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Abstract

Using existing, forward-in-time integration schemes, we demonstrate that under
certain conditions it is possible to compute the solution at earlier times, even in
the presence of stiffness (for which reverse integration is unstable). This technique
can be used when a reverse integrator is not available - for example, when all one
has is a forward-in-time legacy code. It can also be used for the “reverse coarse”
integration of the macroscopic closure of a system defined by a microscopic model
which itself is naturally forward in time (e.g. a particle model of a gas). The
method proposed has stability properties that enable it to converge to stationary
points of unstable stiff systems.

Keywords Reverse Integration, stationary points, differential equations.

1 Introduction
We consider the problem of computing a solution of

dy
i f() (1)

“backward” in time in various situations in which direct numerical integration in reverse
time (¢ decreasing) is not possible. Here f is R" — R". For example, we may have access
only to a legacy code that computes y(t 4+ At) given y(t) with positive At not under our
control; alternatively, eq. (1) might be the unknown closure (“coarse equation”) of a
microscopically-defined system which is inherently uni-directional in time.

In an earlier paper ([2]) we considered projective methods for stiff problems with gaps
in their spectra. In the projective method, a numerical solution is computed at a sequence
of relatively closely spaced points in time using a conventional integrator with small time
steps, and then a “giant” step is taken using polynomial extrapolation from the last few
of the points computed in the small step integration. This latter process is called the
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outer integrator and the giant step is called the projective step. It was taken forward in
time. The small step integrations stabilized the fast (“strongly stable”) components; the
large, projective step had a stability region associated with an explicit, large step method
that was stable for slowly damped components. The combined method had a stability
region for linear problems that consisted of two subregions, one that caused damping of
the fast components and one that caused damping of the slow. In this paper we take
the large step in the reverse direction. The effect is that the small forward steps lead to
the method being stable for eigenvalues corresponding to strongly damped components
with time constants of the order of the small step, while the large backwards step adds
a stability region corresponding to the large, explicit step, that is, a region that damps
small positive eigenvalues.

In the next section we will briefly analyze the linear stability properties of these
methods, and in the third section we will give an illustrative example. In the following
two sections we will discuss the application of the method to computing the slowly
changing component of forwardly unstable systems, as well as to unstable stationary
points.

2 Analysis

We will analyze the simplest of these methods following the technique used in [2]. The
reverse projective integration step we will discuss here consists of k4 1 inner integration
steps of size h forward from t,, to t,,,.1, followed by one projective step of size —Mh to
arrive at t.1_p. The projective step takes the form

y£+1—M = My — (M - 1)yk+1

Writing m = M — k — 1 and one step of the inner integrator as y,+1 = ¢(y,) we see that,
starting from an initial value yy the method is given by

Y-m(g+1) = Y=mg+k+1 — M (?/—mq+k+1 - y—mq+k) (2)

where

Yomg+jt1 = Q(Y—mg+j): J = 0,k (3)
In eq. (2) we see that (Y_mgrk+1 — Y—mg+k)/h is functioning as an estimate of the
derivative at t_,,q4 k1.

As in [2] we assume that the error amplification of an inner integrator step is p(h\).
One could conceptually study the case where the inner integrator is perfect i.e., p(h\) =
e . For our analysis, we need only assume that the inner integrator is at least first order
accurate, so that we have

p(hA\) = 1+ hX + O(hN)>.

(If the inner integrator is the forward Euler method, the last term can be dropped.) We
see that the reverse projective method has an error amplification ¢ given by

o =p"(M— (M —1)p).



As before, we define the stability region in the p-plane as the set of p for which ¢ is not
outside the unit disk, and plot its boundary by finding the set of p such that |o| = 1.
Figure 1 shows the plots for £k = 2 and four different values of M, 4, 5, 7, and 11. Note
that, because the process goes forward k + 1 = 3 steps before going backwards M steps,
the values actually correspond to net reverse steps of h, 2h, 4h, and 8h respectively. The
method is stable inside the regions shown. As M gets large, these regions asymptotically
tend to a pair of disks. One, centered at 1+ 1/M and of radius 1/M, corresponds to the
stability region of the forward Euler method because the reverse projective step is the
equivalent of a forward Euler method in the reverse direction. The second is centered
at the origin and has radius M~/ It represents the region where the damping of p*
is sufficient to overcome the growth proportional to M. In other words, the regions
are essentially similar to those for forward projective methods, except that the stability
region due to the projective step corresponds to hA in the positive half plane since that
step is taken in the reverse direction.

In the example presented in the next section, we will use a method similar to the
2nd order Adams-Bashforth method as the outer (reverse projective) integrator. This
corresponds to the integration sequence

Y—m(g+1) = Y—mgt+k+1 T BI(M) (yfmq+k+1 - y*qurk) + B2<M> (y—m(q—1)+k+1 - y—m(q—1)+kz>
(4)

coupled with eq. (3) where

Bi(M) = —2M(M —142m), Ba(M) = MM 1)

, and m=M —k — 1.
m 2m

Its stability region is similar, namely it is stable near the origin of the p-plane and in
a region corresponding to the stability region of the reverse Adams Bashforth method.
The stability region for the case k = 2, M = 6 is shown in 2. The region in the right-half
plane corresponds to the stability region of the Adams-Bashforth method of order 2 in
the reverse direction.

3 An example

We consider a set of three coupled nonlinear ODEs that constitute a simplified model of
the catalytic CO oxidation reaction in the presence of an inert species (see [5]). The mean
field evolution equations for this simplified mechanism, taking into account adsorption
(dissociative for the oxygen), desorption (negligible for the oxygen) and second order
surface reaction are

.
dt

T — 200 — 4k.0.40 (5)
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Figure 1: Stability Regions for the Reverse Projective Method with First-Order Outer
Integrator.
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Figure 2: Stability Regions for the Reverse Projective Method with 2nd order Adams-
Bashforth Outer Integrator. k = 2 and M = 6.



dfc
— = ub. — nbc.
dt H nvc

The fractional coverages of the surface by C'O, O and the inert species C' are 04,65 and
Oc respectively, while the empty site fraction is 6, = 1 — 04 — 0 — 0. The physical
meaning of the various parameters and kinetic constants can be found in [5], which also
contains a bifurcation diagram for this model as a function of the gas phase partial
pressure of oxygen, (3.

In a realistic situation we would be interested in numerically analyzing a much more
detailed model than this, for example, a stochastic model based on the Gillespie algorithm
as discussed in [7]. We use this simplified version for expository purposes since it has
similar behavior. If we used the stochastic model we would only be able to integrate it
in the forward direction.

The parameter values used for this case were: o = 1.6,3 = 20.8,v = 0.04,u =
0.36,7 = 0.016, and k, = 1. With these values, the system possesses an unstable steady
state, surrounded by an attracting limit cycle. Transients are fairly strongly attracted to
this stable limit cycle. For example, if we were to start from the initial condition (0.2776,
0.0324, 0.6605) which lies close to the single, unstable saddle point, the trajectory will
reach the limit cycle to plot accuracy in about 700 time units, and along that trajectory
one eigenvalue of the local linearization of the differential equation lies between -6.47 and
-5.08 while the other two had real parts between -0.05 and +0.21 and imaginary parts
that were less than 0.26 in magnitude. Clearly direct integration in the reverse direction
would be extremely unstable because of the eigenvalue near -6.

Starting from a point near the limit cycle, § = (0.342778296, 0.019029657, 0.61305464 ),
we used reverse projective integration. First we integrated in the forward direction with
the Euler method using step size 0.16 for 3 steps and used the last two steps to es-
timate the chord slope. Then eq. (4) was applied with M = 6 to get an effective
reverse step size of —3h = —0.48. Any component corresponding to the large negative
eigenvalue at about -5.5 is quickly damped, so the integration could proceed in the re-
verse direction until the trajectory approached the neighborhood of the saddle point at
0 = (0.278291262,0.032174358, 0.660192491).

Figure 3 shows the components of # as a function of time. Figure (4) shows the
projected phase-plane plot of 64 versus 6s. These were integrated only until they were
within about 1072 of the saddle point for two reasons. First, the behavior at earlier
times (later in the integration!) is uninteresting; second, we wished to demonstrate that
the reverse integration captures what would have been found from a forward integration.
After the reverse integration was stopped at ¢ = —600, a forward integration was per-
formed to ¢t = 0, the original starting point. The plots shown consists of two curves for
each segment, one for the reverse integration (solid line) and one for the forward (dashed
line), but because they are so close, the two curves are almost indistinguishable. For this
reason we also show a blow-up of the region around ¢ = 0 where it can be seen that the
curves differ visually by very little. In fact, the max norm difference between the forward
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Figure 3: Reverse integration of eq. (5) from t = 0 to t = —600 (solid line) and then
forward (dashed) to t = 0. Components are 0,04, and 6p from top to bottom. Right
panel shows 0 near t = 0.
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Figure 4: 84 —60¢ projected phase-plane plot of transient in 3. Right panel is enlargement
near t = 0.



and backward solutions is 3.3 x 1074, If these equations were integrated in the reverse
direction with a standard integrator the result would be numerical overflow since over a
range of -600 the eigenvalue of about -5.7 causes an amplification of its eigencomponent
by about €3*2° which is approximately 10485, Unless one had starting values to that ac-
curacy and worked to a precision greater than about 4950 bits, amplified roundoff errors
would dominate the solution!

4 Projective Integration of Forwardly Unstable sys-
tems

While we have introduced this compound method (forward inner integration plus a re-
verse projective step) for the reverse integration when direct integration in the reverse
direction is impractical, it can also be used to compute the sub-dominant components
of a forwardly unstable system, that is, the slow components that do not blow up in
forward time. For this application we must be able to execute the inner integrator in the
reverse time direction, and then take the projective step in the forward direction. The
stability regions will simply be the mirror images in the p = 1 line of those shown in
Figs (1) and (2).

It is also interesting that for problems with only unstable eigendirections, separated
in fast and slow components, this “flipped reverse” scheme may help track the slow
unstable submanifold of the higher-dimensional unstable manifold of the problem.

5 Stationary Projective Methods

In the above we have taken M > k41 so that the net progress is negative in time. If we
choose M =k + 1 in eq. (2) the total step length of the reverse projective integration
method will be zero; we will call this a stationary projective method. It has the curious
stability region shown in Figure 5. It is stable along a section of the real axis that
includes p = 1 (which is hA = 0). The boundary crosses itself at p = 1. The intersection
is at right angles because in the neighborhood of p = 1 simple algebra shows that o is
given by

o= 1= k(k+1)/2(p — 1) — K2(k — 1)/2(p — 1)° (6)

so the stability in the neighborhood of p = 1 is equivalent to requiring that
Real((p — 1)?) > 0

which happens when Arg(p) € [—n/4,7/4] or [37/4,57/4]. The form of eq. (6) arises
because the first-order accuracy of the method for a net step size of length zero means
that

a(0N) =1+ 0\ +O0(RN)?=1+0(p—1)?
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This can be used to find saddle stationary points provided that the arguments of
the complex eigenvalues are within 7/4 of the negative or positive real axes. When
there are only a few eigenvalues close to the imaginary axis, whether in the negative or
positive half plane, other fixed point algorithms, based on timestepping and subspace
estimation, such as RPM [8] can be used to find the stationary points effectively. If
many eigenvalues exist close to (on either side of) the imaginary axis, estimating a high
dimensional slow subspace may become impractical. As an example, the following shift
of the reaction-diffusion equation,

up = —ud + 3u2q(x) — 3uq2(x) + qg(x) + U+ VU — Ve (), (7)

was solved with ¢(z) = 0.05z(m — x) and boundary conditions u(0,t) = u(m,t) = 0.
When v = 1072 it has 10 eigenvalues in the positive half plane near the zero stationary
saddle point, u = ¢g(z). If a standard finite difference approximation is applied to this
with 30 discretization points, the remaining 20 eigenvalues will be in the negative half
plane.

Starting from u(z,0) = 0 and using K = 5 and M = 6 in the procedure, the saddle
point g(z) was found in 364 explicit steps to 107 L1 norm accuracy. (Other stationary
points exist for this problem. Starting from different initial conditions may converge to
such points.)

At the stationary point of interest, the 30 eigenvalues of the linearized operator range
from

(—2.90,---,—0.279,—0.098 + 0.075,4-0.237 - - - , +-0.978),

where we have shown the smallest, the 19th, 20th, 21st, and 22nd (which span zero),
and the largest eigenvalues. When a Forward Euler inner integrator is used with step
size h = 0.25 the eigenvalues of the Euler process become

(+0.276, - - -, +0.930, +0.976,4+1.019, +1.060, - - -, +1.245)

which is clearly unstable (as is to be expected because of the 10 positive eigenvalues).
However, the eigenvalue of the stationary projective process are

(+0.007, - - -, 4+0.940, 4+0.992, 4-0.995, +0.940, - - -, —0.666).

In other words, the process maps those real eigenvalues outside the unit circle inside,
while leaving those real eigenvalues initially inside still inside, thus making the iteration
stable.

The convergence is slow because the 20th and 21st eigenvalues are very close to the
unit circle. Various forms of iteration acceleration, such as Newton-Krylov (e.g., the
Shroff-Keller method [8]) could be conceivably applied to this stationary integration
process to speed it up.



6 Comments

The reverse projective procedure we just outlined will, under the conditions discussed, be
an “on manifold” reverse time integration scheme if the forward in time dynamics possess
a separation of time scales globally, and an attracting, forward-invariant, low-dimensional
slow manifold exists. That is, the regularizing action of the forward integration allows
us to follow the on-manifold well-behaved trajectories backward in time. This may then
provide a meaningful -and very simple to implement- way of regularizing the reverse, “on
the slow manifold”, dynamics of stiff sets of ODEs and even discretizations of dissipative
PDEs. For example, in contexts where a low-dimensional inertial manifold exists for
a dissipative PDE [10], our superstructure enables a direct simulation of an accurate
discretization of the PDE to approximately follow backward trajectories on the inertial
manifold without ever having to explicitly derive an inertial form (or approximate inertial
form). This might be useful in certain inverse problems, as well as cases involving
dynamic computations in an optimal control / optimization context, where direct reverse
integration on the slow manifold of a highly dissipative problem may be otherwise very
difficult or practically impossible.

In the spirit of the last observation, it is interesting to consider the implications
of such a process for a meaningful reverse integration of systems described by micro-
scopic/stochastic simulators. In many practically relevant cases, the coarse-grained be-
havior of such simulators can be described by the evolution in time of a few “master” mo-
ments of microscopically evolving distributions. The remaining, higher moments, become
quickly slaved by forward simulation to the slow, master moments. We have recently
proposed coarse projective integration schemes that use short bursts of appropriately
initialized microscopic/stochastic simulation to estimate the time-derivative of the un-
available coarse equations for the master modes, and “project” these modes forward in
time [4, 9, 6]. If the coarse projection is performed backward in time, the procedure will
allow us to follow the regularized reverse time behavior of the coarse variables. This is
done using the microscopic/stochastic forward-in-time simulator directly, circumventing
the necessity of deriving an explicit macroscopic closure. It becomes therefore possible to
use a forward-in-time molecular dynamics simulator to extract regularized reverse-time
information of coarse system variables. We have already demonstrated the feasibility of
this technique in the case of coarse molecular dynamics simulations of a dipeptide folding
kinetics in water [6]. Coarse reverse integration allows us to use microscopic simulators
to quickly escape free-energy minima, to converge on certain transition states (saddles
on the free-energy surface) and, more generally, may enhance our ability to explore the
structure of free energy surfaces.

Beyond the computation of reverse trajectories, reverse projective integration allows
us to converge to saddle-type points whose linearization is characterized by a gap between
strong stable modes and weak unstable ones. An existing forward simulation code will not
in general converge to such points (the numerical trajectories will move away forward in



time, and “explode away” backward in time). We can therefore think of our procedure
as a computational superstructure that transforms a forward simulation code into a
contraction mapping capable of converging to such saddle unstable points.

The stationary projective process described at the end permits the computation of
saddle points when there is a gap between strongly stable components and weakly stable
or unstable components. It can be related to consistent initialization algorithms for
differential-algebraic equations [1].

In summary, the technique holds promise towards (a) the regularized, “on manifold”
backward-in-time integration of certain dissipative PDEs possessing low-dimensional,
exponentially attracting slow manifolds, which can be useful in several contexts, including
control and optimization; the computation of unstable, saddle-type fixed points using
existing simulators; and (c) the use of microscopic/stochastic simulators to track coarse-
grained behavior backward in time, enhancing the ability to escape free energy minima
and to locate saddle-type coarse-grained “transition states”.
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Figure 5: Stability Regions for Stationary Projective Methods.
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