On the Similarity of Software Development Documentation

Mathias Ellmann
University of Hamburg
Hamburg, Germany
ellmann@informatik.uni-hamburg.de

ABSTRACT

Software developers spent 20% of their time on information seeking
on Stack Overflow, YouTube or an API reference documentation.
Software developers can search within Stack Overflow for dupli-
cates or similar posts. They can also take a look on software develop-
ment documentations that have similar and additional information
included as a Stack Overflow post or a development screencast
in order to get new inspirations on how to solve their current de-
velopment problem. The linkage of same and different types of
software development documentation might safe time to evolve
new software solutions and might increase the productivity of the
developer’s work day. In this paper we will discuss our approach
to get a broader understanding of different similarity types (exact,
similar and maybe) within and between software documentation as
well as an understanding of how different software documentations
can be extended.

CCS CONCEPTS

« Information systems — Content analysis and feature se-
lection; Similarity measures; Document filtering; Clustering
and classification; Deduplication; Data cleaning; Clustering; «
Software and its engineering — Reusability; Documentation;

KEYWORDS

Software Development Documentation, Similarity Types, Software
Analytics

ACM Reference Format:

Mathias Ellmann. 2017. On the Similarity of Software Development Docu-
mentation. In Proceedings of 2017 11th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, Paderborn, Germany, September 4-8, 2017
(ESEC/FSE’17), 4 pages.

https://doi.org/10.1145/3106237.3119875

1 INTRODUCTION

Nowadays developers do not only use documentations such as
wikis, project work logs [26] or API reference documentations [27]
to develop software. Developers also use documentations and their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3119875

1030

embedded media files that are created and maintained by the soft-
ware community active on websites as Stack Overflow, ! Eclipse
Bugzilla 2 or YouTube 3 [4, 8, 29, 38]. Software developers create
over 3,000 4 software documents [3, 11] of a software documenta-
tion as development posts every day. This might lead to software
development documents that can be similar to each other by their
characteristics or knowledge included. The software documents
might be synthetically or even semantically similar to each other
as code clones [21] are and can be distinguished into different simi-
larity types such as duplicate, similar or maybe similar.

The software community is often unsure how and when to de-
clare a software document as similar. For example the Stack Over-
flow community [1, 2] discusses when a Q&A can be considered
as a duplicate and when it’s a usual post. This uncertainty might
lead to a point where similar software documents will be deleted
which can be very useful for software developers [8]. To understand
the similarity of software documents there is a need of empirical
studies such as a content analysis, interviews or other empirical
methods [22, 30].

Software developers spent 20% of their time on searching for
information [20, 36] on websites as Stack Overflow or others. They
take a look on similar software documentations that include similar
and additional information as an API reference document and/or
Stack Overflow post to get new inspirations on how to solve their
current development problem. The linkage of different types of
documentations might safe time to evolve new software solutions
and might increase the productivity of the developer’s work day
[25].

The reminder of this paper is structured as follows. In Section 2
we will describe the research problem and the challenges we will
face during the thesis. In Section 3 we will describe our research
method and procedure to solve the research problem. In Section 4
we will report on the current results. Section 5 concludes the paper.

2 RESEARCH PROBLEM AND CHALLENGES

The existence of similar software documents within a software
documentation is a commonly known problem in the domain of
software engineering [4, 8]. In the meantime, the software commu-
nity is often unsure how to handle and evaluate similar software
documents [2, 7] in Stack Overflow (SO) because of missing evalua-
tion criteria and the complexity of understanding the characteristics
of similar software development documents. Also other researchers
as Roy et al. [34] try to find similar software artifacts as code clones
distinguishing them into different types of similarities.

Uhttps://stackoverflow.com

Zhttps://bugs.eclipse.org/bugs/

Shttps://www.youtube.com
“https://api.stackexchange.com/2.2/info?site=stackoverflow

https://doi.org/10.1145/3106237.3119875
https://doi.org/10.1145/3106237.3119875
https://stackoverflow.com
https://bugs.eclipse.org/bugs/
https://www.youtube.com
https://api.stackexchange.com/2.2/info?site=stackoverflow

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

=

Duplicate Similar Maybe Similar

Figure 1: Similarity types.

Developers use different information resources to develop soft-
ware [23]. Every software document of a software documentation
contains different information entities as a question, an instruction
or even a sequence of statements. Software documents of software
documentations can contain different information types as text,
code, images, audio or videos that can be useful to perform a cer-
tain development task which can actually extend each other in
order to reduce their time seeking for information [20, 36].

Software development documentation is created to support de-
velopment activities in a certain development context [17, 24, 28].
We are studying software development documentations that were
created and/or maintained by software communities active in Stack
Overflow, in Eclipse Bugzilla and on YouTube. We will study and
report on the similarity as well as on the dissimilarity of develop-
ment posts, development tasks and development screencasts that
contain different information entities (see Table 1) and report on
our research approach to study three types of similarities: duplicate,
similar and maybe similar. Finally, we will inquire how different
software development documentations can be assigned to the three
types of similarities and enriched by each other.

In this thesis we will distinguish between three different types of
similarities (see Figure 1) in three software development documen-
tations. In the first type, we evaluate when software development
documents are exactly similar to each other. We call those software
documents duplicates. A duplicate exists if the pre-dominant char-
acteristics of software development documents are the same. This
can also be the case if the question is the same but the answers
and steps to perform them slightly differ. When documents can
be enriched by each other we call them similar software develop-
ment documents. A similar software document can enrich another
software document maybe because it covers the same topic. For
instance a post in Stack Overflow as "how to change the UI color"
might be extended by another post which is called "how to add
UI components" that does not discuss the same problem. A maybe
similar software document can indirectly be associated with an-
other document e.g. when similar actions were taken to perform a
development task in different programming languages.

3 RESEARCH METHOD

3.1 Research procedure

In our research we conduct a content analysis [22] to reach a
better understanding within and between similar software doc-
umentation based on content as text, links or multimedia files. We
download posts from Stack Overflow, > development tasks from

Shttps://archive.org/details/stackexchange

1031

M. Ellmann

Table 1: Software development documentations and their in-
formation entities.

Software Documentation | Information Entities

Posts Question, Description, Tags, Answer

Tasks Summary, Description, Context, Meta-data as product name
Screencasts Summary, Description, Transcript, Video Content

Eclipse Bugzilla © and development screencasts from YouTube 7,
pre-process them and study the characteristics as well as their syn-
tactical and semantical similarity [4, 13, 18, 31]. To get a better
understanding how developers evaluate similar development tasks
we conducted interviews with computer science students [25].

3.2 Research Data

A software development documentation is a set of documents in
which developers provide information for software development.
The software development document can contain different infor-
mation entities such as a question, a summary of a task or a video
(see Table 1). The information entities can contain different types of
information as a text, a code or links to other software documents.
Software development documentations can enrich each other by
their different information types as a task which has a specific
task description and can be enriched by a video that provides a
step-by-step instruction [29] on how to perform the development
task.

We exclude code-clones [34] in our analysis because we want
to understand the different types of similarities of similar software
development documentations. Therefore we only consider text,
links and/or the developers’ expertise [5, 6]. We will also not focus
API reference documentation [27] because the main information
in this software documentation is code. We also exclude Tutorials
from our analysis because we only focus on informations which
are not spread over pages [37].

3.3 Characteristic Analysis

In the characteristic analysis we extract the information entities
of a software development documentation and study the different
types of information such as text or the context information [19]
in software development tasks. In the analysis we consider the text
and calculate different metrics as e.g. the number of characters.
We also extract the links as well as topics which were mentioned
trying to assign them to different types of similarity. Along with
this we also analyze the community interaction in similar software
documents. For example, we consider the number of views and the
reputation of the developers taking into consideration the activity of
the community (answering time, deletion time etc.). In this analysis
we will show what characteristics are pre-dominant in order to
declare software development documents as exact, similar or maybe
similar.

®https://bugs.eclipse.org/bugs/
"https://www.youtube.com/watch?v=aChK4W406vg

https://archive.org/details/stackexchange
https://bugs.eclipse.org/bugs/
https://www.youtube.com/watch?v=aChK4W406vg

On the Similarity of Software Development Documentation

3.4 Syntactical Analysis

In the syntactical analysis we study the syntactical similarity within
software development documentations. To evaluate the syntacti-
cal similarity we use the Jaccard [18] algorithm and report on the
syntactical differences as word differences. Based on the syntac-
tical analysis we can report on syntactical factors when software
documents can be considered as exact, similar and maybe similar
software development documents. We also consider using Wordnet
8 which helps to find synonyms of words to understand syntactical
similarities by using their synonyms.

3.5 Semantical Analysis

In the semantical analysis between software development docu-
ments we study how information entities are semantically similar
to each other. The semantic comparison between documents is
only possible by using already existing software documents. The
information entities of a software document are compared with the
information entities of another document. To make a semantical
comparison between software development documents we use the
LSI algorithm [15]. There are also other algorithms as word-to-vect

9 using neural networks to find similar concepts.

3.6 Classification & Prediction Analysis

After having studied the characteristics, syntactical and semantical
similarity we try to automatically classify and predict software
development documents for the three types of similarities. For
the classification and prediction we use probability methods as
decision trees [4, 14, 39] and/or learning algorithms as a Naive
Bayes algorithm [9]. To evaluate the classification and prediction
we use usual recommendation metrics as precision and recall [33].

3.7 Extension Analysis

We will study how software development documentations can ex-
tend each other. Every software development document contains
different pieces of information entities as e.g. a question, a task
summary or a video content. For example, we will show how a
development task can be linked with an answer or a question that
might be needed to perform the development task. We therefore use
similarity measures as the Jaccard or LSI to find a lexical connection
between both.

4 PRELIMINARY RESULTS

In the further proceedings we report on findings of analyzing ex-
act and similar posts in Stack Overflow. Then we will show how
computer science students evaluate similar software development
tasks in general [25]. Finally, we will report on which topics can be
found in general for software development screencasts [16].

4.1 Posts in Stack Overflow

In total, the dump - a MangoDB database - included 93.8 GB of with
7,214,697 posts posted between July 2008 and May 2014. Our data
set includes 69,563 exact post pairs (48,480 originals and 64,562 du-
plicates) and 43,756 similar post pairs (32,021 originals and 41,290

Shttps://wordnet.princeton.edu
“https://github.com/dav/word2vec

1032

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

duplicates) that were defined by the community. We also build a
database with 72,399 unique posts that are not included in the data
set and reported on the differences compared to similar software
development documents. Our findings are the followings in respect
to the characteristics of exact and similar software posts:

e Exact or similar posts receive a higher interest and get an-

swered faster than usual posts independently from their
types.

Exact or similar posts include rather general background
knowledge while unique posts include specific knowledge.
Developers who post an exact or similar post have a lower
reputation score and might be less experienced with Stack
Overflow or in the topic of interest.

The originals of an exact post seem to get more answers,
longer answer text, and more links than the originals of
similar duplicates.

Topics in exact and similar posts are different. Exact posts
discuss basic operations whereas similar posts discuss more
complex, open questions.

4.2 Development Tasks

In this study we show how developers (computer science students)
identify similar tasks as similar and evaluate how they order them
based on their similarity (see also Maalej et al. [25]). To evaluate the
interpretation of the similar tasks we handed out a questionnaire
to 127 students. We had a 84 % response rate. More than half of
the ranks exactly match with the expected positions. We could
summarize the findings as follows.

e Functionality & architecture indicate task similarity. Stu-
dents often compared tasks on a conceptual level, relating
the design, architecture, or workflow of the desired solution.
Different technologies let tasks appear dissimilar. Partici-
pants claimed that if the technologies (e.g., framework or
programming language) involved in the tasks are different,
both tasks were considered as completely dissimilar.
Participants think about tools instead of artifacts. Partici-
pants compared tasks based on the tools that were used,
but rarely referred to concrete artifacts created, modified, or
managed with those tools.

Participants think about artifact types instead of artifact
instances. Instead of explaining differences between tasks
based on concrete artifacts (e.g., index.html, main.css, or Mes-
sage.java), 18 participants rather see the differences based
on the artifact types (HTML, CSS, or Java documents).

4.3 Development Screencasts on YouTube

We focused on development tasks performed using the Java pro-
gramming language. In particular, we searched for “how-to” devel-
opment screencasts!? on YouTube using the search string “Java +
How to”. Our data set includes 431 Java development screencasts.
We used the Python toolkit pyLDAvis [12, 32, 35] to identify the
topics. Using this toolkit, it is possible to visualize different software
development topics and to cluster them according to a varying num-
ber of LDA topics [10, 35]. Table 2 shows the overall summary of the

10 How-tos are also among the most requested on Stack Overflow [38]

https://wordnet.princeton.edu
https://github.com/dav/word2vec

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

topics. As we can see here, there are two similar topics discussed in
screencasts as database operations in Java and database operations
in Android. This might indicate that they might be similar or at
least maybe similar software development documents in YouTube.

Table 2: Topics of Java screencasts.

Topic label ‘ Most relevant terms

6 Topics of development screencasts (analysis of the titles)

Database operation with Java
Database operation with Android
System set-up

Plug-in development

Game development

Testing

netbean, database, create, mysql

class, table, key, android

run, make, Window, JDK

connect, jframe, constructor, jbutton
game, develop, object, implement
selenium, use, program, file, write, learn

5 CONCLUSION

In this paper we have described our research method of studying
three types of similarities in three types of software development
documentations. We could show that there is a difference between
exact and duplicate posts e.g. by their linked documents or topics
discussed. We could also show that development tasks appear simi-
lar because of the used software architecture or the used technology.
We could also find indicators that development screencasts might
be similar at least in some part because of similar tasks performed.
Further work is needed to understand similarities in software de-
velopment documentations as well as how to classify, predict and
extend them.

REFERENCES

[1] 2007. Duplicate Bugs. (2007). https://blogs.msdn.microsoft.com/alanpa/2007/08/
01/duplicate-bugs/
[2] 2016. Duplicate Bugs. (2016). https://meta.stackexchange.com/questions/10841/
how-should-duplicate-questions-be-handled

[3] 2017. Definition of an artefact. (2017). https://en.oxforddictionaries.com/

definition/artefact

[4] Muhammad Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K Roy, and

Kevin A Schneider. 2016. Mining duplicate questions in stack overflow. In Proceed-

ings of the 13th International Conference on Mining Software Repositories. ACM,

402-412.

Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic,

Hamid Reza Motahari-Nezhad, Elisa Bertino, and Schahram Dustdar. 2013.

Quality control in crowdsourcing systems: Issues and directions. IEEE Internet

Computing 17, 2 (2013), 76-81.

Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. 2012.

Discovering value from community activity on focused question answering

sites: a case study of stack overflow. In Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, 850-858.

Jeff Atwood. 2009. Handling Duplicate Questions. (2009). http://blog.

stackoverflow.com/2009/04/handling- duplicate-questions/

Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim.

2008. Duplicate bug reports considered harmfulaAe really?. In Software mainte-

nance, 2008. ICSM 2008. IEEE international conference on. IEEE, 337-345.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing

with Python: analyzing text with the natural language toolkit. " O’Reilly Media,

Inc!.

Roger B Bradford. 2008. An empirical study of required dimensionality for

large-scale latent semantic indexing applications. In Proceedings of the 17th ACM

conference on Information and knowledge management. ACM, 153-162.

[11] Bernd Bruegge and Allen H Dutoit. 2004. Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall.

[12] Jason Chuang, Christopher D Manning, and Jeffrey Heer. 2012. Termite: Vi-
sualization techniques for assessing textual topic models. In Proceedings of the

International Working Conference on Advanced Visual Interfaces. ACM, 74-77.
[13] Jack G Conrad, Xi S Guo, and Cindy P Schriber. 2003. Online duplicate document

detection: signature reliability in a dynamic retrieval environment. In Proceedings

(5

=

=
&

[10]

1033

[14

[15

[16

(18]

[19

[20

[21

~
£,

[23

[24

[25

[26]

~
=

[28

[29

(30]

[31

[32

[33

(34]

[35

[38

[39

M. Ellmann

of the twelfth international conference on Information and knowledge management.
ACM, 443-452.

Denzil Correa and Ashish Sureka. 2013. Fit or unfit: analysis and prediction
of closed questions’ on stack overflow. ACM.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American society for information science 41, 6 (1990), 391.

Mathias Ellmann, Alxander Oeser, Davide Fucci, and Walid Maalej. 2017. Find,
Understand, and Extend Development Screencasts on YouTube. In Proceedings of
the 3rd International Workshop on Software Analytics. ACM.

Thomas Fritz and Gail C Murphy. 2010. Using information fragments to answer
the questions developers ask. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. ACM, 175-184.

Anna Huang. 2008. Similarity measures for text document clustering. In Pro-
ceedings of the sixth new zealand computer science research student conference
(NZCSRSC2008), Christchurch, New Zealand. 49-56.

Mik Kersten and Gail C Murphy. 2006. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 1-11.

Andrew] Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in
collocated software development teams. In Software Engineering, 2007. ICSE 2007.
29th International Conference on. IEEE, 344-353.

E Kodhai, S Kanmani, A Kamatchi, R Radhika, and B Vijaya Saranya. 2010. Detec-
tion of type-1 and type-2 code clones using textual analysis and metrics. In Recent
Trends in Information, Telecommunication and Computing (ITC), 2010 International
Conference on. IEEE, 241-243.

Klaus Krippendorff. 2012. Content analysis: An introduction to its methodology.
Sage.

Timothy C Lethbridge, Janice Singer, and Andrew Forward. 2003. How software
engineers use documentation: The state of the practice. IEEE software 20, 6 (2003),
35-39.

Walid Maalej. 2009. Task-first or context-first? tool integration revisited. In
Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society, 344-355.

Walid Maalej, Mathias Ellmann, and Romain Robbes. 2016. Using contexts
similarity to predict relationships between tasks. Journal of Systems and Software
(2016).

Walid Maalej and Hans-J6rg Happel. 2010. Can development work describe
itself?. In Mining Software Repositories (MSR), 2010 7th IEEE Working Conference
on. IEEE, 191-200.

Walid Maalej and Martin P Robillard. 2013. Patterns of knowledge in APIreference
documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264—
1282.

Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On
the comprehension of program comprehension. ACM Transactions on Software
Engineering and Methodology (TOSEM) 23, 4 (2014), 31.

Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, cam-
era, action: how software developers document and share program knowledge
using YouTube. In Program Comprehension (ICPC), 2015 IEEE 23rd International
Conference on. IEEE, 104-114.

Tim Menzies, Laurie Williams, and Thomas Zimmermann. 2016. Perspectives on
Data Science for Software Engineering. Morgan Kaufmann.

Seung-Taek Park, David M Pennock, C Lee Giles, and Robert Krovetz. 2002.
Analysis of lexical signatures for finding lost or related documents. In Proceedings
of the 25th annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 11-18.

pyLDAvis. 2014. Python library for interactive topic model visualization. (2014).
https://github.com/bmabey/pyLDAvis

Martin P Robillard, Walid Maalej, Robert] Walker, and Thomas Zimmermann.
2014. Recommendation systems in software engineering. Springer Science &
Business.

Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of computer programming 74, 7 (2009), 470-495.

Carson Sievert and Kenneth E Shirley. 2014. LDAvis: A method for visualizing
and interpreting topics. In Proceedings of the workshop on interactive language
learning, visualization, and interfaces. 63-70.

Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010.
An examination of software engineering work practices. In CASCON First Decade
High Impact Papers. IBM Corp., 174-188.

Rebecca Tiarks and Walid Maalej. 2014. How does a typical tutorial for mobile
development look like?. In Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 272-281.

Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do
programmers ask and answer questions on the web?: Nier track. In Software
Engineering (ICSE), 2011 33rd International Conference on. IEEE, 804-807.

Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

https://blogs.msdn.microsoft.com/alanpa/2007/08/01/duplicate-bugs/
https://blogs.msdn.microsoft.com/alanpa/2007/08/01/duplicate-bugs/
https://meta.stackexchange.com/questions/10841/how-should-duplicate-questions-be-handled
https://meta.stackexchange.com/questions/10841/how-should-duplicate-questions-be-handled
https://en.oxforddictionaries.com/definition/artefact
https://en.oxforddictionaries.com/definition/artefact
http://blog.stackoverflow.com/2009/04/handling-duplicate-questions/
http://blog.stackoverflow.com/2009/04/handling-duplicate-questions/
https://github.com/bmabey/pyLDAvis

	Abstract
	1 Introduction
	2 Research Problem and Challenges
	3 Research Method
	3.1 Research procedure
	3.2 Research Data
	3.3 Characteristic Analysis
	3.4 Syntactical Analysis
	3.5 Semantical Analysis
	3.6 Classification & Prediction Analysis
	3.7 Extension Analysis

	4 Preliminary Results
	4.1 Posts in Stack Overflow
	4.2 Development Tasks
	4.3 Development Screencasts on YouTube

	5 Conclusion
	References

