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Abstract—Sudden losses of generation or load can lead to 
instantaneous changes in electric grid frequency and voltage. 
Extreme frequency events pose a major threat to grid 
stability. As renewable energy sources supply power to grids 
in increasing proportions, it becomes increasingly important 
to examine when and why extreme events occur to prevent 
destabilization of the grid. To better understand frequency 
events, including extrema, historic data were analyzed to fit 
probability distribution functions to various frequency 
metrics. Results showed that a standard Cauchy distribution 
fit the difference between the frequency nadir and pre-fault 
frequency (𝒇𝒇𝑪𝑪−𝑨𝑨) metric well, a standard Cauchy distribution 
fit the settling frequency (𝒇𝒇𝑩𝑩 ) metric well, and a standard 
normal distribution fit the difference between the settling 
frequency and frequency nadir ( 𝒇𝒇𝑩𝑩−𝑪𝑪 ) metric very well. 
Results were inconclusive for the frequency nadir (𝒇𝒇𝑪𝑪) metric, 
meaning it likely has a more complex distribution than those 
tested. This probabilistic modeling facilitates more realistic 
modeling of grid faults. 

Keywords-frequency; voltage; extreme events; probabilistic 

NOMENCLATURE 

𝐟𝐟𝐀𝐀 – Avg. of freq. from -16s to 0s before an event [Hz] [17] 

𝐟𝐟𝐁𝐁 – Avg. of freq. from 20s to 52s after an event [Hz] [17] 

𝐟𝐟𝐂𝐂 – Freq. nadir; min. freq. achieved during a loss of gen. 
event [Hz] [17] 

𝐟𝐟𝐂𝐂−𝐀𝐀 – Difference between fC and fA (fC − fA) [Hz] 
𝐟𝐟𝐦𝐦𝐦𝐦𝐦𝐦 – Max. freq. prior to a loss of gen. event [Hz] [3] 

∆𝐟𝐟 – Freq. delta (fC − fmax) [Hz] [3] 

𝐓𝐓(𝟎𝟎) – NERC-defined point at which a min. freq. change 
of at least 5 mHz occurs within a 1s time span [Hz] [17] 

𝚫𝚫𝐭𝐭 – Time duration of freq. event [s] 
𝐭𝐭𝐜𝐜 – Time at which fC occurs [hh:mm:ss] 
𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦 – Time at which fmax occurs [hh:mm:ss] 
𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 – Rate of change of freq.; slope of the event [Hz/s] 
𝐇𝐇 – Inertia coefficient [MW⋅s] 

𝐅𝐅𝐅𝐅𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂  – Measure of effectiveness of primary freq. 
response capabilities to correct freq. deviations during an 
event [MW/Hz] [15] 
𝒇𝒇𝑩𝑩−𝑪𝑪 – Difference between 𝒇𝒇𝑩𝑩 and 𝒇𝒇𝑪𝑪 (𝒇𝒇𝑩𝑩 − 𝒇𝒇𝑪𝑪) [Hz] 

I. INTRODUCTION  
The electric grid transmits and distributes electricity 

across the U.S. at a nominal frequency of 60 Hz [1]. 
Synchronous generators set the frequency and come 

equipped with primary control reserves [2]. These reserves, 
also known as primary frequency response (PFR), assist in 
recovering the grid frequency after it deviates from the 
nominal value sharply (i.e., the difference between the 
maximum and minimum event frequency exceeds 70 mHz 
in a 15-second rolling window) [3] or significantly (i.e., the 
frequency is less than 59.95 Hz or more than 60.05 Hz in the 
Western Interconnection) [4]. Secondary and tertiary 
frequency responses also act to correct frequency deviations 
to the nominal value (much like PFR), but they are delivered 
after PFR and during longer time periods [5]. Frequency 
deviations can result from an instantaneous loss of 
generation or load [6]. Frequency response controls are 
needed to prevent frequency deviation events. 

Extreme frequency events are characterized “by non-
linear responses, low probabilities, high consequences, and 
the potential for systems interaction that leads to 
catastrophic losses” [7]. They could be brought about by 
extreme weather, interrupting power generation and 
transmission, but also, in the near future, the impact of high 
penetrations of renewable power onto the grid. Renewable 
sources exacerbate challenges to frequency stability and grid 
reliability because of their variable and uncertain operation 
[8]. Renewable sources do not come equipped with 
synchronous generators or PFR capabilities [8], meaning 
that when large amounts of inverter-based renewable 
generation are brought onto the 60-Hz operating grid, PFR 
capabilities might be reduced unless the renewable power 
plants are equipped with special frequency responsive 
controls [9]. Instabilities in generation can cause extreme 
events such as underfrequency load-shedding, triggering 
under/overfrequency protection relays, and reaching the 
frequency nadir [1]. Reaching the frequency nadir can lead 
to cascading failures on the grid because at this point the 
grid frequency is no longer regulated and stabilized at its 
nominal value [10]. 

Issues of grid reliability have turned the focus of 
research to grid resilience during and after an extreme event. 
Generally, two factors affect infrastructure resilience after 
an extreme event: robustness and rapidity. Robustness is a 
measure of how much of the system remains functioning 
after an extreme event, and rapidity is a measure of how 
quickly the entire system can fully function again after the 
event [11]. The U.S. electric grid comprises countless power 
plants and millions of miles of transmission lines, thus it is 
the largest infrastructure in the world, and it can be 
categorized and studied in the vein of infrastructure 
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resilience. Extreme events greatly stress the grid, and must 
be understood to allow for the integration of larger amounts 
of renewable energy penetration. By studying previous 
extreme events, outage frequencies, and outage durations, 
probability models were developed to attempt to predict 
these events happening in the future. The results suggest that 
these models can be used by system operators to 
approximate the probability of future frequency events, to 
plan generation and load balancing accordingly, and to 
possibly prevent frequency events from occurring as often 
as they do on the present electric grid. 

II. DATA AND METHODOLOGY 

A. Description of Data  
Electric frequency data collected at NREL’s National 

Wind Technology Center (NWTC) was obtained, with date, 
time, and frequency, during an approximate 2-year time 
span. The monitoring system is a National Instruments 
model cDAQ-9171 chassis with a 9225 voltage 
measurement module (24-bit, 300 VRMS), and was plugged 
into a 110-V wall outlet and connected to a PC using a USB 
2.0 cable (Figure 1) [12]. 

 
Figure 1.  Frequency monitoring system used at the NWTC to collect 

frequency data for this project. Reprinted from [12]. 

Data were collected from August 1, 2014, until June 10, 
2016, with occasional days of data missing because of 
unplanned device disconnections. The provided data were 
collected every 2 ms from August 1, 2014, to April 31, 
2016, and collected every 1 ms from May 1, 2016 onward.  

B. Data Validation 
NWTC data were validated by comparing them to 

frequency event records provided by the North American 
Electric Reliability Corporation (NERC) [13]. At the time of 
the study, NERC had provided frequency event data only 
through March 31, 2016. For each frequency event recorded 
by NERC, the corresponding NWTC data were compared. 
The specific frequency decrease pattern before, during, and 
after the events were analyzed to determine a frequency 
event match. Events when frequency increased were ignored 
in this study; such events are not of interest as they represent 
a loss of load whereas this study focuses on loss of 
generation. In the subset of matched data, various frequency 
metrics were calculated from the NWTC data and compared 
to the corresponding NERC data. These metrics included 𝑓𝑓𝐴𝐴, 
𝑓𝑓𝐵𝐵, 𝑓𝑓𝐶𝐶, and 𝑓𝑓𝐶𝐶−𝐴𝐴. The metrics 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, ∆𝑓𝑓, and 𝑇𝑇(0) were also 
determined but not for comparison purposes (Figure 2) [14]. 

 
Figure 2.  Graphical representation of frequency event on November 13, 

2015, from NWTC data (verified with NERC records) [14] 

After qualitative data analysis, a five-point moving average 
of the NWTC dataset was taken to smooth the data in an 
attempt to remove some of the variability and noise in the 
NWTC data that was not present in the NERC data. All 
previously mentioned values were again determined (𝑓𝑓𝐴𝐴, 𝑓𝑓𝐵𝐵, 
𝑓𝑓𝐶𝐶, 𝑓𝑓𝐶𝐶−𝐴𝐴, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, ∆𝑓𝑓, and 𝑇𝑇(0)). This new five-point average 
dataset is referred to as the NWTC MA dataset. The 
percentage differences among the various NERC, NWTC, 
and NWTC MA values were calculated and used as 
comparison metrics (Table 1). The percentage differences 
between the NWTC and NWTC MA values were 
particularly important because they highlighted the impact 
of the applied five-point moving average on the data. 

C. Calculation of Frequency Response Metrics 
To calculate various frequency response metrics for each 

event recorded in the NWTC dataset, the time duration of 
the event (Equation 1) and the rate of change of frequency 
(Equation 2) were both determined. 

 ∆𝑡𝑡 =  𝑡𝑡𝐶𝐶 − 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  (1) 

 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  ∆𝑓𝑓
∆𝑡𝑡

 (2) 

     The generation loss, ∆𝑃𝑃, that occurred during each event 
was provided by NERC [12]. This gave enough information 
to calculate the inertia coefficient (Equation 3) [5]. 

 𝐻𝐻 =  � 𝑓𝑓𝐴𝐴∙∆𝑃𝑃
2∙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� (3) 

Finally, the frequency response as defined by NERC was 
calculated for each event (Equation 4) [15]. 

 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∆𝑃𝑃
𝑓𝑓𝐴𝐴−𝑓𝑓𝐵𝐵

 (4) 

Various combinations of the calculated data were plotted 
as scatterplots to identify causal patterns (Table 2). Linear 
regressions were performed and R2-values compared. An 
evaluation was made of how the number of frequency events 
varied during different time frames. The number of events 
per month in the studied time frame (August 1, 2014, to 
March 31, 2016) and the number of events per season in the 
studied time frame were analyzed.
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TABLE I.  DETERMINED OR CALCULATED METRICS USED IN DATA VALIDATION FOR EVENT ON NOVEMBER 13, 2015 

 NERC NWTC % ∆ b/w NERC and NWTC NWTC MA % ∆ b/w NERC and  
NWTC MA 

% ∆ b/w NWTC and  
NWTC MA 

𝑓𝑓𝐴𝐴 (Hz) 60.019 60.019 4.17e-04% 60.019 5.33e-04% 1.17e-04% 

𝑓𝑓𝐵𝐵 (Hz) 59.950 59.951 1.00e-03% 59.951 9.84e-04% 1.67e-05% 

𝑓𝑓𝐶𝐶 (Hz) 59.924 59.922 3.39e-03% 59.923 2.39e-03% 1.00e-03% 

𝑓𝑓𝐶𝐶−𝐴𝐴 (mHz) -95.000 -96.780 -1.87e+00% -96.110 -1.17e+00% -6.92e-01% 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 (Hz) NA 60.020 NA 60.019 NA 1.08e-03 % 

∆𝑓𝑓 (mHz) NA -97.700 NA -96.450 NA -1.28e+00% 

𝑇𝑇(0) (Hz) NA 60.005 NA 60.004 NA 2.57e-03% 

TABLE II.  SCATTERPLOTS USED TO ANALYZE CALCULATED DATA 

Scatterplots 
𝐻𝐻 vs. ∆𝑃𝑃 

𝐻𝐻 vs. ∆𝑡𝑡 

NERC 𝑓𝑓𝐶𝐶 vs. ∆𝑡𝑡 

NWTC 𝑓𝑓𝐶𝐶 vs. ∆𝑡𝑡 
NWTC MA 𝑓𝑓𝐶𝐶 vs. ∆𝑡𝑡 

III. ANALYSIS 

A. Linear Regression 
An acceptable linear relationship was found between the 

calculated 𝐻𝐻-values and ∆𝑡𝑡 from the NWTC data (Table 3); 
i.e., an R2-value of 0.7932. It should be noted a limited 
amount of data used: only 67 events, and of those 67 events, 
22 did not have ∆𝑃𝑃 information from NERC, and 1 had too 
much noise in the NWTC data to properly analyze the event. 
As a result, only 44 events could be used in linear regression 
analysis. More data could help strengthen the R2-value and 
thus the linear correlation between 𝐻𝐻 and ∆𝑡𝑡. It is also clear 
that the 𝐻𝐻  and ∆𝑡𝑡  R2-value suggests a stronger linear 
correlation between 𝐻𝐻 and ∆𝑡𝑡 when compared to the other 
R2-values obtained in this analysis (Table 3).  

TABLE III.  LINEAR REGRESSION ANALYSIS OF VARIOUS 
SCATTERPLOTS 

Scatterplot R2-
value 

Slope of 
Regression Line 

Intercept of 
Regression Line 

𝐻𝐻 vs. ∆𝑃𝑃 0.0023 185.72 2e+06 
𝐻𝐻 vs. ∆𝑡𝑡 0.7932 223636 231197 

NERC 𝑓𝑓𝐶𝐶 vs. ∆𝑡𝑡 0.1094 0.0026 59.891 
NWTC 𝑓𝑓𝐶𝐶 vs. 

∆𝑡𝑡 0.1246 0.0028 59.885 

NWTC MA 𝑓𝑓𝐶𝐶 
vs. ∆𝑡𝑡 0.1125 0.0027 59.888 

A positive linear correlation between 𝐻𝐻  and ∆𝑡𝑡  means 
that as the inertia coefficient of the system (𝐻𝐻) increases, the 
time duration of the event (∆𝑡𝑡) also increases (Figure 3). 
This is reasonable because 𝐻𝐻  and ∆𝑡𝑡  are directly 
proportional through the combination of (2) and (3): 

 𝐻𝐻 =  � 𝑓𝑓𝐴𝐴∙∆𝑃𝑃
2∙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� =  �𝑓𝑓𝐴𝐴∙∆𝑃𝑃
2∙(∆𝑓𝑓∆𝑡𝑡)

� =  �𝑓𝑓𝐴𝐴∙∆𝑃𝑃∙∆𝑡𝑡
2∙∆𝑓𝑓

� (5) 

 

Figure 3.  Inertia coeff. 𝐻𝐻 vs. time duration of event ∆𝑡𝑡 for NWTC data 

B. Variation of Number of Events over Time  
A correlation was found to exist between the number of 

events and the month in which they occurred. There seems 
to be a cyclical pattern: more events occur in the spring 
(March, April, May) and fall (Sept., Oct., Nov.) (Figure 4). 

 
Figure 4.  Number of frequency events per month in the studied August 1, 

2014, to March 31, 2016, time frame  

Results suggest a relationship between extreme events 
and seasonality (Figure 4). More events occur during the 
“shoulder” or off-peak spring and fall months than during 
the peak summer and winter months (Figure 5). An 
explanation for this pattern might be that grid operators take 
advantage of off-peak seasons to commission facility 
maintenance, replacement, or new construction. As a result, 
fewer generators are online and supplying power to the grid 
during these seasons. A smaller pool of online generators 
lowers the inertia of the grid, making it more susceptible to 
instability with a sudden loss of generation or load [16]. 
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Figure 5.  Number of frequency events per season in the studied August 

1, 2014, to March 31, 2016, time frame 

C. Probability Distribution Functions 
From the density histogram of the normalized 𝑓𝑓𝐶𝐶−𝐴𝐴 

metric, a standard Cauchy distribution was determined to 
most closely fit the empirical density function of the dataset 
(Table 4, Figure 6). 

TABLE IV.  PARAMETERS OF CAUCHY DISTRIBUTION FOR 
NORMALIZED AND ORIGINAL 𝑓𝑓𝐶𝐶−𝐴𝐴 DATASETS 

Dataset µ σ Interval of µ±1σ 
Normalized 0 1 (-1, 1) 

Original -86.59831 
mHz 

37.41474 
mHz 

(-124.013 mHz, -
49.18357 mHz) 

 
Figure 6.  Density of normalized NWTC 𝑓𝑓𝐶𝐶−𝐴𝐴 with overlaid empirical and 

standard Cauchy distributions  

This means that 68.2% of the normalized 𝑓𝑓𝐶𝐶−𝐴𝐴 
observations is contained within the interval (-1,1) and that 
68.2% of the original 𝑓𝑓𝐶𝐶−𝐴𝐴 observations is contained within 
the interval (-124.0 mHz, -49.2 mHz). 

From the density histogram of the normalized 𝑓𝑓𝐵𝐵 metric, 
results were inconclusive in fitting a distribution to the 
empirical density function of the dataset (Figure 7). 
Consequently, the dataset likely has a more complex 
distribution than those tested. 

 
Figure 7.  Density of normalized NWTC 𝑓𝑓𝐵𝐵 with overlaid empirical, 
standard Cauchy, standard Gumbel, and standard normal distributions 

From the density histogram of the normalized 𝑓𝑓𝐶𝐶 metric, 
a standard Cauchy distribution was determined to most 
closely fit the empirical density function of the dataset 
(Table 5, Figure 8). 

TABLE V.  PARAMETERS OF CAUCHY DISTRIBUTION FOR 
NORMALIZED AND ORIGINAL 𝑓𝑓𝐶𝐶  DATASETS 

Dataset µ Σ Interval of µ±1σ 
Normalized 0 1 (-1, 1) 

Original 59.91567 
Hz 

40.09544 
mHz 

(59.87557 Hz, 59.95576 
Hz) 

 
Figure 8.  Density of normalized NWTC 𝑓𝑓𝐶𝐶 with overlaid empirical and 

standard Cauchy distributions 

Assuming a standard normal distribution, 68.2% of the 
𝑓𝑓𝐶𝐶 observations are contained within the interval (-1,1). As 
such, 68.2% of the original 𝑓𝑓𝐶𝐶  observations are contained 
within the interval (59.87557 Hz, 59.95576 Hz). 

From the density histogram of the normalized 𝑓𝑓𝐵𝐵−𝐶𝐶  
metric, a standard normal distribution was determined to 
best fit the empirical density function of the dataset (Table 
6, Figure 9). 
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TABLE VI.  PARAMETERS OF NORMAL DISTRIBUTION FOR 
NORMALIZED AND ORIGINAL 𝑓𝑓𝐵𝐵−𝐶𝐶  DATASETS 

Dataset µ Σ Interval of µ±1σ 
Normalized 0 1 (-1, 1) 

Original 31.78 mHz 15.98 mHz (15.80 mHz, 47.76 mHz) 

 
Figure 9.  Density of normalized NWTC 𝑓𝑓𝐵𝐵−𝐶𝐶 with overlaid empirical and 

standard normal distributions 

Again, 68.2% of the normalized 𝑓𝑓𝐵𝐵−𝐶𝐶  observations are 
contained within the interval (-1,1), and 68.2% of the 
original 𝑓𝑓𝐵𝐵−𝐶𝐶 observations are contained within the interval 
(15.80 mHz, 47.76 mHz). 

Q-Q and P-P plots of both the normalized and original 
𝑓𝑓𝐵𝐵−𝐶𝐶  data supported the assertion that a standard normal 
distribution fits the metric very well (Figure 10). This 
suggests that the quantiles of the empirical distribution 
match the quantiles of the theoretical distribution for the 
normalized 𝑓𝑓𝐵𝐵−𝐶𝐶  data well. Most points appear to lie close to 
the reference line, with greater deviations occurring at both 
tails. These deviations are caused by the few outliers in the 
normalized 𝑓𝑓𝐵𝐵−𝐶𝐶  dataset, which correspond to outliers in the 
original 𝑓𝑓𝐵𝐵−𝐶𝐶  dataset (Figure 11). Most of the data in the 
original 𝑓𝑓𝐵𝐵−𝐶𝐶 dataset are clustered in the range from 4 mHz 
to 58 mHz, though three outlier points occur at 𝑓𝑓𝐵𝐵−𝐶𝐶  values 
of -23.97 mHz, -13.81 mHz, and 74.61 mHz. 

These outliers represent frequency events of greater 
“extremity,” indicating events that have larger frequency 
deviations from the nominal value. Fewer events of greater 
extremity are expected because adequate reserves are online 
and providing inertia to the grid. These reserves include 
generators that provide PFR, secondary frequency response, 
and tertiary frequency response to arrest frequency 
deviations quickly in most instances of a loss of generation 
or load. 

 
Figure 10.  Q-Q plot for normalized 𝑓𝑓𝐵𝐵−𝐶𝐶 data with overlaid reference line 

𝑦𝑦 = 𝑥𝑥 

 
Figure 11.  Figure 11. Histogram of original 𝑓𝑓𝐵𝐵−𝐶𝐶 dataset 

With µ = 31.77815 mHz and σ = 15.97807 mHz, the 
original 𝑓𝑓𝐵𝐵−𝐶𝐶  data have the reference line 
𝑦𝑦 = 0.03177815𝑥𝑥 + 0.01597807 for a Q-Q plot, and the 
plotted points again lie closely (Figure 12). This suggests 
that the quantiles of the empirical distribution closely match 
the quantiles of the theoretical distribution for the original 
𝑓𝑓𝐵𝐵−𝐶𝐶  data. Similar to Figure 10, most points appear to lie 
closely to the reference line, with greater deviations 
occurring at the t. The deviations correspond to the same 
outliers previously discussed from the original 𝑓𝑓𝐵𝐵−𝐶𝐶 dataset 
(Figure 11). In fact, Figure 10 and Figure 12 are identical, 
except for the scale on the y-axis. This is significant because 
it suggests that a standard normal distribution is a good fit 
for the original 𝑓𝑓𝐵𝐵−𝐶𝐶  data, not solely the normalized 𝑓𝑓𝐵𝐵−𝐶𝐶 
data. 
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Figure 12.  Q-Q plot for original 𝑓𝑓𝐵𝐵−𝐶𝐶 data with overlaid reference line 

𝑦𝑦 = 0.03177815𝑥𝑥 + 0.01597807 

The normalized 𝑓𝑓𝐵𝐵−𝐶𝐶  data considered in a P-P plot 
(Figure 13) suggests that the empirical cumulative 
distribution function (CDF) matches the theoretical CDF for 
the normalized 𝑓𝑓𝐵𝐵−𝐶𝐶  data well. The middle points appear to 
lie closely to the reference line, with greater deviations 
occurring at the tails of the dataset. These deviations 
correspond to the three outliers previously analyzed in the 
original 𝑓𝑓𝐵𝐵−𝐶𝐶 data (Figure 11). 

 
Figure 13.  P-P plot for normalized 𝑓𝑓𝐵𝐵−𝐶𝐶 with overlaid reference line 𝑦𝑦 = 𝑥𝑥 

IV. CONCLUSIONS & RECOMMENDATIONS 
Understanding past frequency events will help lower the 

risks associated with increased levels of renewable 
generation onto the grid. Using existing frequency event 
data, probability models of various frequency metrics have 
been developed. These models help assess frequency 
stability and grid reliability. The models suggest that more 
frequency events tend to be of a smaller extremity (i.e. 
center of the distributions) but that some events are of 
greater extremity (i.e. outliers or the tails of the distribution).  

Modeling improvements can be made by having more 
data available for fitting. The data used in this analysis 
contained only 65 data points. Future work could include 
fitting probability density functions to the same frequency 
metrics but for a larger number of frequency events. 

Frequency event data have been collected at the NWTC 
since June 16, 2011, and data collection is ongoing. 
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