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Curran-Everett D. Explorations in statistics: the log transfor-
mation. Adv Physiol Educ 42: 343–347, 2018; doi:10.1152/
advan.00018.2018.—Learning about statistics is a lot like learning
about science: the learning is more meaningful if you can actively
explore. This thirteenth installment of Explorations in Statistics
explores the log transformation, an established technique that
rescales the actual observations from an experiment so that the
assumptions of some statistical analysis are better met. A general
assumption in statistics is that the variability of some response Y is
homogeneous across groups or across some predictor variable X. If
the variability—the standard deviation—varies in rough proportion to
the mean value of Y, a log transformation can equalize the standard
deviations. Moreover, if the actual observations from an experiment
conform to a skewed distribution, then a log transformation can make
the theoretical distribution of the sample mean more consistent with a
normal distribution. This is important: the results of a one-sample t
test are meaningful only if the theoretical distribution of the sample
mean is roughly normal. If we log-transform our observations, then
we want to confirm the transformation was useful. We can do this if
we use the Box-Cox method, if we bootstrap the sample mean and the
statistic t itself, and if we assess the residual plots from the statistical
model of the actual and transformed sample observations.

bootstrap; Central Limit Theorem; normal quantile plot; residual plots

INTRODUCTION

This thirteenth paper in Explorations in Statistics (see Refs.
7–17, 19) explores the log transformation,1 a long-standing
technique that rescales the sample observations—the actual
measurements—from an experiment so that the assumptions of
some statistical analysis are better met (1, 6, 33). As you might
expect from its lengthy history, the log transformation is
featured in textbooks of statistics (20, 28, 29, 31, 32), papers on
clinical statistics (2–4, 25), and papers in the formal statistical
literature (1, 6, 26, 33).

The Log Transformation: An Overview

There are two main ways a log transformation can help
sample observations better meet the assumptions of some
statistical analysis. First, a general assumption in statistics is
that the variability of some response Y is homogeneous across
groups or across some predictor variable X (see Refs. 20 and

31).2 If the variability—the standard deviation—varies in
rough proportion to the mean value of Y, a log transformation
of the actual observations can equalize the standard deviations
(Table 1 and Fig. 1). In more formal statistical parlance, a log
transformation can stabilize the variance (1, 6, 20, 25, 31).

Second, in our earlier explorations (10, 17) we learned that
the results of a one-sample t test are meaningful only if the
theoretical distribution of the sample mean is roughly normal.
When we explored the bootstrap (10) we learned that a log
transformation of skewed C-reactive protein values (Fig. 2)
was the optimal transformation (Fig. 3). Although the log-
transformed values were less skewed, their distribution was
still inconsistent with a normal distribution (see Fig. 2). In-
stead, the real impact of this log transformation was on the
theoretical distribution of the sample mean (Fig. 4). A log
transformation can help the distribution of the observations
themselves be more normal (2–4, 6, 10, 18, 20, 25), or—
perhaps more often—it can make the theoretical distribution of
the sample mean more normal.

Although these advantages of a log transformation have
been long established, three recent papers (22–24) claim that a
log transformation may fail to reduce—in fact, it may even
exacerbate—skewness.3 In other words, a log transformation
may fail to do what it is purported to do. Needless to say, the
initial paper (23) triggered a spirited exchange (5, 24) about the
value of a log transformation.

In this exploration we will investigate whether the argu-
ments in Refs. 23 and 24 are sufficient to warrant caution in
using the log transformation. First, we need to review the
software we will use to help us do that.

R: Basic Operations

The first paper in this series (7) summarized R (30) and
outlined its installation. For this exploration there are three
more steps: download the R script Advances_Statistics_Code_
Log.R and the data file Table_1_Data.csv4 to your Advances
folder, confirm you installed boot and MASS in our previous
explorations (10, 11, 17, 19), and install the new package
moments (27).5

Address for reprint requests and other correspondence: D. Curran-Everett,
Division of Biostatistics and Bioinformatics, M222, National Jewish Health,
1400 Jackson St., Denver, CO 80206–2761 (e-mail: EverettD@NJHealth.org).

1 The log transformation is just one kind of transformation (see Refs. 1,
6, 18).

2 This assumption is often called homogeneity of variance or homoscedas-
ticity.

3 The genesis for this paper was Ref. 22 which amalgamates Refs. 23 and
24. I include Ref. 22 only because it may be more accessible than Refs. 23
and 24.

4 These files are posted as Supplemental Data at the end of the article posted
on the Advances in Physiology Education website.

5 Some of our previous explorations (10, 11, 14–16, 19) detail how to install
an extra R package.
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To run R commands. If you use a Mac, highlight the
commands you want to submit and then press ⌘↵ (command
key�enter). If you use a PC, highlight the commands you want
to submit, right-click, and then click Run line or selection. Or,
highlight the commands you want to submit and then press
Ctrl�R.

The Log Transformation: A Possible Counterargument?

In their initial paper (Ref. 23, p. 233), Feng et al. mention
that a log transformation does not always reduce skewness:
“[It] is easy to find distributions for which the log transforma-
tion actually introduces more skewness.” But they fail to offer
an example of such a distribution. In their response to com-
ments (24), they remedy that. We can recreate their simulation
of 10,000 observations from a distribution for which a log
transformation does indeed exacerbate skewness (Fig. 5). The
real question is, is a log transformation of these simulated data
even warranted?

In some of our earlier explorations (10, 17), we learned that
the theoretical distribution of the sample mean could be
roughly normal—an assumption for the results of a t test to be
meaningful—regardless of the distribution of the actual obser-

vations as long as our sample size was big enough. The sample
size of 10,000 from the skewed distribution used by Feng et al.
(23) as a counterargument for the log transformation is big
enough (Fig. 6). In other words, a log transformation of these
10,000 observations is unnecessary.

Suppose we pretend that the sample size of 10,000 is not big
enough for the theoretical distribution of the sample mean to be
roughly normal. If we use the Box-Cox method (6, 20) to
estimate an appropriate transformation of these observations,

Table 1. Plankton data

Actual: y Transformed: log y

1 2 3 4 1 2 3 4

895 1520 11,000 43,300 2.952 3.182 4.041 4.636
540 1610 8,600 32,800 2.732 3.207 3.934 4.516

1020 1900 8,260 28,800 3.009 3.279 3.917 4.459
470 1350 9,830 34,600 2.672 3.130 3.993 4.539
428 980 7,600 27,800 2.631 2.991 3.881 4.444
620 1710 9,650 32,800 2.792 3.233 3.985 4.516
760 1930 8,900 28,100 2.881 3.286 3.949 4.449
537 1960 6,060 18,900 2.730 3.292 3.782 4.276
845 1840 10,200 31,400 2.927 3.265 4.009 4.497

1050 2410 15,500 39,500 3.021 3.382 4.190 4.597
387 1520 9,250 29,000 2.588 3.182 3.966 4.462
497 1685 7,900 22,300 2.696 3.227 3.898 4.438

Ave {y} 671 1701 9,396 30,775 2.803 3.221 3.962 4.478 Ave {log y}
SD {y} 234 357 2,326 6,689 0.150 0.098 0.099 0.098 SD {log y}

Values represent estimated numbers of 4 types of plankton from 12 separate
hauls (after Ref. 31). The standard deviations of the actual numbers, SD {y},
vary in rough proportion to their corresponding averages, Ave {y}. In contrast,
the standard deviations of the transformed numbers, SD {log y}, were nearly
equal. The commands in lines 29–40 of Advances_Statistics Code_Log.R read
in these data and compute these averages and standard deviations. To obtain
these results, highlight and submit the lines of code from Table 1: first
line to Table 1: last line.

Fig. 1. Plankton data from Table 1. The commands in lines 49–68 of
Advances_Statistics_Code_Log.R create this data graphic. To generate this
data graphic, highlight and submit the lines of code from Figure 1: first
line to Figure 1: last line.

Fig. 2. Distributions (left) and normal quantile plots (right) of the actual and
transformed C-reactive protein observations in Ref. 10. The transformation
changed the distribution of the observations, but the transformed values remained
inconsistent with a normal distribution. Advances_Statistics Code_Log.R does not
create this data graphic (adapted from Ref. 10).

Fig. 3. Likelihood approach to data transformation. For each value of �, the
log-likelihood is calculated in a manner similar to Eq. 1 in Ref. 10. For the
C-reactive protein values, the log-likelihood estimate of � that maximizes
the log-likelihood is �0.13, and an approximate 95% confidence interval
for � is [�0.41, �0.12]. Because this interval includes 0, a log transfor-
mation of the C-reactive protein values is reasonable (6, 18). The com-
mands in lines 98 –104 of Advances_Statistics Code_Log.R return these
point and interval estimates of � which are identical to those we obtained
using the equivalent maximum likelihood approach (see Fig. 5 in Ref. 10).
The commands in lines 109 –117 of Advances_Statistics Code_Log.R
create this data graphic. To generate this data graphic, highlight and submit
the lines of code from Figure 3: first line to Figure 3: last
line.
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we obtain a point estimate of � � 0.52 and an approximate
95% confidence interval for � of [0.50, 0.54] (Fig. 7). Because
this interval excludes 0, a log transformation of these obser-
vations is inappropriate.6

Practical Considerations

When we explored the assumption of normality (17), we
said that if our sample size is not big enough then we can
transform the observations in the hopes that the theoretical
distribution of the sample mean will be more normally distrib-
uted. How do we think about transformation in practice? To
simplify our lives, suppose we have sample observations—
some data—that we anticipate analyzing with a one-sample t
test.

The first thing we do is plot the data to get a sense of their
distribution (see Ref. 13, p. 351, Rule 1). We might also
construct a normal quantile plot to assess whether the data are
consistent with a normal distribution (see Fig. 2, top). If they
are, then a transformation is likely to be unnecessary. If the
data are inconsistent with a normal distribution (see Fig. 2,
top), then we bootstrap the sample mean y� and the statistic t
(10, 17). If these bootstrap distributions are inconsistent with a
normal distribution (see Fig. 4, top), then the results from the
one-sample t test—its P value and confidence interval—are
likely to mislead us.

We have now arrived at the point where we may want to
transform the data. As we first discovered when we explored
the bootstrap (10), the Box-Cox method (6, 20) is an effective
tool with which to identify an appropriate transformation. If

our sample observations happen to be the C-reactive protein
values in Fig. 2, then the Box-Cox method identifies that a log
transformation is reasonable (see Fig. 3).

If we identify that a particular transformation is appropriate,
then we do not want to blindly assume the transformation is
beneficial as Feng et al. (23) appear to suggest. Rather, we
want to confirm it: so we bootstrap the sample mean y� and the
statistic t of the transformed values (10, 17). The goal: to assess
how well the assumptions of some statistical procedure have
been satisfied. For our plankton data, a log transformation
appears to be beneficial: the variability of the estimated num-
bers is more homogeneous across the four types of plankton
(see Table 1 and Fig. 1). For our C-reactive protein values, a
log transformation is beneficial: the theoretical distribution of
the sample mean is now consistent with a normal distribution
(see Fig. 4).

Last, we also want to use a general technique akin to residual
plots in regression (13). In regression, residual plots help us
decide if our provisional statistical model of the relationship
between Y and X is appropriate. If we want to assess whether
a transformation is appropriate, then we want to examine the
residual plots from a statistical model of the actual and trans-
formed data. In this situation, for each observation, the residual
is the difference between the observed value y and the value
estimated by the statistical model. If a particular transformation
is appropriate, then there is no obvious pattern to the residuals
(see Ref. 13, Fig. 6). Residual plots confirm that the log
transformation of our plankton data is appropriate (Fig. 8).

Contrary to urban legend, if we transform our data before we
analyze them, we are not complicit in some kind of hanky-
panky. The goal of transformation is not to identify a rescaling

6 Instead, if the sample size of 10,000 were not big enough, we might opt for
a square-root transformation: � � 0.50.

Fig. 5. Distributions of 10,000 simulated actual and transformed observations
(after Ref. 24). We simulate the actual observations in two steps. First, we draw at
random a value u from a uniform distribution (0, 1) (see Ref. 17, Fig. 1). Then, we
calculate the actual observation y as y � [100 (eu � 1)] � 1; see Ref. 24. For
example, if u � 0, then y � 1, and if u � 1, then y � 172.8. We obtain the
transformed observations by taking the natural logarithm of the actual observa-
tions: ln y. The skewness of these distributions mirrors the skewness of the
distributions depicted in Ref. 24: 0.34 and �1.16. The commands in lines
129–162 of Advances_Statistics Code_Log.R create these distributions and this
data graphic. Your distributions will differ slightly. To generate this data graphic,
highlight and submit the lines of code from Figure 5: first line to
Figure 5: last line.

Fig. 4. Bootstrap distributions (left) and normal quantile plots (right) of 10,000
sample means, each with 40 observations. The bootstrap replications were
drawn at random from the actual or transformed C-reactive protein observa-
tions in Ref. 10. The bootstrap sample means from the actual observations are
inconsistent with a normal distribution. In contrast, the bootstrap sample means
from the transformed observations are consistent with a normal distribution.
Advances_Statistics Code_Log.R does not create this data graphic (adapted
from Ref. 10).

345THE LOG TRANSFORMATION

Advances in Physiology Education • doi:10.1152/advan.00018.2018 • http://advan.physiology.org
Downloaded from www.physiology.org/journal/advances (111.093.031.052) on October 10, 2019.



of the data that produces a statistically meaningful result.
Instead, the goal of transformation is to identify a rescaling of
the data so they better meet the assumptions of some statistical
procedure (1, 6, 33).

On the other hand, if a transformation fails to identify a
constructive rescaling of the data, then all is not lost: we can
use the bootstrap to estimate a confidence interval (10), and
we can use a permutation method to test a scientific null
hypothesis (14). And, as Efron has written (21), “When
there is something to permute ... it is a good idea to do so,
even if other methods like the bootstrap are also brought to
bear.”

Summary

As this exploration has demonstrated, a log transformation
can rescale the actual measurements from an experiment so
that 1) the variability of some response is more homogeneous,
or 2) the theoretical distribution of the sample mean is consis-
tent with a normal distribution. In each situation, a log trans-
formation can help the sample observations better satisfy the
assumptions of some statistical analysis. As we have also seen,
however, if we log-transform our sample observations, then we
want to confirm the transformation was useful. We can do this
if we use the Box-Cox method, if we bootstrap the sample
mean and the statistic t itself, and if we assess the residual plots
from the statistical model of the actual and transformed sample
observations.
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Fig. 6. Bootstrap distributions (left) and normal quantile plots (right) of 10,000
sample means (top) and their corresponding one-sample t statistics (bottom).
The bootstrap replications were drawn at random from the 10,000 actual
observations depicted in Fig. 5 (top). The bootstrap distributions of the sample
mean and t statistic are consistent with a normal distribution: this means the
inference we make from a normal-theory hypothesis test or confidence interval is
justified. The commands in lines 175–222 of Advances_Statistics Code_Log.R
create this data graphic. To generate this data graphic, highlight and submit the
lines of code from Figure 6: first line to Figure 6: last line.
In the theoretical distribution of t with 10,000 � 1 degrees of freedom, 2.5% of the
possible values of t are less than �1.960, and 2.5% of the possible values of t are
greater than �1.960. In the bootstrap distribution of t, 2.6% of the possible values
of t� are less than �1.960, and 2.5% of the possible values of t� are greater than
�1.960. The commands in lines 232–237 of Advances_Statistics Code_Log.R
return these values. Your percentages will differ slightly.

Fig. 7. Box-Cox approach (6) to data transformation applied to the actual
observations in Fig. 5. The estimate of � that maximizes the log-likelihood is
0.52, and an approximate 95% confidence interval for � is [0.50, 0.54].
Because this interval excludes 0, a log transformation of the actual observa-
tions in Fig. 5 is inappropriate. The approximate 95% confidence interval for
� is narrow because there are 10,000 observations. The commands in lines
251–257 of Advances_Statistics Code_Log.R return these point and interval
estimates of �. Your values will differ slightly. The commands in lines
262–270 of Advances_Statistics_Code Log.R create this data graphic. To
generate this data graphic, highlight and submit the lines of code from
Figure 7: first line to Figure 7: last line.

Fig. 8. Residual plots from a statistical model of the actual and transformed
plankton data (see Table 1 and Fig. 1). For the ith type of plankton, the jth
observation yij can be modeled as yij � � � �i � �ij for i � 1, 2, 3, 4 and j � 1,
2, ..., 12, where � is a constant that represents a common underlying mean, �i

is a component that represents the type i effect, and �ij is a component that
represents random error. We assume that �ij is distributed normally with mean
0 and standard deviation �. The residual eij is the difference between the
observed value yij and the value estimated by the statistical model. If the
statistical model appears to be appropriate—if the assumptions of the analysis
appear to have been met—then there is no pattern to the residuals. If the
assumptions of the analysis appear to have been violated, then a residual plot
depicts some sort of pattern (see Ref. 13, Fig. 6). The statistical model of the
actual plankton data is inappropriate: the variability differs across plankton
type. The statistical model of the transformed plankton data is appropriate:
there is no discernible pattern to the residuals. The commands in lines 283–307
of Advances_Statistics_Code_Log.R create this data graphic. To generate this
data graphic, highlight and submit the lines of code from Figure 8: first
line to Figure 8: last line.
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