
Software documentation, Page 1, Printed 7/11/01

Software
Documentation

Ian Sommerville
Lancaster University, UK

Software documentation, Page 2, Printed 7/11/01

Introduction

All large software development projects, irrespective of application, generate a
large amount of associated documentation. For moderately sized systems, the
documentation will probably fill several filing cabinets; for large systems, it
may fill several rooms. A high proportion of software process costs is incurred
in producing this documentation. Furthermore, documentation errors and
omissions can lead to errors by end-users and consequent system failures with
their associated costs and disruption. Therefore, managers and software
engineers should pay as much attention to documentation and its associated
costs as to the development of the software itself.

The documents associated with a software project and the system being
developed have a number of associated requirements:

1. They should act as a communication medium between members of the
development team.

2. They should be a system information repository to be used by
maintenance engineers.

3. They should provide information for management to help them plan,
budget and schedule the software development process.

4. Some of the documents should tell users how to use and administer the
system.

Satisfying these requirements requires different types of document from
informal working documents through to professionally produced user manuals.
Software engineers are usually responsible for producing most of this
documentation although professional technical writers may assist with the final
polishing of externally released information.

My goals here are to describe the documentation which may be produced during
the software process, to give some hints on ways of writing effective
documents and to describe processes involved in producing these documents. I
start by discussing different types of documentation that may be produced in a
software project. I then cover the important topic of document quality and
discuss document structure, documentation standards and effective writing style.
Finally, I cover processes of preparing, producing and managing documents.

My focus in this paper is on documentation that is intended to be printed and
so is delivered on paper or in a format such as PDF which may be viewed on a
screen or locally printed. Many systems now also have associated hypertext
help systems. Producing these systems requires a different set of skills from
producing paper documentation and I only discuss these briefly here.

Software documentation, Page 3, Printed 7/11/01

Process and Product Documentation

For large software projects, it is usually the case that documentation starts
being generated well before the development process begins. A proposal to
develop the system may be produced in response to a request for tenders by an
external client or in response to other business strategy documents. For some
types of system, a comprehensive requirements document may be produced
which defines the features required and expected behavior of the system. During
the development process itself, all sorts of different documents may be
produced – project plans, design specifications, test plans etc.

It is not possible to define a specific document set that is required – this
depends on the contract with the client for the system, the type of system
being developed and its expected lifetime, the culture and size of the company
developing the system and the development schedule that it expected.
However, we can generally say that the documentation produced falls into two
classes:

1. Process documentation These documents record the process of
development and maintenance. Plans, schedules, process quality
documents and organizational and project standards are process
documentation.

2. Product documentation This documentation describes the product
that is being developed. System documentation describes the product
from the point of view of the engineers developing and maintaining the
system; user documentation provides a product description that is
oriented towards system users.

Process documentation is produced so that the development of the system can
be managed. Product documentation is used after the system is operational but
is also essential for management of the system development. The creation of
a document, such as a system specification, may represent an important
milestone in the software development process.

Process documentation

Effective management requires the process being managed to be visible.
Because software is intangible and the software process involves apparently
similar cognitive tasks rather than obviously different physical tasks, the only
way this visibility can be achieved is through the use of process documentation.

Process documentation falls into a number of categories:

1. Plans, estimates and schedules These are documents produced by
managers which are used to predict and to control the software process.

2. Reports These are documents which report how resources were used
during the process of development.

3. Standards These are documents which set out how the process is to be
implemented. These may be developed from organizational, national or
international standards.

Software documentation, Page 4, Printed 7/11/01

4. Working papers These are often the principal technical
communication documents in a project. They record the ideas and
thoughts of the engineers working on the project, are interim versions
of product documentation, describe implementation strategies and set
out problems which have been identified. They often, implicitly, record
the rationale for design decisions.

5. Memos and electronic mail messages These record the details of
everyday communications between managers and development
engineers.

The major characteristic of process documentation is that most of it becomes
outdated. Plans may be drawn up on a weekly, fortnightly or monthly basis.
Progress will normally be reported weekly. Memos record thoughts, ideas and
intentions which change.

Although of interest to software historians, much of this process information is
of little real use after it has gone out of date and there is not normally a need
to preserve it after the system has been delivered. However, there are some
process documents that can be useful as the software evolves in response to
new requirements.

For example, test schedules are of value during software evolution as they act
as a basis for re-planning the validation of system changes. Working papers
which explain the reasons behind design decisions (design rationale) are also
potentially valuable as they discuss design options and choices made. Access to
this information helps avoid making changes which conflict with these original
decisions. Ideally, of course, the design rationale should be extracted from the
working papers and separately maintained. Unfortunately this hardly ever
happens.

Product documentation

Product documentation is concerned with describing the delivered software
product. Unlike most process documentation, it has a relatively long life. It
must evolve in step with the product which it describes. Product documentation
includes user documentation which tells users how to use the software product
and system documentation which is principally intended for maintenance
engineers.

User Documentation
Users of a system are not all the same. The producer of documentation must
structure it to cater for different user tasks and different levels of expertise and
experience. It is particularly important to distinguish between end-users and
system administrators:

1. End-users use the software to assist with some task. This may be flying
an aircraft, managing insurance policies, writing a book, etc. They
want to know how the software can help them. They are not interested
in computer or administration details.

Software documentation, Page 5, Printed 7/11/01

2. System administrators are responsible for managing the software used
by end-users. This may involve acting as an operator if the system is a
large mainframe system, as a network manager is the system involves a
network of workstations or as a technical guru who fixes end-users
software problems and who liaises between users and the software
supplier.

To cater for these different classes of user and different levels of user expertise,
there are at least 5 documents (or perhaps chapters in a single document) which
should be delivered with the software system (Figure1).

The functional description of the system outlines the system requirements and
briefly describes the services provided. This document should provide an
overview of the system. Users should be able to read this document with an
introductory manual and decide if the system is what they need.

The system installation document is intended for system administrators. It
should provide details of how to install the system in a particular environment.
It should contain a description of the files making up the system and the
minimal hardware configuration required. The permanent files which must be
established, how to start the system and the configuration dependent files
which must be changed to tailor the system to a particular host system should
also be described. The use of automated installers for PC software has meant
that some suppliers see this document as unnecessary. In fact, it is still required
to help system managers discover and fix problems with the installation.

The introductory manual should present an informal introduction to the
system, describing its ‘normal’ usage. It should describe how to get started and
how end-users might make use of the common system facilities. It should be
liberally illustrated with examples. Inevitably beginners, whatever their
background and experience, will make mistakes. Easily discovered information
on how to recover from these mistakes and restart useful work should be an
integral part of this document.

The system reference manual should describe the system facilities and their
usage, should provide a complete listing of error messages and should describe

 System
evaluators

System
administrators

Experienced
users

Novice
users

System
administrator

How to operate
and maintain the

system

Details of all
system
facilities

Getting started
with the system

Description of
services
provided

How to install
the system

Functional
description

Installation
 document

Reference
 manual

System
administrators

guide

Introductory
manual

Figure 1: Different types of user documentation

Software documentation, Page 6, Printed 7/11/01

how to recover from detected errors. It should be complete. Formal descriptive
techniques may be used. The style of the reference manual should not be
unnecessarily pedantic and turgid, but completeness is more important than
readability.

A more general system administrator’s guide should be provided for some types
of system such as command and control systems. This should describe the
messages generated when the system interacts with other systems and how to
react to these messages. If system hardware is involved, it might also explain
the operator’s task in maintaining that hardware. For example, it might
describe how to clear faults in the system console, how to connect new
peripherals, etc.

As well as manuals, other, easy-to-use documentation might be provided. A
quick reference card listing available system facilities and how to use them is
particularly convenient for experienced system users. On-line help systems,
which contain brief information about the system, can save the user spending
time in consultation of manuals although should not be seen as a replacement
for more comprehensive documentation. I briefly discuss on-line
documentation in a later section in this paper.

System Documentation
System documentation includes all of the documents describing the system
itself from the requirements specification to the final acceptance test plan.
Documents describing the design, implementation and testing of a system are
essential if the program is to be understood and maintained. Like user
documentation, it is important that system documentation is structured, with
overviews leading the reader into more formal and detailed descriptions of each
aspect of the system.

For large systems that are developed to a customer’s specification, the system
documentation should include:

1. The requirements document and an associated rationale.

2. A document describing the system architecture.

3. For each program in the system, a description of the architecture of
that program.

4. For each component in the system, a description of its functionality
and interfaces.

5. Program source code listings. These should be commented where the
comments should explain complex sections of code and provide a
rationale for the coding method used. If meaningful names are used and
a good, structured programming style is used, much of the code should
be self-documenting without the need for additional comments. This
information is now normally maintained electronically rather than on
paper with selected information printed on demand from readers.

6. Validation documents describing how each program is validated and how
the validation information relates to the requirements.

Software documentation, Page 7, Printed 7/11/01

7. A system maintenance guide which describes known problems with the
system, describes which parts of the system are hardware and software
dependent and which describes how evolution of the system has been
taken into account in its design.

A common system maintenance problem is ensuring that all representations
are kept in step when the system is changed. To help with this, the
relationships and dependencies between documents and parts of documents
should be recorded in a document management system as discussed in the final
part of this paper.

For smaller systems and systems that are developed as software products,
system documentation is usually less comprehensive. This is not necessarily a
good thing but schedule pressures on developers mean that documents are
simply never written or, if written, are not kept up to date. These pressures are
sometimes inevitable but, in my view, at the very least you should always try to
maintain a specification of the system, an architectural design document and
the program source code.

Unfortunately, documentation maintenance is often neglected. Documentation
may become out of step with its associated software, causing problems for both
users and maintainers of the system. The natural tendency is to meet a deadline
by modifying code with the intention of modifying other documents later.

Often, pressure of work means that this modification is continually set aside
until finding what is to be changed becomes very difficult indeed. The best
solution to this problem is to support document maintenance with software
tools which record document relationships, remind software engineers when
changes to one document affect another and record possible inconsistencies in
the documentation. Such a system is described by Garg and Scacchi (1990).

Document Quality

Unfortunately, much computer system documentation is badly written, difficult
to understand, out-of-date or incomplete. Although the situation is improving,
many organizations still do not pay enough attention to producing system
documents which are well-written pieces of technical prose.

Document quality is as important as program quality. Without information on
how to use a system or how to understand it, the utility of that system is
degraded. Achieving document quality requires management commitment to
document design, standards, and quality assurance processes. Producing good
documents is neither easy nor cheap and many software engineers find it more
difficult that producing good quality programs.

Document structure

The document structure is the way in which the material in the document is
organized into chapters and, within these chapters, into sections and sub-
sections. Document structure has a major impact on readability and usability

Software documentation, Page 8, Printed 7/11/01

and it is important to design this carefully when creating documentation. As
with software systems, you should design document structures so that the
different parts are as independent as possible. This allows each part to be read
as a single item and reduces problems of cross-referencing when changes have
to be made.

Structuring a document properly also allows readers to find information more
easily. As well as document components such as contents lists and indexes,
well-structured documents can be skim read so that readers can quickly locate
sections or sub-sections that are of most interest to them.

The IEEE standard for user documentation (IEEE, 2001) proposes that the
structure of a document should include the components shown in Figure 2. The
standard makes clear that these are desirable or essential features of a document
but makes clear that the ways in which these components are provided depends
on the designers of the documentation. Some (such as a table of contents) are

Component Description

Identification data Data such as a title and identifier that uniquely
identifies the document.

Table of contents Chapter/section names and page numbers.

List of illustrations Figure numbers and titles

Introduction Defines the purpose of the document and a brief
summary of the contents

Information for use of the
documentation

Suggestions for different readers on how to use the
documentation effectively.

Concept of operations An explanation of the conceptual background to
the use of the software.

Procedures Directions on how to use the software to complete
the tasks that it is designed to support.

Information on software
commands

A description of each of the commands supported
by the software.

Error messages and problem
resolution

A description of the errors that can be reported
and how to recover from these errors.

Glossary Definitions of specialized terms used.

Related information sources References or links to other documents that
provide additional information

Navigational features Features that allow readers to find their current
location and move around the document.

Index A list of key terms and the pages where these
terms are referenced.

Search capability In electronic documentation, a way of finding
specific terms in the document.

Figure 2: Suggested components in a software user document

Software documentation, Page 9, Printed 7/11/01

clearly separate sections; other components such as navigational features will
be found throughout the document.

As I discuss in the next section, this IEEE standard is a generic standard and, if
the use of this standard is mandated, then all of these components must be
included. However, many organizations will use the standard as a guide and will
not necessarily include all of the components shown in Figure 2. In such
circumstances, there are some minimal structuring guidelines that I believe
should always be followed:

1. All documents, however short, should have a cover page which
identifies the project, the document, the author, the date of
production, the type of document, configuration management and
quality assurance information, the intended recipients of the document,
and the confidentiality class of the document. It should also include
information for document retrieval (an abstract or keywords) and a
copyright notice. Figure 3 is an example of a possible front cover
format.

Collaborative Support for Systems Design

Title: Active Displays

Project: MRC 842317

Document identifier: CSSD/CS/WD/17

Document type: Technical working paper

Version: 1.2 Date: 20th December 2000

Author: Ian Sommerville

Inspected: N/A. Approved: N/A

Submitted to CM:

CM Identifier:

Distribution: Project list

Confidentiality: Commercial

Keywords: User interface, display update, agents

ACTIVE DISPLAYS

© Lancaster University 2000

Figure 3: A sample document cover page

Software documentation, Page 10, Printed 7/11/01

2. Documents which are more than a few pages long should be divided into
chapters with each chapter structured into sections and sub-sections. A
contents page should be produced listing these chapters, sections and
sub-sections. A consistent numbering scheme for chapters, sections and
sub-sections should be defined and chapters should be individually page
numbered (the page number should be chapter-page). This simplifies
document change as individual chapters may be replaced without re-
printing the whole document.

3. If a document contains a lot of detailed, reference information it should
have an index. A comprehensive index allows information to be
discovered easily and can make a badly written document usable.
Without an index, reference documents are virtually useless.

4. If a document is intended for a wide spectrum of readers who may have
differing vocabularies, a glossary should be provided which defines the
technical terms and acronyms used in the document.

Document structures are often defined in advance and set out in documentation
standards. This has the advantage of consistency although it can cause
problems. Standards may not be appropriate in all cases and an unnatural
structure may have to be used if standards are thoughtlessly imposed.

Documentation Standards

Documentation standards act as a basis for document quality assurance.
Documents produced according to appropriate standards have a consistent
appearance, structure and quality. I have already introduced the IEEE standard
for user documentation in the previous section and will discuss this standard in
more detail shortly. However, it is not only standards that focus on
documentation that are relevant. Other standards that may be used in the
documentation process are:

1. Process standards These standards define the process which should be
followed for high-quality document production.

2. Product standards These are standards which govern the documents
themselves.

3. Interchange standards It is increasingly important to exchange copies
of documents via electronic mail and to store documents in databases.
Interchange standards ensure that all electronic copies of documents are
compatible.

Standards are, by their nature, designed to cover all cases and, consequently, can
sometimes seem unnecessarily restrictive. It is therefore important that, for
each project, the appropriate standards are chosen and modified to suit that
particular project. Small projects developing systems with a relatively short
expected lifetime need different standards from large software projects where
the software may have to be maintained for 10 or more years.

Software documentation, Page 11, Printed 7/11/01

Process standards
Process standards define the approach to be taken in producing documents.
This generally means defining the software tools which should be used for
document production and defining the quality assurance procedures which
ensure that high-quality documents are produced.

Document process quality assurance standards must be flexible and must be able
to cope with all types of document. In some cases, where documents are simply
working papers or memos, no explicit quality checking is required. However,
where documents are formal documents, that is, when their evolution is to be
controlled by configuration management procedures, a formal quality process
should be adopted. Figure 3 illustrates one possible process.

Drafting, checking, revising and re-drafting is an iterative process which should
be continued until a document of acceptable quality is produced. The acceptable
quality level will depend on the document type and the potential readers of the
document.

Product standards
Product standards apply to all documents produced in the course of the
software development. Documents should have a consistent appearance and,
documents of the same class should have a consistent structure. Document
standards are project-specific but should be based on more general
organizational standards.

Examples of product standards which should be developed are:

1. Document identification standards As large projects typically produce
thousands of documents, each document must be uniquely identified.
For formal documents, this identifier may be the formal identifier
defined by the configuration manager. For informal documents, the
style of the document identifier should be defined by the project
manager.

2. Document structure standards As discussed in the previous section,
there is an appropriate structure for each class of document produced
during a software project. Structure standards should define this
organization. They should also specify the conventions used for page
numbering, page header and footer information, and section and sub-
section numbering.

3. Document presentation standards Document presentation standards
define a ‘house style’ for documents and they contribute significantly
to document consistency. They include the definition of fonts and
styles used in the document, the use of logos and company names, the
use of color to highlight document structure, etc.

4. Document update standards As a document is changed to reflect
changes in the system, a consistent way of indicating these changes
should be used. These might include the use of different colors of cover
to indicate a new document version and the use of change bars to
indicate modified or deleted paragraphs.

Software documentation, Page 12, Printed 7/11/01

Document standards should apply to all project documents and to the initial
drafts of user documentation. In many cases, however, user documentation has
to be presented in a form appropriate to the user rather than the project and it
should be recast into that form during the production process.

Interchange standards
Document interchange standards are important as more and more documents
are produced in electronic format as well as or instead of on paper. For
documentation that is delivered with a software system, the Adobe Portable
Document Format (PDF) is now very commonly used. However, when
documents are exchanged by the development team and drafts are circulated
within an organization these are often in the format of whatever word
processor is used (often Microsoft Word).

Assuming that the use of a standard word processor and graphical editing
system is mandated in the process standards, interchange standards define the
conventions for using these tools. The use of interchange standards, allows
documents to be transferred electronically and re-created in their original form.

Interchange standards are more than simply an agreement to use a common
version of a system for document production. Examples of interchange
standards include the use of an agreed standard macro set if a text formatting
system is used for document production or the use of a standard style sheet for
a word processor. Interchange standards may also limit the fonts and text styles
used because of differing printer and display capabilities.

The IEEE standard for user documentation
The first IEEE standard for user documentation (IEEE, 1987) was produced in
1987 and, at the time of writing, a new draft of this standard is being prepared
for publication (IEEE, 2001).

Like all standards, this standard encapsulates wisdom and experience about
software documentation and proposes a structure for user documentation. Using
this structure as a basis, the standard discusses the content of software user
documentation and proposes formatting standards for these documents.

I have already covered the documentation structure proposed by the latest
version of the standard. To illustrate the formatting advice in the standard,
here are some quotations from the current draft standard of good practice:

The documentation should be provided in media and formats that allow
its use by those with vision, hearing or other physical limitation.

A description of how to print the electronic documentation should be
included in both the electronic and the printed documentation.

Because some users cannot distinguish between colors, documentation
should provide text cues rather than using colors such as red and green as
the only way to convey meaning.

Warnings, cautions and notes shall be displayed in a consistent format
that is readily distinguishable from ordinary text or instructional steps.

Software documentation, Page 13, Printed 7/11/01

Documentation formats for user-entered commands or codes shall clearly
distinguish between literals (to be input exactly as shown) and variables
(to be selected by the user).

Illustrations that accompany text should appear adjacent to their first
reference in the text so that the associated text and illustration can be
viewed simultaneously.

You can see from these that the standard is helpful without being proscriptive
and therefore different conventions used by different companies and
organizations can be accommodated.

Like all standards, this documentation standard has to be adapted to the local
situation where it is used. These should instantiate the advice in the standard to
the local situation and define the specific structures and formats that should be
used.

Writing style

Standards and quality assessment are essential if good documentation is to be
produced but document quality is fundamentally dependent on the writer’s
ability to construct clear and concise technical prose. In short, good
documentation requires good writing.

Writing documents well is neither easy nor is it a single stage process. Written
work must be written, read, criticized and then rewritten until a satisfactory
document is produced. Technical writing is a craft rather than a science but
some broad guide-lines about how to write well are:

1. Use active rather than passive tenses It is better to say ‘You should
see a flashing cursor at the top left of the screen’ rather than ‘A
flashing cursor should appear at the top left of the screen’.

2. Use grammatically correct constructs and correct spelling To boldly
go on splitting infinitives (like this) and to misspell words (like mispell)
irritates many readers and reduces the credibility of the writer in their
eyes. Unfortunately, English spelling is not standardized and both
British and American readers are sometimes irrational in their dislike of
alternative spellings.

3. Do not use long sentences which present several different facts It is
better to use a number of shorter sentences. Each sentence can then be
assimilated on its own. The reader does not need to maintain several
pieces of information at one time to understand the complete sentence.

4. Keep paragraphs short As a general rule, no paragraph should be made
up of more than seven sentences. Our capacity for holding immediate
information is limited. In short paragraphs, all of the concepts in the
paragraph can be maintained in our short-term memory which can hold
about 7 chunks of information.

5. Don’t be verbose If you can say something in a few words do so. A
lengthy description is not necessarily more profound. Quality is more
important then quantity.

Software documentation, Page 14, Printed 7/11/01

6. Be precise and define the terms which you use Computing
terminology is fluid and many terms have more than one meaning. If
you use terms like module or process make sure that your definition is
clear. Collect definitions in a glossary.

7. If a description is complex, repeat yourself It is often a good idea to
present two or more differently phrased descriptions of the same thing.
If readers fail to completely understand one description, they may
benefit from having the same thing said in a different way.

8. Make use of headings and sub-headings. These break up a chapter
into parts which may be read separately. Always ensure that a
consistent numbering convention is used.

9. Itemize facts wherever possible. It is usually clearer to present facts in
a list rather than in a sentence. Use textual highlighting (italics or
underlining) for emphasis.

10. Do not refer to information by reference number alone Give the
reference number and remind the reader what that reference covered.
For example, rather than say ‘In section 1.3 …’ you should say ‘In
section 1.3, which described management process models, …’

Documents should be inspected in the same way as programs. During a
document inspection, the text is criticized, omissions pointed out and
suggestions made on how to improve the document. In this latter respect, it
differs from a code inspection which is an error finding rather than an error
correction mechanism.

As well as personal criticism, you can also use grammar checkers which are
incorporated in word processors. These checkers find ungrammatical or clumsy
uses of words. They identify long sentences and paragraphs and the use of
passive rather than active tenses. These checkers are not perfect and
sometimes they use outmoded style rules or rules which are specific to one
country. Nevertheless, because they often check style as you are typing, they
can help identify phrases which could be improved.

On-line documentation

It is now normal to provide some on-line documentation with delivered
software systems. This can range from simple ‘read me’ files that provide very
limited information about the software through interactive hypertext-based
help systems to a complete on-line suite of system documentation. Most
commonly, however, hypertext-based help systems are provided. These may be
based on a specialized hypertext system or may be HTML-based and rely on
web browsers for access.

The main advantage with on-line documentation is, of course, its accessibility.
It is not necessary for users to find manuals, there is no possibility of picking
up out-of-date documentation and built-in search facilities can be used to locate
information quickly.

Software documentation, Page 15, Printed 7/11/01

However, on-line hypertext systems have several disadvantages which mean
that they should be used to supplement rather than replace paper-based
documentation. These are:

• They lack ‘browsability’ so that readers cannot easily skim through
them to find the information they need. We often find it difficult to
characterize the information we want from documentation although we
can recognize it when we find it. Browsing is the key mechanism that
we use when searching in this way. Browsing also offers opportunities
for serendipitous discovery of system facilities that were unknown.

• Screens, at least with monitors normally used in 2001, have a much
lower resolution than paper and hence it is more difficult and tiring to
read a document on the screen rather than on paper.

• It is very easy for users to get lost in hypertext-based help systems and
they consequently find it difficult to navigate to where they want to go.

When designing screen-based documentation, you should always bear these
problems in mind. Consequently, although both screen-based and paper-based
documents should be well-written, different designs are needed for electronic
and paper documentation. Because of the differences between screens and
paper, simply converting a word processor document to HTML (say) rarely
produces high-quality on-line documentation.

The design of screen-based documents is a major topic in its own right and I
don’t have space to discuss it here. Interested readers can find a brief
introduction to this topic in Chapter 15 of my book on software engineering
(Sommerville, 2001) and a much more comprehensive account in the book on
HCI design by Dix et al (1998).

Document Preparation

Document preparation is the process of creating a document and formatting it
for publication. Figure 3 shows the document preparation process as being split
into 3 stages namely document creation, polishing and production. Modern
word processing systems are now integrated packages of software tools that
support all parts of this process. However, it is still the case that for the
highest-quality documents, it is best to use separate tools for some preparation
processes rather than the built-in word processor functions. The three phases
of preparation and associated support facilities are:

1. Document creation The initial input of the information in the
document. This is supported by word processors and text formatters,
table and equation processors, drawing and art packages.

2. Document polishing This process involves improving the writing and
presentation of the document to make to make it more understandable
and readable. This involves finding and removing spelling, punctuation
and grammatical errors, detecting clumsy phrases and removing
redundancy in the text. The process may be supported by tools such as

Software documentation, Page 16, Printed 7/11/01

on-line dictionaries, spelling checkers, grammar and style checkers and
style checkers.

3. Document production This is the process of preparing the document
for professional printing. It is supported by desktop-publishing
packages, artwork packages and type styling programs.

As well as these tools to support the document production process,
configuration management systems, information retrieval systems and
hypertext systems may also be used to support document maintenance,
retrieval and management.

Modern word processing systems are screen based and combine text editing and
formatting. The image of the document on the user’s terminal is, more or less,
the same as the final form of the printed document. Finished layout is
immediately obvious. Errors can be corrected and layout improved before
printing the document. However, programmers who already use an editor for
program preparation may sometimes prefer to use a separate editor and text
formatting system.

Text formatting systems such as Latex interpret a layout program specified by
the document writer. Layout commands (often chosen from a standard,
definable command set) are interspersed with the text of the document. The
text formatter processes these commands and the associated text and lays the
document out according to the programmer’s instructions. The distinction
between these systems and word processors is illustrated in Figure 4.

Text formatting systems can look ahead at the text to be laid out so can make
better layout decisions than word processing systems whose working context is
more restricted. Because the commands are really a programming language,

Create
initial draft

Review
draft

Incorporate
review

comments

Proofread
text

Layout
 text

Review
 layout

Print
copies

Produce
final draft

Check
final draft

Produce
print masters

Re-draft
document

Stage 1: Creation

Stage 2: Polishing

Stage 3: Production

Approved document

Approved document

Figure 3 Stages of document preparation

Software documentation, Page 17, Printed 7/11/01

programmers often prefer them to word processors but other, non-technical
users usually find them more difficult to use.

The major disadvantage of text processors, once their programming has been
mastered, is that they do not provide an immediate display of the output they
produce. The user must process the text (this may take several minutes) then
display the output using a preview package. If an error is discovered, it cannot
be fixed immediately. The original source must be modified and the preview
process repeated. Thus, although they can result in higher quality documents,
most users find text formatters more inconvenient than word processors.

The final stage of document production is a skilled task which, for documents
with large print runs, should be left to professional printers. However, desktop
publishing (DTP) systems and graphics systems that support scanning and
processing photographs and artwork are now widely available. These have
revolutionized document production. DTP systems partially automate the
layout of text and graphics. They allow very fine-grain control over the layout
and look of a document and can be used by engineers to produce finished
system documentation.

The advantage of using a desktop publishing system is that the cost of
producing high-quality documents is reduced because some of the steps in the
production process are eliminated. Even documents which are produced in small
numbers can be produced to a high standard. The disadvantage of using desktop
publishing systems is that they do not automate the skills of the graphic
designer. Their seductive ease-of-use means that they are accessible to unskilled
users who may produce unattractive and badly designed documents.

An enormous number of documents are produced in the course of a project and
these need to be managed so that the right version of the document is available
when required. If a project is distributed, copies of documents will be produced
and stored at different locations and it is very important to maintain a ‘master
file’ of documents which contains the definitive versions of each document.
This helps minimize a very common problem that arises when users of a

Figure 4: Word processors and text formatters

Word

processor

Finished

document

Text

Text editor

Text + formatting

 commands

Text
formatter

Software documentation, Page 18, Printed 7/11/01

document make mistakes because they are not working from the current
version of a document.

Each document should have a unique record and this can be used as a key in a
document database record. However, retrieval by other fields such as the title
and author should also be supported.

The basic problem with managing documents using a file system to store the
documents and a database management system to maintain document
information is that users have to be disciplined in the way they use they
system. They must ensure that they check out a copy of the document from
the system each time they need it rather than use a local copy on their
computer or the copy that they have printed. In practice, achieving this level
of discipline is difficult and errors are always likely to arise.

In very large projects, specialized document management systems may be used
that integrate the storage of the documents and the maintenance of document
information (Figure 5). Document management software allows related
documents to be linked, maintains records of who has checked out documents,
may support the compression and de-compression of document text and
provides indexing and information retrieval facilities so that documents can be
found. Document management systems may also include version management
facilities so that different document versions may be maintained.

References

Dix, A., Finley, J., Abowd, G. and Beale, R. 1998. Human-Computer
Interaction, 2nd ed. London: Prentice-Hall.

Garg, P. K. and Scacchi, W. 1990. ‘A hypertext system to maintain software
life-cycle document’. IEEE Software, 7 (3), 90–8.

IEEE, 1987. IEEE Standard for Software User Documentation, IEEE-Std1063-
1987. New York: Institute of Electrical and Electronics Engineers.

Figure 5: Document management

Document
retrieval
system

Document database

Document version
manager

User query

Doc.

reference Retrieved document

Document
indexes

Document
entry

systemSubmitted
document

Software documentation, Page 19, Printed 7/11/01

IEEE, 2001. Draft Standard for Software User Documentation, IEEE-
Std1063/D5.1. 2001. New York: Institute of Electrical and Electronics
Engineers.

Sommerville, I. 2001. Software Engineering, 6th Edition. Harlow, UK: London:
Pearson Education Ltd.

Further reading

The Art of Technical Documentation 2nd ed . 1998. K. Haramundanis, Woburn-
MA: Butterworth-Heinemann.

This book is primarily aimed at technical writers and prospective technical
writers and is not specific to software documentation. However, it includes
good general advice on document presentation and style.

Writing for Science and Engineering: Papers, Presentations and Reports. 2000.
H. Silyn-Roberts. Woburn-MA: Butterworth-Heinemann.

Again, this is a general book on documentation. It is more detailed than
Haramundanis’s book and includes very specific advice and checklists on
structure and style.

A Style Guide for the Computer Industry. 1996, Mountain View, CA: Sun
Microsystems.

This book includes specific information and advice on writing style for
software and hardware documents. Includes information on writing for
international audiences. It was originally developed for people involved in
writing documentation for Sun software and hardware systems.

Designing and Writing Online Documentation. 2nd ed. W. Horton, New York:
Wiley Publishers Inc.

This is based on a hypermedia model of on-line documentation as discussed in
this paper. It includes good general advice but it is rather outdated as it predates
the general use of the WWW so does not mention HTML-based systems.

Acknowledgements

This paper is a revised version of Chapter 30 from my book Software
Engineering, 4th edition, published by Addison Wesley in 1992. Thanks to the
publishers (now Pearson Education Ltd) for permission to re-publish this
material.

