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The theory of probability and statistical inference is various things to various people. To the 
mathematician, it is an intricate formal calculus, to be explored and developed with little 
professional concern for any empirical significance that might attach to the terms and 
propositions involved. To the philosopher, it is an embarrassing mystery whose justification 
and conceptual clarification have remained stubbornly refractory to philosophical insight. 
(A famous philosophical epigram has it that induction [a special case of statistical 
inference] is the glory of science and the scandal of philosophy.) To the experimental 
scientist, however, statistical inference is a research instrument, a processing device by 
which unwieldy masses of raw data may be refined into a product more suitable for 
assimilation into the corpus of science, and in this lies both strength and weakness. It is 
strength in that, as an ultimate consumer of statistical methods, the experimentalist is in 
position to demand that the techniques made available to him confirm to his actual needs. 
But it is also weakness in that, in his need for the tools constructed by a highly technical 
formal discipline, the experimentalist, who has specialized along other lines, seldom feels 
competent to extend criticisms or even comments; he is much more likely to make 
unquestioning application of procedures learned more or less by rote from persons assumed 
to be more knowledgeable of statistics than he. There is, of course, nothing surprising or 
reprehensible about this -- one need not understand the principles of a complicated tool in 
order to make effective use of it, and the research scientist can no more be expected to have 
sophistication in the theory of statistical inference than he can be held responsible for the 
principles of the computers, signal generators, timers, and other complex modern 
instruments to which he may have recourse during an experiment. Nonetheless, this leaves 
him particularly vulnerable to misinterpretation of his aims by those who build his 
instruments, not to mention the ever present dangers of selecting an inappropriate or 
outmoded tool for the job at hand, misusing the proper tool, or improvising a tool of 
unknown adequacy to meet a problem not conforming to the simple theoretical situations in 
terms of which existent instruments have been analyzed. Further, since behaviors once 
exercised tend to crystallize into habits and eventually traditions, it should come as no 
surprise to find that the tribal rituals for data-processing passed along in graduate courses in 
experimental method should contain elements justified more by custom than by reason.  

In this paper, I wish to examine a dogma of inferential procedure which, for psychologists 
at least, has attained the status of a religious conviction. The dogma to be scrutinized is the 



"null-hypothesis significance test" orthodoxy that passing statistical judgment on a 
scientific hypothesis by means of experimental observa- [p. 417] tion is a decision 
procedure wherein one rejects or accepts a null hypothesis according to whether or not the 
value of a sample statistic yielded by an experiment falls within a certain predetermined 
"rejection region" of its possible values. The thesis to be advanced is that despite the 
awesome pre-eminence this method has attained in our experimental journals and textbooks 
of applied statistics, it is based upon a fundamental misunderstanding of the nature of 
rational inference, and is seldom if ever appropriate to the aims of scientific research. This 
is not a particularly original view -- traditional null-hypothesis procedure has already been 
superceded in modern statistical theory by a variety of more satisfactory inferential 
techniques. But the perceptual defenses of psychologists are particularly efficient when 
dealing with matters of methodology, and so the statistical folkways of a more primitive 
past continue to dominate the local scene.  

To examine the method in question in greater detail, and expose some of the discomfitures 
to which it gives rise, let us begin with a hypothetical case study. 

A CASE STUDY IN NULL-HYPOTHESIS PROCEDURE; OR, A QUORUM OF 
EMBARRASSMENTS 

Suppose that according to the theory of behavior, To, held by most right-minded, 
respectable behaviorists, the extent to which a certain behavioral manipulation M facilitates 
learning in a certain complex learning situation C should be null. That is, if "φ" designates 
the degree to which manipulation M facilitates the acquisition of habit H under 
circumstances C, it follows from the orthodox theory To that φ = 0. Also suppose, however, 
that a few radicals have persistently advocated an alternative theory T1 which entails, 
among other things, that the facilitation of H by M in circumstances C should be 
appreciably greater than zero, the precise extent being dependent upon the values of certain 
parameters in C. Finally, suppose that Igor Hopewell, graduate student in psychology, has 
staked his dissertation hopes on an experimental test of To against T1 on the basis of their 
differential predictions about the value of φ .  

Now, if Hopewell is to carry out his assessment of the comparative merits of To and T1 in 
this way, there is nothing for him to do but submit a number of Ss to manipulation M under 
circumstances C and compare their efficiency at acquiring habit H with that of comparable 
Ss who, under circumstances C, have not been exposed to manipulation M. The difference, 
d, between experimental and control Ss in average learning efficiency may then be taken as 
an operational measure of the degree, φ, to which M influences acquisition of H in 
circumstances C. Unfortunately, however, as any experienced researcher knows to his 
sorrow, the interpretation of such an observed statistic is not quite so simple as that. For the 
observed dependent variable d, which is actually a performance measure, is a function not 
only of the extent to which M influences acquisition of H, but of many additional major and 
minor factors as well. Some of these, such as deprivations, species, age, laboratory 
conditions, etc., can be removed from consideration by holding them essentially constant. 
Others, however, are not so easily controlled, especially those customarily subsumed under 
the headings of "individual differences" and "errors of measurement." To [p. 418] curtail a 



long mathematical story, it turns out that with suitable (possibly justified) assumptions 
about the distributions of values for these uncontrolled variables, the manner in which they 
influence the dependent variable, and the way in which experimental and control Ss were 
selected and manipulated, the observed sample statistic d may be regarded as the value of a 
normally distributed random variate whose average value is φ and whose variance, which is 
independent of φ, is unbiasedly estimated by the square of another sample statistic, s, 
computed from the data of the experiment.[1]  

The import of these statistical considerations for Hopewell's dissertation, of course, is that 
he will not be permitted to reason in any simple way from the observed d to a conclusion 
about the comparative merits of To and T1. To conclude that To, rather than T1, is correct, he 
must argue that φ= 0, rather than φ>0. But the observed d, whatever its value, is logically 
compatible both with the hypothesis that φ= 0 and the hypothesis that φ>0. How then, can 
Hopewell use his data to make a comparison of To and T1? As a well-trained student, what 
he does, of course, is to divide d by s to obtain what, under Ho, is a t statistic, consult a 
table of the t distributions under the appropriate degrees-of-freedom, and announce his 
experiment as disconfirming or supporting To, respectively, according to whether or not the 
discrepancy between d and the zero value expected under To is "statistically significant" -- 
i.e., whether or not the observed value of d/s falls outside of the interval between two 
extreme percentiles (usually the 2.5th and 97.5th) of the t distribution with that df. If asked 
by his dissertation committee to justify this behavior, Hopewell would rationalize 
something like the following (the more honest reply, that this is what he has been taught to 
do, not being considered appropriate to such occasions):  

In deciding whether or not To is correct, I can make two types of mistakes: I can reject To 
when it is in fact correct [Type I error], or I can accept To when in fact it is false [Type II 
error]. As a scientist, I have a professional obligation to be cautious, but a 5% chance of 
error is not unduly risky. Now if all my statistical background assumptions are correct, 
then, if it is really true that  φ = 0 as To says, there is only one chance in 20 that my 
observed statistic d / s will be smaller than t.025 or larger than t.975, where by the latter I 
mean, respectively, the 2.5th and 97.5th percentiles of the t distribution with the same 
degrees-of-freedom as in my experiment. Therefore, if I reject To when d / s is smaller than 
t.025 or larger than t.975, and accept To otherwise, there is only a 5% chance that I will reject 
To incorrectly.  

If asked about his Type II error, and why he did not choose some other rejection region, say 
between t.475 and t.525, which would yield the same probability of Type I error, Hopewell 
should reply that although he has no way to compute his probability of Type II error under 
the assumptions traditionally authorized by null-hypothesis procedure, it is presumably 
minimized by taking the rejection region at the extremes of the t distribution.  

Let us suppose that for Hopewell's data, d=8.50, s=5.00, and df=20. Then t.975=2.09 and the 
acceptance region for the null hypothesis φ=0 is -2.09<d/s<2.09, or -10.45<d<10.45. Since 
d does fall within this region, standard null-hypothesis decision procedure, which I shall 
henceforth abbreviate "NHD," dictates that the experiment is to be reported [p. 419] as 
supporting theory To. (Although many persons would like to conceive NHD testing to 



authorize only rejection of the hypothesis, not, in addition, its acceptance when the test 
statistic fails to fall in the rejection region, if failure to reject were not taken as grounds for 
acceptance, then NHD procedure would involve no Type II error, and no justification 
would be given for taking the rejection region at the extremes of the distribution, rather 
than in its middle.) But even as Hopewell reaffirms To in his dissertation, he begins to feel 
uneasy. In fact, several disquieting thoughts occur to him:  

1. Although his test statistic falls within the orthodox acceptance region, a value this 
divergent from the expected zero should nonetheless be encountered less than once in 10. 
To argue in favor of a hypothesis on the basis of data ascribed a p value no greater than .10 
(i.e., 10%) by that hypothesis certainly does not seem to be one of the more impressive 
displays of scientific caution.  

2. After some belated reflection on the details of theory T1, Hopewell observes that T1 not 
only predicts that φ>0, but with a few simplifying assumptions no more questionable than 
is par for this sort of course, the value that φ should have can actually be computed. 
Suppose the value derived from T1 in this way is φ=10.0. Then, rather than taking φ=0 as 
the null hypothesis, one might just as well take φ=10.0; for under the latter, (d-10.0)/s is a 
20 df t statistic, giving a two-tailed, 95% significance, acceptance region for (d-10.0)/s 
between -.209 and 2.09. That is, if one lets T1 provide the null hypothesis, it is accepted or 
rejected according to whether or not -.45 <d<20.45, and by this latter test, therefore, 
Hopewell's data must be taken to support T1 -- in fact, the likelihood under T1 of obtaining a 
test statistic this divergent from the expected 10.0 is a most satisfactory three chances in 
four. Thus it occurs to Hopewell that had he chosen to cast his professional lot with the T1-
ists by selecting φ=10.0 as his null hypothesis, he could have made a strong argument in 
favor of T1 by precisely the same line of statistical reasoning he has used to support To 
under φ=0 as the null hypothesis. That is, he could have made an argument that persons 
partial to T1 would regard as strong. For behaviorists who are already convinced that To is 
correct would howl that since To is the dominant theory, only φ = 0 is a legitimate null 
hypothesis. (And is it not strange that what constitutes a valid statistical argument should be 
dependent upon the majority opinion about behavior theory?)  

3. According to the NHD test of a hypothesis, only two possible final outcomes of the 
experiment are recognized -- either the hypothesis is rejected or it is accepted. In 
Hopewell's experiment, all possible values of d/s between -2.09 and 2.09 have the same 
interpretive significance, namely, indicating that φ=0, while conversely, all possible values 
of d/s greater than 2.09 are equally taken to signify that φ≠0. But Hopewell finds this 
disturbing, for of the various possible values that d / s might have had, the significance of d 
/ s = 1.70 for the comparative merits of To and T1 should surely be more similar to that of, 
say, d / s = 2.10 than to that of, say, d / s = -1.70.  

4. In somewhat similar vein, it also occurs to Hopewell that had he opted for a somewhat 
riskier confidence level, say a Type I error of 10% rather than 5%, d / s would have fallen 
outside the region of accept- [p. 420] ance and To would have been rejected. Now surely the 
degree to which a datum corroborates or impugns a proposition should be independent of 
the datum-assessor's personal temerity. Yet according to orthodox significance-test 



procedure, whether or not a given experimental outcome supports or disconfirms the 
hypothesis in question depends crucially upon the assessor's tolerance for Type I risk.  

Despite his inexperience, Igor Hopewell is a sound experimentalist at heart, and the more 
he reflects on these statistics, the more dissatisfied with his conclusions he becomes. So 
while the exigencies of graduate circumstances and publication requirements urge that his 
dissertation be written as a confirmation of To, he nonetheless resolves to keep an open 
mind on the issue, even carrying out further research if opportunity permits. And reading 
his experimental report, so of course would we -- has any responsible scientist ever made 
up his mind about such a matter on the basis of a single experiment? Yet in this obvious 
way we reveal how little our actual inferential behavior corresponds to the statistical 
procedure to which we pay lip-service. For if we did, in fact, accept or reject the null 
hypothesis according to whether the sample statistic falls in the acceptance or in the 
rejection region, then there would be no replications of experimental designs, no 
multiplicity of experimental approaches to an important hypothesis -- a single experiment 
would, by definition of the method, make up our mind about the hypothesis in question. 
And the fact that in actual practice, a single finding seldom even tempts us to such closure 
of judgment reveals how little the conventional model of hypothesis testing fits our actual 
evaluative behavior. 

DECISIONS VS. DEGREES OF BELIEF 

By now, is should be obvious that something is radically amiss with the traditional NHD 
assessment of an experiment's theoretical import. Actually, one does not have to look far in 
order to find the trouble -- it is simply a basic misconception about the purpose of a 
scientific experiment. The null-hypothesis significance test treats acceptance or rejection of 
a hypothesis as though these were decisions one makes on the basis of the experimental 
data -- i.e., that we elect to adopt one belief, rather than another, as a result of an 
experimental outcome. But the primary aim of a scientific experiment is not to precipitate 
decisions, but to make an appropriate adjustment in the degree to which one accepts, or 
believes, the hypothesis or hypotheses being tested. And even if the purpose of the 
experiment were to reach a decision, it could not be a decision to accept or reject the 
hypothesis, for decisions are voluntary commitments to action -- i.e., are motor sets -- 
whereas acceptance or rejection of a hypothesis is a cognitive state which may provide the 
basis for rational decisions, but is not itself arrived at by such a decision (except perhaps 
indirectly in that a decision may initiate further experiences which influence the belief).  

The situation, in other words, is as follows: As scientists, it is our professional obligation to 
reason from available data to explanations and generalities -- i.e., beliefs -- which are 
supported by these data. But belief in (i.e., acceptance of) a proposition is not an all-or-
none affair; rather, it is a matter of degree, and the extent to which a person believes or 
accepts a [p. 421] proposition translates pragmatically into the extent to which he is willing 
to commit himself to the behavioral adjustments prescribed for him by the meaning of that 
proposition. For example, if that inveterate gambler, Unfortunate Q. Smith, has complete 
confidence that War Biscuit will win the fifth race at Belmont, he will be willing to accept 
any odds to place a bet on War Biscuit to win; for if he is absolutely certain that War 
Biscuit will win, then odds are irrelevant -- it is simply a matter of arranging to collect 



some winnings after the race. On the other hand, the more that Smith has doubts about War 
Biscuit's prospects, the higher the odds he will demand before betting. That is, the extent to 
which Smith accepts or rejects the hypothesis that War Biscuit will win the fifth at Belmont 
is an important determinant of his betting decisions for that race.  

Now, although a scientist's data supply evidence for the conclusions he draws from them, 
only in the unlikely case where the conclusions are logically deducible from or logically 
incompatible with the data do the data warrant that the conclusions be entirely accepted or 
rejected. Thus, e.g., the fact that War Biscuit has won all 16 of his previous starts is strong 
evidence in favor of his winning the fifth at Belmont, but by no means warrants the 
unreserved acceptance of this hypothesis. More generally, the data available confer upon 
the conclusions a certain appropriate degree of belief, and it is the inferential task of the 
scientist to pass from the data of his experiment to whatever extent of belief these and other 
available information justify in the hypothesis under investigation. In particular, the proper 
inferential procedure is not (except in the deductive case) a matter of deciding to accept 
(without qualification) or reject (without qualification) the hypothesis: even if adoption of a 
belief were a matter of voluntary action -- which it is not -- neither such extremes of belief 
or disbelief are appropriate to the data at hand. As an example of the disastrous 
consequences of an inferential procedure which yields only two judgment values, 
acceptance and rejection, consider how sad the plight of Smith would be if, whenever 
weighing the prospects for a given race, he always worked himself into either supreme 
confidence or utter disbelief that a certain horse will win. Smith would rapidly impoverish 
himself by accepting excessively low odds on horses he is certain will win, and failing to 
accept highly favorable odds on horses he is sure will lose. In fact, Smith's two judgment 
values need not be extreme acceptance and rejection in order for his inferential procedure to 
be maladaptive. All that is required is that the degree of belief arrived at be in general 
inappropriate to the likelihood conferred on the hypothesis by the data.  

Now, the notion of "degree of belief appropriate to the data at hand" has an unpleasantly 
vague, subjective feel about it which makes it unpalatable for inclusion in a formalized 
theory of inference. Fortunately, a little reflection about this phrase reveals it to be 
intimately connected with another concept relating conclusion to evidence which, though 
likewise in serious need of conceptual clarification, has the virtues both of intellectual 
respectability and statistical familiarity. I refer, of course, to the likelihood, or probability, 
conferred upon a hypothesis by available evidence. Why should not Smith feel [p. 422] 
certain, in view of the data available, that War Biscuit will win the fifth at Belmont? 
Because it is not certain that War Biscuit will win. More generally, what determines how 
strongly we should accept or reject a proposition is the probability given to this hypothesis 
by the information at hand. For while our voluntary actions (i.e., decisions) are determined 
by our intensities of belief in the relevant propositions, not by their actual probabilities, 
expected utility is maximized when the cognitive weights given to potential but not yet 
known-for-certain pay-off events are represented in the decision procedure by the 
probabilities of these events. We may thus relinquish the concept of "appropriate degree of 
belief" in favor of "probability of the hypothesis," and our earlier contention about the 
nature of data-processing may be rephrased to say that the proper inferential task of the 
experimental scientist is not a simple acceptance or rejection of the tested hypothesis, but 
determination of the probability conferred upon it by the experimental outcome. This 



likelihood of the hypothesis relative to whatever data are available at the moment will be an 
important determinant for decisions which must currently be made, but is not itself such a 
decision and is entirely subject to revision in the light of additional information.  

In brief, what is being argued is that the scientist, whose task is not to prescribe actions but 
to establish rational beliefs upon which to base them, is fundamentally and inescapably 
committed to an explicit concern with the problem of inverse probability. What he wants to 
know is how plausible are his hypotheses, and he is interested in the probability ascribed by 
a hypothesis to an observed experimental outcome only to the extent he is able to reason 
backwards to the likelihood of the hypothesis, given this outcome. Put crudely, no matter 
how improbable an observation may be under the hypothesis (and when there are an infinite 
number of possible outcomes, the probability of any particular one of these is, usually, 
infinitely small -- the familiar p value for an observed statistic under a hypothesis H is not 
actually the probability of that outcome under H, but a partial integral of the probability-
density function of possible outcomes under H), it is still confirmatory (or at least 
nondisconfirmatory, if one argues from the data to rejection of the background 
assumptions) so long as the likelihood of the observation is even smaller under the 
alternative hypotheses. To be sure, the theory of hypothesis-likelihood and inverse 
probability is as yet far from the level of development at which it can furnish the research 
scientist with inferential tools he can apply mechanically to obtain a definite likelihood 
estimate. But to the extent a statistical method does not at least move in the direction of 
computing the probability of the hypothesis, given the observation, that method is not truly 
a method of inference, and is unsuited for the scientist's cognitive ends. 

THE METHODOLOGICAL STATUS OF THE NULL-HYPOTHESIS SIGNIFICANCE 
TEST 

The preceding arguments have, in one form or another, raised several doubts about the 
appropriateness of conventional significance-test decision procedure for the aims it is 
supposed to achieve. It is now time to bring these changes together in an explicit bill of 
indictment.  

1. The null-hypothesis significance [p. 423] test treats "acceptance" or "rejection" of a 
hypothesis as though these were decisions one makes. But a hypothesis is not something, 
like a piece of pie offered for dessert, which can be accepted or rejected by a voluntary 
physical action. Acceptance or rejection of a hypothesis is a cognitive process, a degree of 
believing or disbelieving which, if rational, is not a matter of choice but determined solely 
by how likely it is, given the evidence, that the hypothesis is true.  

2. It might be argued that the NHD test may nonetheless be regarded as a legitimate 
decision procedure if we translate "acceptance (rejection) of the hypothesis" as meaning 
"acting as though the hypothesis were true (false)." And to be sure, there are many 
occasions on which one must base a course of action on the credibility of a scientific 
hypothesis. (Should these data be published? Should I devote my research resources to and 
become identified professionally with this theory? Can we test this new Z bomb without 
exterminating all life on earth?) But such a move to salvage the traditional procedure only 
raises two further objections. (a) While the scientist -- i.e., the person -- must indeed make 



decisions, his science is a systematized body of (probable) knowledge, not an accumulation 
of decisions. The end product of a scientific investigation is a degree of confidence in some 
set of propositions, which then constitutes a basis for decisions. (b) Decision theory shows 
the NHD test to be woefully inadequate as a decision procedure. In order to decide most 
effectively when or when not to act as though a hypothesis is correct, one must know both 
the probability of the hypothesis under the data available and the utilities of the various 
decision outcomes (i.e., the values of accepting the hypothesis when it is true, of accepting 
it when it is false, of rejecting it when it is true, and of rejecting it when it is false). But 
traditional NHD procedure pays no attention to utilities at all, and considers the probability 
of the hypothesis, given the data -- i.e., the inverse probability -- only in the most 
rudimentary way (by taking the rejection region at the extremes of the distribution rather 
than in its middle). Failure of the traditional significance test to deal with inverse 
probabilities invalidates it not only as a method of rational inference, but also as a useful 
decision procedure.  

3. The traditional NHD test unrealistically limits the significance of an experimental 
outcome to a mere two alternatives, confirmation or disconfirmation of the null hypothesis. 
Moreover, the transition from confirmation to disconfirmation as a function of the data is 
discontinuous -- an arbitrarily small difference in the value of the test statistic can change 
its significance from confirmatory to disconfirmatory. Finally, the point at which this 
transition occurs is entirely gratuitous. There is absolutely no reason (at least provided by 
the method) why the point of statistical "significance" should be set at the 95% level, rather 
than, say the 94% or 96% level. Nor does the fact that we sometimes select a 99% level of 
significance, rather than the usual 95% level mitigate this objection -- one is as arbitrary as 
the other.  

4. The null-hypothesis significance test introduces a strong bias in favor of one out of what 
may be a large number of reasonable alternatives. When sampling a distribution of 
unknown mean µ, different assumptions about the value of µ furnish an infi- [p. 424] nite 
number of alternate null hypotheses by which we might assess the sample mean, and 
whichever hypothesis is selected is thereby given an enormous, in some cases almost 
insurmountable, advantage over its competitors. That is, NHD procedure involves an 
inferential double standard -- the favored hypothesis is held innocent unless proved guilty, 
while any alternative is held guilty until no choice remains but to judge it innocent. What is 
objectionable here is not that some hypotheses are held more resistant to experimental 
extinction than others, but that the differential weighing is an all-or-none side effect of a 
personal choice, and especially, that the method necessitates one hypothesis being favored 
over all the others. In the classical theory of inverse probability, on the other hand, all 
hypotheses are treated on a par, each receiving a weight (i.e., its "a priori" probability) 
which reflects the credibility of that hypothesis on grounds other than the data being 
assessed.  

5. Finally, if anything can reveal the practical irrelevance of the conventional significance 
test, it should be its failure to see genuine application to the inferential behavior of the 
research scientist. Who has ever given up a hypothesis just because one experiment yielded 
a test statistic in the rejection region? And what scientist in his right mind would ever feel 
there to be an appreciable difference between the interpretive significance of data, say, for 



which one-tailed p = .04 and that of data for which p = .06, even though the point of 
"significance" has been set at p = .05? In fact, the reader may well feel undisturbed by the 
charges raised here against traditional NHD procedure precisely because, without perhaps 
realizing it, he has never taken the method seriously anyway. Paradoxically, it is often the 
most firmly institutionalized tenet of faith that is most susceptible to untroubled disregard -- 
in our culture, one must early learn to live with sacrosanct verbal formulas whose import 
for practical behavior is seldom heeded. I suspect that the primary reasons why null-
hypothesis significance testing has attained its current ritualistic status are (a) the surcease 
of methodological insecurity afforded by having an inferential algorithm on the books, and 
(b) the fact that a by-product of the algorithm is so useful, and its end product so obviously 
inappropriate, that the latter can be ignored without even noticing that this has, in fact, been 
done. What has given the traditional method its spurious feel of usefulness is that the first, 
and by far most laborious, step in the procedure, namely, estimating the probability of the 
experimental outcome under the assumption that a certain hypothesis is correct, is also a 
crucial first step toward what one is genuinely concerned with, namely, an idea of the 
likelihood of that hypothesis, given this experimental outcome. Having obtained this most 
valuable statistical information under pretext of carrying through a conventional 
significance test, it is then tempting, though of course quite inappropriate, to heap honor 
and gratitude upon the method while overlooking that its actual result, namely, a decision 
to accept or reject, is not used at all. 

TOWARD A MORE REALISTIC APPRAISAL OF EXPERIMENTAL DATA 

So far, my arguments have tended to be aggressively critical -- one can hardly avoid 
polemics when butchering sacred cows. But my purpose is [p. 425] not just to be 
contentious, but to help clear the way for more realistic techniques of data assessment, and 
the time has now arrived for some constructive suggestions. Little of what follows pretends 
to any originality; I merely urge that ongoing developments along these lines should 
receive maximal encouragement.  

For the statistical theoretician, the following problems would seem to be eminently worthy 
of research:  

1. Of supreme importance for the theory of probability is analysis of what we mean by a 
proposition's "probability," relative to the evidence provided. Most serious students of the 
philosophical foundations of probability and statistics agree (cf. Braithwaite, pp. 119f.) that 
the probability of a proposition (e.g., the probability that the General Theory of Relativity is 
correct) does not, prima facie, seem to be the same sort of thing as the probability of an 
event-class (e.g., the probability of getting a head when this coin is tossed). Do the 
statistical concepts and formulas which have been developed for probabilities of the latter 
kind also apply to hypothesis likelihoods? In particular, are the probabilities of hypotheses 
quantifiable at all, and for the theory of inverse probability, do Bayes' theorem and its 
probability-density refinements apply to hypothesis probabilities? These and similar 
questions are urgently in need of clarification.  

2. If we are willing to assume that Bayes' theorem, or something like it, holds for 
hypothesis probabilities, there is much that can be done to develop the classical theory of 



inverse probability. While computation of inverse probabilities turns essentially upon the 
parametric a priori probability function, which states the probability of each alternative 
hypothesis in the set under consideration prior to the outcome of the experiment, it should 
be possible to develop theorems which are invariant over important subclasses of a priori 
probability functions. In particular, the difference between the a priori probability function 
and the "a posteriori" probability function (i.e., the probabilities of the alternative 
hypotheses after the experiment), perhaps analyzed as a difference in "information," should 
be a potentially fruitful source of concepts with which to explore such matters as the 
"power" or "efficiency" of various statistics, the acquisition of inductive knowledge 
through repeated experimentation, etc. Another problem which seems to me to have 
considerable import, though not one about which I am sanguine, is whether inverse-
probability theory can significantly be extended to hypothesis-probabilities, given 
knowledge which is only probabilistic. That is, can a theory of sentences of form "The 
probability of hypothesis H, given that E is the case, is p," be generalized to a theory of 
sentences of form "The probability of hypothesis H, given that the probability of E is q, is 
p"? Such a theory would seem to be necessary, e.g., if we are to cope adequately with the 
uncertainty attached to the background assumptions which always accompany a statistical 
analysis.  

My suggestions for applied statistical analysis turn on the fact that while what is desired is 
the a posteriori probabilities of the various alternative hypotheses under consideration, 
computation of these by classical theory necessitates the corresponding a priori probability 
distribution, and in the more immediate future, at least, information about this will exist 
only as a subjective feel, differing from one person to the [p. 426] next, about the 
credibilities of the various hypotheses.  

3. Whenever possible, the basic statistical report should be in the form of a confidence 
interval. Briefly, a confidence interval is a subset of the alternative hypotheses computed 
from the experimental data in such a way that for a selected confidence level α, the 
probability that the true hypothesis is included in a set so obtained is α. Typically, an α-
level confidence interval consists of those hypotheses under which the p value for the 
experimental outcome is larger than 1-α (a feature of confidence intervals which is 
sometimes confused with their definition), in which case the confidence-interval report is 
similar to a simultaneous null-hypothesis significance test of each hypothesis in the total set 
of alternatives. Confidence intervals are the closest we can at present come to quantitative 
assessment of hypothesis-probabilities (see technical note, below), and are currently our 
most effective way to eliminate hypotheses from practical consideration -- if we choose to 
act as though none of the hypotheses not included in a 95% confidence interval are correct, 
we stand only a 5% chance of error. (Note, moreover, that this probability of error pertains 
to the incorrect simultaneous "rejection" of a major part of the total set of alternative 
hypotheses, not just to the incorrect rejection of one as in the NHD method, and is a total 
likelihood of error, not just of Type I error.) The confidence interval is also a simple and 
effective way to convey that all-important statistical datum, the conditional probability (or 
probability density) function -- i.e., the probability (probability density) of the observed 
outcome under each alternative hypothesis -- since for a given kind of observed statistic and 
method of confidence-interval determination, there will be a fixed relation between the 



parameters of the confidence interval and those of the conditional probability (probability 
density) function, with the end-points of the confidence interval typically marking the 
points at which the conditional probability (probability density) function sinks below a 
certain small value related to the parameter α. The confidence-interval report is not biased 
toward some favored hypothesis, as is the null-hypothesis significance test, but makes an 
impartial simultaneous evaluation of all the alternatives under consideration. Nor does the 
confidence interval involve an arbitrary decision as does the NHD test. Although one 
person may prefer to report, say, 95% confidence intervals while another favors 99% 
confidence intervals, there is no conflict here, for these are simply two ways to convey the 
same information. An experimental report can, with complete consistency and some 
benefit, simultaneously present several confidence intervals for the parameter being 
estimated. On the other hand, different choices of significance level in the NHD method is 
a clash of incompatible decisions, as attested by the fact that an NHD analysis which 
simultaneously presented two different significance levels would yield a logically 
inconsistent conclusion when the observed statistic has a value in the acceptance region of 
one significance level and in the rejection region of the other.  

[p. 427] 4. While a confidence-interval analysis treats all the alternative hypotheses with 
glacial impartiality, it nonetheless frequently occurs that our interest is focused on a certain 
selection from the set of possibilities. In such case, the statistical analysis should also 
report, when computable, the precise p value of the experimental outcome, or better, though 
less familiarly, the probability density at that outcome, under each of the major hypotheses; 
for these figures will permit an immediate judgment as to which of the hypotheses is most 
favored by the data. In fact, an even more interesting assessment of the postexperimental 
credibilities of the hypotheses is then possible through use of "likelihood ratios" if one is 
willing to put his pre-experimental feelings about their relative likelihoods into a 
quantitative estimate. For let Pr (H, d), Pr (d, H), and Pr (H) be, respectively, the 
probability of a hypothesis H in light of the experimental data d (added to the information 
already available), the probability of data d under hypothesis H, and the pre-experimental 
(i.e., a priori) probability of H. Then for two alternative hypotheses Ho and H1, it follows by 
classical theory that  

Pr (Ho, d)   =   Pr (Ho)   x   Pr (d, Ho)        [eq. 
1] [2]  
Pr (H1, d)        Pr (H1)       Pr (d, H1) 

[p. 428] Therefore, if the experimental report includes the probability (or probability 
density) of the data under Ho and H1, respectively, and its reader can quantify his feelings 
about the relative pre-experimental merits of Ho and H1 (i.e., Pr (Ho) / Pr (H1)), he can then 
determine the judgment he should make about the relative merits of Ho and H1 in light of 
these new data.  

5. Finally, experimental journals should allow the researcher much more latitude in 
publishing his statistics in whichever form seems most insightful, especially those forms 
developed by the modern theory of estimates. In particular, the stranglehold that 
conventional null-hypothesis significance testing has clamped on publication standards 
must be broken. Currently justifiable inferential algorithm carries us only through 



computation of conditional probabilities; from there, it is for everyman's clinical judgment 
and methodological conscience to see him through to a final appraisal. Insistence that 
published data must have the biases of the NHD method built into the report, thus seducing 
the unwary reader into a perhaps highly inappropriate interpretation of the data, is a 
professional disservice of the first magnitude. 

SUMMARY 

The traditional null-hypothesis significance-test method, more appropriately called "null-
hypothesis decision (NHD) procedure," of statistical analysis is here vigorously excoriated 
for its inappropriateness as a method of inference. While a number of serious objections to 
the method are raised, its most basic error lies in mistaking the aim of a scientific 
investigation to be a decision, rather than a cognitive evaluation of propositions. It is further 
argued that the proper application of statistics to scientific inference is irrevocably 
committed to extensive consideration of inverse probabilities, and to further this end, 
certain suggestions are offered, both for the development of statistical theory and for more 
illuminating application of statistical analysis to empirical data. 

(Received June 30, 1959) 

 

Footnotes 

[1] s is here the estimate of the standard error of the difference in means, not the estimate of 
the individual SD.  

[2] When the numbers of alternative hypotheses and possible experimental outcomes are 
transfinite, Pr (d, H) = Pr (H, d) = Pr (H) = 0 in most cases. If so, the probability ratios in 
Formula 1 are replaced with the corresponding probabilistic-density ratios. It should be 
mentioned that this formula rather idealistically presupposes there to be no doubt about the 
correctness of the background statistical assumptions.  

Technical note: One of the more important problems now confronting theoretical statistics 
is exploration and clarification of the relationships among inverse probabilities derived 
from confidence-interval theory, fiducial-probability theory (a special case of the former in 
which the estimator is a sufficient statistic), and classical (i.e., Bayes') inverse-probability 
theory. While the interpretation of confidence intervals is tricky, it would be a mistake to 
conclude, as the cautionary remarks usually accompanying discussions of confidence 
intervals sometimes seem to imply, that the confidence-level α of a given confidence 
interval I should not really be construed as a probability that the true hypothesis, H, belongs 
to the set I. Nonetheless, if I is an α-level confidence interval, the probability that H 
belongs to I as computed by Bayes' theorem given an a priori probability distribution will, 
in general, not be equal to α, nor is the difference necessarily a small one -- it is easy to 
construct examples where the a posteriori probability that H belongs to I is either 0 or 1. 
Obviously, when different techniques for computing the probability that H belongs to I 



yield such different answers, a reconciliation is demanded. In this instance, however, the 
apparent disagreement is largely if not entirely spurious, resulting from differences in the 
evidence relative to which the probability that H belongs to I is computed. And if this is, in 
fact, the correct explanation, then fiducial probability furnishes a partial solution to an 
outstanding difficulty in the Bayes' approach. A major weakness of the latter has always 
been the problem of what to assume for the a priori distribution when no pre-experimental 
information is available other than that supporting the background assumptions which 
delimit the set of hypotheses under consideration. The traditional assumption (made 
hesitantly by Bayes, less hesitantly by his successors) has been the "principle of insufficient 
reason," namely, that given no knowledge at all, all alternatives are equally likely. But not 
only is it difficult to give a convincing argument for this assumption, it does not even yield 
a unique a priori probability distribution over a continuum of alternative hypotheses, since 
there are many ways to express such a continuous set, and what is an equilikelihood a priori 
distribution under one of these does not necessarily transform into the same under another. 
Now, a fiducial probability distribution determined over a set of alternative hypotheses by 
an experimental observation is a measure of the likelihoods of these hypotheses relative to 
all the information contained in the experimental data, but based on no pre-experimental 
information beyond the background assumptions restricting the possibilities of this 
particular set of hypotheses. Therefore, it seems reasonable to postulate that the no-
knowledge a priori distribution in classical inverse probability theory should be that 
distribution which, when experimental data capable of yielding a fiducial argument are now 
given, results in an a posteriori distribution identical with the corresponding fiducial 
distribution. 
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