

Aalborg Universitet

The Vicinity of Program Documentation Tools

Nørmark, Kurt

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Nørmark, K. (2009). The Vicinity of Program Documentation Tools. (TR 09-004 ed.) Institut for Datalogi, Aalborg
Universitet: Department of Computer Science, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: October 10, 2019

http://vbn.aau.dk/en/publications/the-vicinity-of-program-documentation-tools(09a37bb0-ef98-11de-b63d-000ea68e967b).html

The Vicinity of Program Documentation Tools

Kurt Nørmark

Department of Computer Science

Aalborg University

Denmark

normark@cs.aau.dk

Abstract

Program documentation plays a vital role in almost

all programming processes. Program documentation

flows between separate tools of a modularized environ-

ment, and in between the components of an integrated

development environment as well. In this paper we dis-

cuss the flow of program documentation between pro-

gram development tools. In the central part of the paper

we introduce a mapping of documentation flow between

program development tools. In addition we discuss a

set of locally developed tools which is related to pro-

gram documentation. The use of test cases as examples

in an interface documentation tool is a noteworthy and

valuable contribution to the documentation flow. As an

additional contribution we identify several circular re-

lationships which illustrate feedback of documentation

to the program editor from other tools in the develop-

ment environment.

1. Introduction

Program documentation tools can be categorized in
two flavors: (1) Tools which document the external
interface of a program library, also known as the appli-
cation programming interface (API). (2) Tools which
document the internal details of a program, either a li-
brary or an application. Inspired from the vocabulary
used in program testing we call tools of the first cate-
gory for black box program documentation tools. Tools
of the second category are called white box program

documentation tools.

This paper researches the vicinity of program doc-
umentation tools in order to track the interaction be-
tween documentation tools and other program develop-
ment tools. We are primarily interested in a setup with
separate, cooperating development tools. Such envi-

ronments will be called modularized environments.1 A
modularized environment is attractive because it can
be composed of tools which suit the needs and pref-
erences of the individual programmer. Within a mod-
ularized environment one tool may be substituted by
another similar tool as long as certain protocols and
conventions are obeyed in relation to other tools.

The primary goal of the work described in this paper
is to understand the flow of program documentation in
between tool of a modularized environment. Based on
this understanding we wish to improve the use of pro-
gram documentation across a set of tools. The insight
of the paper can also be used to design the flow of pro-
gram documentation between a more tightly integrated
set of tools. The concrete experience behind the paper
comes from the author’s work on program documenta-
tion tools for the programming language Scheme, used
from the Emacs text editor.

In the paper we will first briefly review the area of
black box and white box program documentation tools.
In this part of the paper we will draw the attention to
related work in the area. Following that, in Section
3, we analyze the vicinity of program documentation
tools in order to understand how program documenta-
tion flows between a variety of different program devel-
opment tools. In Section 4 we describe a concrete set of
program development tools from which we have drawn
the experience described in this paper. In section 5 we
identify and discuss some circular relationships which
represent documentation feedback to the editing tool.
Finally, in Section 6, we draw the conclusions of the
work.

1A modularized environment is seen as a contrast to a tightly
integrated environment. In an integrated development environ-
ment the identities of individual tools are blurred.

1

2. Program Documentation Tools

The most widespread program documentation tools
- interface documentation tools - extract information
about the abstractions in a source program which are
relevant for external use. The focus on program inter-
faces - APIs - reflects the black box nature of such tools:
The internal program details are “blacked out” in the
documentation. Typically, the extracted parts include
signatures of public procedures/functions/methods in
public modules/classes. The extracted parts of the
source programs are augmented with information from
designated documentation comments. The documenta-
tion comments are written in a documentation language

which provides structural and typographical means of
markup. The documentation comments are located in
close proximity to the extracted source code fragments.
The extracted information is aggregated as interlinked
HTML pages, intended to be viewed in an internet
browser.

Javadoc [3] made interface documentation tools pop-
ular for the Java programming language in the mid-
nineties. Prior to Java and Javadoc, similar approaches
were used for production of paper-based program doc-
umentation via text formatting tools such as TeX or
Nroff. Most programming languages are today accom-
panied by interface documentation similar to Javadoc.
Doxygen [17] is one of the most elaborate and full-
feature tools in this genre. Doxygen can be used to-
gether with several programming languages, most no-
tably languages in the C family.

The tools that support documentation of the inner
workings of a program are less widespread than inter-
face documentation tools. In this paper such tools are
referred to as white box documentation tools. Liter-
ate programming [8], as pioneered by Donald Knuth,
represents the most important school in the area of
internal program documentation. A literate program
is integrated with the “story about the program”. In
a literate program, the actual pieces of programs are
annotations of the program explanations. In more con-
ventional programs, some pieces of explanations - rep-
resented as comments - annotate the source code. Nu-
merous literate programming tools have been devel-
oped [1, 20, 9, 5, 15] but - in contrast to interface doc-
umentation tools - none of them have been adopted by
the software industry. Inspired by literate program-
ming, other techniques for internal program documen-
tation have been proposed. Elucidative Programming
[11] relies on a separation of documentation and source
programs, with bidirectional links in between them.
Theme-based Literate Programming [6] and its sup-
porting tool, supports documentation of several paths

through (or aspects of) a program. Simonis and Weiss
[16] cover part of this landscape as of 2003. Vestdam
and Nørmark [18] discuss additional aspects.

3. The Vicinity of Documentation Tools

In this section we will discuss a map of program
documentation tools and the information that flows in
between these and other program development tools.
With this map we wish to zoom in on the flow of pro-
gram documentation in a complex web of program de-
velopment tools. Throughout the paper we will address
and discuss the map which is shown in Figure 1. For
ease of identification, capital letters in the figure refer
to specific tool, and numbers refer to information that
flow between the tools.

The interface documentation tool (A) is the start-
ing point of our exploration. As it is shown in the
figure, the interface documentation tool produces in-

terface documentation pages (1) which can be exam-
ined interactively in a documentation browser (F). The
documentation browser is typically a general purpose
internet browser. The interface documentation pages
are usually regarded as the primary deliveries of the
interface documentation tool.

The internal documentation tool (B) supports de-
scriptions and explanations of the implementation of
a program (a library or an application). The internal
documentation tool is directed towards internal or pri-
vate details of a program component. As such, the in-
ternal documentation creates (more or less integrated)
presentations2 (3) and explanations (4) of the source
program.

In many situations it makes good sense to connect
the presentation of the source programs (3) to the doc-
umentation pages (1) via navigatable links. This al-
lows for source program browsing from a starting point
of the program interface documentation. In many re-
spects this is a very useful way to approach the pro-
gram details. In situations where the documentation
of the API is not precise or comprehensive, some users
may want to inspect the actual code behind the inter-
face. This may be necessary in order to find answers
to questions, which are not covered by the interface
documentation. The other way around, it is also use-
ful to consult the interface documentation (1) from a

2In this work, the presentation of a source program (3) is dif-
ferent from the actual source program (7). In the presentation
of the source program applied names are cross-linked to their
definitions. In addition, typographic means of expressions (in-
cluding coloring) may be applied. The actual source program
represents the view of the source program in the program edi-
tor. Integrated development environments blur the distinction
between these two renderings of the source program.

2

Interface

Documentation

Tool

Internal

Documentation

Tool

Unit Testing

Tool

Editor

Static Analysis

Tool

Testcase

Presentation

Program

Documentation

Repository

Test case

Repository

Test case

Statistics

Static Analysis

Results

Program

Presentation

Source

Program

Program

Explanation

(9)

(B)

(C)

(D)

(E)

(6)

(2)

(8)

(7)

(5)

(3) (4)

T R

TR

Legend:

(A)

The tool T produces R

R is used by the tool T

Browser

(F)

Interface

Documentation

Pages

(1)

Interface

Documentation

Repository

(2)

Program

Documentation

(10)

Figure 1. A map of the program development tools, with special emphasis on documentation tools, together

with the information that flows in between them.

presentation of a source program (3), instead of under-
standing all pieces of the program at the most detailed
level.

The interface documentation pages (1) produced by
the interface documentation tool (A) contain informa-
tion which is useful for other tools as well. It is not ef-
fective for such tools to access the documentation pages
(1) as such. The documentation pages are intended for
human reading. Therefore, the interface documenta-
tion tool should also create contributions to an inter-

face documentation repository (2). The interface doc-
umentation repository should organize program docu-
mentation in such a way that it can be accessed effi-
ciently from other tools.

Concrete examples that illustrate uses of program
abstractions are very useful in the context of program
interface documentation (1). An example shows how to
use a documented abstraction, and it somehow presents
the results or effects of the use of the abstraction. In

principle, it is possible to manually author the exam-
ples side-by-side with other pieces of the interface doc-
umentation. In such as setup the examples could be
organized inside the documentation comments of the
source program. In reality, it is not realistic to go for
such an organization. The primary reason is that it
would be difficult to maintain the correctness of the
examples. We will now explain how to provide a bet-
ter solution via integration with a unit testing tool.

The unit testing tool (C) works on test cases which
typically are organized in ordinary source programs (7)
and produced by the program editor (D). The primary
artifacts produced by a unit testing tool (C) is the test
case statistics (5). A test case consist of a program
fragment and its expected result. The unit testing tool
is able to execute a program fragment and compare the
outcome with the expected result. The pieces of infor-
mation in a test case may directly serve as an example
in interface documentation. It may, however, require

3

some “digging” to extract the example program frag-
ment and its intended result from a unit test. As an
alternative approach, it may be possible to organize
the testing process or the testing tool such that these
informations are readily available (see Section 4). We
propose that the unit testing tool (C) derives an test

case repository (6) which is organized side by side with
the interface documentation repository (2).

As it is shown in Figure 1, the test case repository
(6) is connected to the interface documentation tool
(A). Via this connection, the interface documentation
tool is able to extract relevant test cases and to use
the extracted test cases as examples in the interface
documentation. The extraction can either be done au-
tomatically, simply by selecting those test cases where
a given function appears in the program fragment of
the test case. Alternatively, it may be possible to aug-
ment the entries in the test case repository with hints
about the relevant documentation context of a given
test case. This possibility can be seen as fine tuning of
the examples in the interface documentation (1).

The programmer is supposed to consult the program
documentation pages (1) when he or she uses the pro-
gram editor (D) in the programming process. This may
be disruptive because it typically enforces a context
shift from the editor (D) to the documentation browser
(F). It is attractive to provide “easier access” to the
most important information in the program documen-
tation pages. Easy access means that the information
appears more or less automatic when needed, and that
it disappears again when not needed anymore. Modern
IDEs, such as Visual Studio from Microsoft, have paved
the way to “easy access” via so-called intellisense. In-
tellisense also involves flexible name completion, either
automatically when possible in some given context, or
via selection from a list of possibilities.

As just discussed, the information from the inter-
face documentation repository (2) is a valuable contri-
bution to the editor (D), for presentation of API doc-
umentation and for name completion purposes. It rep-
resents knowledge of relevant public definitions from
classes and modules, on which a given program relies.
The information taken from the interface documenta-
tion repository (2) does not, however, account for full
documentation in a given programming situation. It
needs to be augmented with information about nearby
definitions in the current class/module/application and
information about locally bound names in the defini-
tion under development (local variables and parame-
ters). This information can be provided to the editor
by means a static analysis tool (E) which is applied on
the current source file.

Figure 2 illustrates the program editor in a situation

Figure 2: A program with the procedures P, Q, and

R which depend on two libraries L1 and L2.

The programmer currently works inside R at

the place of the solid cursor.

where a program (represented as the large box in the
figure) uses two libraries L1 and L2 (the smaller boxes).
The programmer is currently working on the procedure
R, which is a sibling of the procedures P and Q. Inside
R, the parameters a, b, c and the variables d and e
make up the local name context. The documentation
of the libraries L1 and L2 is taken form the interface
documentation repository (2). Information about P
and Q as well as the information about the local names
a, b, c, d, and e is provided by the static analysis tool
(E). The documentation from the program documenta-
tion repository changes slowly, whereas the documenta-
tion of local names in the context of the working point
changes rapidly. These observations affect the schedul-
ing of the recalculation of the documentation relative
to the point of interest in the editor.

4. Concrete tools in the vicinity of

SchemeDoc

In this section we will discuss the concrete tools
and the concrete experiences behind the general ob-
servations in Section 3. The documentation tools,
and the connections in between them, have been con-
structed and elaborated in the slipstream of the work
on LAML [13]. LAML is a software package which
makes XML languages available in the programming
language Scheme [7]. Scheme is a functional program-

4

Figure 3. Two documentation entries augmented with examples captured from interactive unit testing.

ming language in the Lisp family. LAML is a non-
trivial collection of software (it currently counts ap-
proximately 80.000 lines of code) and it is therefore
essential that available documentation is used to its
full potential. As a consequence, the LAML project
has involved substantial tasks in the area of program
comprehension [11, 12]. In the discussion below we re-
fer to the same numbering of tools, documents, and
repositories as used in Figure 1 of Section 3.

The interface documentation tool (A) is LAML
SchemeDoc [12] which we have developed to support
the development of LAML. SchemeDoc is similar to
most other interface extraction tools, and originally
inspired by Javadoc [3, 10]. The documentation pro-
duced by SchemeDoc has played a vital role for the
documentation and the management of the LAML soft-
ware. SchemeDoc produces HTML documentation (1)
which can be accessed from any internet browser (F).
The SchemeDoc tool also produces an internal data
structure (a nested list structure) which plays the role
of the interface documentation repository (2).

The tool used for internal documentation of the
LAML software is the Scheme Elucidator (B) [11]. It

generates strictly separated program explanation (4)
and program presentation pages (3), which are mutu-
ally navigatable in a two-framed browser setup. Inter-
nally, SchemeDoc (A) activates the Scheme Elucidator
(B) with the purpose linking the interface documen-
tation pages (1) to source program presentations (3).
From an entry in the interface documentation there is
access to the source program details of the entry. The
links in the source program presentation connect ap-
plied names to defined names (in the same source file
presentation, or in presentation of other source files);
“Reserved names” in the Scheme programming lan-
guage are linked to the relevant entries in the Scheme
reference manual; And defined names in a program pre-
sentation (3) are linked to entries in the interface doc-
umentation (1) if available.

It is an non-trivial task to produce richly linked pre-
sentation of the source program (3) because it requires
simultaneous traversals of the parsed program and its
textual form. From the point of view of the interface
documentation tool (A) it therefore makes good sense
to produce the source program presentation (3) via use
of the internal documentation tool (B), for which the

5

Figure 4. Instantaneous access to interface documentation from the program editor.

source program presentation (3) is a central delivery.

Scheme is a programming language which allows
fine-grained evaluation of expressions in an interactive
shell (also known as a read-eval-print loop). We have
augmented the interactive shell with support for inter-
active unit testing. A separate paper [14] describes how
this is done. With use of this facility it is flexible to cap-
ture test cases and to populate the test case repository
(6). It is, in a relatively straightforward way, possible
to document these test cases (9). More interesting, the
test case repository (6) can be used as examples which
illustrate the use of the abstraction documented by the
interface documentation tool. Therefore SchemeDoc
(A) accesses the test case repository (6). Each entry
in the interface documentation presents relevant test
cases from the repository.

Figure 3 shows a couple of interface documentation
entries, each of which contains a collection of relevant
examples which have been taken from the test case
repository (6). As it appears from Figure 3, it is nat-
ural to render test cases of pure functions as exam-
ples in the interface documentation. Unfortunately,

it is harder to come up with similar natural test case
rendering of procedures from imperative programming.
As can be seen in the figure, the examples augments
the interface documentation in a very useful manner.
It is often easier, and more tangible, to understand a
program abstraction through a number of concrete ex-
amples as opposed to abstract explanations which use
many words over several lines of text. Moreover, there
is a high probability that the examples are correct and
accurate at any point in time. The reason is that the
examples stem from test cases which are verified au-
tomatically against the software via regression testing.
The connection between the unit testing tool and the
interface documentation tool is - to our knowledge -
a novel aspect of the tool-set described in this paper.
The closest similar work is Hoffman’s and Strooper’s
FAQ approach [4] which connects testcases with API
documentation, but without suggesting a presentation
of the test cases as part of the interface documentation.
A similar approach is taken by the Python doctest fa-
cility [2].

The program and documentation editor (D) is GNU

6

Figure 5. Instantaneous access to examples from

the program editor.

Emacs - a powerful, classical, programmable text edi-
tor which is widely used for program development pur-
poses on all platforms. The program editor is used for
production of the source programs (7), which are the
primary sources of information for all other tools (A,
B, C, E, and F) discussed in this paper. It is possible to
consult program documentation (1, 3, 4) in the browser
(F) while using the editor (D). It is, however, attrac-
tive and productive if some of the program documen-
tation can be brought to the programmer’s attention
from within the editor. Therefore, the program editor
accesses the relevant parts of the interface documenta-
tion repository (2). The relevant parts are determined
from the so-called major mode of the buffer and from a
dependency clause located in the preamble of the source
file (within a comment). On request, the information
in the repository is used for name completion purposes,
and for documentation purposes. Hitting the TAB key
in the editor completes names if necessary, and if the
name is already complete it pops up the relevant in-
terface documentation entry. Figure 4 shows the docu-
mentation of the function number-interval (the same
function used in the example of Figure 3) activated
from GNU Emacs. As can be seen from the figure, it
is stated that there exists four examples of the func-
tion number-interval. Hitting the SHIFT-TAB key
reveals these four examples from within the editor, see
Figure 5.

With access to interface documentation from the
program editor, the use of certain names (the docu-
mented ones) becomes easy and more secure. Non-
documented names in the same or nearby source files,
as well as local names, do not enjoy the same sup-
port. Based on this observation, we have implemented
a static analysis tool (E) within Emacs (D). The static
analysis tool is able to extract the missing contextual

Interface

Documentation

Tool

Internal

Documentation

Tool

Unit Testing

Tool

Editor

Static Analysis

Tool

Testcase

Presentation

Program

Documentation

Repository

Test case

Repository

Test case

Statistics

Static Analysis

Results

Program

Presentation

Source

Program

Program

Explanation

(9)

(B)

(C)

(D)

(E)

(6)

(2)

(8)

(7)

(5)

(3) (4)

(A)

Browser

(F)

Interface

Documentation

Pages

(1)

Interface

Documentation

Repository

(2)

Program

Documentation

(10)

Figure 6. Interface documentation feedback.

information (8) and to join it with the information from
the interface documentation repository (2).

5. Documentation Feedback

In the two previous sections we have described the
connection between program documentation tools and
related program development tools. The description
has been been given both at a generalized level in Sec-
tion 3 and at a concrete level - with a given language
and given tools - in Section 4. The concrete description
in Section 4 addresses an architecture based on sepa-
rate tools, such as in a traditional Unix setup. The
generalized description in Section 3 is a suitable basis
for both an integrated development environment (with
tightly integrated components) and for a modularized
environment composed of separate tools.

We will now identify and discuss some documenta-
tion feedback relationships in the map of Figure 1. The
purpose is to clarify the roles of program documenta-
tion in the flow between the tools. Also of interest, we
will point out some non-existing relationships in the
map which represent documentation flow problems or
tool integration problems in existing environments.

Figure 6, which is a based on Figure 1, illustrates in-

terface documentation feedback. As illustrated by the
solid grey arrow in Figure 6, the interface documenta-
tion is extracted from the source program by the inter-
face documentation tool and brought back to the pro-
gram editor via the interface documentation repository.
In the editor it should be possible to bring up interface
documentation of a selected abstraction, based on the
editing context. The value of the interface documen-
tation rises when the documentation is fed back to the
editor, as opposed to being available in the separate
browsing tool. In addition, we hypothesize that the

7

Interface

Documentation

Tool

Internal

Documentation

Tool

Unit Testing

Tool

Editor

Static Analysis

Tool

Testcase

Presentation

Program

Documentation

Repository

Test case

Repository

Test case

Statistics

Static Analysis

Results

Program

Presentation

Source

Program

Program

Explanation

(9)

(B)

(C)

(D)

(E)

(6)

(2)

(8)

(7)

(5)

(3) (4)

(A)

Browser

(F)

Interface

Documentation

Pages

(1)

Interface

Documentation

Repository

(2)

Program

Documentation

(10)

Figure 7. Interface example feedback.

documentation willingness and eagerness of program-
mers increases as a function of experienced value of the
documentation in the developing process.

The turnaround time of the circle shown in Figure 6
is typically relatively long, because the interface docu-
mentation repository is only inhabited when it makes
sense to (re)process the involved source programs by
the interface documentation tool. The crucial con-
stituents of the feedback circle is the interface docu-
mentation repository together with the protocol which
allows the editor to access this repository. As a future
contribution to modularized environments it would be
useful to standardize the format of the interface doc-
umentation repository and the protocol between the
editor and the repository.

Figure 7 illustrates interface example feedback. The
examples flow from the test case repository to the edi-
tor via the processing done by the interface documen-
tation tool. The test case repository is inhabited by
the unit testing tool. The interface example feedback

cycle fuses examples into the editor, based on unit test-
ing efforts. The examples can either be shown together
with the interface documentation as such, or they can
be presented in isolation from the interface documen-
tation. In an advanced setup, it may be possible to
request one or more examples that match the current
editing context. In our current implementation of the
tools, as described in Section 4, the examples are pre-
sented separate from other interface documentation. In
other words, it is possible to request the full set of ex-
amples at any point in the program where the remain-
ing interface documentation can be requested. In the
current implementation of the program editor we do
not attempt to select a subset of the examples based
on the current editing context.

Figure 8 illustrates static analysis feedback. Based

Interface

Documentation

Tool

Internal

Documentation

Tool

Unit Testing

Tool

Editor

Static Analysis

Tool

Testcase

Presentation

Program

Documentation

Repository

Test case

Repository

Test case

Statistics

Static Analysis

Results

Program

Presentation

Source

Program

Program

Explanation

(9)

(B)

(C)

(D)

(E)

(6)

(2)

(8)

(7)

(5)

(3) (4)

(A)

Browser

(F)

Interface

Documentation

Pages

(1)

Interface

Documentation

Repository

(2)

Program

Documentation

(10)

Figure 8. Static analysis feedback.

on a location in a single source program file f, the static
analysis tools incrementally extracts knowledge from f

about definitions which are relevant at the given loca-
tion. As opposed to the cycle of interface documen-
tation feedback, the turnaround time of the circle in
Figure 8 is short. This reflects that - at least part
of - the static analysis is carried out at the moment
the programmer requests documentation from the pro-
gram editor. The result of the static analysis is joined
with the most recent interface documentation from the
interface documentation repository. In that way, the
programmer will experience comprehensive name com-
pletion and documentation from within the editor.

It is tempting to ask if there exist internal documen-

tation feedback, along the lines of interface documen-
tation feedback and interface example feedback. The
possibility of internal documentation feedback is indi-
cated in Figure 9. The question is if the internal docu-
mentation, as described in Section 2, will be available
when needed in the program editor. If the internal doc-
umentation is located in close and physical proximity
with the documented program abstraction, the prob-
lem is easy to deal with. If, on the other hand, the
internal documentation is separated from the source
program, it is profitable to be able to recall the inter-
nal documentation from the program editor.

Finally, in Figure 10, it is questioned if the program-
mer get sufficient feedback on the unit testing status
while situated in the program editor. The feedback we
have in mind is (1) the specific tests that involves a
given abstraction, (2) the success or failures of these
tests, and (3) the coverage of these tests relative to
the given abstraction. Given the idea of various kinds
of feedback to the editor, the testing feedback hinted
in Figure 10 seems natural and attractive. We are not
currently aware of any system which supports this kind

8

Interface

Documentation

Tool

Internal

Documentation

Tool

Unit Testing

Tool

Editor

Static Analysis

Tool

Testcase

Presentation

Program

Documentation

Repository

Test case

Repository

Test case

Statistics

Static Analysis

Results

Program

Presentation

Source

Program

Program

Explanation

(9)

(B)

(C)

(D)

(E)

(6)

(2)

(8)

(7)

(5)

(3) (4)

(A)

Browser

(F)

Interface

Documentation

Pages

(1)

Interface

Documentation

Repository

(2)

Program

Documentation

(10)

Figure 9. Internal documentation feedback?

Interface

Documentation

Tool

Internal

Documentation

Tool

Unit Testing

Tool

Editor

Static Analysis

Tool

Testcase

Presentation

Program

Documentation

Repository

Test case

Repository

Test case

Statistics

Static Analysis

Results

Program

Presentation

Source

Program

Program

Explanation

(9)

(B)

(C)

(D)

(E)

(6)

(2)

(8)

(7)

(5)

(3) (4)

(A)

Browser

(F)

Interface

Documentation

Pages

(1)

Interface

Documentation

Repository

(2)

Program

Documentation

(10)

Figure 10. Testing feedback?

of feedback.

6. Conclusions

In this paper we have emphasized and mapped the
flow of program documentation between tools in a
modularized programming environment. Documenta-

tion awareness among designers of such an environ-
ment is necessary to ensure the best possible outcome
and “profit” of a programmer’s everyday documenta-
tion efforts. If a programmer experiences that program
related documentation is available and helpful through-
out the programming process, it is more likely that the
programmer is willing to invest time and efforts in pro-
ducing high-quality documentation.

In order to ensure an appropriate flow of program
documentation in a modularized programming environ-
ment it is desirable to standardize both producer and

consumer interfaces to documentation repositories. In
this paper we have outlined an interface documenta-
tion repository and a test case repository. The interface
documentation tool and the unit testing tool produce
information to these repositories. In the paper we have
pointed out that the program editor is a prominent con-
sumer. In future modularized programming environ-
ments it will be important to offer standard protocols
to documentation-related repositories. It will, in addi-
tion, make good sense to use a common XML language
as the format of the program documentation reposito-
ries. Such a common XML language should be defined
independent of the involved programming language of
the source code.

The use of test cases as examples in interface doc-
umentation is an important and novel contribution of
our work. It is straightforward to use and present test
cases of pure functions as examples. The reason is that
pure functions are fully characterized by the input (via
parameters) and the output (via the returned value).
It is harder to come up with good example-rendering
of test cases in imperative programming. Test cases
are ideal for harvesting of examples, because the test
cases have proven themselves correct (syntactically and
semantically) in the latest round of regression testing.

Interface documentation feedback as well as static

analysis feedback is already realized between (the
intangible) tools of integrated development environ-
ments, such as Eclipse and Visual Studio. Interface

example feedback still seems to be missing in such en-
vironments. In modularized environments the various
kinds of feedback is less well-developed. The reason for
that is partly due to the lack of standard interfaces to
documentation-related repositories.

References

[1] P. Briggs. Nuweb, A simple literate programming tool.
Technical report, Rice University, Houston, TX, USA,
1993.

[2] P. Doctest. doctest. test in-
teractive python examples, 2009.
http://docs.python.org/library/doctest.html.

[3] L. Friendly. The design of distributed hyperlinked pro-
gramming documentation. In S. Frass, F. Garzotto,
T. Isakowitz, J. Nanard, and M. Nanard, editors, Pro-
ceedings of the International Workshop on Hypermedia
Design (IWHD’95), Montpellier, France, 1995.

[4] D. Hoffman and P. Strooper. API documentation with
executable examples. The Journal of Systems and
Software, 66(2):143–156, 2003.

[5] A. L. Johnson and B. C. Johnson. Literate program-
ming using noweb. Linux Journal, 42:64–69, October
1997.

9

[6] A. Kacofegitis and N. Churcher. Theme-based liter-
ate programming. In Proceedings of the Ninth Asia-
Pacific Software Engineering Conference, pages 549–
557. IEEE Computer Society, 2002.

[7] R. Kelsey, W. Clinger, and J. Rees. Revised5 report on
the algorithmic language Scheme. Higher-Order and
Symbolic Computation, 11(1):7–105, August 1998.

[8] D. E. Knuth. Literate programming. The Computer
Journal, May 1984.

[9] D. E. Knuth and S. Levy. The CWEB System of Struc-
tured Documentation, Version 3.0. Addison Wesley,
1993.

[10] D. M. Leslie. Using Javadoc and XML to produce
API reference documentation. In SIGDoc’02, pages
104–109. ACM, October 2002.

[11] K. Nørmark. Elucidative Programming. Nordic Jour-
nal of Computing, 7(2):87–105, 2000.

[12] K. Nørmark. Scheme program documentation tools. In
O. Shivers and O. Waddell, editors, Proceedings of the
Fifth Workshop on Scheme and Functional Program-
ming, pages 1–11. Department of Computer Science,
Indiana University, September 2004. Technical Report
600.

[13] K. Nørmark. Web programming in Scheme with
LAML. Journal of Functional Programming, 15(1):53–
65, January 2005.

[14] K. Nørmark. Systematic unit testing in an read-
eval-print loop. To appear in Journal of Univer-
sal Computer Science, 2010. http://www.cs.aau.dk/-
∼normark/laml/papers/unit-testing.pdf.

[15] N. Ramsey. Weaving a language-independent
WEB. Communications of the ACM, 32(9):1051–1055,
September 1989.

[16] V. Simonis and R. Weiss. Progdoc - a new program
documentation system. In M. Broy and A. V. Zamulin,
editors, Perspectives of System Informatics, volume
LNCS 2890, pages 1101–1119, 2003.

[17] D. van Heesch. Doxygen, 2004. http://www.-

doxygen.org.
[18] T. Vestdam and K. Nørmark. Maintaining program

understanding - issues, tools, and future directions.
Nordic Journal of Computing, 11(3):303–320, 2004.
Extended version of [19].

[19] T. Vestdam and K. Nørmark. Maintaining program
understanding - issues, tools, and future directions.
Presented at 11th Nordic Workshop on Programming
and Software Development Tools and Techniques -
NWPER’2004, May 2004.

[20] R. Williams. FunnelWeb user’s manual. Technical
report, University of Adelaide, Adelaide, South Aus-
tralia, Australia, 1992.

10

