
Software Architecture Documentation: The Road Ahead

Antony Tang

Department of Computer Science

VU University Amsterdam

The Netherlands

atang@cs.vu.nl

Peng Liang
State Key Lab of Software

Engineering, Wuhan University

Wuhan, China

liangp@sklse.org

Hans van Vliet

Department of Computer Science

VU University Amsterdam

The Netherlands

hans@cs.vu.nl

Abstract - The basic format in which software requirements

and architecture designs are documented is essentially file-

based, and it has persisted for decades. Current indexing

methods used in file-based documentation are not conducive

to retrieving software knowledge. We propose to index

software documents with a suitable lightweight ontology to

improve the retrieval and traceability of software knowledge.

Initial results from a prototype implementation have shown

promising prospects.

Keywords: Software Architecture Documentation,

Knowledge Sharing, Ontology, Semantic Wiki

I. INTRODUCTION

The basic format in which software requirements and
architecture designs are documented has not changed in
many decades. It is essentially file-based with the support of
semi-automated tools such as RequisitePro and DOORS for
managing requirements, and UML modeling tools such as
Rational and Enterprise Architect for documenting design
structures

1
. There are two main issues. Firstly, except for a

table of contents, there are typically limited capabilities for
cross referencing information, and important requirement
and design details are difficult to find. Therefore, file-based
specification for communicating system requirements and
design has its limitations. Secondly, the editing and
updating of software documentation such as requirements
and design requires coordination on sharing files, this
approach is not well-suited to capturing information
effectively in a large and distributed team. It deters analysts
and designers from keeping documentation up-to-date. As
such, we challenge the effectiveness of this traditional
software documentation paradigm. In this position paper, we
suggest a new approach to improve the capturing and
retrieval of software knowledge.

In a case study, we have observed that requirements
engineers, architects, developers, and testers who updated
their specifications in a file format are unclear about their
documentation responsibility. The ambiguity of
documentation responsibility and the clumsiness in file
sharing prevent software workers from updating formal
specifications after their initial creation [1]. Instead, much of
the information is documented in technical notes, personal
notes, emails, minutes, and wikis etc. and this information
cannot be shared effectively. As a result, a large part of the

1
 This research focuses on the common practices in the software industry.

Advanced methods such as ADLs are outside the scope of this work.

software knowledge is scattered, incoherent, and
incomplete.

The retrieval of documented information for subsequent
use as knowledge is ineffective. Firstly, requirements and
designs continue to evolve. As formal specifications are not
updated regularly and completely, people become less
reliant on them and they can quickly become out-of-date
with the latest development. Secondly, design information is
often scattered over a number of specifications and cross
references between these specifications are often missing.
Keyword search is often used as a means to find related
information. However, such searches may not yield accurate
knowledge retrieval results because of versioning issues and
the use of synonyms and homonyms. Thirdly, many inter-
related requirements, designs, and viewpoints exist in large
and complex software systems. For instance, a change to
one requirement may create rippling effects to other
requirements and designs, making it more difficult to keep
the requirements and the designs consistent. Furthermore,
the relationships between requirements and design are often
implicit and hidden. Although many traceability methods
and tools exist [2, 3], they remain largely specialized
research tools and lack the flexibility for commercial use.

The problems of producing and consuming software
documentation can also be attributed to the general lack of
understanding of how to create and use documented
software knowledge. The software industry and the
community have taken the current practice for granted. In
this research, we study this subject from two perspectives.
Firstly, we investigate how software knowledge is captured,
communicated, and used. Secondly, we investigate the use
of ontology and semantic annotation to help document and
search for software knowledge. This paper describes our
approach, some initial results and key research challenges.

II. DOCUMENTATION PRODUCTION AND CONSUMPTION

Large-scale software design and development is a team
effort and the timely sharing of software knowledge is
important. Many software development organizations use
files to share knowledge as captured in requirements and
architecture design documents. A file-based documentation
method has a number of drawbacks: (a) a file is not easily
shareable in editing despite configuration management; (b)
the update and release of a file to interested readers is
periodic and untimely, especially when requirements and
designs are evolving rapidly, so communicating important
information can be delayed; (c) obtaining knowledge
through a table-of-content or keyword search is ineffective.

2011 Ninth Working Conference on Software Architecture

978-0-7695-4351-2/11 $26.00 © 2011 IEEE

DOI 10.1109/WICSA.2011.40

252

2011 Ninth Working IEEE/IFIP Conference on Software Architecture

978-0-7695-4351-2/11 $26.00 © 2011 IEEE

DOI 10.1109/WICSA.2011.40

252

These issues occur because of how we currently produce
and consume software documentation.

A software architect, as a knowledge producer, would
contribute knowledge such as design decisions to other
stakeholders who might need to know. The timeliness of
such communication is lost if one relies on the release
process of a formal specification. Furthermore, decisions
may not be communicated to all concerned parties, and the
knowledge during the communication may be lost if it is
documented unsystematically, say using emails. This issue
is exacerbated when there are many knowledge producers in
a software development organization, perhaps due to agile
development process, multi-site software development, and
generally increased system complexity and more technical
specializations.

There are many roles in software development, and they
rely on the information created by others to make decisions
on e.g., requirements and designs. For instance, a software
architect needs requirements from business analysts,
technical design from a system architect, project
information from a project manager, design constraints from
software team leaders, and so on. Since documented
knowledge is often incomplete and out-of-date, tacit
knowledge using personal communication is heavily used
[4], but this is ineffective and error prone because
knowledge availability is conditional upon the source of the
knowledge. Knowledge is available only when the person
who possesses the knowledge can be identified, and s/he is
willing to share that knowledge, and s/he communicates the
knowledge clearly and completely.

If documented knowledge is meant for communicating
requirements and design ideas during the development and
maintenance of a system, effective search mechanisms to
help retrieve knowledge become an important consideration.
Currently, file-based documentation typically relies on
indexing mechanisms such as the table of contents, and
supported by mechanisms such as a keyword finder,
traceability matrix, or requirements management tools such
as RequisitePro. Additionally, modeling tools provide some
sort of structure to relate and retrieve knowledge. For
instance, UML tools typically support information
organization by diagram grouping, viewpoints, hierarchical
sub-system structures, and keyword search facilities. These
methods provide limited capabilities for software workers to
find the right information.

Recent studies in architecture knowledge sharing have
produced a number of meta-models and use cases [5] but
little of the recent works address what and how software
workers can improve the effectiveness of retrieving and
relating documented knowledge. Software knowledge is
about providing understandability and relevant information
of software artifacts, supporting traceability and impact
analysis, and it must be kept up-to-date and trustworthy [6].
The understandability of software knowledge is the ability
to retrieve related and relevant information that matters to
software development. For instance, an architect should be
able to find related requirements and understand their
impact on the quality attributes of the system. This
information can be stored in different specification files,

notes, and emails. They are distributed amongst different
people and no one would possess all the knowledge. The
key challenge in software knowledge retrieval is to find
ways to relate the knowledge such that the knowledge an be
used in a meaningful way to support software development.

III. INDEXING ARCHITECTURE KNOWLEDGE

To deal with the problems of creating and retrieving
documented knowledge in software development, we
propose to change the current practice of file-based software
documentation. We propose to index software documents
with a suitable lightweight ontology that is effective and
easy-to-use. We have implemented a prototype system using
a generic and adaptable ontology to support knowledge
indexing and retrieval from software documentation. We
draw an analogy between an ontology-based knowledge
retrieval system and a relational database system, where the
ontology is the index and software documents are the data
contained in tables. The main difference between the two is
that an ontology-based system supports reasoning and
facilitates sharing of knowledge. In this section, we describe
our approach to create such a knowledge indexing and
retrieval system with some examples.
A. A Lightweight Ontology

An ontology defines a common vocabulary for those
who need to organize and share information in a given
domain. It is composed of machine-interpretable definitions
of concepts in that domain and the relationships among
them, which provide a natural foundation to organize the
knowledge in linear software documents (e.g., requirements
specifications, architecture design specifications
sequentially documented in Office Word, etc.). These linear
documents are created and modified with non-linear
thoughts and activities in software development. E.g., a
requirements engineer documents a new non-functional
requirement whilst a software architect makes a related new
design decision simultaneously. The concepts and
relationships in an ontology can relate and organize this
document information through reasoning (e.g., the non-
functional requirement [a concept] is affected by [a
relationship] a design decision [a concept] through
implementing by [a relationship] a component [a concept]).

The other benefit of using an ontology is that it
facilitates knowledge retrieval by automatic reasoning and
querying with the support of formal semantics, which
explicitly define and relate the use of software
documentation related terms, such as requirements and
architecture design concepts. An example is to query all the
components that are used to implement a non-functuional
requirement.

The potential drawback of using an ontology is that it
requires effort for knowledge indexing. We address this
issue in our prototype system in three ways: (a) use a
lightweight ontology that can be tailored to suit retrieval
requirements of architects; (b) provide a wiki-based click-
and-select knowledge indexing tool; (c) semi-automate
indexing for terminologies that the system already knows
about.

253253

We have created a lightweight ontology for indexing
knowledge in requirements and architecture design
documents, as shown in Figure 1. The concepts in this
ontology (e.g., Functional Requirement) are commonly
documented in requirements and architecture design
specifications. We intend for such a lightweight ontology to

be flexible and adaptable so that software organizations can
adapt it for their own purposes. In order to support
document identification and version control, we adapt and
enhance Dublin Core (DC) definitions in our ontology. The
initial concepts are described in [7].

Figure 1. A lightweight ontology for indexing knowledge in requirements and architecture design documents

B. Using Ontology to Index Software Documents
Indexing software documentation using an ontology can

be performed in two steps. Firstly, user may select some text
(e.g., a phrase, sentence, or paragraph) from the document,
and associate this text using select-and-click with an
ontology concept. A knowledge instance of a concept is
created and indexed in the knowledge base. Secondly, if a
concept is related to another concept, a link can be
established, again through select-and-click, between indexed
knowledge instances. This is the process of creating
knowledge triples.

We have implemented a prototype system based on
OntoWiki (OW) [8] to support knowledge indexing and
retrieval from software documents with wiki pages in OW.
Users may highlight a requirement and indicate that this
requirement is a Functional Requirement [a concept] and it
belongs to a certain Application Sub-system [a concept]. This
requirement is indexed by both concepts. If a user wants to
indicate that a requirement is realized by [a relationship] an
architecture design, a link between the two knowledge
instances can be established through the OW user interface
and a knowledge triple is created and stored in the
knowledge base to indicate this relationship.

Users do not want to repeatedly index the same phrases
that are already known in the knowledge base because it is
time consuming. Thus the knowledge indexing activity
should be semi-automated with the aid of some natural
language processing techniques. In our system, any text that
is found matching the pre-existing knowledge instances in
the knowledge base is highlighted. Architects can use an user
interface tool to confirm matched concepts. We also plan to
provide automated facilities for version control, allowing
semantic wiki-pages and the indexed contents to evolve.

C. Retrieving Knowledge
We present an example of knowledge retrieval from

requirements and architecture documents with a concrete
scenario in software development: Design Impact
Evaluation.

Scenario Description: Requirements are frequently
updated and added, and an architect needs to evaluate and
identify the impact of the changing requirements on
architecture design, so that requirements and architecture
design remain consistent.

Knowledge Retrieval Example: A new requirement to
support flexible pricing of a public transport system by time-
of-day is considered. Pricing is currently defined in a pricing
table within a database and it is implemented by an
application component. When the architect queries “Pricing”
requirements and the impacts of changing this requirement
(e.g., using the ontology in Figure 1), the following
knowledge is retrieved: (a) all existing requirements
containing the word “Pricing” are retrieved; (b) all the
designs that realize the “Pricing” requirements are retrieved;
(c) all the non-functional requirements that are satisfied-by
the design components are retrieved; (d) concerned
stakeholders and version details are associated with each
piece of information. The retrieved knowledge forms a
network of trails. Following the knowledge trail, the architect
discovers firstly that time-of-day is not defined in the
existing database schema; secondly the current smart-card
readers installed in buses to debit the cards have certain
performance characteristics; thirdly, there are performance
requirements of this device that must be satisfied. With the
trail of related knowledge, an architect could evaluate the
viability of the requirement change using important design
relationships.

254254

D. Preliminary Results
With the current version of our prototype system for

indexing and retrieving knowledge from software
documentation, we provide some traceability between
requirements and architecture design using the lightweight
ontology. The extent to which knowledge indexing and
retrieval is effective largely depends on the ontology
definition as well as the diligence of architects in indexing
the knowledge. This in turn depends on the usability of a
tool. We conjecture that the idea of dividing text from a file-
based document into wiki pages which are shorter and
readily updatable would encourage architects to document
their updates and index their knowledge. The benefits of
indexed knowledge during software development should pay
for the indexing effort and be another incentive for architects
to perform knowledge indexing.

The prototype system has been shown and discussed with
a number of industry practitioners. Early and informal
feedback from the architects indicates that this concept of
creating semantic wiki pages and indexing knowledge with
ontology could be useful in capturing knowledge that they
sometimes do not document in specifications.

IV. DISCUSSION AND CONCLUSION

File-based software architecture documentation is
ineffective in terms of knowledge capture and retrieval,
especially in large and multi-site system development where
it involves many distributed stakeholders and the system
evolves over time. As such, we need to better understand
what needs to be documented and how best to capture
knowledge. We also need to understand how software people
want to retrieve this knowledge. We envisage an
environment in which multi-author, distributed-location, and
continuous-updates are typical in software development. To
support this environment, suitable methods and tools are
badly needed to replace existing file-based documentation
methods. The use of semantic wikis with suitable and
flexible ontology appears to be useful and promising.

We have constructed a lightweight software engineering
ontology and a prototype system to understand if this
approach may provide a suitable solution. We have partially
integrated and enhanced two tools to develop knowledge
capture and search functionality: (a) OntoWiki to capture and
index software documentation in wiki pages; (b) a semantic
search and reasoning tool called ClioPatria [9] for advanced
knowledge retrieval.

In evaluating how best to document and retrieve software
architecture knowledge, we need to understand how software
workers in an organization make use of software engineering
knowledge and application domain-specific knowledge.
Such an understanding will help us build a general ontology
to enable knowledge indexing. Knowledge indexing using
semantic wikis may potentially benefit many aspects of
software development. It could improve software knowledge
retention; facilitate communication between analysts,

designers, and architects; and potentially reduce
requirements and design inconsistency and omission. It
could provide traceability of requirements and design; and
provide better support for design reasoning and design
verification. Finally, it could yield serendipitous insights,
like in other semantic web applications. As this research is
new, there are many opportunities and challenges ahead of
us. Not all of the challenges are technology related, some of
them are about how software people work and working
together:

• Knowledge capture - in what form, at what level of
detail, and at what cost of software documentation would
encourage knowledge capture. What motivates people to
contribute to documented and indexed knowledge?

• Knowledge retrieval - identify different ways in which
software workers would retrieve knowledge, from the
perspectives of: (a) software engineering process; (b)
application domain; (c) developer’s responsibility.

• Knowledge tool implementation - create technologies
and usable tools to support effective creation and
retrieval of software knowledge.

ACKNOWLEDGMENT

This research has been partially sponsored by the Dutch
“Regeling Kenniswerkers”, project KWR09164, Stephenson:
Architecture knowledge sharing practices in software product lines
for print systems, and the Natural Science Foundation of China
under Grant No. 60950110352, STAND: Semantic-enabled
collaboration Towards Analysis, Negotiation and Documentation on
distributed requirements engineering.

REFERENCES

1. Tang, A., Boer, T.d., Vlient, H.v.: Building Roadmaps: A Knowledge

Sharing Perspective. Sixth Workshop SHAring and Reusing

architectural Knowledge, Hawaii (2011)

2. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for

design traceability and reasoning. Journal of Systems and Software 80

(2007) 918-934

3. Egyed, A., Grunbacher, P.: Supporting software understanding with

automated requirements traceability. International Journal of Software

Engineering and Knowledge Engineering 15 (2005) 783-810

4. Farenhorst, R., Lago, P., Vliet, H.v.: EAGLE: Effective Tool Support

for Sharing Architectural Knowledge International Journal of

Cooperative Information Systems 16 (2007) 413-437

5. Ali-Babar, M., Dingsøyr, T., Lago, P., Van Vliet, H. (eds.): Software

Architecture Knowledge Management: Theory and Practice. Springer-

Verlag Berlin Heidelberg (2009)

6. Jansen, A., Avgeriou, P., Ven, J.S.v.d.: Enriching software architecture

documentation. Journal of Systems and Software 82 (2009) 1232-1248

7. Tang, A., Liang, P., Clerc, V., Vliet, H.v.: Supporting Co-evolving

Architectural Requirements and Design through Traceability and

Reasoning. In: Avgeriou, P., Lago, P., Grundy, J., Mistrik, I. (eds.):

Relating Software Requiremens and Software Architecture (2011)

8. Agile Knowledge Engineering and Semantic Web (AKSW):

OntoWiki:Semantic Collaboration for Enterprise Knowledge

Management, E-Learning and E-Tourism. Vol. 2011 (2011)

9. Department of Computer Science: The ClioPatria semantic search web-

server. Department of Computer Science, VU University Amsterdam

(2010)

255255

