
Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 39 -

Transactions Management in Cloud Computing

Nesrine Ali Abd-El Azim
1
, Ali Hamed El Bastawissy

2

1
Computer Science & information Dept., Institute of Statistical Studies & Research, Cairo, Egypt

2
Faculty of Computers and Information, Cairo University, Cairo, Egypt

nesrine_ali79@yahoo.com

Abstract

Cloud computing has emerged as a successful paradigm for web application

deployment. Economies-of-scale, elasticity, and pay-per use pricing are the biggest promises

of cloud. Database management systems serving these web applications form a critical

component of the cloud environment. In order to serve thousands and a variety of applications

and their huge amounts of data, these database management systems must not only scale-out

to clusters of commodity servers, but also be self-managing, fault-tolerant, and highly

available. In this paper we survey, analyze the currently applied transaction management

techniques and we propose a paradigm according to which, transaction management could be

depicted and handled.

Keywords: Cloud computing, NoSQL, CAP theorem, Multi nodes access, Consistency.

1. Introduction

Cloud computing has emerged as an extremely successful paradigm for deploying web
applications. The major reasons for the successful and widespread adoption of cloud
infrastructures are scalability, elasticity, pay-per-use pricing, and economies of scale [2].
Since the majority of cloud applications are data driven, database management systems
(DBMSs) is an integral technology component in the overall service architecture [3]. The
reason for the propagation of DBMS, in the cloud computing space is due to the features
offered by DBMSs such as: overall functionality (modeling diverse types of application using
the relational model), consistency (dealing with concurrent workloads without worrying about
data becoming out-of-sync), performance (both high-throughput, low-latency), and reliability
(ensuring safety and persistence of data in the presence of different types of failures). In spite
of this success, DBMSs are not cloud-friendly, because unlike other technology components
for cloud services, such as the web servers and application servers which can easily scale
from a few machines to hundreds or even thousands of machines, DBMSs cannot be scaled
very easily and often become the overall system scalability bottleneck [14, 16].

A new trend has arisen that abandoned the traditional DBMSs and instead has

developed new data management technologies referred to as not only SQL (NoSQL)
databases. The main distinction is that in traditional DBMSs, all data within a database is
treated as a “whole” and it is the responsibility of the DBMS to guarantee the consistency of
the entire data. In the context of NoSQL consistency is represented in different ways such as
key-values [6, 7, 12, 19] where each entity is considered an independent unit of data or
information and hence can be freely moved from one machine to another. Furthermore, the
atomicity of application and user accesses is guaranteed only at a single-key level. This
single-key level semantics of modern applications allow data to be less correlated. As a result,

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 40 -

modern systems can tolerate non-availability of certain portions of data while still providing
reasonable service to the rest of data. Scalability has emerged as a critical requirement in
cloud computing and it is the need to ensure that the system capacity can be augmented by
adding additional hardware resources whenever needed (scale out) without causing any
interruption in the service.

Cloud applications deployed on top of cheap, commodity machines for which failures

are common, and hence, fault-tolerance, high availability, eventual consistency, and ease of
administration are essential features of data management systems in the cloud [1]. As a result,
data management systems in the cloud should be able to scale out using commodity servers,
be fault-tolerant, highly available, and easy to administer features which are provided by key-
value stores, thus making them the preferred data management solutions in the cloud. The
scalability and high availability properties of key-value stores however come at a cost. First, it
allows data query only by primary key rather than join queries. Second, it only provides
eventual consistency: any data update becomes visible after a finite amount of time. Despite
of the weak consistency property, it is suitable for a wide range of applications. However,
many other applications such as, payment services, flight reservation, online auctions, web
2.0 applications, and collaborative editing cannot afford any data inconsistency. So these
applications either have to fall back to traditional databases, or to rely on various ad-hoc
solutions [1, 2, 3].

It is now clear that neither Key-value stores, nor traditional databases can fit all types of

applications [2, 3, 16]. As a result, there is a huge demand for a solution that can bridge the
gap between scalable key-value stores (to deal with consistency issue) and traditional
database systems (to overcome the scalability problem). In this paper, we state the serious
effort done to bridge the data management gap following a proposed paradigm, and we also
figure the future research trends in the indicated area.

Section 2 provides a survey of the CAP theorem. Section 3 proposes our more detailed

Multi layers Paradigm for Cloud Transaction Management and Section 4 presents Paradigm-
based Systems Classifications. Section 5 provides Paradigm-based systems transactional
features and Section 6 concludes the paper and outlines some research directions.

2. The CAP Theorem

Cloud based applications need consistency, availability, and partition tolerance in order
to work properly. However, CAP theorem states that any distributed system can only satisfy
at most two out of three of the following properties: Consistency (all records are the same in
all replicas), Availability (all replicas can accept updates or inserts), and Partition tolerance
(the system still functions when distributed replicas cannot talk to each other). Therefore,
when data is replicated over a wide area, the system has to choose between consistency and
availability as shown in Figure 1. If the consistency (C) part of the ACID is relaxed then the
system will implement various forms of weaker consistency models (e.g. eventual
consistency, timeline consistency) so that all replicas do not have to agree on the same value
of a data item at every moment of time (e.g. PNUTS [7], ecStore [17, 20]). If the availability
(A) part is relaxed then the system will implement strict consistency (e.g. MySQL).

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 41 -

CAP theorem cluster all types of applications according to the three previously
mentioned properties [13], however we need to analyze systems according to other
characteristics such as system type, data structure type, transaction execution type, and
partitioning type.

Figure 1: CAP Theorem and different data models [13]

3. Multi layers Paradigm for Cloud Transaction Management

After surveying the area of transaction management in cloud, we can suggest three
layers paradigm that projects all the research trials in the area as shown in Figure 2. The first
layer depicts the system type in which there are two types of systems: shared nothing and
decoupled storage. In the shared nothing system, the persistent data is stored on disks locally
attached to the nodes or DBMS servers. In the decoupled storage, the persistent data is stored
in a network addressable storage accessible from all the database nodes that are logically
separate from the servers executing the transactions. In decoupled storage the transaction
execution logic (ACID) is decoupled from the storage logic (replication, caching, scalability,
and fault tolerance).

The second layer depicts two data structure type: highly structure and less structured.

Highly structured data stores (DBMSs) support a simple data model to store and manage data,
this type have been extremely successful in classical enterprise settings due to its rich
functionality, data consistency, high performance, high reliability, durability, and
transactional access to data. Less structured data stores provide a mechanism for storage and
retrieval of a huge amount of data that uses looser consistency models than highly structured
data stores in order to achieve horizontal scaling and higher availability. They may be schema
free or support simple flexible data model. They support simple functionality based on single-
key operations (e.g. key value stores)

The third layer depicts the transaction execution type which can be classified as single

node or multi nodes. In single node type, transactions can be executed at a single node
without the need for distributed synchronization and the Two Phase Commit Protocol (2PC).
This type of storage allows the system to scale-out by horizontally partitioning the data, it
also limits the effect of a failure to only the data served by the failed component and does not

 A

 Relational Data models

(e.g.MySQL, Postgres)

 C P

Column / graph based data models

(e.g.Bigtable, MongoDB)

Key Value / Document based

Stores Data models (e.g.PNUTS,

Dynamo, SimpleDB)

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 42 -

affect the operation of the remaining components, thus allowing graceful performance
degradation in the event of failures. In multi node types, transactions execution cannot be
contained in a single node. Therefore, the execution of a transaction could span multiple
servers. Multi nodes transactions are using 2PC to permit atomic transaction commitment
across the involved servers. Scalability of this type is weak due to: 1-The waiting time to get
the commit from all participant servers. 2- High notification overhead. This is why we do
not consider dynamic partitioning for multi nodes transactions.

Figure 2: Multi-layers paradigm for cloud Transaction Management

The fourth layer is concerned with the partitioning types which are static and dynamic
partitioning. Partitioning in general is a technique to scale-out a database by splitting the
individual tables among a cluster of nodes and provides transactional guarantees among these
nodes. Therefore, the challenge is to partition the individual tables in such way that most
accesses are limited to a single partition.

In static partitioning, the system co-locates the relevant data items to the most
frequently used application needs, in a single partition. The static partitions are then
distributed among a cluster of nodes and a transaction is allowed to access one and only one
cluster to guarantee scaling out efficiently. Many techniques could be applied to conform with
static partitioning such as, range partitioning [17], hash partitioning [7], entity (hierarchical)
group partitioning [4], and schema based partitioning [9, 10].

In dynamic partitioning, the system periodically analyzes the relationships between
transactions and data items, upon this analysis; it relocates the data items to the nodes the
most suitable for these transactions. Many techniques could be applied to conform to
dynamic partitioning such as, graph based data partitioning technique [8], and key group
abstraction [11].

Shared nothing Decoupled Storage

System type

Transaction execution type

Single node Multi nodes

Partitioning type Dynamic Static

Less structured Highly structured (DBMS)

Data Structure type

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 43 -

In brief, our paradigm in Figure 2 is able to describe all transactional systems. Systems
may use the classical shared nothing or the decoupled storage architecture (first layer). In both
cases data can be modeled and managed using highly structured (DBMS) or less structured
data stores (second layer). In both cases the transactions may be constrained to run over data
on one single node or admitted to run over data distributed on multi nodes (third layer). The
accessed data may be stored statistically in some node(s) or may change its locations
periodically (fourth layer).

4. Paradigm-based Systems Classification

In this section we will classify the research efforts according to the previous suggested

paradigm.

4.1 SHSS

The SHSS are the systems that share nothing using highly structured data store (DBMS)

on single node to access data partitioned statically at this node as in [5].

4.2 SHSD

The SHSD are the systems that share nothing using highly structured data store

(DBMS) on single node to access data partitioned dynamically at this node by combining a

workload-aware approach for efficient data placement with a graph-based partitioning

algorithm to automatically analyze the way in which transactions and data items relate to one

another to automatically analyze complex query workloads and map data items to nodes to

minimize the number of multi nodes transactions/statements by co-locating data items

frequently accessed together in transactions as in [8].

4.3 SHMS

The SHMS are the systems that share nothing using highly structured data store

(DBMS) on multi nodes to access data partitioned statically at these nodes.

4.4 SLSS

The SLSS are the systems that share nothing using less structured data store on single

node to access data partitioned statically at this node as in [7].

4.5 SLSD

The SLSD are the systems that share nothing using less structured data store on single

node to access data partitioned dynamically at this node.

4.6 SLMS

The SLMS are the systems that share nothing using less structured data store on multi

nodes to access data partitioned statically at these nodes by using range partitioning. Range

partitioning involves splitting the tables into non-overlapping ranges of their keys and then

mapping the ranges to a set of nodes. It distributes tuples based on the value intervals (ranges)

of some attribute. In addition to supporting exact-match queries, it is well-suited for range

queries as in [17].

4.7 DHSS

The DHSS are the systems that use decoupled storage using highly structured data store

(DBMS) on single node to access data partitioned statically at this node by using Schema

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 44 -

based Partitioning which allows designing practical and meaningful applications while being

able to restrict transactional access to a single database partition. The rationale behind

schema level partitioning is that in a large number of database schemas and applications,

transactions only access a small number of related rows which can be potentially spread

across a number of tables. This access or schema pattern can be used to group together related

data into the same partition, while allowing unrelated data in different partitions, and thus

limiting accesses to a single database partition as in [9, 10].

4.8 DHSD

The DHSD are the systems that use decoupled storage using highly structured data store

(DBMS) on single node to access data partitioned dynamically at this node as in [15].

4.9 DHMS

The DHMS are the systems that use decoupled storage using highly structured data

store (DBMS) on multi nodes to access data partitioned statically at these nodes as in [15].

4.10 DLSS

The DLSS are the systems that use decoupled storage using less structured data store on

single node to access data partitioned statically at this node by using the entity group

technique. An entity group is essentially a hierarchical key structure that eliminates the need

for most joins by storing data that is accessed together in nearby rows or de-normalized into

the same row. It consists of a root entity along with all entities in child tables that reference it

as in [4].

4.11 DLSD

The DLSD are the systems that use decoupled storage using less structured data store on

single node to access data partitioned dynamically at this node by using the key group

abstraction. This abstraction allows applications to select members of a group from any set of

keys in the data store and dynamically create (and dissolve) groups on the fly, while allowing

the data store to provide efficient, scalable, and transactional access to these groups of keys.

At any instant of time, a given key can participate in a single group, but during its lifetime, a

key can be a member of multiple groups. Multi-key accesses are allowed only for keys that

are part of a group, and only during the lifetime of the group. Groups are dynamic in nature.

Groups are independent of each other and the transactions on a group guarantee consistency

only within a group where transactions are not allowed across these formed groups as in [11].

4.12 DLMS

The DLMS are the systems that use decoupled storage using less structured data store

on multi nodes to access data partitioned statically at these nodes by using the hash

partitioning technique. In hash partitioning, the keys are hashed to the nodes serving them. It

applies a hash function to some attributes that yields the partition number. This strategy

allows exact-match queries on the selection attribute to be processed by exactly one node and

all other queries to be processed by all the nodes in parallel as in [18].

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 45 -

Table 1: Cloud shared nothing systems based on our paradigm

Criteria SHSS SHSD SHMS SLSS SLSD SLMS

System

Availability

High (due

replication

and dynamic
quorum)

High Fixed High (due to

geographic

replication)

High High

System Scalability Fixed Dynamic Fixed Dynamic Dynamic Low because no

separation of system
state and application

state (we must consult

the nodes in BATON)

System Reliability Primary copy

Replication

Replication Replicat

ion

Geographic

(asynchronous

) Replication

Replication Replication

Atomicity Supported at
single node

Supported at
single node

Support
ed

Supported Supported

Consistency High

consistency

guarantee

High

consistency

guarantee

High

consiste

ncy
guarante

e

Per record

Time line

Eventual Eventual using BASE

instead of 2PC

Isolation Serializable
(locks)

Serializable Serializ
able

Snapshot Snapshot Snapshot (MVOCC)

Durability Log Log Log Yahoo

Message
Broker

(YMB)

Log Log

Recovery After image Redo log Redo

log

Backup

replicas

Redo log Redo operations for

long term failure

Applicability Exchange

Hosted

Archive
(EHA) and

SQL Azure

Not yet

functioning

Not yet

function

ing

Social

applications

Not yet

functioning

Web shop applications

Transaction Types Non

distributed
short

transactions

Short

transactions

Short

transacti
ons

Range and

exact match

Unknown Multi keys

Load Balancing Flexible High (
monitoring

and

prediction)

Fixed Flexible Flexible High

Replica Contents Static Dynamic Static Static Static Dynamic using Two
tier replication

mechanism

Replica Placement

Static Dynamic Static Static Static Dynamic using Shift
key value scheme

Number of copies

for each replica

Dynamic Dynamic Static Dynamic Static Dynamic using Self-

tuning range histogram

Partitioning

Technique

Row group or

table group

Workload

aware

approach with
graph based

partitioning

Any Hash

partitioning

Any static

partitioning

type

Range partitioning

CAP type CP CP CP AP AP AP

Systems Example Cloud SQL

Server [5]

Relational

Cloud [8]

Not yet PNUTS [7] Not yet ecStore [17]

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 46 -

Table 2: Cloud decoupled storage systems based on our paradigm

Criteria DHSS DHSD DHMS DLSS DLSD DLMS

System

Availability

High High as

long as the

transaction
component

(TC) is

active

High as long as

the transaction

component
(TC) is active

High High but

depends on

group leader

Not high during

server and network

failure

System

Scalability

High Limited

due to

single TC

Limited due to

single TC

Dynamic

through

partitioning

Dynamic Linear

System

Reliability

Replication Replication Replication Synchronous

replication

Replication Replication

Atomicity Supported

at single
node

Supported Supported Supported per

entity group

Supported per

key group

Supported (2PC)

Consistency High High High High within

single entity

group

High depends

on underlying

key value store

High

Isolation OCC

(Serializabl

e)

Locks

(serializabl

e)

Locks

(serializable)

MVCC

(Serializable)

OCC

(Serializable)

Timestamp ordering

(Serializable)

Durability Log Log Log Log Log Log

Recovery Redo log Undo and

redo log

Undo and redo

log

Redo log Undo and redo

log

Redo log

Applicability Cloud data

intensive

applications

, payment
applications

Not yet

functioning

Not yet

functioning

Interactive

online service

Collaboration

based

application, On

line multi
players

On line book store

Transaction

Types

Short

transactions

that access
single

partition

Short

transactions

Short

transactions

Short

transactions per

entity group

Long

transactions

1. Short transactions

that access well

identified data items

2. Range query for

read only transactions

Load
Balancing

High Not high
due to

single TC

Not high due to
single TC

Low High Linear

Replica

Content

Static Static Static Static Static Static

Replica

Placement

Dynamic Dynamic Dynamic Static near the

partition

Dynamic Static

Number of

copies for each
replica

Static Static due

to single
TC

Static due to

single TC

Static Dynamic Static

Partitioning

Technique

Scheme

based
partitioning

Any

partitioning
technique

Any

partitioning
technique

 Entity group Key group Consistent hashing

CAP Type CP CP CA CP CP CP

Systems

Example

ElasTraS

[9, 10]

Deuterono

my [15]

Deuteronomy

[15]

Megastore [4] G-Store [11] CloudTPS [18]

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 47 -

5. Paradigm-based Systems Transactional Features

 According to the preceding paradigm-based classification, we try in this section to
project on the expected features of shared nothing and decoupled system classes (Table 1 and
2 respectively).

The shared nothing systems are classified (based on data structure type) into two groups

(highly structure and less structured). The first group is further classified (based on
transaction execution) into two sub groups, single node transactions (SHSS, SHSD) or multi
nodes transactions (SHMS). Single node transactions are well suited for OLTP and Web
applications which are characterized by short lived transactions/queries with little internal
parallelism. The main practical difficulty facing single node transactions was in scaling for
handling skewed workloads, possible solution for this problem is data partitioning in a way
that minimizes multi nodes transactions. In this type availability on unreliable commodity
hardware can be maintained through replication.

On the Other hand, multi nodes transactions use two phase commit (2PC). The main
disadvantage facing SHMS are the blockage of the site if coordinator fails and the
introduction of a large number of messages that affects the performance. In this type
availability is also achieved through replication.

the second group of the shared nothing system is also classified into two sub groups

based on transaction execution either single node transaction (SLSS, SLSD) or multi nodes
transactions (SLMS). Single node transactions focus on system availability and scalability
with weaker consistency guarantee and no serializable transactions. These systems are
applicable on social applications, which require scalability, good response time for
geographically dispersed users, and high availability. At the same time, they can tolerate
relaxed consistency guarantees.

On the other hand, multi node transactions (SLMS) focus primarily on atomicity and

durability with weaker isolation levels through optimistic multi-version concurrency control.
However, update transactions are always required in accessing the primary copy of data, both
in the read and writing phases (based on the assumption that users are more likely to operate
on their own data and this data tends to be independent between concurrent transactions of
different users so no sharing of information between users). Another disadvantage, there is no
separation of system state and application state which implies limited scalability. They are
suitable for applications that might use cloud range storages (i.e. a web shop which wants to
store listings in a sorted order based on their timestamps).

Similarly, the Decoupled storage systems are classified (based on data structure type)

into two groups (highly structure and less structured). The first group is further classified
(based on transaction execution type) into two sub groups either single node transaction
(DHSS, DHSD) or multi nodes transactions (DHMS). Single node transactions are well suited
for DBMS applications; however, they are not suitable for collaborative applications (that
require consistent access to a dynamically formed group of keys). In Single node transactions,
availability is achieved by replication, while scalability is achieved through partitioning the
data in a way that minimizes multi nodes transactions.

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 48 -

On the Other hand, multi nodes transactions use 2PC (which may affect performance as
mentioned earlier) with ACID guarantee, it is suitable for OLTP applications on disjoint set of
data.

The second group of decoupled system is also classified into two sub groups (based on

transaction execution type) either single node transaction (DLSS, DLSD) or multi nodes
transactions (DLMS). Single node transactions focus on achieving high consistency by
supporting transactional access for groups of keys on a single node and hence do not need
2PC. These groups of keys (partitions) are either static or dynamic and groups are
independent of each other. Transactions on a group guarantee consistency only within that
group, therefore, across partition transactions have to accept weaker consistency. They are
targeted to applications whose data have a key-value schema, and require scalable and
transactional access to non-disjoint groups of keys, and perform a large number of operations
(long transactions).

On the other hand, multi nodes transactions use two 2PC with ACID guarantee as long

as all transactions are short and span a relatively small number of well-identified data items
(transactions are allowed to access any number of data items by primary key, the list of
primary-keys must be given before executing the transaction). Other disadvantages include
the occurrence of a temporary drop in throughput as well as a few aborted transactions as a
result of server failures. In addition DLMS, it is not suitable for applications that require strict
consistency.

Finally, we expect to design a system regardless of its type (Shared nothing or

Decoupled system) and its data structure type (either highly or less structured) with Single
node transaction execution type and Dynamic data partitioning (XXSD) to enhance its
transaction capability and scalability by supporting a wider class of applications that involve
overlapping partitions or require queries span multiple partitions.

6. Conclusion and Future Work

Transaction management in the cloud faces many challenges this is why we made a
paradigm that deals with system types, data structure types, transaction execution types, and
partitioning types. In this paper, we presented the serious efforts done to bridge the data
management gaps; we classified all systems in 12 types, and we expect that system of type
(XXSD) is able to enhance the current transaction features in the cloud.

References:

[1] D. J. Abadi, "Data Management in the Cloud: Limitations and Opportunities". IEEE Data

Eng. Bull, vol 32(1), pp. 3-12 , 2009.

[2] D. Agrawal, A. E. Abbadi, S. Das, and A. J. Elmore, "Database scalability, elasticity, and

autonomy in the cloud". In Proceedings of the 16
th

 international conference on Database

systems for advanced applications, pp. 2-15, 2011.

[3] D. Agrawal, A. El Abbadi, S. Antony, , and S. Das, "Data Management Challenges in

Cloud Computing Infrastructures". In DNIS, 2010.

Egyptian Computer Science Journal Vol. 38 No. 1 January 2014 ISSN-1110-2586

- 49 -

[4] J. Baker, C. Bond, J. C. Corbett , J. J. Furman, A. Khorlin, J. Larson, , J.-M. Leon, Y.

Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing scalable, highly available

storage for interactive services,” in Proc. CIDR, pp. 223–234, Jan 2011.

[5] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kakivaya, D. B. Lomet, R.

Manne, L. Novik, and T. Talius, “Adapting Microsoft SQL Server for Cloud

Computing,” in Proc. ICDE, pp. 1255–1263, 2011.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. E. Gruber, “Bigtable: a distributed storage system for structured data,”

in Proc. OSDI, pp. 15–15, 2006.

[7] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.

Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts: Yahoo!’s hosted data serving

platform,” Proc. VLDB Endow., vol(1), pp. 1277–1288, August 2008.

[8] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan,

and N. Zeldovich, “Relational Cloud: A Database as a Service for the Cloud,” in Proc.

CIDR, pp. 235–240, 2011.

[9] S. Das, D. Agrawal, and El A. Abbadi, “Elastras: an elastic transactional data store in the

cloud,” in Proc. USENIX HotCloud, 2009.

[10] S. Das, D. Agrawal, and El A. Abbadi, “Elastras : An elastic , scalable, and self
managing transactional database for the cloud,” Technical Report, CS UCSB, April 2010.

[11] S. Das, D. Agrawal, and El A. Abbadi, “G-store: a scalable data store for transactional

multi key access in the cloud,” in Proc. ACM SoCC, pp. 163–174, 2010.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly available

key-value store,” SIGOPS Oper. Syst. Rev, vol(41), pp. 205–220, Oct.2007

[13] S. Gilbert, and N. Lynch, "Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services". SIGACT News, vol(33), number 2, pp.51–

59. 2002.

[14] D. Kossmann, T. Kraska, and S. Loesing, , “An evaluation of alternative architectures for

transaction processing in the cloud,” in SIGMOD Conference, pp. 579–590, 2010.

 [15] J. J. Levandoski, D. Lome, M. F. Mokbel, and K. K. Zhao, “Deuteronomy: Transaction

support for cloud data”, in Proc. CIDR, pp. 123–133, Jan 2011.

 [16] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of large scale data

management approaches in cloud environments,” IEEE Communications Surveys and

Tutorials, vol13), no. 3, 2011.

[17] H. T. VO, C. Chen, and B. C. Ooi, "Towards Elastic Transactional Cloud Storage with

Range Query Support", VLDB, Sept. 2010.

[18] Z. Wei, G.Pierre, and C.-H. Chi, “CloudTPS: Scalable transactions for web applications

in the cloud,” Services Computing, IEEE Transactions, vol(99), 2011

[19]Amazon.com. Amazon SimpleDB., 2010. http://aws.amazon.com/simpledb.

[20]Amazon.com. EC2 elastic compute cloud, 2010. http://aws.amazon.com/ec2.

