
different 2N different coincidence patterns in data of N simultaneously observed neurons. Due to the
finite recording time and the dominance of zeros, however, the actual number of different coinci-
dence patterns found is typically much lower. A unique index k is assigned to each existing pattern
based on some arbitrary sorting. Next, for each pattern k, the number of occurrences termed the
empirical count is determined. To derive the significance of a pattern k, the p-value of its number of
occurrences is calculated by comparison to the probability distribution derived under the null
hypothesis of statistical independence of the processes. The distribution can either, under certain
conditions, be assumed and adjusted by parameters estimated from the data (parametric approach) or
can be derived with Monte Carlo methods by the generation of surrogate data on the basis of the
original data (nonparametric approach).

The parametric approach has the following assumptions: (a) the firing rates are stationary within
the time span of the observation T, and (b) the processes have Poisson properties. Then the expected
number of occurrences of a pattern k can analytically be calculated based on the firing rates of the
neurons. For each neuron i, the probability of firing within a bin pi is derived by dividing the number
of bins occupied by a spike ci by the total number of bins in T, i.e., T/h, with h the bin width. The joint
probability for pattern k, Pexp

k , to occur by chance is then calculated as the product of the firing
probabilities pi for the neurons contributing a spike in pattern k and probabilities 1 � pi for neurons
contributing a 0 to the pattern. The expected number of occurrences of pattern k is derived as
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nexp
k ¼ Pexp

k � T/h. This quantity defines the mean of the Poisson distribution that is used to estimate
the significance of the pattern by calculation of its p-value, i.e., the area under the distribution from
nemp
k to infinity. If the p-value is smaller or equal to a predefined significance level a, the pattern is

considered to occur significantly more often than by chance. If the p-value is larger or equal to
1 � a, the pattern is occurring significantly less often than expected. The p-value may be expressed
as the surprise measure (Fig. 1c), a logarithmic transformation of the p-value (Gr€un et al. 2002a) for
better visualization (Fig. 2c).

Often experimental data exhibit violations of the above assumptions, i.e., firing rates may change
even on a short timescales or spike trains deviate from Poisson statistics. In the latter case, the
coincidence distribution is not well described anymore by a Poisson distribution (e.g., Pipa
et al. 2013), since the process type influences the distribution. If firing rate changes are not properly
considered, the estimated mean of the distribution may not be correct. If such cases are ignored, this
may lead to false-positive outcomes and wrong interpretation of the data (Gr€un 2009; Gr€un
et al. 2010). Thus, an alternative approach for the estimation of the significance is based on
a numerical (Monte Carlo) method, in which the original data are manipulated to destroy potential
spike synchrony but conserve all other features of the spike trains. One example is spike dithering,
i.e., the random displacement of each individual spike within a small time window (e.g., Pipa
et al. 2003; for details and alternative approaches, see Louis et al. 2010a, b). The resulting surrogate
data are then analyzed like the original data for the number of occurrences of patterns of interest.
Pattern counts frommany repetitions of this procedure realizing the null hypothesis of independence
form the distribution, which is then used for the significance estimation of the empirical pattern
count.

When aiming at the analysis of the correlation structure of the neuronal spiking activity in relation
to behavior, which is dynamic by nature, the analysis has to be performed in a time-dependent
manner. Also the firing rates typically change in time which needs to be accounted for. Therefore, the
UE analysis is applied within a time window of length T (i.e., 100 ms duration) that is slid along the
data (for proper choice of the analysis window, see Gr€un et al. 2002b). This enables the study of the
dynamics of the correlation structure. It was found in a number of studies that spike synchronization
modulates in time in relation to the behavioral context (e.g., Riehle et al. 1997; Gr€un et al. 1999;
Riehle et al. 2000; Maldonado et al. 2008; Kilavik et al. 2009; Ito et al. 2011).

The experiments are typically repeated over several trials to improve the statistics of the analysis.
For this purpose, the trial data are aligned to an (behavioral) event of interest. The analysis window is
then slit along the aligned data, and at each window position, the data of the same time segment are
jointly considered. The empirical pattern counts are derived by summing the occurrence counts of

Fig. 1 Binary data representation of N parallel spike trains within a data stretch of T bins of width h. (b) Distribution of
coincidences given the expected number nexp. Significance (p-value, black area) of the number of empirically found
coincidences nemp. (c) Transformation of the p-value into the surprise measure S. The arrow indicates the surprise value
corresponding to the identified p-value (jp) in b (Modified from Gr€un (2009))
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the same pattern in the different trials to provide the empirical count ~nkemp ¼
X

j
nk, jemp . In the

parametric approach, the expected number is calculated trial by trial and then summed to the total
number ~nkexp ¼

X
j
nk, jexp providing the mean of the distribution as introduced above. Taking the sum

instead of an estimate based on average firing rates across trials has the advantage to account for
cross-trial non-stationarities in the firing rates (Gr€un et al. 2003). For the nonparametric approach,
the count across trials is compared to the count distribution derived from surrogates by the sum of
counts of the surrogates across the trials. For population measures, i.e., for statistics of the data
across several sessions, one may proceed by adding more trial data, however now resulting from the
different sessions (see for details Kilavik et al. 2009).

This method is not designed to detect higher-order correlations, since the null hypothesis is
statistical independence. Shimazaki et al. (2012) extended the approach within the information
geometry framework. This identifies in a time-dependent manner higher-order spike correlation

Fig. 2 Temporal modulation of synchronous activity. UE analysis of two simultaneously recorded single neurons from
motor cortex of awake behavingmonkey. The monkey was involved in a delayed pointing task, where the duration of the
preparation period (after PS) to the requested movement (RS) was selected randomly from four possible durations
(600, 900, 1200, 1500 ms) from trial to trial. Here trials (36) with the longest duration (1,500 ms) were pooled. (a) Raster
displays of spike discharges of two neurons. (b) Comparison of measured (black) and expected (gray) coincidence rates.
Allowed coincidence width�2 ms. (c) Surprise as a function of trial time. (d) Dot display with unitary events (squares)
detected based on a significance level of a ¼ 0.05, in sliding windows of T ¼ 100 ms (Modified from Riehle
et al. (1997))
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patterns. The analyses of massively parallel spike data (e.g., in the range of 100 neurons) require
statistical methods that either ignore the individual spike patterns (e.g., Staude et al. 2010a, b) or
pool across patterns to avoid severe multiple testing problems (Picado-Muiño et al. 2013; Torre
et al. 2013).

Cross-References

▶Correlation Analysis of Parallel Spike Trains
▶Estimation of Neuronal Firing Rate
▶Gravity Analysis of Parallel Spike Trains
▶ Information Geometry as Application to Point Processes
▶ Joint-Peri Stimulus Time Histogram (JPSTH)
▶ Significance Evaluation
▶ Spike Train
▶ Surrogate Data for Evaluation of Spike Correlation
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