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ABSTRACT
Models of student performance can incorporate a skill de-
composition that lists the skills that each activity requires.
A good model must be sensitive to improvements in skill de-
composition. We validate the Recent-Performance Factors
Analysis model of student performance by checking its sen-
sitivity to the skill decomposition. We use a dataset from
a tutoring system where the skill model has been improved
by the Learning Factors Analysis algorithm for skill model
refinement and by expert validation. We find that R-PFA re-
flects improvements in the skill model, providing evidence of
convergent validity of R-PFA. We argue that R-PFA may be
sensible as a predictive model in Learning Factors Analysis
because of its convergent validity and because the R predic-
tor of R-PFA represents mastery-aligned learning curves.

1. INTRODUCTION
Predictive models of student performance often incorporate
a skill model. For example, the Additive Factors Model
[3] embeds a Q-matrix [11, 1] to relate prior practice on
a skill to subsequent practice on the same skill. Bayesian
Knowledge Tracing [4] similarly uses a skill model in that
all BKT parameters are specific to a skill.

A skill model annotates instructional activities in terms of
the skills that the activities require. This tagging can be
wrong, or at least suboptimal, degrading instruction in sev-
eral ways. For instance, if the tagging fails to distinguish
two skills, it will treat all assessments of the two separate
skills as assessments of one combined skill. In fact, because
a student may have differential mastery of the two skills, the
combined assessment may cause a tutoring system to call for
extraneous practice for one skill, and insufficient practice for
another. It follows that the refinement of a skill tagging of
activities can advance instruction and assessment.

When a predictive model of student performance incorpo-
rates a skill model, we can validate the performance model
by seeing if it is sensitive to changes in the skill model. A

learning curve represents the “power relationship between
the error rate of performance and the amount of practice”
[3], plotting average error across students at every practice
opportunity. If the curve treats a whole curriculum as one
skill, its slope will be flat, because there will be both drops
and spikes in the error rates as students learn one part of
the curriculum after another. If we plot separate curves for
distinct skills, their slopes will not be flat, corresponding
to error rates dropping as students learn. This is the intu-
ition for the Learning Factors Analysis algorithm [3], which
searches the space of possible refinements to a skill model.

Prior study of representations of recent student performance,
including box and exponential kernels with a range of band-
widths, produced the Recent-Performance Factors Analysis
(R-PFA) model [6, 5]. In the recency representations with
the highest predictive accuracy, the weight given to the each
observation decreased with the age of the observation, plac-
ing ∼ 50% of weight on the last 2 attempts, and ∼ 80% on
the last 5. This optimal weighting was consistent across real
data and a variety of simulated student behaviors.

The current work validates R-PFA by checking whether its
fit to data is improved by sensible changes to the skill tagging
in a dataset. The following section describes a dataset and
its multiple skill models, and presents R-PFA and several
comparison models. The subsequent section reports that
R-PFA and the other models are all sensitive to improved
skill tagging, but R-PFA has the highest predictive accuracy
among the models. Finally, we discuss how R-PFA may be
interpreted as representing mastery-aligned learning curves
[8], and R-PFA may fit within the Learning Factors Analysis
algorithm for skill model refinement.

2. METHODS
We evaluate R-PFA on a dataset in which the skill tagging
has been well-studied and revised [7], originating from Cog-
nitive Tutor Geometry by Carnegie Learning [10, 2]. This
tests R-PFA in two ways; first, how will R-PFA perform in
terms of predictive accuracy? Second, does R-PFA agree
with prior refinement of the skill model in this dataset [7]?

This Geometry dataset has three skill models that vary in
how they treat “forward” and “backward” computations of
area of geometric figures [7]. The original tagging (called
Merged) separates area computation by geometric shape
(square, circle, etc.), but merges together forward and back-
ward computation. The Circle-Square tagging has separate
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skills for the forward and backward computations for circles
and squares. The Distinct tagging has separate forward and
backward skills for each of many shapes. The geometry data
set contains 38,426 unique actions by 82 students. The to-
tal number of skills in each tagging is 56 in Merged, 58 in
Circle-Square, and 66 in Distinct.

We compare R-PFA to baseline models Item Response The-
ory 1PL, Additive Factors Model [3] and Performance Fac-
tors Analysis [9] (Eqs. 1-4). All student and skill intercepts
and slopes are “random”, that is, drawn from a common
distribution. Treating skill parameters as random “borrows
strength” for their estimation by proposing that infrequently
practiced skills ought to have similar parameters as skills for
which more data are available. Notation: j indexes skills, i
indexes students, t indexes practice opportunities. Tijt is the
count of prior practice, Sijt is the count of prior successes,
and Fijt is the count of prior failures.

IRT 1PL θi + βj (1)

AFM θi + βj + γjTijt (2)

PFA θi + βj + αjSijt + ρjFijt (3)

R-PFA θi + βj + δjRijt + ρjFijt (4)

Rijt is the proportion of recent successes in R-PFA (Eq. 5):

exponential kernel Rijt =

∑t−1
p=−2 d

(t−p)Xijp∑t−1
p=−2 d

(t−p)
(5)

3. RESULTS AND DISCUSSION
3.1 Predictive Accuracy
We compare predictive model accuracy in terms of AIC, a
metric that rewards models for predictive accuracy and pe-
nalizes them for using excessive parameters. AIC is compa-
rable to cross-validation with a prediction error loss function,
but is more appropriate for sparse datasets, such as when
only a handful of students may practice a skill [6].

Table 1: Predictive accuracy (lower AIC is better).

Skill tagging

Model Merged Cir-Sq Distinct

IRT 1PL 21652 21538 21523
AFM 21373 21252 21272
PFA 21326 21197 21211
exp R-PFA r(0.7), f(0.1) 21142 20969 21003

exp R-PFA “best” from search 21134 20949 20977
“best” decay rates: R, F 0.7, 0.3 0.5, 0.3 0.4, 0.3

For all 3 skill taggings, R-PFA has higher predictive accu-
racy than the other models, with PFA, AFM, and Item Re-
sponse Theory 1PL following in that order (Table 1). IRT
1PL has the lowest predictive accuracy, likely because it does
not reflect learning over time. At the best-performing R and
F decay weights from prior work (0.7 and 0.1, respectively),
the number of parameters in PFA and R-PFA is exactly the
same, and R-PFA’s advantage in AIC over PFA is due to
increased predictive accuracy.
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Figure 1: AIC for all 63 models on Circle-Square
tagging. * denotes the best overall model.

Searching over decay rates shows that R-PFA is robust to
a range of rates (Fig. 1). Even though the strictly lowest
AIC uses decay rates that differ from prior work, this effect
is smaller (26 points on Distinct, Table 1) than the effect of
using R-PFA over other models or of improving the skill tag-
ging, and R-PFA’s performance degrades gracefully. Tuning
decay rates separately for skill models has only a marginal
benefit, and may confound skill model comparison.

We compare the learning curves of the 4 performance models
(Fig. 2 and 3), omitting practice opportunities with fewer
than 5 students. The red curves show the empirical percent
correct at each opportunity, with a binomial 95% Bayesian
credible interval that uses a Jeffreys prior. For example,
at the 1st opportunity for circle-area backward, the mean
is 45% correct, with CI (21%, 41%). The intervals make
no adjustment for multiple comparisons (at each practice
opportunity), so they are overly narrow, but remain useful
for comparing model predictions to student performance.

The model fit curves (black) show the 2.5th and 97.5th quan-
tiles of the model predictions. A model should predict that
some students have a lower probability of a correct answer
than the population percent correct, and other students, re-
spectively, have a higher probability. If a model fits the
data well, the black model curves should be centered over
the empirical red curves, but should have wider bars on early
attempts where there are many students in the sample.

R-PFA consistently tracks the empirical learning curve more
closely than the alternative models for all 6 skills, but most
clearly in circle-area backward and square-area backward
(Fig. 2). Consider AFM and R-PFA predictions on circle-
area backward opportunity 1: AFM predicts that 60% of
students will respond correctly, when only 45% do; in fact
95% of model predictions for AFM are above the empirical
percent correct. AFM produces many false positives on this
early opportunity. For R-PFA, the model predictions are
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Figure 2: Empirical learning curves (red) and model fits (black) for newly split skills tagged in Cir-Sq.

centered over the empirical percent correct, and producing
fewer false positives. On opportunity 4, AFM predictions
are too low. AFM underestimates the amount of learning
that has occurred, while R-PFA predictions track the em-
pirical percent correct. Moreover, the R-PFA predictions
range from below 0.5 to above 0.9, indicating that R-PFA is
able to distinguish students who have learned the skill from
those who need more practice.

3.2 Sensitivity to Skill Tagging
All models except IRT 1PL (which has the worst AIC) repli-
cate the ranking of the three skill taggings [7]. The Cir-Sq
tagging provides the best balance of predictive accuracy and
data fit, compared to the Distinct tagging (which may be
more granular than necessary to describe this dataset), and
the Merged tagging (not sufficiently granular). While both
the tagging and R-PFA are merely imperfect models, the
replication provides convergent evidence for the validity of
both. Skill model refinement need not improve predictive
accuracy, but if it does and if the refinement makes sense in
terms of instruction and cognition, that provides some evi-
dence that the change represents an aspect of learning that
is reflected in student performance.

R-PFA with the Merged tagging has a lower AIC score than
any other model with the Cir-Sq tagging. Even though the
Cir-Sq split is sensible and R-PFA benefits from it, R-PFA
is more robust to the absence of such a split than other
models. This shows in R-PFA’s fit to the learning curve
of circle-area (Fig. 3). AFM’s predictions do not reflect
the performance drop on opportunities 11 and later, but R-
PFA does. This decrease motivated splitting circle-area into
forward and backward skills, as in Cir-Sq [7], but R-PFA
hews to the curve even without the split.

3.3 R-PFA Disaggregates Learning Curves
R-PFA effectively disaggregates the learning curves of indi-
vidual students. Traditional learning curves are aligned at
the first practice opportunity. Mastery-aligned curves [8] are
aligned in terms of the opportunity at which students first
achieve mastery. Traditional curves may conceal learning,
such as if students differ in their relevant skill knowledge
before their first observed practice opportunity, or if a skill
model conflates two distinct skills [8]. The proportion of re-
cent successes R by itself is a decay-weighted moving average
that represents (in a non-parametric, non-model based way)
the probability of mastery. R reflects the mastery-aligned
curve in a predictive model, analogous to how total practice
T represents the traditional learning curve in AFM.

The slope of R in R-PFA requires a different interpretation
than the slope of T . A history of practice where recent suc-
cess is positively associated with subsequent success (and re-
cent failure is positively associated with subsequent failure)
will have a positive slope, i.e., a positive effect on predicting
the outcome. Practice relatively far in the past, whether
successful or not, will have comparatively little effect on the
prediction. (With the decay rate d = 0.7, practice older than
about 5 opportunities has little effect on the prediction [6].)

One case in which the direction of the slopes of R and T
may differ is in the case of a “blip” [4], i.e., when two skills
follow each other in one curve, and the success rate drops in
the middle of the curve, corresponding to the beginning of
practice on a second skill (circle-area in Fig. 3). The slope
of T ought to be flat in such a circumstance, which has
been taken to mean that the skill may require a split. The
slope of R will be positive, representing the fact that there is
learning along the first disaggregated curve, and then along
the second disaggregated curve. In fact, slopes of circle-area
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Figure 3: Learning curves (red) and model fits (black) for skills tagged in Merged, but later split in Cir-Sq.

are positive according to both AFM and R-PFA, and slopes
of square-area are flat according to both AFM and R-PFA,
suggesting that the slope of T is not an ideal heuristic for
choosing a skill for a split.

An alternative heuristic is that when the slope of R is neg-
ative or flat, that implies that even disaggregated, mastery-
aligned learning curves are a poor representation of the skill
at hand. This suggests issues with the tagging of problems
for this skill. This is a reasonable opportunity to invite ex-
perts to investigate “difficulty factors” for this skill, and to
use LFA to apply these factors.

4. CONCLUSIONS
This investigation validates the R-PFA model of student per-
formance in predictive accuracy on a real-world dataset. It
provides convergent validity evidence for R-PFA by show-
ing that it is sensitive to changes in a well-documented skill
tagging, and yet robust to noise in a skill model. Given that
no skill model is perfect, a predictive model that is accurate
even in the face of such noise could be an asset to adaptive
learning technologies.

The skill tagging refinement algorithm LFA [3], which in-
corporates AFM, may benefit by switching to R-PFA. LFA
uses AFM in two ways: as a component in A* search, and
as an interpretable learning curve slope. R-PFA may be a
better component in A* search, because it is a more accu-
rate model that is still sensitive to skill model changes, and
because it reflects a mastery-aligned curve rather than an
aggregate curve. The interpretation of the slope parameter
is different, but sensible.
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