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Generalized linear models (GLMs) are not new. With increases in computing power 
and access to big data, actuaries have in fact been using GLMs in the insurance rating 
process for many years. The use of GLMs for classifying risks and rating personal lines 
business has increased tremendously in recent years and has spread to commercial lines 
business as well.

While many textbooks and articles exist to explain GLMs, this monograph serves 
as a “one-stop shop” for the actuary seeking to understand the GLM model-building 
process from start to finish. The authors start with technical foundations that will serve as 
a base for the beginner or a refresher for the more experienced practitioner. The authors 
then provide comprehensive coverage of the model-building process, from objectives 
and specifications through data preparation, distribution and variable selection, model 
refinement, model validation, and ultimately model selection. To conclude, the authors 
discuss extensions to the GLM, such as mixed models and regularized regression.

The monograph offers a practical blend of qualitative considerations along with 
the quantitative concepts. For the practitioner looking for a comprehensive guide to 
building an insurance-rating model utilizing GLMs, this monograph should prove to 
be an invaluable resource.

Leslie R. Marlo
Chairperson

Monograph Editorial Board

Foreword



Acknowledgments

The authors would like to thank the following people for their contributions:

Leslie Marlo, Glenn Meyers, Stan Khury and the other members of the Monograph 
Editorial Board, without whose efforts this text would not have been possible.

Jason Russ and Fran Sarrel, who coordinated with the authors on behalf of the 
Examination and Syllabus Committee.

The anonymous peer reviewers, whose thoughtful suggestions improved the quality 
of this text.

Eric Brosius, Dmitriy Guller, Paul Ivanovskis and Christopher Mascioli, who also 
served as reviewers and provided valuable feedback on earlier drafts of the text.

Donna Royston, who provided editorial support and coordinated production on 
behalf of the CAS.



Casualty Actuarial Society 1

1. Introduction

Generalized linear models have been in use for over thirty years, and there is no shortage 
of textbooks and scholarly articles on their underlying theory and application in solving 
any number of useful problems. Actuaries have for many years used GLMs to classify 
risks, but it is only relatively recently that levels of interest and rates of adoption have 
increased to the point where it now seems as though they are near-ubiquitous. GLMs 
are widely used in the personal lines insurance marketplace, especially in operations 
of meaningful scale. But as far as the authors are aware there is no single text written 
for the practicing actuary that serves as a definitive reference for the use of GLMs in 
classification ratemaking. This monograph aims to bridge that gap. Our ultimate goal 
is to give the knowledgeable reader all of the additional tools he or she needs to build 
a market-ready classification plan from raw premium and loss data.

The target audience of this monograph is a credentialed or very nearly credentialed 
actuary working in the field of property/casualty or general insurance (for example, in 
the United States, a member or soon-to-be member of the Casualty Actuarial Society). 
It is assumed that the reader will be familiar with the material covered in the earlier 
exams of the CAS syllabus, including all of the Actuarial Standards of Practice and 
the ratemaking material covered in depth in Werner and Modlin’s Basic Ratemaking 
(2010) (or their international equivalents, for readers outside the United States). Prior 
knowledge of the mathematics underlying GLMs will make for faster reading but is 
not absolutely necessary. Familiarity with a programming language is not required to 
read the text, but will be necessary to implement models.

If you should have a suggestion or discover any errors in this document, please 
contact the authors. Current contact information can be found in the CAS directory.



2 Casualty Actuarial Society

2. Overview of Technical Foundations

Generalized linear models (GLMs) are a means of modeling the relationship between 
a variable whose outcome we wish to predict and one or more explanatory variables.

The predicted variable is called the target variable and is denoted y. In property/
casualty insurance ratemaking applications, the target variable is typically one of the 
following:

• Claim count (or claims per exposure)
• Claim severity (i.e., dollars of loss per claim or occurrence)
• Pure premium (i.e., dollars of loss per exposure)
• Loss ratio (i.e., dollars of loss per dollar of premium)

For quantitative target variables such as those above, the GLM will produce an 
estimate of the expected value of the outcome.

For other applications, the target variable may be the occurrence or non-occurrence 
of a certain event. Examples include:

• Whether or not a policyholder will renew his/her policy.
• Whether a submitted claim contains fraud.

For such variables, a GLM can be applied to estimate the probability that the event 
will occur.

The explanatory variables, or predictors, are denoted x1 . . . xp, where p is the num-
ber of predictors in the model. Potential predictors are typically any policy terms or 
policyholder characteristics that an insurer may wish to include in a rating plan. Some 
examples are:

• Type of vehicle, age, or marital status for personal auto insurance.
• Construction type, building age, or amount of insurance (AOI) for homeowners 

insurance.

2.1. The Components of the GLM
In a GLM, the outcome of the target variable is assumed to be driven by both a 

systematic component as well as a random component.
The systematic component refers to that portion of the variation in the outcomes 

that is related to the values of the predictors. For example, we may believe that driver 
age influences the expected claim frequency for a personal auto policy. If driver age 
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is included as a predictor in the frequency model, that effect is part of the systematic 
component.

The random component is the portion of the outcome driven by causes other 
than the predictors in our model. This includes the “pure randomness”—that is, the 
part driven by circumstances unpredictable even in theory—as well that which may be 
predictable with additional variables that are not in our model. As an example of this 
last point, consider the effect of driver age, which we describe above as being part of 
the systematic component—if driver age is in the model. If driver age is not included 
in our model (either due to lack of data or for any other reason), then, from our 
perspective, its effect forms part of the random component.

In a general sense, our goal in modeling with GLMs is to “explain” as much of the 
variability in the outcome as we can using our predictors. In other words, we aim to 
shift as much of the variability as possible away from the random component and into 
the systematic component.

GLMs make explicit assumptions about both the random component and the 
sys tematic component. We will examine each in turn, beginning with the random 
component.

2.1.1. The Random Component: The Exponential Family
In a GLM, y—the target variable—is modeled as a random variable that follows a 

probability distribution. That distribution is assumed to be a member of the exponential 
family of distributions.

The exponential family is a class of distributions that have certain properties that are 
useful in fitting GLMs. It includes many well-known distributions, such as the normal, 
Poisson, gamma and binomial distributions. (It also includes a less widely known 
distribution—the Tweedie distribution—that is very useful in modeling insurance data; 
more on that later.) Selection and specification of the distribution is an important part 
of the model building process.

The randomness of the outcome of any particular risk (denoted yi) may be formally 
expressed as follows:

∼y Exponentiali im f( ), (1)

Note that “Exponential” above does not refer to a specific distribution; rather, it is a 
placeholder for any member of the exponential family. The terms inside the parentheses 
refer to a common trait shared by all the distributions of the family: each member takes 
two parameters, m and f, where m is the mean of the distribution. f, the dispersion 
parameter, is related to the variance (but is not the variance!) and is discussed later in 
this chapter.

The parameter m is of special interest: as the mean of the distribution, it represents 
the expected value of the outcome. The estimate of this parameter is said to be the 
“prediction” generated by the model—that is, the model’s ultimate output.
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If no information about each record other than the outcome were available, the 
best estimate of m  would be the same for each record—that is, the average of historical 
outcomes. However, GLMs allow us to use predictor variables to produce a better 
estimate, unique to each risk, based on the statistical relationships between the 
predictors and the target values in the historical data. Note the subscript i applied 
to m in Equation 1 above, which denotes that the m parameter in the distribution is 
record-specific. The subscript-less parameter f, on the other hand, is assumed to be 
the same for all records.

2.1.2. The Systematic Component
GLMs model the relationship between mi (the model prediction) and the predictors 

as follows:

g x x xi i i p ipm b b b b( ) = + + + +. . . . (2)0 1 1 2 2

Equation 2 states that some specified transformation of mi (denoted g(m i)) is equal 
to the intercept (denoted b 0) plus a linear combination of the predictors and the 
coefficients, which are denoted b 1 . . . bp. The values for the intercept (b 0) and the 
coefficients (b 1 . . . bp) are estimated by GLM software. The transformation of mi 
represented by the function g(.) on the left-hand side of Equation 2 is called the link 
function and is specified by the user.

The right-hand side of Equation 2 is called the linear predictor; when calculated, 
it yields the value g(mi)—that is, the model prediction transformed by our specified link 
function. Of course, the value g(mi) per se is of little interest; our primary interest lies in 
the value of mi itself. As such, after calculating the linear predictor, the model prediction 
is derived by applying the inverse of the function represented by g(.) to the result.

The link function g(.) serves to provide flexibility in relating the model prediction 
to the predictors: rather than requiring the mean of the target variable to be directly 
equal to the linear predictor, GLMs allow for a transformed value of the mean to be 
equal to it. However, the prediction must ultimately be driven by a linear combination 
of the predictors (hence the “linear” in “generalized linear model.”)

In a general sense, the flexibility afforded by the ability to use a link function is a 
good thing because it gives us more options in specifying a model, thereby providing 
greater opportunity to construct a model that best reflects reality. However, when using 
GLMs to produce insurance rating plans, an added benefit is obtained when the link 
function is specified to be the natural log function (i.e., g(x) = ln(x)): a GLM with that 
specification (called a log link GLM) has the property of producing a multiplicative 
rating structure.

Here’s why: when a log link is specified, Equation 2 becomes

x x xi i p ipm b b b b= + + + +ln . . . .0 1 1 2 2
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To derive mi, the inverse of the natural log function, or the natural exponential 
function, is applied to both sides of the equation:

x x x e e ei i i p ip
x xi p ipm b b b b b b b( )= + + + + = × × ×exp . . . . . . .0 1 1 2 2

0 1 1

As demonstrated, the use of a log link results in the linear predictor—which begins 
as a series of additive terms—transforming into a series of multiplicative factors when 
deriving the model prediction.

Multiplicative models are the most common type of rating structure used for 
pricing insurance, due to a number of advantages they have over other structures. To 
name a few:

• They are simple and practical to implement.
• Having additive terms in a model can result in negative premiums, which doesn’t 

make sense. With a multiplicative plan you guarantee positive premium without 
having to implement clunky patches like minimum premium rules.

• A multiplicative model has more intuitive appeal. It doesn’t make much sense to 
say that having a violation should increase your auto premium by $500, regardless 
of whether your base premium is $1,000 or $10,000. Rather it makes more sense 
to say that the surcharge for having a violation is 10%.

For these and other reasons, log link models, which produce multiplicative struc
tures, are usually the most natural model for insurance risk.

2.1.3. An Example
Suppose we construct a GLM to predict the severity of auto claims using driver 

age and marital status as predictors. The data we use contains 972 rows, with each row 
corresponding to a single claim. For each claim, the loss amount is recorded, along 
with several policyholder characteristics, among which are our predictors: driver age 
(in years, and denoted x1 in our example) and marital status (coded as 0 = unmarried,  
1 = married, and denoted x2). We aim to produce a multiplicative rating algorithm, so a 
log link is used. We believe that the loss amount generated by a claim, after accounting 
for the effect of age and marital status, is random and follows a gamma distribution.

For this setup, our model inputs are:

• The data
• The model specifications:

• Target variable: loss amount
• Predictors: driver age (x1) and marital status (x2)
• Link function: log
• Distribution: gamma

The above are entered into the GLM fitting software. The outputs of the model 
fitting process are: estimates for the intercept, the two coefficients (for age and marital 
status), and the dispersion parameter (f ).
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Suppose the software returns the following:
Parameter coefficient
Intercept (b 0): 5.8
Coefficient for driver age (b 1): 0.1
Coefficient for marital status (b 2): -0.15
Dispersion parameter (f ): 0.3

We then wish to use this information to predict average claim severity for a 25-year-old 
married driver. We use Equation 2, plugging in the following values: b 0 = 5.8, b 1 = 0.1, 
b 2 = -0.15, x1 = 25, and x2 = 1. We solve for mi, which represents average claim severity 
for this driver as indicated by the model. Per Equation 2,

g i i im m m( ) ( ) ( )= = + + − = → =ln 5.8 0.1 25 0.15 1 8.15 3, 463.38

Thus, the model predicts the loss amount for a claim from this class of driver to 
follow a gamma distribution with parameters m = 3,463.38 and f  = 0.3. The value 
3,463.38 is the mean, or the expected severity for this driver; that figure may then be 
multiplied by an estimate of frequency to derive an expected pure premium which 
would underlie the rate charged for that class of driver.

Equivalently, the model prediction can be represented as a series of multiplicative 
rating factors by exponentiating both sides of the equation above:

e e eim [ ]( ) ( )= + + − = × ×

= × × =

( ) ( )−exp 5.8 0.1 25 0.15 1

330.30 12.182 0.861

5.8 0.1 25 .15 1

3, 464.42

which is similar to the result above. (The difference is due to rounding.)
The advantage of this last formulation is that it can be easily translated as a simple 

rating algorithm: begin with a “base” average severity of $330.30, and apply the factors 
applicable to driver age 25 and married drivers (12.182 and 0.861, respectively), to 
arrive at the expected severity for this particular class of driver: $3,464.

We might also use this model to predict mean severity for a 35-year-old unmarried 
driver; that prediction is exp[5.8 + (0.1)35 + (-0.15)0] = 10,938, meaning the loss amount 
follows a gamma distribution with parameters  m = 10,938 and f  = 0.3. Note that the 
f  parameter is the same as for the first driver in our example, since f  is constant for 
all risks in a GLM.

In this simple example, the specifications of the model—the distribution, the target 
variable and predictors to include—are given. In the real world, such decisions are often 
not straightforward. They are continually refined over many iterations of the model 
building process, and require a delicate balance of art and science.1 The tools and concepts 

1 As for the link function, it is usually the case that the desirability of a multiplicative rating plan trumps all other 
considerations, so the log link is almost always used. One notable exception is where the target variable is binary 
(i.e., occurrence or non-occurrence of an event), for which a special link function must be used, as discussed later 
in this chapter.
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that help guide proper model specification and selection for the purpose of building an 
optimal rating plan are the primary focus of this monograph.

2.2. Exponential Family Variance
The particulars of the exponential family of distributions are complex, and most 

are not important from the viewpoint of the practitioner and will not be covered in 
this monograph. [For a fuller treatment, see Clark and Thayer (2004).] However, it is 
necessary to understand the first two central moments of this family of distributions 
and how they relate to the parameters.

Mean.  As noted above, the mean of every exponential family distribution is m.

Variance.  The variance is of the following form:

Var y Vf m[ ] ( )= (3)

That is, the variance is equal to f (the dispersion parameter) times some function 
of m, denoted V(m). The function V(m) is called the variance function, and its actual 
definition depends on the specific distribution being used. Table 1 shows the variance 
functions for several of the exponential family distributions.

As shown in Table 1, for the normal distribution, the function V(m) is a constant, 
and so the variance does not depend on m. For all other distributions, however, V(m) 
is a function of m, and in most cases it is an increasing function. This is a desirable 
property in modeling insurance data, as we expect that higherrisk insureds (in GLM
speak, insureds with higher values of m) would also have higher variance. Recall that 
a constraint of GLMs that we need to live with is that the f parameter must be a 
constant value for all risks. Thanks to the variance function of the exponential family, 
however, this doesn’t mean the variance must be constant for all risks; our expectation 
of increasing variance with increasing risk can still be reflected in a GLM.

To illustrate this last point, recall our previous example, where we predicted the 
average severities for two drivers using the same model, with the predictions being $3,464 

Table 1.  The Exponential Family Variance Functions

Distribution Variance Function [V(m)] Variance [fV(m)]

normal 1 f

Poisson m fm

gamma m2 fm2

inverse Gaussian m3 fm3

negative binomial m (1+km) fm (1+km)

binomial m (1-m) fm (1-m)

Tweedie mp fmp
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and $10,938. In both cases, the f parameter was held constant at 0.3. Following 
Equation 3 and the gamma entry for V(m) in Table 1, we can calculate the variance 
in loss amount for the first driver as 0.3 × 3,4642 = 3.6 × 106, while the second 
driver has a variance of 0.3 × 10,9382 = 35.9 × 106. Thus the higherrisk driver has 
a higher variance than the lowerrisk driver (an intuitive assumption) despite the 
restriction of constant f .

The third column in Table 1 reminds the reader that the variance function is not 
the variance. To get the actual variance, one must multiply the variance function by the 
estimated f, which in effect serves to scale the variance for all risks by some constant 
amount.

2.3. Variable Significance
For each predictor specified in the model, the GLM software will return an estimate 

of its coefficient. However, it is important to recognize that those estimates are just 
that—estimates, and are themselves the result of a random process, since they were 
derived from data with random outcomes. If a different set of data were used, with all 
the same underlying characteristics but with different outcomes, the resulting estimated 
coefficients would be different.

An important question for each predictor then becomes: is the estimate of the 
coefficient reasonably close to the “true” coefficient? And, perhaps more importantly: 
does the predictor have any effect on the outcome at all? Or, is it the case that the 
predictor has no effect—that is, the “true” coefficient is zero, and the (nonzero) 
coefficient returned by the modelfitting procedure is merely the result of pure chance?

Standard GLM software provides several statistics for each coefficient to help answer 
those questions, among which are the standard error, p-value, and confidence interval.

2.3.1. Standard Error
As described above, the estimated coefficient is the result of a random process. 

The standard error is the estimated standard deviation of that random process. For 
example, a standard error of 0.15 assigned to a coefficient estimate may be thought of 
as follows: if this process—collecting a dataset of this size (with the same underlying 
characteristics but different outcomes) and putting it through the GLM software with 
the same specifications—were replicated many times, the standard deviation of the 
resulting estimates of the coefficient for this predictor would be approximately 0.15.

A small standard deviation indicates that the estimated coefficient is expected to 
be close to the “true” coefficient, giving us more confidence in the estimate. On the 
other hand, a large standard deviation tells us that a wide range of estimates could be 
achieved through randomness, making it less likely that the estimate we got is close to 
the true value.

Generally, larger datasets will produce estimates with smaller standard errors than 
smaller datasets. This is intuitive, as more data allows us to “see” patterns more clearly.

The standard error is also related to the estimated value of f : the larger the estimate 
of f , the larger the standard errors will be. This is because a larger f  implies more variance 
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in the randomness of the outcomes, which creates more “noise” to obscure the “signal,” 
resulting in larger standard errors.

2.3.2. p-value
A statistic closely related to the standard error (and indeed derived from the standard 

error) is the p-value. For a given coefficient estimate, the pvalue is an estimate of the 
probability of a value of that magnitude (or higher) arising by pure chance.

For example, suppose a certain variable in our model yields a coefficient of 1.5 with 
a pvalue of 0.0012. This indicates that, if this variable’s true coefficient is zero, the 
probability of getting a coefficient of 1.5 or higher purely by chance is 0.0012.2 In this 
case, it may be reasonable to conclude: since the odds of such a result arising by pure 
chance is small, it is therefore likely that the result reflects a real underlying effect—that 
is, the true coefficient is not zero. Such a variable is said to be significant.

On the other hand, if the pvalue is, say, 0.52, it means that this variable—even if it 
has no effect—is much more likely to yield a coefficient of 1.5 or higher by chance; as 
such, we have no evidence from the model output that it has any effect at all. Note that 
this is not to say that we have evidence that it has no effect—it may be that the effect is  
actually there, but we would need a larger dataset to “see” it through our GLM.

Tests of significance are usually framed in terms of the null hypothesis—that is, the 
hypothesis that the true value of the variable in question is zero. For a pvalue sufficiently 
small, we can reject the null hypothesis—that is, accept that the variable has a nonzero 
effect on the expected outcome. A common statistical rule of thumb is to reject the 
null hypothesis where the pvalue is 0.05 or lower. However, while this value may seem 
small, note that it allows for a 1in20 chance of a variable being accepted as significant 
when it is not. Since in a typical insurance modeling project we are testing many 
variables, this threshold may be too high to protect against the possibility of spurious 
effects making it into the model.

2.3.3. Confidence Interval
As noted above, the pvalue is used to guide our decision to accept or reject the 

hypothesis that the true coefficient is zero; if the pvalue is sufficiently small, we reject 
it. However, a hypothesis of zero is just one of many hypotheses that could conceivably 
be formulated and tested; we could just as easily hypothesize any other value and test 
against it, and the pvalue would be inversely related to the degree to which the estimated 
coefficient differs from our hypothesized coefficient. It is then natural to ask: what range 
of values, if hypothesized, would not be rejected at our chosen pvalue threshold? This 

2 It is perhaps worth clarifying here what is meant by “the probability of getting a coefficient of 1.5 or higher.” 
Certainly, there is no randomness in the GLM fitting process; for any given set of data and model specifications, 
the GLM will produce the same result every time it is run, and so the probability of getting the coefficient of 1.5 
with this data is 100%. However, recall that the estimates produced are random because they are derived from 
a dataset with random outcomes. Thus, the interpretation of the pvalue may be stated as: if the true coefficient 
is zero—that is, the variable has no correlation with the outcome—there is a 0.0012 probability of the random 
outcomes in the data being realized in such a way that if the resultant dataset is entered into a GLM the estimated 
coefficient for this variable would be 1.5 or higher.
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range is called the confidence interval, and can be thought of as a reasonable range of 
estimates for the coefficient.

Confidence intervals are typically described by the complement of the p-value 
threshold used to compute them, expressed as a percentage. E.g., the confidence inter-
val based on a p-value threshold of 0.05 is called the 95% confidence interval. SAS 
and other GLM software typically return the 95% confidence interval by default but 
provide the option to return a confidence interval for any chosen p-value threshold.

As an example: suppose, for a particular predictor, the GLM software returns 
a coefficient of 0.48, with a p-value of 0.00056 and a 95% confidence interval of 
[0.17, 0.79]. In this case, the low p-value indicates that the null hypothesis can be 
rejected. However, all values in the range 0.17 to 0.79 are sufficiently close to 0.48 
such that, if set as initial hypotheses, the data would produce p-values of 0.05 or 
higher. Assuming that we are comfortable with a threshold of p = 0.05 for accept/
reject decisions, hypotheses of values in that range would not be rejected, and so that 
range could be deemed to be a reasonable range of estimates.

2.4. Types of Predictor Variables
Predictor variables that go into a GLM are classified as being either categorical or 

continuous, and each of those types of variable is given a different treatment.
A continuous variable is a numeric variable that represents a measurement on a 

continuous scale. Examples include age, amount of insurance (in dollars), and population 
density.

A categorical variable is a variable that takes on one of two or more possible values, 
thereby assigning each risk to a “category.” A categorical variable may be numeric 
or non-numeric. Examples are: gender (one of either “male” or “female”); vehicle 
type (one of “sedan,” “SUV,” “truck,” or “van”); or territory (a value from 1 to 8, 
representing the territory number). The distinct values that a categorical value may 
take on are called levels.

2.4.1. Treatment of Continuous Variables
The treatment of continuous variables in a GLM is straightforward: each continuous 

variable is input into the GLM as-is, and the GLM outputs a single coefficient for it. 
This results in the linear predictor holding a direct linear relationship with the value of 
the predictor: for each unit increase in the predictor, the linear predictor rises by the 
value of the coefficient (or declines, in the case of a negative coefficient). If a log link 
was used, this in turn results in the predicted value increasing or decreasing by some 
constant percentage for each unit increase in the predictor.

Log Your Continuous Variables!  When a log link is used, it is almost always 
appropriate to take the natural logs of continuous predictors before including them 
in the model, rather than placing them in the model in their original forms. This 
allows the scale of the predictors to match the scale of the entity they are linearly 
predicting, which in the case of a log link is the log of the mean of the outcome.
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When a logged continuous predictor is placed in a log link model, the resulting 
coefficient becomes a power transform of the original variable. To see this mathematically, 
consider the simple case of a model with only an intercept term and a single continuous 
predictor x. Applying a log link, and logging predictor x, Equation 2 becomes:

xm b b= +ln ln0 1

To derive m, we exponentiate both sides:

e e e xxm b b b b= × = ×ln0 1 0 1

As demonstrated, when deriving the prediction, the coefficient b 1 becomes an 
exponent applied to the original variable x. To make this example more concrete, 
suppose x represents amount of insurance (AOI) in thousands of dollars; we log AOI 
and place it into a log link model, and the resulting coefficient is 0.62. We can use 
this information to derive a relativity factor for any AOI relative to a “base” AOI by 
raising the AOI to a power of 0.62 and dividing that by the base AOI raised to that 
same power. If our base AOI is $100,000, the indicated relativity for $200,000 of 
AOI is 2000.62/1000.62 = 1.54—in other words, a property with $200,000 of AOI has 
an expected outcome 54% higher than that of a property with $100,000 of AOI.

Including continuous predictors in their logged form allows a log link GLM flexibility 
in fitting the appropriate response curve. Some examples of the indicated response curves 
for different positive values of the coefficient are shown in the left panel of Figure 1. If 
the variable holds a direct linear relationship with the response, the estimated coefficient 
will be near 1.0 (solid line). A coefficient between 0 and 1 (such as the 0.6 coefficient 
illustrated by the dashed line) would indicate that the mean response increases with 
the value of the predictor, but at a decreasing rate; this shape is often appropriate for 
predictors in insurance models. A coefficient greater than 1—such as 1.2, the dotted 

Figure 1.  Indicated Response Curve for Logged 
Continuous Variable (left) and Unlogged Continuous 
Variable (right)
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line—will yield a curve that increases at a mildly increasing rate. (Negative coefficients 
would yield response curves that are the “flipped” images of those illustrated here; a 
coefficient of -1.0 would indicate a direct inverse relationship, -0.6 would indicate a 
function that decreases at a decreasing rate, and the curve for -1.2 would be decreasing 
at an increasing rate.)

On the other hand, if the variable x is not logged, the response curve for any 
positive coefficient will always have the same basic shape: exponential growth, that is, 
increasing at an increasing rate. The right panel of Figure 1 illustrates the kinds of fits 
that might be produced for variables similar to those in the left panel if the variable 
x were not logged. As can be seen, a direct linear relationship (the gray line) is no 
longer an option. Only an exponential growth curve can be achieved; the magnitude 
of the growth varies with the coefficient. To be sure, there may be some instances 
where such a shape may be warranted; for example, if x is a temporal variable (such as 
year) meant to pick up trend effects, it may be desirable for x to yield an exponential 
growth relationship with the response, as trend is often modeled as an exponential 
function. In general, though, rather than viewing logging as a transformation of a 
continuous variable, the logged form of a variable should be considered the “natural” 
state of a predictor in a log link model, with the original (unlogged) variable viewed as 
a “transformation” that should only be used in certain specific cases.3

When including a logged continuous variable in a log link model, the underlying 
assumption is that the logged variable yields a linear relationship with the logged mean 
of the outcome. Certainly, there are many instances of predictors for which such will 
not be the case. An example is the effect of driver age on expected auto pure premium, 
which is typically at its highest for teen drivers and declines as drivers mature into their 
twenties and thirties, but rises again as the drivers enter their senior years. Techniques 
for detecting and handling such nonlinear effects will be discussed in Chapter 5.

2.4.2. Treatment of Categorical Variables
When a categorical variable is used in a GLM the treatment is a bit more involved. 

One of the levels is designated as the base level. Behind the scenes, the GLM software 
replaces the column in the input dataset containing the categorical variable with a 
series of indicator columns, one for each level of that variable other than the base level. 
Each of those columns takes on the values 0 or 1, with 1 indicating membership of 
that level. Those columns are treated as separate predictors, and each receives its own 
coefficient in the output. This resulting dataset is called the design matrix.

To illustrate: suppose, in an auto frequency model, we wish to include the 
categorical variable “vehicle type,” which can be either “sedan,” “SUV,” “truck” or 
“van.” We designate “sedan” as the base level.

3 If a continuous variable contains zeroes, then it obviously can not be logged. One possible workaround is to add 
some small value to the variable prior to logging. For example, for a building age variable where a new building 
is coded as zero, we can add 1 to all ages. Alternatively, we can replace all zeroes with some other value—say, 1; 
then, create an additional indicator (0/1) variable, valued at 1 where the original building age variable was zero, 
and valued at 0 otherwise. That new variable would then capture the difference in mean between a oneyearold 
building and a brand new one.
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Table 2 shows the target variable and vehicle type columns for the first five rows of 
our dataset. The vehicle type variable is named “vtype” in the data.

Prior to fitting the GLM, the software will transform the data to create indicator 
variables for each level of vtype other than “sedan,” our base level. Table 3 shows the 
resulting design matrix.

Record 1, which is of vehicle type “SUV,” has a 1 in the vtype:SUV column and 
zeros for all other columns relating to vehicle type. Similarly, record 2 has a 1 in the 
vtype:truck column and zeros in all the others. There is no column corresponding to 
vehicle type “sedan”; record 3’s membership in that level is indicated by all three vehicle 
type columns being zero. Each of the newly-created vehicle type columns is treated as 
a separate predictor in Equation 2.

For a risk of any non-base level, when the values for the indicators columns are 
linearly combined with their respective coefficients in Equation 2, the coefficients 
relating to all other levels are multiplied by zero and drop out, while the coefficient 
relating to the level to which it belongs is multiplied by one and remains. For a risk of 
the base level, all the coefficients drop out. As such, the coefficient for each non-base 
level indicates the effect of being a member of that level relative to the base level.

Continuing with our example, suppose the GLM returns the estimates shown in 
Table 4 for the three non-base vehicle types.

Table 2.  Input Data to the GLM

freq vtype . . . other predictors . . .

0 SUV . . .

0 truck . . .

1 sedan . . .

0 truck . . .

0 van . . .

. . . . . . . . .

Table 3.  Design Matrix

predictor: freq vtype:SUV vtype:truck vtype:van . . . other predictors . . .

symbol: y x1 x2 x3 x4 . . . xp

0 1 0 0 . . .

0 0 1 0 . . .

1 0 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .

. . . . . . . . . . . . . . .
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To use this output to derive the linear predictor for an SUV, we plug the coefficients 
of Table 4 and the x predictors of Table 3 into Equation 2:

g x x

x x

n n

n n

m b b b

b b b

( ) ( )= + × + × + − × + + +

= + + + +

1.23 1 0.57 0 0.30 0 . . .

1.23 . . .
0 4 4

0 4 4

As seen, all coefficients related to vehicle type for types other than “SUV” drop 
out of the equation, and only the coefficient for SUVs (1.23) remains. Since for a risk 
of vehicle type “sedan” all the vehicle type coefficients would drop out, the positive 
coefficient applied to SUVs indicates that their claim frequency is greater than that of 
sedans. Similarly, the negative coefficient attached to “van” indicates that claims are less 
frequent for vans than for sedans.

If a log link was used, a factor table for vehicle type can be constructed from this 
output by exponentiating each of the above coefficients. For the base level (sedan in 
this example) the factor is 1.000, since the effect of this vehicle type on the linear 
predictor is zero (and e0 = 1). An SUV would get a rating factor of e1.23 = 3.421, 
indicating that the expected frequency for SUVs are 242% greater than that of sedans. 
The rating factor for a van would be e -0.30 = 0.741, indicating an expected frequency 
that is 25.9% lower than that of sedans.

We now turn our attention to the significance statistics for this model (that is, the 
rightmost two columns of Table 4). These statistics help us assess our confidence in the 
values the parameters being non-zero. In the context of this model—where the parameters 
relate each level of vehicle type to the base level—a parameter of zero would mean that 
the level has the same mean frequency as the base level. It follows that the significance 
of the parameter measures the confidence that the level is significantly different from the 
base level.

The low p-value assigned to the vtype:SUV parameter indicates that the frequency 
for SUVs is significantly higher than that of sedans. For vans, on the other hand, the 
high p-value tells us that there is not enough evidence in the data to conclude that the 
frequency for vans is indeed lower than that of sedans.

A graphical representation of the estimates of Table 4 can be seen in the left panel 
of Figure 2. The filled squares show the GLM estimates, and the error bars around them 
indicate the 95% confidence intervals around those estimates. The vertical gray bars 
at the bottom are proportional to the volume of data for each vehicle type. We can see 

Table 4.  GLM Parameter Estimates for Vehicle Type

Parameter Coefficient Std. Error p-Value

vtype:SUV (b 1) 1.23 0.149 <0.0001

vtype:truck (b 2) 0.57 0.175 0.0011

vtype:van (b 3) -0.30 0.436 0.4871
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that “van,” the level with the least amount of data, has the widest error bar. In general, 
for categorical variables, sparser levels tend to have wider standard errors, indicating 
less confidence in their parameter estimates, since those estimates are based on less 
data. The “van” error bar also crosses the zero line, indicating that this estimate is not 
significant at the 95% confidence level.

2.4.3. Choose Your Base Level Wisely!
In the above example, we’ve set the base level for vehicle type to be “sedan.” Table 5 

shows what the output would be had we used “van” as the base level instead.
This model is equivalent to that of Table 4 in that both would produce the same 

predictions. To be sure, the coefficients are different, but that is only because they are 
relating the levels to a different base. To see this, subtract the coefficient for “sedan” 
from that of any of the other levels (using 0 for “van”), and compare the result to the 
corresponding coefficient on Table 4.

Table 5.  Parameter Estimates After Setting “van” 
as the Base Level

Parameter Coefficient Std. Error p-Value

vtype:sedan (b 1) 0.30 0.436 0.4871

vtype:SUV (b 2) 1.53 0.425 0.0003

vtype:truck (b 3) 0.88 0.434 0.0440

Figure 2.  Graphical representation of the parameter 
estimates for vehicle type, with “sedan” as the base level 
(left panel ) and with “van” as the base level (right panel ). 
The filled squares show the GLM estimates, and the error 
bars around them indicate the 95% confidence intervals 
around those estimates. The vertical gray bars at the 
bottom are proportional to the volume of data for each 
vehicle type.
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What has changed, though, are the significance statistics. Whereas for the prior 
model the “SUV” and “truck” estimates were highly significant, after running this 
model the pvalues for both have increased, indicating less confidence in their estimates. 
The parameters are plotted in the right panel of Figure 2. We can see that the error bars 
have widened compared to the prior model.

To understand why, recall that the significance statistics for categorical variable 
parameters measure the confidence in any level being different from the base level. As 
such, to be confident about that relationship, we need confidence about both sides of 
it—the mean response of the parameter in question, as well as that of the base level. In 
this case, our base level has sparse data, which does not allow the model to get a good 
read on its mean frequency, and so we can’t be certain about the relativity of any other 
level to it either.

As such, when using categorical variables, it is important to set the base level to 
be one with populous data—and not simply take the default base assigned by the 
software—so that our measures of significance will be most accurate.

2.5. Weights
Frequently, the dataset going into a GLM will include rows that represent the 

averages of the outcomes of groups of similar risks rather than the outcomes of individual 
risks. For example, in a claim severity dataset, one row might represent the average loss 
amount for several claims, all with the same values for all the predictor variables. Or, 
perhaps, a row in a pure premium dataset might represent the average pure premium for 
several exposures with the same characteristics (perhaps belonging to the same insured).

In such instances, it is intuitive that rows that represent a greater number of 
risks should carry more weight in the estimation of the model coefficients, as their 
outcome values are based on more data. GLMs accommodate that by allowing the user 
to include a weight variable, which specifies the weight given to each record in the 
estimation process.

The weight variable, usually denoted w , formally works its way into the math of 
GLMs as a modification to the assumed variance. Recall that the exponential family 
variance is of the form Var[ y ] = fV(m). When a weight variable is specified, the assumed 
variance for record i becomes

Var y
V

i
i

i

f m
w

[ ] ( )= ,

that is, the “regular” exponential family variance divided by the weight. The variance 
therefore holds an inverse relation to the weight.

When the weight variable is set to be the number of records that an aggregated 
row represents, this specification of variance neatly fits with our expectations of the 
variance for such aggregated records. Recall that a basic property of variances is that 

for random variable X, Var X n
n

Var Xi∑[ ]( ) [ ]= 1
; in other words, the variance of 
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the average of n independent and identically distributed random variables is equal to 
1/n times the variance of one such random variable. As such, a row representing the 
average loss amount of two claims would be expected to have half the variance of a 
single-claim row, and so on. Setting the weight to be the number of claims allows the 
GLM to reflect that expectation.

2.6. Offsets
When modeling for insurance rating plans, it is often the case that the scope of the 

project is not to update the entire plan at once; rather, some elements will be changed 
while others remain as-is. Some common examples:

• Rating algorithms typically begin with a base loss cost that varies by region or class, 
which is derived outside of the GLM-based analysis and may even be separately 
filed. The scope of the GLM project may be to update the rating factors only while 
the relative base loss costs remain static.

• When updating deductible factors, it is frequently desirable to calculate them using 
traditional loss elimination-based techniques, while the GLM is used for factors 
other than deductible. (Section 8.1 discusses this in more detail.)

In such instances, the “fixed” variable (base loss cost or deductible in the above 
examples) would not be assigned an estimated coefficient by the GLM. However, 
since it will be part of the rating plan the GLM is intended to produce, the GLM 
must be made aware of its existence so that the estimated coefficients for the other 
variables are optimal in its presence. GLMs provide the facility to do so through the 
use of an offset.

An offset is formally defined as a predictor whose coefficient is constrained to be 1. 
Mathematically, it is an added term to Equation 2:

�g x x xi i i p ipm b b b b( ) = + + + + + ooffffsseett0 1 1 2 2

When including an offset in a model, it is crucial that it be on the same “scale” as 
the linear predictor. In the case of a log link model, this requires the offset variable to 
be logged prior to inclusion in the model.

2.7. An Inventory of Distributions
The following sections describe several of the exponential family distributions 

available for use in a GLM, with a focus on the types of target variables typically modeled 
when developing rating plans: severity, frequency, pure premium and loss ratio.

2.7.1. Distributions for Severity
When modeling the severity of claims or occurrences, two commonly used dis-

tributions are the gamma and inverse Gaussian distributions.

Gamma.  The gamma distribution is right-skewed, with a sharp peak and a long 
tail to the right, and it has a lower bound at zero. As these characteristics tend to 
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be exhibited by empirical distributions of claim severity, the gamma is a natural fit 
(and indeed the most widely used distribution) for modeling severity in a GLM. The  
gamma variance function is V(m) = m2, meaning that the assumed variance of the severity 
for any claim in a gamma model is proportional to an exponential function of its mean.

Figure 3 shows several examples of the gamma probability density function (pdf ) 
curves for varying values of m and f . The two black lines illustrate gamma with f  = 1, 
with means of 1 and 5. The two gray lines show gamma curves with those same means 
but with a lower value of f. As you would expect, the gray lines indicate lower variance 
than their corresponding black lines. However, also note that the value of f does not 
tell the full story of the variance. Comparing the two gray lines, it is clear that gamma 
with m = 5 (dashed line) has a much wider variance than gamma with m = 1 (solid line), 
despite their having the same value of f . This, of course, is due to the variance function 
V(m ) = m 2, which assigns higher variance to claims with higher expected means, and is 
a desirable characteristic when modeling severity in a GLM. We would expect claims 
with higher average severity to also exhibit higher variance in severity, and this property 
allows us to reflect that assumption in a GLM even though the dispersion parameter f 
must be held constant for all claims.

Inverse Gaussian.  The inverse Gaussian distribution, like the gamma distribution, 
is right-skewed with a lower bound at zero, which makes it another good choice for 
modeling severity. Compared to the gamma, it has a sharper peak and a wider tail, 
and is therefore appropriate for situations where the skewness of the severity curve is 
expected to be more extreme. (Later in this text we will discuss formal tests that can be 
applied to the data to assess the appropriateness of the various distributions.)

The variance function for the inverse Gaussian distribution is V(m) = m 3; like 
the gamma, the inverse Gaussian variance scales exponentially with the mean, but 
at a faster rate.

Figure 4 shows two examples of the inverse Gaussian distribution (the two solid 
lines) each compared to a gamma distribution with the same mean and variance (the 

Figure 3.  The Gamma Distribution
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dotted lines). As can be seen, the shapes of the inverse Gaussian distributions have a 
sharper peaks and are more highly skewed than their gamma counterparts.4

2.7.2. Distributions for Frequency
When modeling claim frequency (e.g., expected claim count per unit of exposure or 

per dollar of premium), the most commonly used distribution is the Poisson distribution. 
Another available choice is the negative binomial distribution. Both are explained in the 
following sections.

Poisson.  The Poisson distribution models the count of events occurring within a fixed 
time interval, and is widely used in actuarial science as a distribution for claim counts. 
Although the Poisson is typically a discrete distribution (defined only for integral values) 
its implementation in a GLM allows it to take on fractional values as well. This feature is 
useful when modeling claim frequency, where claim count is divided by a value such as 
exposure or premium, resulting in a non-integral target variable. (In such instances it is 
usually appropriate to set the GLM weight to be the denominator of frequency.)

The variance function for a Poisson distribution is V(m) = m, meaning that the 
variance increases linearly with the mean. In fact, for a “true” Poisson distribution, the 
variance equals the mean; stated in terms of the exponential family parameters, this 
would mean that f = 1 and so it drops out of the variance formula, leaving Var[ y ] = m. 
However, claim frequency is most often found to have variance that is greater than the 
mean, a phenomenon called overdispersion.

4 For the two m = 5 curves (the gray lines) in Figure 4, a gamma distribution with f = 0.25 is compared to an inverse 
Gaussian distribution with f = 0.05. This is so that the variance of the gamma curve (fm 2 = 0.25 × 52 = 6.25) is 
equal to that of the inverse Gaussian curve (fm 3 = 0.05 × 53 = 6.25). The intent is to demonstrate the difference 
in the curves that would be yielded by the two distributions for the same data; typically, the f  parameter under the 
inverse Gaussian distribution will be much lower than under the gamma distribution to compensate for the much 
larger values of V(m) in keeping the overall assumed variance roughly constant.

Figure 4.  The Inverse Gaussian Distribution  
(as compared with the gamma distribution)
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Overdispersion arises mainly because in addition to the natural variance arising 
from the Poisson process, there is another source of variance: the variation in risk level 
among the policyholders themselves. In statistical terms: in addition to the Poisson 
variance, there is variance in the Poisson mean (m ) among risks. To be sure, determining 
the appropriate mean, and thereby separating the good risks from bad risks, is precisely 
the purpose of our modeling exercise. However, our model will not be perfect; there 
will always be some variation in risk level among policyholders not explained by our 
model’s predictors, and so the data will exhibit overdispersion.

One way to deal with this scenario is to use the overdispersed Poisson (ODP) 
distribution in place of the “true” Poisson. The overdispersed Poisson is similar to the 
Poisson distribution, with the main difference being the f  parameter: ODP allows it 
to take on any positive value rather than being restricted to 1 as is the case with the 
true Poisson.

When modeling claims frequency with the Poisson distribution, it is recommended 
that the overdispersed Poisson be used; otherwise, the variance will likely be understated, 
thereby distorting the model diagnostic measures such as standard error and pvalue. 
(Note that the Poisson and ODP distributions will always produce the same estimates 
of coefficients, and therefore the same predictions; it is only the model diagnostics that 
will be affected.)

Negative Binomial.  Another way of dealing with the overdispersion in the Poisson 
distribution resulting from random variation in the Poisson mean among risks is to treat 
the Poisson mean for any given risk as a random variable itself. Doing so, we would need 
another probability distribution to model the Poisson mean; a good choice for that might 
be the gamma distribution. Such a setup would be stated mathematically as follows:

∼ ∼y Poisson gammam q q ( )( )= , . . . . (4)

In words, the outcome ( y) is Poissondistributed with a mean of q , where q  is itself 
random and gammadistributed. This combination results in y following a negative 
binomial distribution.

For the negative binomial distribution, the standard exponential family dispersion 
parameter, f , is restricted to be 1. However, this distribution includes a third parameter, 
k , called the overdispersion parameter, which is related to the variance of the gamma 
distribution of Equation 4.

The negative binomial variance function is

V m m km( )( ) = +1

and so the k parameter serves to “inflate” the variance over and above the mean, which 
would be the variance implied by the Poisson distribution. Indeed, as k approaches zero, 
the negative binomial distribution approaches Poisson. (Note that for the negative 
binomial distribution, f , restricted to be 1, drops out of the variance formula and thus 
the variance function V(m ) is the full expression of the variance.)



Casualty Actuarial Society 21

Generalized Linear Models for Insurance Rating

2.7.3. A Distribution for Pure Premium: the Tweedie Distribution
Modeling pure premium (or loss ratio) at the policy level has traditionally been 

challenging. To see why, consider the properties these measures exhibit, which would 
need to be approximated by the probability distribution used to describe them: they are 
most often zero, as most policies incur no loss; where they do incur a loss, the distribution 
of losses tends to be highly skewed. As such, the pdf would need to have most of its mass 
at zero, and the remaining mass skewed to the right. Fortunately, a rather remarkable 
distribution that can capture these properties does exist: the Tweedie distribution.

In addition to the standard exponential family parameters m and f , the Tweedie 
distribution introduces a third parameter, p, called the power parameter. p can take on 
any real number except those in the interval 0 to 1 (non-inclusive: 0 and 1 themselves 
are valid values). The variance function for Tweedie is V(m ) = m p.

One rather interesting characteristic of the Tweedie distribution is that several of the 
other exponential family distributions are in fact special cases of Tweedie, dependent 
on the value of p:

• A Tweedie with p = 0 is a normal distribution.
• A Tweedie with p = 1 is a Poisson distribution.
• A Tweedie with p = 2 is a gamma distribution.
• A Tweedie with p = 3 is an inverse Gaussian distribution.

Going further, thanks to the Tweedie distribution, our choices in modeling claim 
severity are not restricted to the moderately-skewed gamma distribution and the extreme 
skewness of the inverse Gaussian. The Tweedie provides a continuum of distributions 
between those two by simply setting the value of p to be between 2 (gamma) and 3 
(inverse Gaussian).

However, the area of the p parameter space we are most interested in is between 
1 and 2. At the two ends of that range are Poisson, which is a good distribution for 
modeling frequency, and gamma, which is good for modeling severity. Between 1 and 2,  
Tweedie becomes a neat combination of Poisson and gamma, which is great for 
modeling pure premium or loss ratio—that is, the combined effects of frequency and 
severity. (For the remainder of this text, references to the Tweedie distribution refer to 
the specific case of a Tweedie where p is in the range [1,2].)

A Poisson Sum of Gammas.  The Tweedie distribution models a “compound 
Poisson-gamma process.” Where events (such as claims) occur following a Poisson process, 
and each event generates a random loss amount that follows a gamma distribution, the 
total loss amount for all events follows the Tweedie distribution. In this way the Tweedie 
distribution may be thought of as a “Poisson-distributed sum of gamma distributions.”

In fact, the Tweedie parameters (m , f and p) bear a direct relationship to those of the 
underlying Poisson and gamma distributions; we will examine that more closely here.

Poisson has a single parameter, typically denoted l , which is both the mean and the 
variance. (In prior sections we’ve referred to the Poisson mean by the symbol m , following 
the Poisson’s exponential family form. For this section, we’ll use the “traditional” param-
eterizations of the underlying distributions, saving the symbol m  for the Tweedie mean.)
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The gamma distribution takes two parameters: the shape and scale parameters, 
usually denoted a  and q , respectively. The mean is

E y a q[ ] = , (5)·

and the coefficient of variation is

CV a= 1 . (6)

The Tweedie mean can be related to those parameters as follows:

E y m l a q[ ] = = . (7)· ·

Notice that this is the product of the Poisson mean (l ) and the gamma mean 
(a  z q ), as we would expect—pure premium equals expected frequency times expected 
severity.

The power parameter (p) is

p
a
a

= +
+

2
1

. (8)

As seen in Equation 8, the power parameter is purely a function of the gamma 
parameter a . Since a  is itself a function of the gamma coefficient of variation (as can 
be seen by rearranging Equation 6 above), it follows that the p parameter is a function 
of the gamma CV. Specifically, as the gamma CV approaches zero, p approaches 1; 
as the gamma CV gets arbitrarily large, p approaches 2. Values of p used in insurance 
modeling typically range between 1.5 and 1.8.

The left panel of Figure 5 shows an example of a Tweedie density function where 
p = 1.02. A value of p so close to 1 implies very little variance in the gamma (or 
severity) component, and so the randomness of the outcome is mainly driven by the 
random count of events (or, the frequency component). As such, the shape of the 
distribution resembles a Poisson distribution, with spikes at discrete points, but with a 

Figure 5.  The Tweedie Distribution, with p = 1.02 (left) 
and p = 1.67 (right)
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small amount of variation around each point. Also note that the distribution features 
a point mass at 0, which allows for the (likely) possibility of no claims.

The right panel of Figure 5 illustrates a Tweedie pdf for the more realistic case of  
p = 1.67. In this example, the gamma variation is considerably larger and therefore the 
discrete Poisson points are no longer visible. However, the distribution still assigns a 
significant probability to an outcome of 0.

The formula for the Tweedie dispersion parameter (f ) is

p

p p

f
l aq( )=

−

− −

2
. (9)

1 2
·

Through equations 7, 8, and 9, the Tweedie parameters can be derived from any 
combination of the Poisson parameter (l ) and gamma parameters (a  and q )—and 
vice versa, with some algebraic manipulation.

In a Tweedie GLM, the m parameter varies by record, controlled by the linear 
predictor, while the f and p parameters are set to be constant for all records. One 
important implication of this is that a Tweedie GLM contains the implicit assumption 
that frequency and severity “move in the same direction”—that is, where a predictor 
drives an increase in the target variable (pure premium or loss ratio), that increase is 
made up of an increase in both its frequency and severity components. (To see this, 
try the following exercise: begin with any set of m, f  and p, and solve for l , a and q ; 
then, try increasing m  while holding f  and p constant. Both l and the product aq will 
move upward.) This assumption doesn’t always hold true, as often times variables in a 
model may have a positive effect on frequency while negatively affecting severity, or 
vice versa. However, Tweedie GLMs can be quite robust against such violations of 
its assumptions and still produce very strong models.

2.8. Logistic Regression
For some models, the target variable we wish to predict is not a numeric value, 

but rather the occurrence or nonoccurrence of an event. Such variables are called 
dichotomous or binary variables. Examples are:

• Whether or not a policyholder will renew his/her policy.
• Whether a newlyopened claim will wind up exceeding some specified loss amount 

threshold.
• Whether a potential subrogation opportunity for a claim will be realized.

Such a model would be built based on a dataset of historical records of similar 
scenarios for which the outcome is currently known. The target variable, yi, takes on 
the value of either 0 or 1, where 1 indicates that the event in question did occur, and 
0 indicates that it did not.

Distribution.  To model such a scenario in a GLM, the distribution of the target 
variables is set to be the binomial distribution. The mean of the binomial distribution—
that is, the prediction generated by the model—is the probability that the event will occur.
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Link Function.  When modeling a dichotomous variable using the binomial dis-
tribution, a special type of link function must be used. Why not just use the log link? 
That’s because a basic property of GLMs is that the linear predictor—that is, the right-
hand side of Equation 2—is unbounded, and can take on any value in the range 
[-∞,+∞]. The mean of the binomial distribution, on the other hand, being a measure 
of probability, must be in the range [0,1]. As such, we will need a link function that 
can map a [0,1]-ranged value to be unbounded.

There are several link function that are available for this purpose, but the most 
common is the logit link function,5 defined as follows:

g m m
m

( ) =
−

ln
1

. (10)

The left panel of Figure 6 shows a graph of the logit function. As can be seen, the logit 
approaches -∞ as m approaches zero, and becomes arbitrarily large as m approaches 1.

The right-hand side of Figure 6 shows the inverse of the logit function, called 
the logistic function, defined as 1/(1 + e -x). In a GLM, this function translates the 
value of the linear predictor onto the prediction of probability. A large negative linear 
predictor would indicate a low probability of occurrence, and a large positive linear 
predictor would indicate a high probability; a linear predictor of zero would indicate 
that the probability is 50%.

The full specification of a logistic regression model can be summarized as follows:

∼y binomiali im( ) (11)

x x xi

i
i i p ip

m
m

b b b b
−

= + + + +ln
1

. . . . (12)0 1 1 2 2

5 Others are the probit link and complementary log-log link, not covered in this text.

Figure 6.  The Logit Function (left ) and Its Inverse, 
the Logistic Function (right )
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Interpreting Results of a Logistic Model.  The logit function of Equation 10 can 
be interpreted as the log of the odds, where the odds is defined as the ratio of the 
probability of occurrence to the probability of non-occurrence, or m

m− .1
 The odds is 

an alternate means of describing probability, which, unlike probability—which must 
lie in the region [0,1]—is unbounded in the positive direction. (Think of a near-certain 
event, which might be said to have “million-to-one” odds.)

Exponentiating both sides of Equation 12, the logistic GLM equation becomes 
a multiplicative series of terms that produces the odds of occurrence. This leads to a 
natural interpretation of the coefficients of the GLM (after exponentiating) as describing 
the effect of the predictor variables on the odds. For example, a coefficient of 0.24 
estimated for continuous predictor x indicates that a unit increase in x increases the 
odds by e0.24 - 1 = 27%. A coefficient of 0.24 estimated for a given level of a categorical 
variable indicates that the odds for that level is 27% higher than that of the base level.

2.9. Correlation Among Predictors, Multicollinearity and Aliasing
Frequently, the predictors going into a GLM will exhibit correlation among them. 

Where such correlation is moderate, the GLM can handle that just fine. In fact, 
determining accurate estimates of relativities in the presence of correlated rating variables 
is a primary strength of GLMs versus univariate analyses; unlike univariate methods, the 
GLM will be able to sort out each variable’s unique effect on the outcome, as distinct 
from the effect of any other variable that may correlate with it, thereby ensuring that no 
information is double-counted.

As such, before embarking on a GLM modeling project, it is important to 
understand the correlation structure among the predictors. This will aid in interpreting 
the GLM output—particularly in understanding significant deviations between the 
GLM indications versus what would be indicated by a series of univariate analyses of 
individual predictors.

Where the correlation between any two predictors is very large, however, the GLM 
may run into trouble. The high correlation means that much of the same information 
is entering the model twice. The GLM—forced not to double-count—will need to 
apportion the response effect between the two variables, and how precisely best to do 
so becomes a source of great uncertainty. As such, coefficients may behave erratically; 
it is not uncommon to see extremely high or low coefficients result in such scenarios. 
Furthermore, the standard errors associated with those coefficients will be large, and 
small perturbations in the data may swing the coefficient estimates wildly. Such a model 
is said to be unstable.

Such instability in a model should be avoided. As such it is important to look out 
for instances of high correlation prior to modeling, by examining two-way correlation 
tables. Where high correlation is detected, means of dealing with this include the 
following.

• For any group of correlated predictors, remove all but one from the model. While 
this is certainly the simplest approach, a potential downside is that there may be 
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some unique information, distinct from the common information, contained in 
individual predictors that will not be considered in our modeling process.

• Pre-process the data using dimensionality-reduction techniques such as principal 
components analysis (PCA) or factor analysis. These methods create multiple new 
variables from correlated groups of predictors. Those new variables exhibit little 
or no correlation between them—thereby making them much more useful in a 
GLM—and they may be representative of the different components of underlying 
information making up the original variables. The details of such techniques are 
beyond the scope of this paper.

Multicollinearity.  Simple correlation between pairs of predictors are easy enough 
to detect using a correlation matrix. A more subtle potential problem may exist where 
two or more predictors in a model may be strongly predictive of a third, a situation 
known as multicollinearity. The same instability problems as above may result, since 
the information contained in the third variable is also present in the model in the form 
of the combination of the other two variables. However, the variable may not be highly 
correlated with either of the other two predictors individually, and so this effect will not 
show up in a correlation matrix, making it more difficult to detect.

A useful statistic for detecting multicollinearity is the variance inflation factor 
(VIF), which can be output by most statistical packages. The VIF for any predictor is a 
measure of how much the (squared) standard error for the predictor is increased due to 
the presence of collinearity with other predictors. It is determined by running a linear 
model for each of the predictors using all the other predictors as inputs, and measuring 
the predictive power of those models.

A common statistical rule of thumb is that a VIF greater than 10 is considered 
high. However, where large VIFs are indicated, it is important to look deeper into the 
collinearity structure in order to make an informed decision about how best to handle 
it in the model.

Aliasing.  Where two predictors are perfectly correlated, they are said to be aliased, 
and the GLM will not have a unique solution. Most GLM fitting software will detect 
that and automatically drop one of those predictors from the model. Where they are 
nearly perfectly correlated, on the other hand, the software may not catch it and try to 
run the model anyway. Due to the extreme correlation, the model will be highly unstable; 
the fitting procedure may fail to converge, and even if the model run is successful the 
estimated coefficients will be nonsensical. Such problems can be avoided by looking out 
for and properly handling correlations among predictors, as discussed above.

2.10. Limitations of GLMs
This section discusses two important limitations inherent in GLMs that one should 

bear in mind when using them to construct rating plans.

1. GLMs Assign Full Credibility to the Data.  The estimates produced by the 
GLM are fit under the assumption that the data are fully credible for every parameter. 
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For any categorical variable in the model, the estimate of the coefficient for each level 
is the one which fits the training data best, with no consideration given to the thinness 
of the data on which it is based.

To gain an intuition for what this means in a practical sense, consider the following 
simple example. Suppose we run a GLM to estimate auto severity, and the GLM includes 
only one predictor: territory, a categorical variable with five levels, coded A through E. 
Volume of data varies greatly by territory, and the smallest territory, E, has only 8 claims.

After running this model, the prediction for each risk will simply be the overall 
average severity for its territory.

That’s right. For a GLM with a single categorical variable as its only predictor, it 
actually makes no difference which distribution or link function is chosen, just so long 
as the GLM fitting process is able to converge. The answers will always be the same, 
and they will be the one-way averages of the target variable by levels of the categorical 
variable. (Of course, we would not need a GLM for this; we could get to the same place 
with a simple Excel worksheet.)

Now, continuing with our example, the indicated relativity for territory E, like the 
rest, will be based simply on the average severity for its 8 claims. As actuaries, if we 
had been using the one-way analysis to derive relativities, we would surely not select 
the raw indication for a territory with such little credibility with no modification; we 
would apply a credibility procedure, and, in absence of any additional information 
about the territory, probably select something closer to the statewide average. It stands 
to reason that for the GLM we should not just take the indicated relativity either.

To be sure, in such a scenario, the standard error for the territory E coefficient 
would be large, and its p-value high. In this way, the GLM warns you that the estimate 
is not fully credible—but does nothing about it.

Where multiple predictors or continuous variables are involved, the estimates 
are based on a more complicated procedure which could not be easily performed in 
Excel, and the answers would vary based on the chosen link function and distribution. 
However, the approach to deriving the estimates would similarly be one that gives full 
weight to the data at each level of each categorical variable.

Incorporating credibility into the GLM framework is generally beyond the scope of 
this monograph. However, Chapter 9 briefly discusses two extensions to the GLM that 
allow for credibility-like estimation methods: generalized linear mixed models (GLMMs) 
and elastic net GLMs.

2. GLMs Assume the Randomness of Outcomes are Uncorrelated.  Another 
important assumption built into GLMs is that the random component of the outcome 
of the target variable is uncorrelated among the records in the training set. Note the 
qualification “random component” in that sentence—that’s not that same thing as 
saying the outcomes are uncorrelated. If our auto severity model contains driver age 
and territory as predictors, we expect that drivers of similar ages or in the same territory 
would have similar outcomes, and thus be correlated in that way. After all, identifying 
and capturing such correlations is precisely the point of our modeling exercise. However, 
the assumption is that the random component of the outcome—which, from our vantage 
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point, means the portion of the outcome driven by causes not in our model—are 
independent.

This assumption may be violated if there exist groups of records that are likely to 
have similar outcomes, perhaps due to some latent variable not captured by our model. 
The following are examples of where this may arise in insurance models:

• Frequently, the dataset going into an insurance GLM will comprise several years of 
policy data. Thus, there will be many instances where distinct records will actually 
be multiple renewals of the same policy. Those records are likely to have correlated 
outcomes; after all, a policyholder who is a bad driver in year 1 will likely still be a 
bad driver in years 2, 3 and 4.

• When modeling a line that includes a wind peril, policyholders in the same area 
will likely have similar outcomes, as the losses tend to be driven by storms that 
affect multiple insureds in the area at once.

Where the correlation is small, this is usually nothing to worry about; GLMs are 
quite robust against minor violations of its assumptions. However, it is important to 
be wary of instances of large correlation. Since the parameter estimates and significance 
statistics of a GLM are all derived “as if ” all the random outcomes were independent, 
large instances of groups of correlated outcomes would cause the GLM to give undue 
weight to those events—essentially, picking up too much random noise—and produce 
sub-optimal predictions and over-optimistic measures of statistical significance.

There are several extensions to the GLM that allow one to account for such correlation 
in the data. One such method is the generalized linear mixed model (GLMM), briefly 
discussed in Section 9.1. Another is generalized estimating equations (GEE), not covered 
in this text.
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3. The Model-Building Process

The prior chapter has covered the technical details of model construction. While this is a 
very important component of the model building process, it is important to understand 
all of the steps involved in the construction and evaluation of a predictive model. While 
each project has different objectives and considerations, any predictive modeling project 
should include the following components:

• Setting of objectives and goals
• Communicating with key stakeholders
• Collecting and processing the necessary data for the analysis
• Conducting exploratory data analysis
• Specifying the form of the predictive model
• Evaluating the model output
• Validating the model
• Translating the model results into a product
• Maintaining the model
• Rebuilding the model

3.1. Setting Objectives and Goals
Before collecting any data or building any models, it is important to develop a clear 

understanding and to gain alignment on the scope and goals of the project. Important 
questions to ask include:

• What are the goals of the analysis? While the examples in this text focus on the 
construction of a rating plan, the goal of an analysis may be to develop a set of 
underwriting criteria or to determine the probability of a customer renewing a 
policy.

• Given the goals of the project, what is the appropriate data to collect? Is this data 
readily available, or will it be costly and time-consuming to obtain it?

• What is the time frame for completing the project?
• What are the key risks that may arise during the project, and how can these risks be 

mitigated?
• Who will work on the project, and do those analysts have the knowledge and expertise 

to complete the project in the desired timeframe?
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3.2. Communication with Key Stakeholders
One of the most common reasons for a project failing or falling significantly behind 

schedule is lack of alignment on the goals and outcomes of the project among its 
key stakeholders. Using the example of a rating plan, the modeler isn’t just creating a 
predictive model, but rather constructing a new product that will (hopefully) enter the 
market. For this project, key stakeholders may include:

• Legal and regulatory compliance: The goal of any predictive modeling project is 
to include all variables that are predictive and add lift to the model. However, 
many variables are considered off limits in pricing insurance risk, either due to 
legal and regulatory considerations or potential reputational risk. It is important to 
understand these limitations. These restrictions may also vary by state, as insurance 
is regulated at the state level.

• IT: The model results will likely need to be coded into a new rating system, and 
IT systems generally have limitations. Before and during model construction, it is 
important to communicate the desired rating structure to the programmers who will 
be coding the rating changes. Some components of the desired rating plan may not 
be feasible from an IT perspective, in which case it is important to be aware of those 
limitations early on and adjust the models accordingly. Furthermore, programming 
changes into IT systems has a cost, and so budget and availability of resources may 
further limit the rating plan that can be implemented.

• Agents/underwriters: Once the models are complete and turned into a product, 
someone will have to sell that product. If the new rating structure isn’t understood 
by the policy producers, then it may be difficult to meet sales goals. By including 
agents in the discussion, the final product can better reflect their needs and concerns, 
which may in turn lead to a better business outcome.

3.3. Collecting and Processing Data
Collecting and processing data is often the most time-consuming component of 

a predictive modeling project, and modelers tend to underestimate the amount of 
time that will be required for this step. Most data is messy, so time must be spent 
figuring out how to clean the data, impute missing values, merge additional variables 
into the dataset, etc. Collecting and processing data is often an iterative process, as a 
modeler may discover later in the model-building process that a particular variable in 
the dataset is incorrect.

The data should also be split into at least two subsets, so that it can be tested on 
data that was not used to build it. A strategy for validating the model should also be 
carefully formulated at this stage.

Chapter 4 discusses the process of collecting and preparing the data in greater 
detail.

3.4. Conducting Exploratory Data Analysis
Once the data has been collected, it is important to spend some time on exploratory 

data analysis (EDA) before beginning to construct models. EDA will help the modeler 
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better understand the nature of the data and the relationships between the target and 
explanatory variables. Helpful EDA plots include:

• Plotting each response variable versus the target variable to see what (if any) rela-
tion ship exists. For continuous variables, such plots may help inform decisions 
on variable transformations.

• Plotting continuous response variables versus each other, to see the correlation 
between them.

3.5. Specifying Model Form
Key questions in specifying the model form include:

• What type of predictive model works best for this project and this data? While 
this text is focused on generalized linear models, other modeling frameworks (e.g., 
decision trees) may be more appropriate for some projects.

• What is the target variable, and which response variables should be included?
• Should transformations be applied to the target variable or to any of the response 

variables?
• Which link function should be used?

Chapter 5 further explores considerations related to the specification of the model 
form for GLMs.

3.6. Evaluating Model Output
Once there are preliminary results, the modeler should begin evaluating this output 

to determine next steps. Model evaluation involves:

• Assessing the overall fit of the model, and identifying areas in which the model fit 
can be improved.

• Analyzing the significance of each predictor variable, and removing or transforming 
variables accordingly.

• Comparing the lift of a newly constructed model over the existing model or rating 
structure.

These steps are detailed in Chapters 6 and 7.

3.7. Model Validation
Model validation is a very important component of the modeling process, and should 

not be overlooked or rushed. The validation process is discussed in detail in Chapter 7.

3.8. Translating the Model into a Product
The ultimate goal of most modeling projects is to turn the final model into a product 

of some kind. In the insurance industry, this product is often a rating plan. Important 
considerations when turning the results of a modeling project into a final product include:

• Is the product clear and understandable? In particular, there should be no ambiguity 
in the risk classification, and a knowledgeable person should be able to clearly 
understand the structure of the product.
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• Are there items included in the product that were not included in the model? Using 
the example of a rating plan, there are often rating factors included in the plan that 
are not part of the model because there is no data available on that variable. In such 
cases, it is important to understand the potential relationship between this variable 
and other variables that were included in the model. For example, if an insurer 
is offering a discount for safe driving behavior for the first time, this discount 
may overlap with other variables that were in the model. In such cases, it may be 
appropriate to apply judgmental adjustments to the variables in the rating plan.

3.9. Maintaining and Rebuilding the Model
The predictive accuracy of any model generally decreases over time, as the world 

changes and the data used to construct the model becomes less relevant. It is important 
to have a plan to maintain a model over time so that it does not become obsolete. 
Models should be periodically rebuilt in order to maximize their predictive accuracy, 
but in the interim it may be beneficial to refresh the existing model using newer data. 
This will allow model predictions to reflect the most recent experience.
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4. Data Preparation and Considerations

Data preparation is one of the most important parts of the model-building process, and 
is usually the part of the process that takes the most time. Although every organization 
has different processes and systems for collecting, storing, and retrieving the data needed 
to build a classification plan, there are some common themes and situations that all 
actuaries should be familiar with.

It’s important to remember that like the rest of the modeling process, the data 
preparation step is iterative. Correcting one error might help you discover another, and 
insights gleaned from the model-building process might prompt you to step back and 
revisit your approach to data preparation.

4.1. Combining Policy and Claim Data
In almost every case, the data most appropriate for use in building a classification 

plan is exposure-level premium (policy demographic) and loss (claim) data. Ideally, 
you would like to have a dataset with one record for each risk and each time period 
of interest. For some lines of business, it may suffice to attach claims to policy 
records and model at the policy level. For other lines, it may be beneficial to model 
at the level of individual risks within a policy. For example, when modeling for 
personal auto, claims should ideally be attached to the specific vehicles and drivers 
to which they pertain so that their characteristics can be included in the model  
as well.

The immediate difficulty with assembling such a dataset is that premium and loss  
data tend not to be stored in the same place. In many organizations, a policy-level premium 
database is housed within the underwriting area and a claims database is housed within 
the claims area. In the normal course of business these two databases may never be 
matched against each other except at a very high level. So the first task of a modeling 
assignment is often to locate these two datasets and merge them.

If best practices have been followed and changes to these two datasets have tracked 
each other over time, merging them may not be time-consuming—it may even be 
trivial. But when dealing with legacy systems, or with policy and claims databases that 
have grown or evolved independently over time, problems may arise. The number of 
things that can go wrong is essentially unlimited. But here are some questions that the 
actuary may need to ask while in the process of doing a merge:
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Are there timing considerations with respect to the way these databases are 
updated that might render some of the data unusable?  If the policy database is  
updated at the end of every month and the claims database is updated daily, for example, 
the most recent claims data might not be usable because corresponding exposures are 
not available.

Is there a unique key that can be used to match the two databases to each 
other in such a way that each claim record has exactly one matching policy 
record?  The answer to this question should always be “yes.” If there are multiple 
policy records that match a single claim, merging may cause claims to be double 
counted. On the other hand, if the key does not match each claim to a policy record, 
some claim records may be orphaned.

What level of detail should the datasets be aggregated to before merging?   
This is a question whose answer is informed by both the goal of the model and 
practical considerations around resource limitations and run times. Data must often 
be aggregated across multiple dimensions. For the dimension of time, policy data is 
most often aggregated to the level of calendar year rather than any shorter period. 
Calendar-year data has several distinct advantages, among them that the calendar year 
is the usual policy period and that seasonality need not be addressed. When policy 
data is aggregated in this way, care must be taken to correctly count the exposures 
attributable to each record and store these exposure counts on the aggregated record. 
For example, a policy that is issued October 1 of a certain calendar year only contributes 
25% of a full exposure to that year.

Claim data is usually also aggregated to policy and calendar year. If a particular policy 
has two $500 claims in a certain calendar year, the aggregated claim record would have 
only a claim count field with a value of 2 and a loss field with a value of $1000. Note 
that this treatment is not precise and that meaningful data is lost in the aggregation—in 
this example, the aggregated claim record could have also represented one claim of $900 
and one claim of $100.

Depending on the goals of the model, further aggregation may be warranted. 
For example, in a book of small commercial property exposures, policies may be 
written at the level of the business entity, but demographic and loss data may be 
available by location. So a policy covering a business with two locations for one year 
may be aggregated to the business level (one exposure) or to the location level (two 
exposures). It usually makes sense to keep a finer level of detail in the model so that this 
information can be available to use for pricing, but if there are few enough businesses 
in the book with multiple locations, it may be more convenient to aggregate to the 
business level at the start of the project, retaining information on locations only in 
the form of a count.

Are there fields that can be safely discarded? There may be fields in either 
database which for whatever reason would not make sense for consideration in the 
model. Removal of these fields will speed up every other part of the model-building 
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process. But removal of fields is not something that should be done lightly, since costs 
to re-add them may be high if it’s found that they’re needed later in the process. A 
special case is when two fields contain identical or near-identical information, resulting 
in aliasing or near-aliasing. As discussed in Section 2.9, if you add both of these fields 
to your model, it will break; and, in any case, there is no reason to preserve a field that 
contains no new information.

Are there fields that should be in the database but aren’t? There may be 
policyholder data that may be predictive of future loss that is collected at the 
underwriting step but not stored for later use. And there may be predictive data 
that is not collected at all. This goes beyond just the data preparation step of the 
process, but the actuary should be just as cognizant of what fields may be missing 
as they are of the fields that are currently available for use. The actuary’s feedback 
to management on this issue may be critical to kickstarting the process of collecting 
new data and successfully evolving the classification plan over time.

4.2. Modifying the Data
Any dataset of sufficient size is likely to have errors. It’s impossible to present a 

formulaic approach to error detection that will catch every possible error, and so human 
judgment is critical. But there are a few steps that should always be taken to attempt to 
catch and remedy some of the more common errors that can occur.

Check for duplicate records.  If there are any records that are exactly identical, this 
likely represents an error of some sort. This check should be done prior to aggregation 
and combination of policy and claim data.

Cross-check categorical fields against available documentation.  If database 
doc umentation indicates that a roof can be of type A, B, or C, but there are records 
where the roof type is coded as D, this must be investigated. Are these transcription 
errors, or is the documentation out of date?

Check numerical fields for unreasonable values.  For every numerical field, there 
are ranges of values that can safely be dismissed as unreasonable, and ranges that might 
require further investigation. A record detailing an auto policy covering a truck with 
an original cost (new) of $30 can safely be called an error. But if that original cost is 
$5,000, investigation may be needed.

Decide how to handle each error or missing value that is discovered.  The solution 
to duplicate records is easy—delete the duplicates. But fields with unreasonable or 
impossible values that cannot be corrected may be more difficult to handle. In a 
large enough dataset, deletion of every record that has an error might leave you with 
very few records to build a model from. And, even worse, there might be something 
systematic about the presence of the error itself. For example, policies written out of a 
certain office may be consistently miscoded, while policies written out of other offices 
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aren’t. In this case, deleting the offending records may leave you with no way to detect 
that this office also has less-skilled underwriters for a certain type of policy. A better 
solution is to replace erroneous or missing values with the mean or modal field value 
(to be used as the base level of your model), and add a new field for an error flag. The 
error flag can be included in the model and will proxy for the presence of the error.

Another means of handling missing or erroneous values in the data is to impute 
values for those predictors using information contained in the other predictors. This 
would involve building a second model, trained on the subset of data that is non-
problematic, with the problem predictor as the target and all the other predictors as 
predictors.

Errors are not the only reason to modify your data. It may be appropriate to convert 
a continuous variable into a categorical variable (this is called “binning”), to reduce the 
number of levels in a categorical variable, to combine separate fields into new fields, or 
to separate a single field into multiple fields. But usually these sorts of modifications are 
made as a part of the model building process. Some of these modifications are covered 
in more detail in Chapter 5.

4.3. Splitting the Data
Before embarking on a modeling project, it is essential that the available data be 

split into at least two groups. One of those groups is called the training set. We will 
use that to perform all the model-building steps—selecting the variables, determining 
the appropriate variable transformations, choosing the distribution, and so on. Another 
group of data, called the test set (or holdout set) will be used to assess the performance 
of the model, and may also be used to choose among several candidate models.

Why do we do this? One reason is because attempting to test the performance of 
any model on the same set of data on which the model was built will produce over-
optimistic results. After all, the model-fitting process optimizes the parameters to best 
fit the data used to train it, so we would expect it to perform better on this data than 
any other. Using the training data to compare our model to any model built on different 
data would give our model an unfair advantage.

Another reason is because, as we will see in later sections of this monograph, there 
are endless ways for us to make a GLM as complex as we wish. There may be many 
variables available to include; for any given variable, any number of polynomial terms 
or hinge functions can be created; we can also add interactions of any combination 
of variables (not to mention interactions of polynomial terms and hinge functions), 
and so on. As we increase the complexity, the fit to the training data will always get 
better. For data the model fitting process has not seen, on the other hand, additional 
complexity may not improve the performance of a model—in fact, it may actually 
make it worse.

For a GLM, model complexity is measured in terms of degrees of freedom, or the 
number of parameters estimated by the model-fitting procedure. Every continuous 
variable we include adds a degree of freedom. For a categorical variable, a degree of 
freedom is added for each non-base level. Furthermore, every polynomial term, every 
hinge function or interaction term—basically, anything for which the model will need 
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to estimate another parameter value—counts as a degree of freedom. As the name 
implies, each degree of freedom provides the model more freedom to fit the training 
data; since the fitting procedure always optimizes the fit, additional flexibility to fit the 
data better means the model will fit the data better.

Figure 7 illustrates the relationship between the degrees of freedom and the per-
formance of the model on the training set as well as on the test set (or any “unseen” 
data). Model performance is measured here by model error, or the degree to which 
the predictions “miss” the actual values, with lower error implying better model 
performance. As we can see, the performance on the training set is always better than 
on the test set. Increasing the complexity of the model improves the performance on 
both training set and the test set—up to a point. Beyond that point, the performance 
on the training set continues to improve—but on the test set, things get worse.

The reason for this deterioration of performance is because, with enough flexibility, 
the model is free to “explain” the randomness in the training set outcomes (called 
the noise) in addition to the part of the outcome driven by the systematic effects 
(called the signal). The noise in the training data would obviously not generalize to 
new data, so to the extent this information is in our model estimates this becomes a 
liability.

Our goal in modeling is to find the right balance where we pick up as much of 
the signal as possible with minimal noise, represented by the vertical dotted line in 
Figure 7. Thus, in addition to paying careful attention to the significance statistics and 
model fit diagnostics during the modeling process, it is critical to retain holdout data 
on which to test the resulting models. This out-of-sample testing allows for a truer 
assessment of the model’s predictive power.

Since the divisions of data will remain intact throughout the entire modeling pro-
cess, it is crucial to formulate a proper data splitting strategy before model building 
begins. The following sections discuss different approaches to splitting the data, as 
well as a possible alternative to splitting, called cross validation. In Chapter 7 we describe 
several tests that can be performed on the holdout set to choose among candidate models.

Figure 7.  Illustration of the effect of model complexity 
(as measured by degrees of freedom, along the x axis), on 
the performance of the model (measured by model error, 
along the y axis) for both the training set and test set.
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4.3.1. Train and Test
The simplest split to create two subsets of the data, called the training set and the 

test set. The training set should be used for the entire model building process, beginning 
with the initial exploration of variables using univariate analyses, all the way through 
the model refinement. The test set is used when the model building is complete, to 
compare the resulting model against the existing rating plan and/or to assess the relative 
performance of several candidate models.

Typical proportions used for this split are 60% training/40% test or 70% training/ 
30% test. Choice of split percentages involves a trade-off. More data available for the 
training set will allow for clearer views of patterns in the data. However, if too little 
data is left for the holdout, the final assessment of models will be have less certainty.

The split can be performed either by randomly allocating records between the two 
sets, or by splitting on the basis of a time variable such as calendar/accident year or 
month. The latter approach has the advantage in that the model validation is performed 
“out of time” as well as out of sample, giving us a more accurate view into how the 
model will perform on unseen years.

Out-of-time validation is especially important when modeling perils driven by 
common events that affect multiple policyholders at once. An example of this is the 
wind peril, for which a single storm will cause many incurred losses in the same area. 
If random sampling is used for the split, losses related to the same event will be present 
in both sets of data, and so the test set will not be true “unseen” data, since the model 
has already “seen” those events in the training set. This will result in over-optimistic 
validation results. Choosing a test set that covers different time periods than the training 
set will minimize such overlap and allow for better measures of how the model will 
perform on the completely unknown future.

4.3.2. Train, Validation and Test
If enough data is available, it may be useful to split the data three ways: in addition 

to the training and test sets, we create a validation set. The validation set is used to 
refine the model during the building process; the test set is held out until the end.

For example, a modeler may create an initial model using the training dataset, 
assess its performance on the validation dataset, and then make tweaks to the model 
based on the results. This is an iterative process. In this example, the validation dataset 
isn’t really a holdout set, since the model is being adjusted based on its fit on the 
validation data.

Typical proportions used for this split are 40% for training, 30% for validation 
and 30% for test. Care should be taken that none of the subsets are too thin, otherwise 
their usefulness will be diminished.

4.3.3. Use Your Data Wisely!
A key caution regarding the use of a test set is that it be used sparingly. If too-

frequent reference is made to the test set, or if too many choices of models are evaluated 
on it, it becomes less a test set and more of a training set; once a large part of the 
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modeling decision has been made based on how well it fits the test, that fit becomes 
less indicative of how the model will behave on data that it has truly not seen.

Thus, the choice of how best to “spend” the available data throughout the refinement 
and validation of the model is an important part of the modeling strategy. Obviously, 
if a validation set is available (in addition to train and test), we have a bit more leeway, 
but the validation set will also diminish in usefulness if it is overused. As such, for a large 
part of the modeling process we will need to make use of the “in-sample” statistics—that 
is, the significant measures (such as p-values for parameter estimates and for the F-test, 
described in Section 6.2.1) derived using the training set.

As we may have many different ideas we wish to try in the course of refining and 
improving our model, the issue of precisely where reliance on the in-sample statistics will 
end and the validation or test metrics will begin should be carefully planned in advance.

An example strategy for this may be as follows. First, we might predefine a series of 
increasing levels of model complexity that we will evaluate as candidates for our final 
model. The simplest level of complexity might be to retain the current model and not 
change it all (yes, that should always be considered an option); as a second level, we may 
keep the structure of the current model intact, but change the numbers; for the third level, 
we may add some additional variables; the next level might add two-way interactions; 
subsequent levels may involve multiple-way interactions, subdivision of categorical variable 
groupings, and so on. Levels are ordered by the relative ease and cost of implementation. 
We build and refine a model at each level of complexity using the in-sample statistics (and 
validation set if available). When all the models are fully built, we evaluate them all on 
the test set, and their relative performance on this set is weighed together with all other 
business considerations in choosing which becomes the final model.

Once a final model is chosen, however, we would then go back and rebuild it using 
all of the data, so that the parameter estimates would be at their most credible.

4.3.4. Cross Validation
A common alternative to data splitting often used in predictive modeling is cross 

validation. Cross validation provides a means of assessing the performance of the model 
on unseen data through multiple splits of train and test.

There are several “flavors” of cross validation, but the most widely-used is called 
k-fold cross validation, for which the procedure is as follows:

1. Split the data into k groups, where k is a number we choose. (A common choice is 10.) 
Each group is called a fold. The split can either be done randomly or using a temporal 
variable such as calendar/accident year.

2. For the first fold:
• Train the model using the other k-1 folds.
• Test the model using the first fold.

3. Repeat step 2 for each of the remaining folds.

The output of this procedure is k estimates of model performance, each of which 
was assessed on data that its training procedure has not seen. Several models can be 
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compared by running the procedure for each of them on the same set of folds and 
comparing their relative performances for each fold.

For most predictive modeling and machine learning applications, this is superior 
to a single train/test split, since all of the data is being used to test out-of-sample model 
performance as opposed to a single subset. However, it is often of limited usefulness 
for most insurance modeling applications, since cross validation has an important 
limitation: in order for it to be effective, the “training” phase of the procedure must 
encompass all the model-building steps. For a GLM, where the bulk of the model-
building is the variable selection and transformation, that part would need to be 
included as well.

The reason for this is simple: if all the data was evaluated when deciding which 
variables to include, then even if the GLM fitting procedure was run on a subset of data, 
the remaining subset cannot be considered true “unseen” data. Some of the variables in 
our model may be there only because of outcomes “seen” in the test set.

Thus, using cross validation in place of a holdout set is only appropriate where a 
purely automated variable selection process is used. In such an instance, the same selec-
tion procedure can be run for each CV fold, and CV would then yield a good estimate 
(in fact, the best estimate) of out-of-sample performance. However, for most insurance 
applications, the variables are “hand-selected,” with a great deal of care and judgment 
utilized along the way, and so proper cross validation is nearly impossible. Therefore, 
splitting the data at the outset and retaining that split throughout, as described in the 
prior sections, is the preferred approach.

Cross validation may still have some usefulness during the model building process. 
For example, when evaluating some of the model’s “tuning parameters”—for example, 
how many polynomial terms to include, whether or not to use a certain variable as a 
weight, etc.—performing cross validation within the training set may yield valuable 
information on how a change to a model would affect its out-of-sample performance. 
However, the final model valuation should always be done using a distinct set of data 
held out until the end.
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5. Selection of Model Form

Selecting the form of a predictive model is an iterative process, and is often more of 
an art than a science. As preliminary models are built and refined into final models, 
the model form is likely to evolve based on an analysis of the results.

In a generalized linear modeling framework, important decisions on the model form 
include:

• Choosing the target and predictor variables.
• Choosing a distribution for the target variable.
• Making decisions on the best form for the predictor variables, including whether 

to make them continuous or categorical, whether to apply transformations to the 
variables, and how best to group variables.

5.1. Choosing the Target Variable
Based on the scope of the modeling project, there may be several options for the 

target variable. When modeling a rating plan, for example, the target variable might be 
pure premium, claim frequency, or claim severity. If the goal of the project is instead 
to identify deficiencies in the existing rating plan, loss ratio may be a more appropriate 
target variable. Or when evaluating a set of underwriting restrictions, the probability 
of a large loss may be a good option.

The decision of which target variable to choose generally comes down to data 
availability and the preferences of the modeler. There is usually not one right answer, 
and it may be beneficial to try several options to see which one produces the best 
model.

5.1.1. Frequency/Severity versus Pure Premium
Where the ultimate goal of a model is to predict pure premium, there are two 

approaches we can use to get there.

1. Build two separate models: one with claims frequency—that is, count of claims 
per exposure—as the target, and another targeting claim severity, i.e., dollars of 
loss per claim. The individual models are then combined to form a pure premium 
model. Assuming log links were used for both, this combination of the two models 
is achieved by simply multiplying their corresponding relativity factors together.

2. Build a single model targeting pure premium, i.e., dollars of loss per exposure, using 
the Tweedie distribution.
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This choice may be dictated by data constraints—for example, the data necessary to 
build separate models for claim frequency and severity may not be available. Further
more, as the former approach requires building two models rather than one, time 
constraints may factor in as well, especially if a large number of pure premium models 
must be produced (e.g., when separately modeling multiple segments of the business 
or different perils).

However, where possible, the frequency/severity approach confers a number of 
advantages over pure premium modeling, some of which are as follows:

• Modeling frequency and severity separately often provides much more insight than a 
pure premium model, as it allows us to see the extent to which the various effects are 
frequencydriven versus severitydriven—information which may prove valuable in 
the model refinement process. Furthermore, some interesting effects may get “lost” 
when viewed on a pure premium basis due to counteracting effects on its components; 
for example, a variable that has a strong negative effect on frequency but an equally 
strong positive effect on severity would show up as a zero effect (and an insignificant 
variable!) in a pure premium model, and therefore go completely unnoticed. In such 
a case, while we may choose to deem the total effect of the variable a “wash” and not 
include it in our rating plan, that knowledge of the underlying effects may be useful 
in other business decisions.

• Each of frequency and severity is more stable—that is, it exhibits less random 
variance—than pure premium. Therefore, separating out those two sources of 
variance from the pure premium data effectively “cuts through the noise,” enabling 
us to see effects in the data that we otherwise would not. For example, consider a 
variable that has a positive effect on frequency and no effect on severity, thereby 
having a positive total effect on pure premium. While this variable may show up 
as significant in a frequency model, when testing it in a pure premium model 
the high variance in severity may overwhelm the effect, rendering the variable 
insignificant. Thus, a predictive variable may be missed, leading to underfitting.

• Pure premium modeling can also lead to overfitting. Continuing with the above 
example of a variable that affects frequency only, if that variable does wind up 
included in our pure premium model, the model is forced to fit its coefficient to 
both the frequency and severity effects observed in the training data. To the extent 
the severity effect is spurious, that parameter is overfit.

• The distribution used to model pure premium—the Tweedie distribution—
contains the implicit assumption that frequency and severity “move in the same 
direction”—that is, where a predictor drives an increase in the target variable (pure 
premium or loss ratio), that increase is made up of an increase in both its frequency 
and severity components. (See Section 2.7.3 for a detailed discussion on this.) 
Modeling frequency and severity separately frees us from this restriction.

5.1.2. Policies with Multiple Coverages and Perils
Where the line of business we are modeling includes several types of coverage, it is 

usually a good idea to separate out the data pertaining to each coverage and model them 
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separately. For example, when modeling for a Businessowners package policy that includes 
building, business personal property and liability coverage, each of those items should be 
separately modeled. We may also consider subdividing the data further and modeling 
each peril (or group or perils) individually; for example, for our Businessowners building 
model, we may wish to create separate models for fire and lightning, wind and hail, and 
all other.

Even if the final rating plan must be structured on an “all perils combined” basis, 
there may be benefit to modeling the perils separately, as that will allow us to tailor 
our models to the unique characteristics of each peril. We can always combine the 
models at the end. A simple method for combining separate byperil models to form a 
combined allperil model is as follows:

1. Use the byperil models to generate predictions of expected loss due to each peril 
for some set of exposure data.

2. Add the peril predictions together to form an allperil loss cost for each record.
3. Run a model on that data, using the allperil loss cost calculated in Step 2 as the 

target, and the union of all the individual model predictors as the predictors.

The coefficients for the resulting model will yield the allperil relativities implied by 
the underlying byperil models for the mix of business in the data. Note that since the 
target data fed into this new model is extremely stable, this procedure doesn’t require 
a whole lot of data. Rather, the focus should be on getting the mix of business right. 
The data used for this procedure should reflect the expected mix going forward, and so 
using only the most recent year may be ideal.

5.1.3. Transforming the Target Variable
In some modeling contexts, it may also be necessary or beneficial to transform the 

target variable in some way prior to modeling. Some considerations include:

• For pure premium, loss ratio or severity models, the presence of a few very large 
losses can have undue influence on the model results. In such cases, capping losses 
at a selected large loss threshold may yield a more robust and stable model. The 
cap point should be set high enough so that the target variable still captures the 
systematic variation in severity among risks, but not too high such that random large 
losses create excessive noise. (In Section 6.4 we discuss a formal statistical measure of 
a record’s influence on the model results called Cook’s distance. This statistic can also 
be used to alert the practitioner to instances where capping the target variable may 
be warranted.)

• In addition to the effect of individual large losses, it is also important to look out 
for catastrophic events that would cause a large number of losses at once, which can 
skew both frequency and severity effects. If possible, losses related to such events 
should be removed from the data entirely—thereby limiting the scope of the model 
to predicting non-catastrophic loss only—and a catastrophe model should separately 
be used to estimate the effect of catastrophes on the rating variables. If that is not 
an option, the effect of catastrophic losses should be tempered, either by adjusting 
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the value of the target variable downward or by decreasing the weight, so that these 
events should not unduly influence the parameter estimates.

• Where the data includes risks that are not at full loss maturity such that significant 
further loss development is to be expected (such recent accident year exposures for 
longtailed lines), it may be necessary to develop the losses prior to modeling. Care 
should be taken so that the development factors applied match the type of entity 
being modeled. For example, for a severity model, the development factor should 
reflect only expected future development on known claims; for a pure premium or 
loss ratio model, the development factor should include the effect of pure IBNR 
claims as well.

• Where premium is used as the denominator of a ratio target variable (such as loss 
ratio), it may be necessary to onlevel the premium.

• Where multiyear data is used, losses and/or exposures may need to be trended.

Note that for the latter three items on that list, as an alternative to applying those 
transformations, a temporal variable such as year can be included in the model. This 
variable would pick up any effects on the target related to time—such as trend, loss 
development and rate changes, for which the target has not been specifically adjusted—
all at once. This is usually sufficient for most purposes, since the individual effects of 
development, trend, etc. are usually not of interest in models built for the purpose of 
rating. Rather, we wish to control for these effects so that they do not influence the 
parameter estimates of the rating variables, and the temporal variable does just that. 
Furthermore, the “control variable” approach also has the advantage in that the assumed 
temporal effects will be more “in tune” with the data the model is being estimated on.

On the other hand, there may be situations where adjusting the target using factors 
derived from other sources may be more appropriate. For example, where loss development 
factors are available that have been estimated from a wider, more credible body of data—
perhaps incorporating industry data sources—those may provide a truer measure of 
development. Also, as there may already be established factors that have been assumed 
in other actuarial analyses of this same line of business (such as rate change analyses 
or reserve reviews) it may be preferable to use those in our rating factor model as well, 
so that all reviews of this line will be in sync. When doing so, however, it may be a good 
idea to try including the temporal variable even after the target has been adjusted; any 
significant temporal effects would then suggest a deficiency in the assumed factors, which 
can then be investigated.

5.2. Choosing the Distribution
Once the target variable is selected, the modeler must select a distribution for the 

target variable. This list of options is narrowed significantly based on the selected target 
variable. If modeling claim frequency, the distribution is likely to be either Poisson, 
negative binomial, or binomial (in the case of a logistic model). If modeling claim severity, 
common choices for the distribution are gamma and inverse Gaussian. The decision on 
which distribution to select should be based on an analysis of the deviance residuals, 
which is described in Section 6.3. It’s important to realize, though, that the distribution 
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is very unlikely to fit the data perfectly. The goal is simply to find the distribution that fits 
the data most closely out of the set of possible options.

5.3. Variable Selection
For some modeling projects, the objective may be to simply update the relativity 

factors to be used in an existing rating plan. That is, the structure of the pricing formula 
will remain asis, and only the numerical factors will change to reflect what is indicated 
by the most recent data. For such instances, variable selection—that is, choosing which 
variables to include in the model—is not an issue, as the choice of variables has been 
fixed at the outset.

Frequently, though, a rating plan update provides the company an opportunity to 
revisit the rating structure. Are there additional variables—not currently rated on, but 
available in the data—that may provide useful information about the target variable, 
thereby allowing us to more finely segment risks? Or, perhaps, a rating plan is being 
formulated for a line of business for the first time, and no prior model exists. In such 
cases, the choice of which variables to include becomes an important concern in the 
modeling process.

Certainly, a major criteria is variable significance—that is, we would like to be 
confident that the effect of the variable indicated by the GLM is the result of a true 
relationship between that predictor and the target, and not due to noise in the data. 
To that end, we are guided by the pvalue, as described in Section 2.3.2. However, it 
is important to bear in mind a crucial limitation of the pvalue: it says nothing about 
the probability of a coefficient being nonzero; it merely informs us of the probability 
of an estimated coefficient of that magnitude arising if the “true” coefficient is zero. In 
assessing our confidence in the indicated factor, the pvalue should be viewed as one 
piece of information, which we combine with intuition and knowledge of the business 
to arrive at a decision on whether to include the variable. As such, there is no “magic 
number” pvalue below which a variable should automatically be deemed significant.

In addition to statistical significance, other considerations for variable selection 
include:

• Will it be costeffective to collect the value of this variable when writing new and 
renewal business?

• Does inclusion of this variable in a rating plan conform to actuarial standards of 
practice and regulatory requirements?

• Can the electronic quotation system be easily modified to handle the inclusion of 
this variable in the rating formula?

In practice, many different areas of the business may need to weigh in on the practicality 
and acceptability of any given variable in the final rating structure.

For more complex modeling projects—particularly where external data is attached 
to the insurer’s own data to expand the predictive power—there may be hundreds or 
thousands of potential predictors to choose from, and variable selection becomes much 
more challenging. For such scenarios, a number of automated variable selection algorithms 
exist that may aid in the process. Those methods are beyond the scope of this paper.
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5.4. Transformation of Variables
For any variable that is a potential predictor in our model, deciding whether or not to 

include it is not the end of the story. In many cases the variable will need to be transformed 
in some way such that the resulting model is a better fit to the data. Continuous and 
categorical variables each have considerations that would require transformation.

When including a continuous variable in a log-link model—logged, of course, as 
discussed in Section 2.4.1—the model assumes a linear relationship between the log of 
the variable and the log of the mean of the target variable. However, this relationship 
doesn’t always hold; some variables have a more complex relationship with the target 
variable that cannot be described by a straight line. For such instances, it is necessary to 
transform the variable in some way so that it can adequately model the effect.

To illustrate the ways a non-linear effect can be handled in a GLM, we will use 
the example of a multi-peril Businessowners building severity model that includes the 
building age (or age of construction) as one of its predictors. Building age is expressed 
in years, with a value of 1 signifying a new building.

Suppose, in this instance, the GLM returned a coefficient of -0.314 for log of 
building age. In log terms, this means that according to our model, each unit increase 
in the log of building age results in a 0.314 decline in the log of expected severity. We 
can also interpret this in “real terms”: the expected severity for any building age relative 
to a new building is the age raised to -0.314. However, this is the best log-linear fit. 
But is a linear fit the best way to model the relationship?

The next section presents a useful graphical diagnostic that will allow us to find out.

5.4.1. Detecting Non-Linearity with Partial Residual Plots
The set of partial residuals for any predictor xj in a model is defined as follows:

r y g xi i i i j ij= −( ) ′( ) +m m b , ( )13

where g ′(m i) is the first derivative of the link function. For a log link model, Equation 13 
simplifies as follows:

r
y

xi
i i

i
j ij= − +m

m
b . ( )14

In Equation 14, the residual is calculated by subtracting the model prediction from 
the actual value, and then adjusted to bring it to a similar scale as the linear predictor  
(by dividing by mi). Then, b j xij —that is, the part of mi that xj is responsible for—is added 
back to the result. Thus, the partial residual is the actual value with all components 
of the model prediction other than the part driven by xj subtracted out. (Hence the 
“partial” in “partial residual.”) The variance in the partial residuals therefore contains 
the variance unexplained by our model in addition to the portion of the variance our 
model intends to explain with b j xj. We can then plot them against the model’s estimate 
of b j xj to see how well it did.
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Figure 8 shows the partial residual plot for our example building age variable.6 
The model’s linear estimate of the building age effect, or -0.314x, is superimposed 
over the plot. While the line may be the best linear fit to the points, it is certainly not 
the best fit, as the points are missing the line in a systematic way. The model is clearly 
overpredicting for risks where log building age is 2.5 (in real terms, building age 12) 
and lower. It underpredicts between 2.5 and 3.25, and once again overpredicts for 
older buildings. It is clear we will need something more flexible than a straight line to 
properly fit this data.

We present three ways such nonlinearities can be accommodated within a GLM:

• binning the variable
• adding polynomial terms
• using piecewise linear functions.

Each of these approaches is discussed in the following sections.

5.4.2. Binning Continuous Predictors
One possible fix for nonlinearity in a continuous variable is not to model it as 

continuous at all; rather, a new categorical variable is created where levels are defined 
as intervals over the range of the original variable. The model then treats it as it would 
any categorical variable; a coefficient is estimated for each interval, which applies to all 
risks falling within it.

Figure 9 shows the results of running age of construction through our model as a 
categorical variable. For this example, ten bins were created. Interval boundaries were 
designed such that the bins contain roughly equal number of records, and building 
ages 1 though 10 was designated as the base level.

6 Note that despite this model having been built on around 50,000 records, the plot shows only 100 points. As 
50,000 points would make for a very messy (and uninformative) scatterplot, the data has been binned prior to 
plotting. We discuss binning plotted data in Section 7.1.

Figure 8.  Partial Residual Plot of Age of  
Construction Variable
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As the graphical plot of the coefficients shows, the model picked up a shape 
similar to that seen in the points of the partial residual plot. Average severity rises 
for buildings older than ten years, reaching a peak at the 15-to-17 year range, then 
gradually declining.

Binning a continuous variable frees the model of needing to constrain its assumed 
relationship with the target variable to any particular shape, as each level is allowed to 
float freely.

There are, however, some drawbacks to this approach.
In a general sense, binning a continuous variable, and therefore giving it a large 

number of parameters in our model, may violate the goal of parsimony, or keeping 
the model simple; as a rule, we shouldn’t be giving the model more degrees of freedom 
than is necessary to adequately fit the data. The next paragraphs describe two more 
specific downsides to binning versus modeling a variable continuously.

Continuity in the Estimates is Not Guaranteed.  Allowing each interval to move 
freely may not always be a good thing. The ordinal property of the levels of the binned 
variable have no meaning in the GLM; there is no way to force the GLM to have the 
estimates behave in any continuous fashion, and each estimate is derived independently 
of the others. Therefore, there is a risk that some estimates will be inconsistent with 
others due to random noise.

This pitfall is illustrated in the results shown in Figure 9. The building age effect 
on severity seems to be declining past 17 years. However, the 21–23 year factor is 
slightly higher than the 18–20 year factor. We have no reason to believe this break in 
the pattern is real, and it is most likely due to volatility in the data.

This issue may present an even bigger problem if the predictor variable is replace-
ment cost of the building. The expectation is that, as the replacement cost increases, 
so does the expected loss cost for the policy. By including replacement cost in the 

Figure 9.  Coefficient Estimates for the Bucketed Age of Construction 
Variable (left) and a Graphical Representation (right)
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model as a continuous variable (perhaps with some transformation applied), we can 
better ensure a monotonic relationship between replacement cost and predicted loss 
cost, which is a desirable outcome. If replacement cost is instead binned, there may be 
reversals in the variable coefficients due to volatility in the data. For example, buildings 
with a replacement cost of $300,000 may have a lower predicted loss cost than buildings 
with a $250,000 replacement cost, even though this result doesn’t make sense.

In our building age example, note that the problem can be remedied somewhat by 
combining those two levels to a single level representing ages 18 through 23. Alternatively, 
we can manually smooth out the pattern when selecting factors.

Variation within Intervals is Ignored.  Since each bin is assigned a single estimate, the 
model ignores any variation in severity that may exist within the bins. In our building 
age example, all buildings between 1 and 10 years are assumed to have the same 
severity, which may not be the case. Of course, we could refine the interval boundaries 
to split that bin into two or more smaller ones. Doing so, however, would thin out the 
data, reducing the credibility of the estimates, thereby making them more susceptible 
to noise. Modeling building age as a continuous variable with a transformation (as 
discussed in the next sections) allows each building age to have a unique factor with 
no loss of credibility.

5.4.3. Adding Polynomial Terms
Another means of accommodating non-linearity in a linear model is to include 

the square, cube, or higher-order polynomials of the variable in the model in addition 
to the original variable. This enables the model to fit curves to the data; the more 
polynomial terms that are provided, the more flexible the fit that can be achieved.

The left panel of Figure 10 shows the results of adding the square of the logged 
building age—in addition to log building age itself—to our model. The graph shows 

Figure 10.  Partial Residual Plot of Age of Construction Variable using Two 
Polynomial Terms (left) and Three Polynomial Terms (right)
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the partial residuals with the curve formed by both building age terms superimposed. 
Clearly this is a better fit to the data than the straight line shown in Figure 8.

In the right panel of Figure 10, a third term—the log building age cubed—was 
added. The additional freedom provided by this term allows the model to attenuate the 
downward slope on the righthand side of the curve. This perhaps yields a better fit, 
as the points seem to indicate that the declining severity as building age increases does 
taper off toward the higher end of the scale.

One potential downside to using polynomials is the loss of interpretability. From 
the coefficients alone it is often very difficult to discern the shape of the curve; to 
understand the model’s indicated relationship of the predictor to the target variable it 
may be necessary to graph the polynomial function.

5.4.4. Using Piecewise Linear Functions
A third method for handling nonlinear effects is to “break” the line at one or more 

points over the range of the variable, and allow the slope of the line to change at each 
break point.

Looking back the partial residual plot in Figure 8, it is apparent that severity rises 
and reaches a peak at around age 2.75 (in log terms) and then declines. Thus, while a 
single straight line does not fit this pattern, a broken line—with a rising slope up to 
2.75 and then declining—will likely do the job.

We can insert a break in the line at that point by defining a new variable as 
max(0,ln(age)-2.75), and adding it to the model. This new variable, called a hinge 
function, has a value of 0 for buildings with log age 2.75 or lower, and rises linearly 
thereafter, and so it will allow the GLM to capture the change in slope for older 
buildings versus newer ones.

Running the model with the addition of the hinge function breaking the line at 
2.75 yields the partial output shown in Table 6.

For log(AoC ) 2.75 and lower, the hinge function variable has a value of zero, and 
only the basic log(AoC ) function varies; as such, the slope of the loglog response is 
1.225. For log(AoC ) above 2.75, on the other hand, both variables are in play. Thus, 
to calculate the loglog slope for older buildings, we must add the two coefficients 
together, yielding a slope of 1.225 + (-2.269) = -1.044. Thus, the loglog response is 
a positive slope for newer buildings and a negative slope for older buildings.

Table 6.  Model Output After Adding a Hinge 
Function for a Break Point at log(AoC )  2.75

Variable Estimate Std. Error p-Value

. . . . . . . . . . . .

log(AoC) 1.225 0.163 <0.0001

max(0,log(AoC)-2.75) -2.269 0.201 <0.0001

. . . . . . . . . . . .
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The left panel of Figure 11 shows the partial residual plot of log(AoC ) under this 
model, with the broken line indicated by the model superimposed. This clearly does a 
much better job at fitting the points than the straight line of Figure 8.

As the points seem to indicate that the downward slope tapers off at the far 
right of the graph, we may try to improve the fit further by adding another break at 
log(AoC ) = 3.6. The resulting model output is shown in Table 7, and the right panel 
of Figure 11 graphs the partial residual plot.

The positive coefficient estimated for the second hinge function indicates that the 
slope of the line to the right of log(AoC ) = 3.6 is higher than slope to the left of it. 
As the graphed fit line shows, this has the effect of nearly straightening out the steep 
downward slope. The pvalue of 0.0082 indicates that the evidence for a change in 
slope following the 3.6 point is strong, but not as strong as for a change following 
the 2.75 point. However, this may simply be due to that estimate being based on 
a relatively small subset of the data. As this levelingoff effect comports with our 
intuition, we may decide to keep the third hinge function term in the model.

Table 7.  Adding an Additional Break Point at 
log(AoC )  3.6

Variable Estimate Std. Error p-Value

. . . . . . . . . . . .

log(AoC) 1.289 0.159 <0.0001

max(0,log(AoC)-2.75) -2.472 0.217 <0.0001

max(0,log(AoC)-3.60) 1.170 0.443 0.0082

. . . . . . . . . . . .

Figure 11.  Partial Residual Plot of Age of Construction Variable using a 
Break at 2.75 (left) and Breaks at Both 2.75 and 3.5 (right)

1.5 2.0 2.5 3.0 3.5 4.0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

x=log(age of construction)

P
ar

tia
l R

es
id

ua
l

fit line

y 
= 

1.
22

5x

y = (1.225 − 2.269)x

1.5 2.0 2.5 3.0 3.5 4.0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

x=log(age of construction)

P
ar

tia
l R

es
id

ua
l

fit line



52 Casualty Actuarial Society

Generalized Linear Models for Insurance Rating

The use of hinge functions allows one to fit a very wide range of nonlinear patterns. 
Furthermore, the coefficients provided by the model can be easily interpreted as 
describing the change in slope at the break points; and, as we have seen, the significance 
statistics (such as pvalue) indicate the degree of evidence of said change in slope.

One major drawback of this approach is that the break points must be selected by 
the user. Generally, break points are initially “guesstimated” by visual inspection of the 
partial residual plot, and they may be further refined by adjusting them to improve 
some measure of model fit (such as deviance, which is discussed in the next section). 
However, the GLM provides no mechanism for estimating them automatically.

In Chapter 9 we briefly discuss a highly useful model called MARS, a variant of the 
GLM, which, among other things, fits nonlinear curves using hinge functions—and 
does it in an automated fashion with no need for tweaking by the user.

5.5. Grouping Categorical Variables
Some discrete predictor variables are binary or can only take on a small number of 

values. Other variables, though, can take on a large number of possible values, and for 
these variables it is generally necessary to group them prior to inclusion in the model. 
Consider, for example, driver age. If ungrouped, this variable is likely to consume 
too many degrees of freedom, which can lead to nonsensical results and the inability 
of the model to converge. In deciding how to group such variables, one strategy is 
to start with many levels and then begin grouping based on model coefficients and 
significance. For example, we may start with 30 buckets, then compare the coefficients 
for neighboring buckets. If one bucket is, say, drivers between the ages of 26 and 27, 
and another is drivers between 28 and 29, and the coefficients for these two levels are 
similar, we can create a new bucket for drivers between 26 and 29. This is generally an 
iterative process and requires balancing the competing priorities of predictive power, 
parsimony, and avoiding overfitting to the data.

5.6. Interactions
Thus far, we have focused on optimizing the selection and transformation of 

variables for our model under the assumption that each variable has an individual 
effect on the target variable. However, we may also wish to consider the hypothesis that 
two or more variables may have a combined effect on the target over and above their 
individual effects. Stated differently, the effect of one predictor may depend on the 
level of another predictor, and viceversa. Such an relationship is called an interaction.

An example of an interaction is illustrated in Figure 12. In this example we have 
two categorical variables: variable 1 has two levels, A and B, with A being the base level; 
variable 2 has levels X (the base) and Y.

The table in the left panel shows the mean response for each combination of levels 
with no interaction. For variable 1, the multiplicative factor for level B (relative to base 
level A) is 2.0, regardless of the level of variable 2. Similarly, the variable 2 relativity of 
level Y is 1.5, regardless of the level of variable 1. Simple enough.

The right panel shows an example of where an interaction is present. Where 
variable 2 is X, the relativity for level B is 2.0, as before; however, where variable 2 
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is Y, the level B relativity is 2.2. Or, we can state this effect in terms of variable 2: 
the relativity for level Y is either 1.50 or 1.65, depending on the level of variable 1.

Another way of describing the situation in the right panel of Figure 12 is as follows: 
for each of the two variables, there are main effects, where the relativity of level B is 
2.0 and the relativity of level Y is 1.5; plus, there is an additional interaction effect of 
being both of level Y and level B—with a multiplicative factor of 1.1. This is the setup 
typically used in GLMs, and it allows us to use the GLM significance statistics to test 
the interaction effects distinctly from the main effects in order to determine whether 
the inclusion of an interaction significantly improves the model.

The above example illustrates the interaction of two categorical variables. It is also 
possible to interact two continuous variables, or a continuous variable with a categorical 
variable. In the following sections, we further explore the categorical/categorical 
interaction in a GLM, as well as the other two interaction types.

5.6.1. Interacting Two Categorical Variables
We present here a more concrete example to illustrate the handling of a categorical/

categorical interaction in a GLM.
Suppose, for a commercial building claims frequency model, which uses a Poisson 

distribution and a log link, we include two categorical predictors: occupancy class, 
coded 1 through 4, with 1 being the base class; and sprinklered status, which can 
be either “no” or “yes,” the latter indicating the presence of a sprinkler system in the 
building, with no sprinkler being the base case.

Running the model with the main effects only yields the output shown in Table 8. The 
coefficient of -0.3046 indicated for “sprinklered:yes” indicates a sprinklered discount 
of 26.3% (as e-0.3046-1 = -0.263).

We then wish to test whether the sprinklered discount should vary by occupancy 
class. To do this, we add the interaction of those two variables in the model, in addition 
to the main effects. Behind the scenes, the model fitting software adds additional 
columns to the design matrix: a column for each combination of non-base levels for 
the two variables. Each of those columns is valued 1 where a risk has that combination 
of levels, and is 0 otherwise. These new columns are treated as distinct predictors in 
Equation 2, and so the coefficient estimated for each of those new predictors will 

Figure 12.  An Example of a Mean Response for Each 
Level of Two Categorical Variables Without an Interaction 
(left panel) and With an Interaction (right panel)
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indicate the added effect—above the main effects—of a risk having that combination 
of levels. In our example, this results in three additional predictors being added to our 
model: the combination of “sprinklered:yes” with each of occupancies 2, 3, and 4.

Running this model results in the output shown in Table 9. In this context, the 
coefficient of -0.2895 for the main effect “sprinklered:yes” indicates a discount of 
25.1% for occupancy class 1. The three interaction effects yield the effect of having a 
sprinkler for the remaining 3 occupancy groups relative to the sprinklered effect for 
group 1.

Looking at the row for the first interaction term, the negative coefficient indicates 
that occupancy class 2 should receive a steeper sprinklered discount than class 1; 
specifically, its indicated sprinklered factor is e-0.2895-0.2847=0.563, or a 43.7% discount. 
The low pvalue of 0.005 associated with that estimate indicates that the sprinklered 
factor for this class is indeed significantly different from that of class 1.

The interaction of occupancy class 3 with sprinklered shows a negative coefficient 
as well. However, it has a high pvalue, indicating that the difference in sprinklered 
factors is not significant. Based on this, we may wish to simplify our model by combining 
class 3 with the base class for the purpose of this interaction.

Table 8.  Model with the Main Effects of 
Occupancy Class and Sprinklered Status

Estimate Std. Error p-Value

(Intercept) -10.8679 0.0184 <0.0001

occupancy:2 0.2117 0.0264 <0.0001

occupancy:3 0.4581 0.0262 <0.0001

occupancy:4 0.0910 0.0245 0.0005

sprinklered:Yes -0.3046 0.0372 <0.0001

Table 9.  The Model with the Addition of the 
Interaction Term

Estimate Std. Error p-Value

(Intercept) -10.8690 0.0189 <0.0001

occupancy:2 0.2303 0.0253 <0.0001

occupancy:3 0.4588 0.0271 <0.0001

occupancy:4 0.0701 0.0273 0.0102

sprinklered:Yes -0.2895 0.0729 0.0001

occupancy:2, sprinklered:Yes -0.2847 0.1014 0.0050

occupancy:3, sprinklered:Yes -0.0244 0.1255 0.8455

occupancy:4, sprinklered:Yes 0.2622 0.0981 0.0076
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The interaction term for occupancy class 4 has a significant positive coefficient of 
nearly equal magnitude to the negative coefficient of the main sprinklered effect. This 
result suggests that perhaps occupancy class 4 should not receive a sprinklered discount 
at all.

5.6.2. Interacting a Categorical Variable with a Continuous Variable
We extend the above example to add a continuous variable—amount of insurance 

(AOI)—to our frequency model. Following the best practice discussed in Section 2.4.1, 
we will log AOI prior to inclusion in the model.

The main-effects model yields the estimates shown in Table 10. This model 
indicates a sprinklered factor of e-0.72 = 0.488. The coefficient for log(aoi) indicates 
that the log of the mean frequency increases 0.416 for each unit increase in log(aoi)—
or, equivalently, the frequency response to AOI (in real terms) is proportional to the 
power curve AOI 0.416.

We now wish to test whether the AOI curve should be different for sprinklered 
versus non-sprinklered properties. To do so, we specify that we would like to add 
the inter action of sprinklered and log(aoi) to our model. The GLM fitting software 
adds a column to our design matrix that is the product of the indicator column 
for “sprinklered:Yes” and log(aoi). Thus, the resulting new predictor is 0 where 
sprinklered = No, and the log of AOI otherwise.

Running this GLM yields the output shown in Table 11. For this model, the 
coefficient for the log(aoi) main effect yields the AOI curve for risks of the base class of 
“sprinklered” (that is, risks for which sprinklered = “No”). The model also estimates a 
coefficient of -0.103 for the interaction term, which indicates that the rise of frequency 
in response to AOI is less steep for sprinklered properties that for non-sprinklered 
properties. The p-value indicates that this difference in curves is significant.

The positive coefficient estimated for “sprinklered:Yes” in this model may be a bit 
startling at first. Does this mean that a premium should now be charged for having a 
sprinkler?

Not quite. In interpreting the meaning of this, it is important to recognize that 
the model includes another variable that is non-zero for sprinklered properties—the 

Table 10.  A Model with Occupancy Class, 
Sprinklered Status and AOI as Main Effects

Estimate Std. Error p-Value

(Intercept) -8.8431 0.1010 <0.0001

occupancy:2 0.2909 0.0248 <0.0001

occupancy:3 0.3521 0.0267 <0.0001

occupancy:4 0.0397 0.0266 0.1353

sprinklered:Yes -0.7167 0.0386 <0.0001

log(aoi) 0.4161 0.0075 <0.0001
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interaction term, which captures the difference in the AOI slope between sprinklered 
and nonsprinklered risks. Thus, the main sprinklered effect may be thought of as an 
adjustment of the intercept of the AOI curve, or the indicated sprinklered relativity 
where log(aoi) = 0.

Of course, where log(aoi) is zero, AOI is $1—a highly unlikely value for AOI. The 
left panel of Figure 13 shows a graphical interpretation of this model’s indicated effects 
of AOI and sprinklered status. The xaxis is the log of AOI, and yaxis shows the (log) 
indicated relativity to the hypothetical case of a nonsprinklered property with an AOI 
of $1. The two lines show the effect of AOI on log mean frequency: the slope of the 
“sprinklered” line is less steep than that of the “nonsprinklered”, due to the negative 
coefficient of the interaction term.

The vertical gray stripe at the bottom left highlights what the main sprinklered 
effect coefficient refers to: it raises the sprinklered AOI curve at log(aoi) = 0. However, 
as the AOI histogram overlaid on the graph shows, log(aoi) = 0 is way out of the range 

Table 11.  Adding the Interaction of AOI and 
Sprinklered Status

Estimate Std. Error p-Value

(Intercept) -8.9456 0.1044 <0.0001

occupancy:2 0.2919 0.0247 <0.0001

occupancy:3 0.3510 0.0266 <0.0001

occupancy:4 0.0370 0.0265 0.1622

sprinklered:Yes 0.7447 0.3850 0.0531

log(aoi) 0.4239 0.0078 <0.0001

sprinklered:Yes, log(aoi) -0.1032 0.0272 0.0001

Figure 13.  Illustration of the Effect of the Interaction  
of Sprinklered and Amount of Insurance (left panel) and  
the Same Model After Dividing AOI by Its Base Amount 
(right panel)
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of the data, and so this “sprinklered surcharge” is just a theoretical construct, and no 
actual policy is likely to be charged such a premium.

An alternate way of specifying this model—one that leads to better interpretation—
is to divide the AOI by the base AOI prior to logging and including it in the model. 
Supposing our chosen base AOI (which would receive a relativity of 1.00 in our rating 
plan) is $200,000, we use log(AOI/200,000) as the predictor in our model. The 
resulting estimates are shown in Table 12.

This model is equivalent to the prior model; that is, they will both produce the 
same predictions. The sprinklered coefficient (now negative) still refers to the specific 
case where the value of the AOI predictor is zero—however, with the AOI predictor in 
this form it has a more natural interpretation: it is the (log) sprinklered relativity for a 
risk with the base AOI.

The right panel of Figure 13 illustrates the output of this model. (The xaxis in that 
panel spans only the values actually present in the data.) The gray stripe at center shows 
the main effect for sprinklered status, which is to lower the mean response at x = 0 (the 
base AOI) by 0.515 for sprinklered risks.

Note that in all this discussion, we described this interaction as “the slope of the 
AOI curve varying based on the sprinklered status.” Of course, it is just as valid to 
characterize it as “the sprinklered discount varying based on AOI.” Which way it is 
presented in the rating plan is a matter of preference.

As an aside, note that this last model form, with AOI centered at the base AOI, 
has an additional benefit: the intercept term (after exponentiating) yields the indicated 
frequency at the base case (i.e., when all variables are at their base levels). In general, 
for a GLM to have this property, all continuous variables need to be divided by their 
base values prior to being logged and included in the model.

5.6.3. Interacting Two Continuous Variables
To understand the third type of interaction—a continuous variable with another 

continuous variable—it is useful to visualize the combined effects of the variables on 

Table 12.  The Model of Table 11 with log AOI Centered 
at the Base AOI

Estimate Std. Error p-Value

(Intercept) -3.7710 0.0201 <0.0001

occupancy:2 0.2919 0.0247 <0.0001

occupancy:3 0.3510 0.0266 <0.0001

occupancy:4 0.0370 0.0265 0.1622

sprinklered:Yes -0.5153 0.0635 <0.0001

log(aoi/200000) 0.4239 0.0078 <0.0001

sprinklered:Yes, log(aoi/200000) -0.1032 0.0272 0.0001
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the log mean response as perspective plots, with the two variables shown along the 
x and yaxes, and the relative log mean shown along the zaxis.

The left panel of Figure 14 graphs a scenario where two variables, x1 and x2, are 
included in a model as main effects only, and the GLM indicates coefficients for them 
of 0.02 and 0.04, respectively. The response curve slopes for those two variables can be 
seen by following the front edge of the plane along the x and yaxes; clearly, x2 has a 
steeper slope than x1, which is due to its coefficient being larger. However, for any given 
value of x2, the x1 curve, while in a different position vertically, has the same slope, and 
vice versa. As such, the effect of the two variables are independent of each other.

If we believe the slope for each variable should depend on the value of the other 
variable, we may include an interaction term. This term takes the form of the product of 
the two predictors. The right panel illustrates the case where the main effect coefficients 
are the same as before, but an added interaction term has a coefficient of 0.005. The 
slope of x1 where x2 = 0 (the front edge of the plane) is the same as in the left panel 
graph. However, moving inward, as x2 increases, we see the slope of x1 becomes more 
steep. Similarly, the slope of x2 steepens as x1 increases.

As with the earlier interaction types, the pvalue estimated for the interaction term 
guides us in our determination of whether this effect is significant, or whether the 
variables should be left independent.

Figure 14.  Perspective Plots of the Log Mean Response 
to Two Continuous Variables, both Without (left ) and With 
(right ) an Interaction Term
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6. Model Refinement

6.1. Some Measures of Model Fit
GLM software provides a number of statistical measures of how well the model fits 

the training data, which are useful when comparing candidates for model specifications 
and assessing the predictive power of individual variables. The most important such 
measures are log-likelihood and deviance.

6.1.1. Log-Likelihood
For any given set of coefficients, a GLM implies a probabilistic mean for each 

record. That, along with the dispersion parameter and chosen distributional form, 
implies a full probability distribution. It is therefore possible to calculate, for any record, 
the probability (or probability density) that the GLM would assign to the occurrence 
of the actual outcome that has indeed occurred. Multiplying those values across all 
records would produce the probability of all the historical outcomes occurring; this 
value is called the likelihood.

A GLM is fit by finding the set of parameters for which the likelihood is the highest. 
This is intuitive; absent other information, the best model is the one that assigns the 
highest probability to the historical outcomes. Since likelihood is usually an extremely 
small number, the log of likelihood, or log-likelihood, is usually used instead to make 
working with it more manageable.

Log-likelihood by itself can be difficult to interpret. It is therefore useful to relate 
the log-likelihood to its hypothetical upper and lower bounds achievable with the 
given data.

At the low end of the scale is the log-likelihood of the null model, or a hypothetical 
model with no predictors—only an intercept. Such a model would produce the same 
prediction for every record: the grand mean.

At the other extreme lies the saturated model, or a hypothetical model with an  
equal number of predictors as there are records in the dataset. For such a model, 
Equation 2 becomes a system of equations with n equations and n unknowns, and 
therefore a perfect solution is possible. This model would therefore perfectly “predict” 
every historical outcome. It would also be, most likely, useless; over-fit to the extreme, 
it is essentially nothing more than a complicated way of restating the historical data. 
However, since predicting each record perfectly is the theoretical best a model can 
possibly do, it provides a useful upper bound to log-likelihood for this data.
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While the null model yields the lowest possible log-likelihood, the saturated model 
yields the highest; the log-likelihood of your model will lie somewhere in between. This 
naturally leads to another useful measure of model fit: deviance.

6.1.2. Deviance
Deviance for a GLM is defined as follows:

Deviance ll llsaturated model( )= × −2 (15)

where llsaturated is the log-likelihood of the saturated model, and llmodel is the log-likelihood  
of the model being evaluated. This may be more formally stated as follows:

D f y y f yi i i i i i
i

n
m m m∑ ( ) ( )= × = − =

=
2 ln ln (16)

1

The first term after the summation sign is the log of the probability of outcome 
yi given that the model’s predicted mean is yi—the mean that would be predicted by 
the saturated model. The second term is the log probability assigned to the outcome 
yi by the actual model. The difference between those two values can be thought of as 
the magnitude by which the model missed the “perfect” log-likelihood for that record. 
Summing across all records and multiplying the result by 2 yields the deviance.

The fitted GLM coefficients are those that minimize deviance. Recall that the 
previous section stated that the GLM is fit by maximizing log-likelihood, and in fact 
those two statements are equivalent: maximizing log-likelihood is also minimizing 
deviance. It is easy to see that by examining Equation 15 above. The first term inside 
the parentheses, llsaturated, is constant with respect to the model coefficients, as it is purely 
a function of the data and the selected distribution. Since the log-likelihood of our 
model is subtracted from it, the coefficients yielding the maximum log-likelihood also 
yield the minimum deviance.

The deviance for the saturated model is zero, while the deviance null model can be 
thought of as the total deviance inherent in the data. The deviance for your model will 
lie between those two extremes.

6.1.3. Limitations on the Use of Log-Likelihood and Deviance
The next section discusses some statistical tests that can be used to compare the 

fits of different models using these measures. However, at the outset, it is important to 
note the following caveats:

Firstly, when comparing two models using log-likelihood or deviance, the comparison 
is valid only if the datasets used to fit the two models are exactly identical. To see 
why, recall that the total log-likelihood is calculated by summing the log-likelihoods 
of the individual records across the data; if the data used for one model has a different 
number of records than the other, the total will be different in a way that has nothing 
to do with model fit.
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This, by the way, is something to look out for when adding variables to an existing 
model and then comparing the resulting model with the original. If the new variable 
has missing values for some records, the default behavior of most model fitting software 
is to toss out those records when fitting the model. In that case, the resulting measures 
of fit are no longer comparable, since the second model was fit with fewer records than 
the first.

For any comparisons of models that use deviance, in addition to the caveat above, it 
is also necessary that the assumed distribution and the dispersion parameter (basically, 
everything other than the coefficients) must be identical as well. This restriction arises 
from deviance being based on the amount by which log-likelihood deviates from the 
“perfect” log-likelihood; changing any values or assumptions other than the coefficients 
would alter the value of the “perfect” log-likelihood as well the model log-likelihood, 
muddying the comparison.

6.2. Comparing Candidate Models
As described above, the process of building and refining a GLM is one that takes 

place over many iterations; frequent decisions need to be made along the way, such as: 
which predictors to include; the appropriate transformations, if any, to be applied to 
continuous variables; and the groupings of levels for categorical variables. This section 
presents several statistical tests, based on the measures of model fit just discussed, that 
can be used to compare successive model runs and guide our decision making.

6.2.1. Nested Models and the F-Test
Where a model uses a subset of the predictors of a larger model, the smaller model 

is said to be a nested model of the larger one. Comparisons of nested models frequently 
occur when considering whether to add or subtract predictors. We may have one model 
that includes the extra predictors being considered, and one that does not but includes 
all the other variables. We then wish to compare the model statistics to answer the 
question: is the larger model, with the added variables, better than the smaller one? In 
other words, do the added predictors enhance the predictive power of the model?

We can do that by comparing the deviance (subject to the caveats noted above). 
However, in doing so we must consider a basic fact: adding predictors to a model 
always reduces deviance, whether the predictor has any relation to the target variable 
or not. This is because more predictors—which means more parameters available to 
fit—gives the model fitting process more freedom to fit the data, and so it will fit the 
data better. At the extreme end of that is the saturated model, where the model fitting 
process has enough freedom to produce a perfect fit—even if the predictors are purely 
random and have no predictive power at all; with n unknowns and n equations, a 
perfect fit is always mathematically possible.

Therefore the meaningful question when comparing deviances is: did the added 
predictors reduce the deviance significantly more than we would expect them to if they 
are not predictive? One way to answer that is through the F-test, wherein the F-statistic 
is calculated and compared against the F distribution.
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The formula for the F-statistic is

F
D D

of added parameters
S B

Sf( )
= −

×# ˆ (17)

In Equation 17, the subscripts “S” and “B” refer to the “small” and “big” models, 
respectively. The numerator is the difference in the deviance between the two  
models—that is, the amount by which the deviance was reduced by the inclusion of 
the additional parameters. As described above, this value is positive, since deviance 
always goes down.

The f̂ S in the denominator is the estimate of the dispersion parameter for the 
small model. As it happens, this is also a good estimate of the amount by which we 
can expect deviance to go down for each new parameter added to the model—simply 
by pure chance—if the parameter adds no predictive power. Multiplying this value by 
the number of added parameters gives us the total expected drop in deviance. For the 
added predictors to “carry their weight,” they must reduce deviance by significantly 
more than this amount. (If some of the added predictors are categorical, note that a 
categorical variable with m levels adds m - 1 parameters—one for each level other 
than the base level.)

Thus, the ratio in Equation 17 has an expected value of 1. If it is significantly 
greater than 1, we may conclude that the added variables do indeed improve the model.

How much greater than 1 is significant? Statistical theory says that the F-statistic 
follows an F distribution, with a numerator degrees of freedom equal to the number of 
added parameters and a denominator degrees of freedom equal to n - ps, or the number 
of records minus the number of parameters in the small model. If the percentile of the 
F-statistic on the F distribution is sufficiently high, we may conclude that the added 
parameters are indeed significant.

As an example, suppose the auto GLM we built on 972 rows of data and has  
6 parameters yields a deviance of 365.8 and an estimated dispersion parameter of 1.42. 
We wish to test the significance of an additional potential predictor: rating territory, a 
categorical variable with 5 levels.

We run the GLM with the inclusion of rating territory, thereby adding 5 - 1 = 4 
parameters to the model. Suppose the deviance of the resulting model is 352.1.

Using this information and Equation 17, we calculate the F-statistic.

−
×

=365.8 352.1
4 1.42

2.412

To assess the significance of this value, we compare it against an F distribution with 
4 numerator degrees of freedom and 972 - 6 = 966 denominator degrees of freedom. 
An F distribution with those parameters has 2.412 at its 95.2 percentile, indicating a 
4.8% probability of a drop in deviance of this magnitude arising by pure chance. As 
such, rating territory is found to be significant at the 95% significance level.
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6.2.2. Penalized Measures of Fit
The F-test of the prior section is only applicable to nested models. Frequently, 

though we would want to compare non-nested models—that is, models having different 
variables, where one does not contain a subset of the variables of other. As described 
above, deviance alone can not be used, since adding parameters always reduces deviance, 
and so selecting on the basis of lowest deviance gives an unfair advantage to the model 
with more parameters, which can lead to over-fitting.

A practical way to avoid the problem of over-fitting is to use a penalized measure 
of fit. While deviance is strictly a measure of model goodness of fit on the training data,  
a penalized measure of fit also incorporates information about the model’s complexity, 
and so becomes a measure of model quality. Using one of these measures, one can compare 
two models that have different numbers of parameters. The two most commonly 
used measures of deviance are AIC and BIC.

AIC, or the Akaike Information Criterion, is defined as follows:

AIC log likelihood p= − × +2 - 2 (18)

where p is the number of parameters in the model. As with deviance, a smaller AIC 
suggests a “better” model. The first term in the above equation declines as model fit on 
the training data improves; the second term, called the penalty term, serves to increase 
the AIC as a “penalty” for each added parameter. (The rationale for using twice the 
number of parameters as the penalty is grounded in information theory and out of the 
scope of this monograph.) Using this criterion, models that produce low measures of 
deviance but high AICs can be discarded.

Note that the first additive term of equation 18 is the same as the formula for 
deviance in Equation 15 but without the llsaturated term, which is constant with respect 
to the model predictions. As such, the AIC can also be thought of as a penalized 
measure of deviance, when using it to compare two models. (AIC has little meaning 
outside of the context of a comparison anyway.) As a matter of fact, some statistical 
packages occasionally take advantage of this equivalence and substitute deviance for  
-2 × log-likelihood where it would simplify the calculation.

BIC, or the Bayesian Information Criterion, is defined as -2 × log-likelihood + 
p log(n), where p is once again the number of parameters, and n is the number of data 
points that the model is fit on. As most insurance models are fit on very large datasets, 
the penalty for additional parameters imposed by BIC tends to be much larger than 
the penalty for additional parameters imposed by AIC.

Most statistical packages can produce either of these measures. In practical terms, 
the authors have found that AIC tends to produce more reasonable results. Relying too 
heavily on BIC may result in the exclusion of predictive variables from your model.

6.3. Deviance Residuals
One useful and important means of assessing how well the specified model fits 

the data is by visual inspection of the residuals, or measures of the deviations of the 
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individual data points from their predicted values. For any given record, we can think 
of the residual as measuring the magnitude by which the model prediction “missed” 
the actual value. In our GLM, this is assumed to be the manifestation of the random 
component of the model—that is, the portion of the outcome driven by factors other 
than the predictors, which our model describes using Equation 1 and our assumed 
distribution. Therefore, it is natural to inspect these values to determine how well our 
model actually does at capturing this randomness.

The simplest kind of residual is the raw residual which is just the difference between 
actual and expected, or yi - mi. For GLMs, however, a much more useful measure of 
deviation of actual from predicted is the deviance residual, which has many useful 
properties for assessing model fit.

The deviance residual for any given record is defined as that record’s contribution to the 
deviance, adjusted for the sign of actual minus predicted. Look back at Equation 16 (on 
page 60); the deviance residual for any record i is the term to the right of the summation 
sign, with one adjustment: while that term is always positive, the deviance residual is taken 
to be negative where actual ( yi) is less expected (mi), and positive where yi > mi.

Intuitively, we can think of the deviance residual as the residual “adjusted for” the 
shape of the assumed GLM distribution, such that its distribution will be approximately 
normal if the assumed GLM distribution is correct.

In a well-fit model, we expect deviance residuals to have the following properties:

• They follow no predictable pattern. Remember, the residuals are meant to be the 
random, or unpredictable, part of the data. If we discover any way the residuals can 
be predicted, then we are leaving some predictive power on the table and we can 
probably improve our model to pick it up.

• They are normally distributed, with constant variance. The raw residuals are 
certainly not expected to follow a normal distribution (assuming we selected a dis-
tribution other than normal); furthermore, the variance of the raw residual of any 
record would be dependent on its predicted mean, due to the variance property 
of Equation 3. However, as the deviance residuals have been adjusted for the 
shape of the underlying distribution, they are expected to be normal and with 
constant variance. (The latter property is called homoscedasticity.) Any significant 
deviations from normality or homoscedasticity may indicate that the selected dis-
tribution is incorrect.

Figure 15 shows examples of two ways we might assess the normality of deviance 
residuals for a model of claim severity built using the gamma distribution. The left 
panel shows a histogram of the deviance residuals, with the best normal curve fit super- 
 imposed. If the random component of the outcome indeed follows a gamma dis-
tribution, we would expect the histogram and the normal curve to be closely aligned. 
In this case, however, the histogram appears right-skewed relative to the normal curve, 
which suggests that the data exhibits greater skewness than what would be captured 
by a gamma distribution.

Another means of comparing the deviance residual distribution to normal is the 
q-q plot, shown on the right panel of Figure 15. In this plot, the theoretical normal 
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quantile for each point is plotted on the x-axis, and the empirical (sample) quantile 
of the deviance residual is plotted on the y-axis. If the deviance residuals are indeed 
normal, the points should follow a straight line; a line passing through the 25 and 
75 theoretical quantiles is shown for reference. We observe that at the edges of the 
dis tribution, the points lie above the line; in particular the right-most points deviate 
significantly upward, which means that there are many more high-valued deviance 
residuals than would be expected under a normal distribution. This indicates that  
the dis tribution of deviance residuals is more skewed than normal—and by extension, 
the data is more skewed than gamma—confirming what we observed in the histogram.

Based on these results, we may suppose that an inverse Gaussian distribution, which 
assumes greater skewness, may be more appropriate for this data than the gamma 
distribution. Figure 16 shows the diagnostic plots for the same model but with the 
assumption of inverse Gaussian as the underlying distribution. For this model, the 

Deviance Residual

D
en

si
ty

-1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

-3 -2 -1 0 1 2 3

-1
0

1
2

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Histogram Normal Q-Q Plot

Figure 15.  Graphical Comparisons of Deviance Residuals 
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histogram more closely matches the normal curve and the q-q plot better approximates 
the straight line, confirming that this model is indeed a better fit.

Discrete Distributions.  For discrete distributions (such as Poisson or negative 
binomial) or distributions that otherwise have a point mass (such as Tweedie, which has 
a point mass at zero), the deviance residuals will likely not follow a normal distribution. 
This is because while the deviance residuals factor in the shape of the distribution, they 
do not adjust for the discreteness; the large numbers of records having the same target 
values cause the residuals to be clustered together in tight groups. This makes deviance 
residuals less useful for assessing the appropriateness of such distributions.

One possible solution is to use randomized quantile residuals, which have similar 
properties as deviance residuals, but add random jitter to the discrete points so that they 
wind up more smoothly spread over the distribution. Randomized quantile residuals 
are described in detail in Dunn and Smyth (1996).7

Where discretely-distributed data is highly aggregated, such as for claims data 
where a single record may represent the average frequency for a large number of risks, 
the target variable will take on a larger number of distinct values, effectively “smoothing 
out” the resulting distribution. This causes the distribution to lose much of its discrete 
property and approach a continuous distribution, thereby making deviance residuals 
more useful for such data.

6.4. Assessing Model Stability
Model stability refers to the sensitivity of a model to changes in the modeling data. 

We assume that past experience will be a good predictor of future events, but small 
changes in the past that we’ve observed should not lead to large changes in the future 
we predict. The classic example of this occurring is an unusually large loss experienced 
by an insured in a class with few members. A model run on all of the data may tell us 
with a high degree of confidence that this class is very risky. But if we remove the large 
loss from the dataset, the model may tell us with the same degree of confidence that 
the class is very safe. The model is not very stable with respect to the indication for this 
class, and so we may not want to give full weight to its results.

In the example above, the large loss is a particularly influential record, in that its 
removal from the dataset causes a significant change to our modeled results. Influential 
records tend to be highly weighted outliers. Assessing the impact of influential records 
is a straightforward way to assess model stability. A common measure of the influence 
of a record in GLM input data, calculable by most statistical packages, is Cook’s 
distance. Sorting records in descending order of Cook’s distance will identify those 
that have the most influence on the model results—a higher Cook’s distance indicates 
a higher level of influence. If rerunning the model without some of the most influential 

7 In R, randomized quantile residuals are available via the qresiduals() function of the “statmod” package. Note, 
however, that for the Poisson distribution, randomized quantile residuals can only be calculated for the “true” 
Poisson distribution (with f =1) but not the overdispersed Poisson; this diminishes their usefulness for most 
insurance data where “true” Poisson is unlikely to yield a good fit.
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records in the dataset causes large changes in some of the parameter estimates, we may 
want to consider whether or not those records or the parameter estimates they affect 
should be given full weight.

Another way to assess model stability is via cross validation, as described in Sec-
tion 4.3.4 above. In that section, we presented cross validation as a means of testing 
the out-of-sample model performance. However, looking at the in-sample parameter 
estimates across the different model runs can yield important information about the 
stability of the model as well. The model should produce similar results when run on 
separate subsets of the initial modeling dataset.

Still another way to assess model stability is via bootstrapping. In bootstrapping, 
the dataset is randomly sampled with replacement to create a new dataset with the same 
number of records as the initial dataset. By refitting the model on many bootstrapped 
versions of the initial dataset, we can get a sense of how stable each of the parameter 
estimates are. In fact, we can calculate empirical statistics for each of the parameter 
estimates—mean, variance, confidence intervals, and so on—via bootstrapping. Many 
modelers prefer bootstrapped confidence intervals to the estimated confidence intervals 
produced by statistical software in GLM output.
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7. Model Validation and Selection

Before diving into this section, some explanation is in order. As described above, the 
process of model refinement is really a process of creating two candidate models and 
comparing them. To put it another way, all model refinement involves model selection. 
But sometimes model selection can be used for goals other than model refinement. 
Sometimes a decision needs to be made between a number of alternate final models. 
If the best efforts of two modelers working independently are not identical (and they 
will never be), how is one to choose between them? The techniques discussed below are 
suitable for making this decision, while the techniques discussed in Chapter 6 are not. 
There are two key reasons for this:

First, one or more of the alternate models may be proprietary. Any rating plan is 
a model, and rating plans can come from all sorts of places: subsidiaries, consultants, 
competitor filings, rating bureaus, and so on. Most of the time, the data used to 
build these rating plans will not be available and neither will the detailed form of the 
underlying model. Even if this information is available, it might be impractical to 
evaluate it—the rating plan need not have been created using a GLM! The techniques 
discussed in Chapter 6 cannot be used under these circumstances, but the techniques 
below can. In order for the techniques below to be used, one only needs a database of 
historical observations augmented with the predictions from each of the competing 
models. The process of assigning predictions to individual records is called scoring.

Second, while the model refinement process is entirely technical, choosing between 
two final models is very often a business decision. Those responsible for making the 
final decision may know nothing about predictive modeling or even nothing about 
actuarial science. The techniques below compare the performance of competing models 
in a way that is accessible.

Some of the techniques below can also be used for model refinement, to the extent 
that they produce new data or insights that can be acted on.

7.1. Assessing Fit with Plots of Actual vs. Predicted
A very simple and easily understandable diagnostic to assess and compare the per-

formance of competing models is to create a plot of the actual target variable (on the 
y-axis) versus the predicted target variable (on the x-axis) for each model. If a model 
fits well, then the actual and predicted target variables should follow each other closely.

Consider Figure 17, which shows plots of actual vs. predicted target variables for 
two competing models.
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From these charts, it is clear that Model 2 fits the data better than Model 1, as there 
is a much closer agreement between the actual and predicted target variables for Model 2 
than there is for Model 1.

There are three important cautions regarding plots of actual versus predicted target.
First, it is important to create these plots on holdout data. If created on training 

data, these plots may look fantastic due to overfitting, and may lead to the selection of 
a model with little predictive power on unseen data.

Second, it is often necessary to aggregate the data before plotting, due to the size 
of the dataset. A common approach is to group the data into percentiles. The dataset is 
first sorted based on the predicted target variable, then it is grouped into 100 buckets 
such that each bucket has the same aggregate model weight. Finally, the averages of the 
actual and predicted targets within each bucket are calculated and plotted, with the 
actual values on the y-axis and the predicted values on the x-axis.

Third, it is often necessary to plot the graph on a log scale, as was done in Figure 17. 
Without this transformation, the plots would not look meaningful, since a few very 
large values would skew the picture.

7.2. Measuring Lift
Broadly speaking, model lift is the economic value of a model. The phrase “economic 

value” doesn’t necessarily mean the profit that an insurer can expect to earn as a result 
of implementing a model, but rather it refers to a model’s ability to prevent adverse 
selection. The lift measures described below attempt to visually demonstrate or quantify 
a model’s ability to charge each insured an actuarially fair rate, thereby minimizing the 
potential for adverse selection.

Model lift is a relative concept, so it requires two or more competing models. That 
is, it doesn’t generally make sense to talk about the lift of a specific model, but rather 
the lift of one model over another.

In order to prevent overfitting, model lift should always be measured on holdout 
data.
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7.2.1. Simple Quantile Plots
Quantile plots are a straightforward visual representation of a model’s ability to 

accurately differentiate between the best and the worst risks. Assume there are two 
models, Model A and Model B, both of which produce an estimate of the expected 
loss cost for each policyholder. Simple quantile plots are created via the following steps:

1. Sort the dataset based on the Model A predicted loss cost (from smallest to largest).
2. Bucket the data into quantiles, such that each quantile has the same volume of 

exposures. Common choices are quintiles (5 buckets), deciles (10 buckets), or vigintiles 
(20 buckets).

3. Within each bucket, calculate the average predicted pure premium (predicted loss 
per unit of exposure) based on the Model A predicted loss cost, and calculate the 
average actual pure premium.

4. Plot, for each quantile, the actual pure premium and the pure premium predicted 
by Model A.

5. Repeat steps 1 through 4 using the Model B predicted loss costs. There are now 
two quantile plots—one for Model A and one for Model B.

6. Compare the two quantile plots to determine which model provides better lift.

In order to determine the “winning” model, consider the following 3 criteria:

1. Predictive accuracy. How well each model is able to predict the actual pure 
premium in each quantile.

2. Monotonicity. By definition, the predicted pure premium will monotonically 
increase as the quantile increases, but the actual pure premium should also increase 
(though small reversals are okay).

3. Vertical distance between the first and last quantiles. The first quantile contains 
the risks that the model believes will have the best experience, and the last quantile 
contains the risks that the model believes will have the worst experience. A large 
difference (also called “lift”) between the actual pure premium in the quantiles 
with the smallest and largest predicted loss costs indicates that the model is able to 
maximally distinguish the best and worst risks.

Figure 18 shows simple decile plots for an example comparison between the 
current rating plan (left panel) and a newly-constructed plan (right panel). For ease of 
interpretation, both the actual and predicted loss costs for each graph have been divided 
by the average model predicted loss cost.

In both plots, the solid line is the predicted loss cost (either by the current rating 
plan or by the new model) and the broken line is the actual loss cost. Which model is 
better?

1. Predictive accuracy—for the right panel graph, the plotted loss costs correspond more 
closely between the two lines than for the left panel graph, indicating that the new 
model seems to predict actual loss costs better than the current rating plan does.

2. Monotonicity—the current plan has a reversal in the 6th decile, whereas the model 
has no significant reversals.
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3. Vertical distance between the first and last quantiles—the spread of actual loss costs 
for the current manual is 0.55 to 1.30, which is not very much. That is, the best 
risks have loss costs that are 45% below the average, and the worst risks are only 
30% worse than average. The spread of the proposed model though is 0.40 to 1.60.

Thus, by all three metrics, the new plan outperforms the current one.

7.2.2. Double Lift Charts
A double lift chart is similar to the simple quantile plot, but it directly compares 

two models. Assume that there are two models, Model A and Model B, both of which 
produce an estimate of the expected loss cost for each policyholder. A double lift chart 
is created via the following steps:

1. For each record, calculate Sort Ratio = (Model A Predicted Loss Cost)/(Model B 
Predicted Loss Cost).

2. Sort the dataset based on the Sort Ratio, from smallest to largest.
3. Bucket the data into quantiles, such as quintiles or deciles.
4. Within each bucket, calculate the Model A average predicted pure premium, the 

Model B average predicted pure premium, and the actual average pure premium. 
For each of those quantities, divide the quantile average by the overall average.

5. For each quantile, plot the three quantities calculated in the step above.

In a simple quantile plot, the first quantile contains those risks which Model A thinks are 
best. In a double lift chart, the first quantile contains those risks which Model A thinks 
are best relative to Model B. In other words, the first and last quantiles contain those risks 
on which Models A and B disagree the most (in percentage terms).

In a double lift chart, the “winning” model is the one that more closely matches the 
actual pure premium in each quantile. To illustrate this, consider the example double 
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lift chart in Figure 19, in which we use a double lift chart to compare a proposed rating 
model to the current rating plan.

The solid line shows the loss costs predicted by the model, the thick broken line 
shows the loss costs in the current rating plan, and the dotted line shows the actual loss 
costs. The sort order for this graph is the model prediction divided by the current plan 
prediction, and the data is segmented into deciles.

It is clear that the proposed model more accurately predicts actual pure premium 
by decile than does the current rating plan. Specifically, consider the first decile. It 
contains the risks that the model thinks are best relative to the current plan. As it turns 
out, the model is correct. Similarly, in the 10th decile, the model more accurately 
predicts pure premium than does the current plan.

As an alternate representation of a double lift chart, one can plot two curves—the 
percent error for the model predictions and the percent error for the current loss costs, 
where percent error is calculated as (Predicted Loss Cost)/(Actual Loss Cost) - 1. In 
this case, the winning model is the one with the flatter line centered at y = 0, indicating 
that its predictions more closely match actual pure premium.

7.2.3. Loss Ratio Charts
In a loss ratio chart, rather than plotting the pure premium for each bucket, the 

loss ratio is instead plotted. The steps for creating a loss ratio chart are very similar to 
those for creating a simple quantile plot, with one important difference:

1. Sort the dataset based on the model prediction.
2. Bucket the data into quantiles, such that each quantile has the same volume of 

exposures.
3. Within each bucket, calculate the actual loss ratio for risks within that bucket.

Ideally, the model is able to identify deficiencies in the current rating program 
by segmenting the risks based on loss ratio. To illustrate this, consider Figure 20. If a 
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rating plan is perfect, then all risks should have the same loss ratio. The fact that this 
model is able to segment the data into lower and higher loss ratio buckets is a strong 
indicator that it is outperforming the current rating plan.

The advantage of loss ratio charts over quantile plots and double lift charts is that 
they are simple to understand and explain. Loss ratios are the most commonly-used 
metric in determining insurance profitability, so all stakeholders should be able to 
understand these plots.

7.2.4. The Gini Index
The Gini index, named for statistician and sociologist Corrado Gini, is commonly 

used in economics to quantify national income inequality.
The national income inequality Gini index is calculated as follows:

1. Sort the population based on earnings, from those with the lowest earnings to 
those with the highest earnings. (This could also be done based on wealth rather 
than earnings.)

2. The x-axis is the cumulative percentage of earners.
3. The y-axis is the cumulative percentage of earnings.

The locus of points created by plotting the cumulative percentage of earnings against 
the cumulative percentage of earners is called the Lorenz curve. The left panel of  
Figure 21 plots the Lorenz curve for year 2014 household income in the United States.8

The 45-degree line is called the line of equality, so named because, if every person 
earned the same exact income, then the Lorenz curve would be the line of equality. In 
that hypothetical scenario, if there are 100 people in the society, then each represents 
1% of the population and would earn 1% of the income. Everyone doesn’t earn the 
same income, though, so the Lorenz curve is bow-shaped. As the graph shows, the 
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poorest 60% of households earn roughly 25% of the total income. The Gini index is 
calculated as twice the area between the Lorenz curve and the line of equality. (In 2014, 
that number was 48.0%).

The Gini index can also be used to measure the lift of an insurance rating plan by 
quantifying its ability to segment the population into the best and worst risks. The 
Gini index for a model which creates a rating plan is calculated as follows:

1. Sort the dataset based on the model predicted loss cost. The records at the top of 
the dataset are then the risks which the model believes are best, and the records at 
the bottom of the dataset are the risks which the model believes are worst.

2. On the x-axis, plot the cumulative percentage of exposures.
3. On the y-axis, plot the cumulative percentage of losses.

The locus of points is the Lorenz curve, and the Gini index is twice the area between 
the Lorenz curve and the line of equality.

The right panel of Figure 21 plots a sample Lorenz curve for a sample pure premium 
model. As can be seen, this model identified 60% of exposures which contribute only 
20% of the total losses. Its Gini index is 56.1%.

Note that a Gini index does not quantify the profitability of a particular rating 
plan, but it does quantify the ability of the rating plan to differentiate the best and 
worst risks. Assuming that an insurer has pricing and/or underwriting flexibility, this 
will lead to increased profitability.

7.3. Validation of Logistic Regression Models
For logistic regression models (discussed in Section 2.8), the GLM yields a 

prediction of the probability of the occurrence of the modeled event. Many of the 
model validation diagnostics discussed in the previous sections can be applied to such 
models as well. For example, a quantile plot can be created by bucketing records of the 
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holdout set into quantiles of predicted probability and graphing the actual proportion 
of positive occurrences of the event within each quantile against the average predicted 
probability; a good model will yield a graph exhibiting the properties of accuracy, 
monotonicity and vertical distance between first and last quantiles, as described in 
Section 7.2.1. Similarly, a Lorenz curve can be created by sorting the records by 
predicted probability and graphing cumulative risks against cumulative occurrences 
of the event, and a Gini index can be computed from the resulting graph by taking 
the area between the curve and the line of equality.

For such models, a diagnostic called the receiver operating characteristic curve, or 
ROC curve, is commonly used due its direct relation to how such models are often 
used in practice, as discussed in the following section.

7.3.1. Receiver Operating Characteristic (ROC) Curves
While a logistic model predicts the probability of an event’s occurrence, for many 

practical applications that probability will need to be translated into a binary prediction 
of occurrence vs. non-occurrence for the purpose of deciding whether to take a specific 
action in response. For example, suppose we build a model to detect claims fraud; for each 
new claim, the model yields a probability that it contains fraud. Based on this prediction, 
we will need to decide whether or not to assign a team to further investigate the claim.

We can make such a determination by choosing a specific probability level, called 
the discrimination threshold—say, 50%—above which we will investigate the claim 
and below which we will not. This determination may be thought of as the model’s 
“prediction” in a binary (i.e., fraud/no fraud) sense.

Under this arrangement, for any claim, the following four outcomes are possible:

1. The model predicts that the claim contains fraud (that is, mi > 0.50), and the claim 
is indeed found to contain fraud. This outcome is called a true positive.

2. The model predicts fraud, but the claim does not contain fraud (i.e., a false positive).
3. The model predicts no fraud (i.e., mi < 0.50), but the claim contains fraud (i.e., a 

false negative).
4. The model predicts no fraud, and the claim does not contain fraud (i.e., a true negative).

Outcome #1—the true positive—clearly represents a success of the model, as 
it correctly identifies a fraudulent claim, thus preventing unnecessary payment and 
saving the company money. Outcome #4, the true negative, while not as dramatic, 
similarly has the model doing its job by not sending us on a wild-goose chase.

Outcomes #2 and #3—the false positive and false negative—are failures of the 
model, and each comes with a cost. The false negative allows a fraudulent claim to 
slip by undetected, resulting in unnecessary payment. The false positive also incurs a 
cost in the form of unnecessary resources expended on a claims investigation as well as 
possible impairment of goodwill with the insured.

If the model were perfect—that is, it would predict a probability of 0% for each 
non-fraud and 100% for each fraud—then the true positive and true negative would 
be the only possible outcomes, regardless of the threshold chosen. For real-life models, 
on the other hand, false negatives and false positives are possible, and selection of the 
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discrimination threshold involves a trade-off: a lower threshold will result in more true 
positives and fewer false negatives than a higher threshold, but at the cost of more false 
positives and fewer true negatives.

We can assess the relative likelihoods of the four outcomes for a given model 
and for a specified discrimination threshold using a test set. We use the model to 
score a predicted probability for each test record, and then convert the predictions of 
probability into binary (yes/no) predictions using the discrimination threshold. We 
then group the records by the four combinations of actual and predicted outcomes, 
and count the number of records falling into each group. We may display the results 
in a 2×2 table called a confusion matrix. The top panel of Table 13 shows an example 
confusion matrix for a claims fraud model tested on a test set that contains 813 claims, 
using a discrimination threshold of 50%.

The ratio of true positives to total positive events is called the sensitivity; in this 
example, that value is 39/109 = 0.358. This ratio, also called the true positive rate or the 
hit rate, indicates that with a threshold of 50%, we can expect to catch 35.8% of all 
fraud cases.

The ratio of true negatives to total negative events is called the specificity, and is 
673/704 = 0.956 in our example. The complement of that ratio, called the false positive 
rate, is 1 - 0.956 = 0.044. This indicates that the hit rate of 35.8% comes at the cost 
of also needing to investigate 4.4% of all non-fraud claims.

We may wish to catch more fraud by lowering the threshold to 25%. The bottom 
panel of Table 13 shows the resulting confusion matrix. As can be seen, the hit rate 
under this arrangement improves to 75/109 = 68.8%—but it comes at the cost of an 
increase in the false positive rate to 103/704 = 14.6%.

Table 13.  Confusion Matrices for Example Fraud Model  
With Discrimination Thresholds of 50% (top) and 25% (bottom)

Discrimination Threshold: 50%

Predicted

Actual Fraud No Fraud Total

Fraud true pos.:  39 false neg.:  70 109

No Fraud false pos.:  31 true neg.: 673 704

Total  70 743 813

Discrimination Threshold: 25%

Predicted

Actual Fraud No Fraud Total

Fraud true pos.:  75 false neg.:  34 109

No Fraud false pos.: 103 true neg.: 601 704

Total 178 635 813
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A convenient graphical tool for evaluating the range of threshold options available 
to us for any given model is the receiver operating characteristic curve, or ROC 
curve, which is constructed by plotting the false positive rates along the x-axis and the 
true positive rates along the y-axis for different threshold values along the range [0,1]. 
Figure 22 shows the ROC curve for our example claims fraud model.

The (0, 0) point of this graph represents a threshold of 100%, with which we catch 
no fraudulent claims (but investigate no legitimate claims either). Moving rightward, we 
see that lowering the threshold and thereby incurring some false positives yields large 
gains in the hit rate; however, those gains eventually diminish for higher false positive 
rates. The two example thresholds detailed in Table 13 are plotted as points on the graph.

The ROC curve allows us to select a threshold we are comfortable with after weighing 
the benefits of true positives against the cost of false positives. Different thresholds 
may be chosen for different claim conditions—for example, we may choose a lower 
threshold for a large claim where the cost of undetected fraud is higher. Determination 
of the optimal threshold is typically a business decision that is out of the scope of the 
modeling phase.

The level of accuracy of the model, though, will affect the severity of the trade-off. 
A model that yields predictions that are no better than random will yield true positives 
and false positives in the same proportions as the overall mix of positives and negatives 
in the data, regardless of the threshold chosen. Therefore, for such a model, the ROC 
curve will follow the line of equality. A model with predictive power will yield true 
positives at a higher rate than false positives, resulting in a ROC curve that is higher 
than the line of equality. Improved accuracy of the model will move the ROC curve 
farther from equality, indicating that the model allows us a better hit rate for any level 
of false positive cost.

The model accuracy as indicated by the ROC curve can be summarized by taking 
the area under the curve, called the AUROC (for “area under ROC”). A model with no 
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predictive power will yield an AUROC of 0.500. The ROC curve of the hypothetical 
“perfect” model described earlier will immediately rise to the top of the graph (as any 
threshold below 100% would correctly identify all fraud cases and trigger no false 
positives), thereby yielding an AUROC of 1.000. The ROC curve of our example 
model plotted in Figure 22 yields an AUROC of 0.857.

Note, however, that the AUROC measure bears a direct relationship to the Gini 
index discussed in the previous section, such that one can be derived from the other.9 
As such, AUROC and Gini should not be taken as separate validation metrics, since an 
improvement in one will automatically yield an improvement in the other.

9 Specifically, the AUROC is equal to 0.5 × normalized Gini + 0.5, where normalized Gini is the ratio of the model’s 
Gini index to the Gini index of the hypothetical “perfect” model (where each record’s prediction equals its actual 
value). Many thanks to Dmitriy Guller for pointing out this equivalence.
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8. Other Topics

8.1.  Modeling Coverage Options with GLMs  
(Why You Probably Shouldn’t)

The policy variables included in a rating plan can be broadly categorized into two 
types: characteristics of the insured or insured entity, such as driver age or vehicle type 
for auto liability, building construction type or territory for homeowners insurance, or 
industry classification for general liability; and options selected by the insured, such as 
deductible, limit, or peril groups covered.

When using GLMs to formulate such rating plans, it is tempting to try and estimate 
factors for coverage options by simply throwing those variables in with the rest in the  
GLM—only to sometimes discover that GLM produces seemingly counterintuitive 
results. For example, consider the case of the deductible factor. When including 
deductible as a categorical variable in a pure premium GLM—setting the basic deductible 
as the base level—it is not uncommon for the GLM to produce a positive coefficient 
(indicating a factor above unity) for a deductible higher than the base deductible. This 
result—and a highly significant one, to boot!—would seem to indicate that more 
premium should be charged for less coverage, and may leave actuaries scratching their 
heads. What gives?10

The answer may lie in the basic statistical truth that correlation does not imply 
causation. A coefficient estimated by a GLM needs not be the result of a causal effect 
between the predictor and the target; there may some latent variables or characteristics 
not captured by our model which may correlate with the variable in question, and 
those effects may influence the model result. In the case of deductible, there may be 
something systematic about insureds with higher deductibles that may make them a 
worse risk relative to others in their class. Possibilities of how this may arise are:

• The choice of high deductible may be the result of a high risk appetite on part an 
insured, which would manifest in other areas as well.

• The underwriter, recognizing an insured as a higher risk, may have required the 
policy to be written at a higher deductible.

10 We note that while a positive indication for a higher deductible may be considered counterintuitive in a frequency  
or pure premium model, in a severity model it is to be expected. This is because despite the deductible eliminating 
a portion of each loss, thereby lowering the numerator of severity, the deductible also eliminates many small 
claims, lowering the denominator of severity. As the latter effect is usually stronger than the former, the total 
effect of deductible on severity is most often positive.
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Thus, the coefficients estimated by the GLM may be reflecting some of this increased 
risk due to such selection effects.

Counterintuitive results such as these have led some to believe that GLMs “don’t 
work” for deductibles. This may not be a fair characterization; the factors estimated by 
the GLMs may very well be predictive—if the goal is to predict loss for an existing 
set of policies. But that isn’t usually our objective; rather, we are trying to estimate the 
pricing that would make sense for policies sold in the future.

To be sure, for most other variables, potential correlation with a latent variable is 
not a bad thing; if a variable we have collected also yields some information about one 
we haven’t, all the better.11 However, where the variable in question relates to a policy 
option selected by the insured, having its factor reflect anything other than pure loss 
elimination would not be a good idea. Even if the indicated result is not something 
as dramatically bad as charging more premium for less coverage, to the extent that 
the factor differs from the pure effect on loss potential, it will affect the way insureds 
choose coverage options in the future. Thus, the selection dynamic will change and the 
past results would not be expected to replicate for new policies.

For this reason it is recommended that factors for coverage options—deductible 
factors, ILFs, peril group factors and the like—be estimated outside the GLM, using 
traditional actuarial loss elimination techniques. The resulting factors should then be 
included in the GLM as an offset.

8.2. Territory Modeling
Territories are not a good fit for the GLM framework. Unlike other variables you 

might consider in your model, which are either continuous or can easily be collapsed 
into a manageable number of levels, you may have hundreds or thousands or hundreds 
of thousands of territories to consider—and aggregating them to a manageable level 
will cause you to lose a great deal of important signal.

So the solution is to use other techniques, such as spatial smoothing, to model 
territories. Discussion of these techniques is beyond the scope of this monograph. 
But in creating a classification plan, you must still be aware of and have access to 
the output of these models. Since there are usually many complicated relationships 
between territory and other variables, your GLM should still consider territory. This is 
accomplished by including territory in your model as an offset. Offsetting for territory 
only requires populating policy records with their indicated territory loss cost (taken 
from the standalone model). This way, your classification plan variables will be fit after 
accounting for territorial effects, and so will not proxy for them.

But, of course, it’s a two-way street. Just as your classification plan model should 
be offset for territory loss costs, so too should the territory model be offset for the 
classification plan. So the process is iterative—both models should be run, using the 
other as an offset, until they reach an acceptable level of convergence. In theory this can 

11 An important exception is where a variable included in a model may correlate with a protected class or any other 
variable that may not be rated on. In such instances, the actuary must take care to ensure that the model is in 
accordance with all regulatory requirements and actuarial standards of practice.
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be done in one pass, but in practice these models may be updated at different times and 
by different groups of people, so convergence may only set in over a period of years.

8.3. Ensembling
Consider this scenario: your company assigns its two top predictive modelers, Alice 

and Bob, to develop a Homeowners pure premium model, and advises them to each 
work independently off the same set of data.

They get to work, and, after some time, each proposes their finished model. 
Naturally—since there is no one “right” way to build a model—the models are somewhat 
different: each has variables selected for inclusion that the other does not have; some 
continuous variables have been bucketed in one model while having been transformed 
using polynomial functions in the other; and so on. However, when testing the models, 
they both perform equally well: the loss ratio charts and double lift charts both show 
the same improvement over the existing plan, and calculating Gini indices on the 
holdout set and in cross validation yields very similar results between the two. We 
now need to make a decision: which model is better—Alice’s or Bob’s?

The answer, most likely, is: both. Combining the answers from both models is 
likely to perform better than either individually.

A model that combines information from two or more models is called an ensemble 
model. There are many strategies for combining models, and a full treatment of the 
subject is beyond the scope of this text. However, a simple, yet still very powerful, means 
of ensembling is to simply take the straight average of the model predictions.12 Two 
well-built models averaged together will almost always perform better than one, and 
three will perform even better—a phenomenon known as the ensemble effect. Generally, 
the more models the better, though subject to the law of diminishing returns. In fact, 
ensembling is one notable exception to the parsimony principle in modeling (i.e., the 
“keep it simple” rule); adding more models to an ensemble—thereby increasing the 
complexity—will rarely make a model worse.

An interesting example of the ensemble effect in the real world is the “guess the 
number of jelly beans in the jar” game sometimes used for store promotions. In this 
game, any individual’s guess is likely to be pretty far off from the right answer; however, 
it is often observed that taking the average of all the submitted guesses will yield a result 
that is very close to correct. As individuals, some people guess too high and some guess 
low, but on average they get it right.

Predictive models, like people, each have their strengths and weaknesses. One 
model may over-predict on one segment of the data while under-predicting on another; 
a different model is not likely to have the same flaws, but may have others. Averaged 
together, they can balance each other out, and the gain in performance can be 
significant.

12 If both models are log-link GLMs, the multiplicative structure of the resulting ensemble can be preserved by 
taking the geometric average of the predictions. Equivalently, one can construct multiplicative factor tables that 
use the geometric averages of the individual model factors. (When doing so, for any variable present in one model 
but absent in the other, use a factor of 1.00 for the model in which it is absent.)
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One caveat though—for the ensemble effect to work properly, the model errors 
should be as uncorrelated as possible; that is, the models shouldn’t all be systematically 
missing in the same way. (Much as the averaged jelly bean guesses would not work 
well if everyone guessed similarly.) Thus, if ensembling is to be employed as a model-
building strategy, it is best if the models are built by multiple people or teams working 
independently, with little or no sharing of information. Done properly, though, ensembles 
can be quite powerful; if resources permit, it may be worth it.
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9.  Variations on the Generalized  
Linear Model

As we have seen in the preceding sections, the GLM is a flexible, robust and highly 
interpretable model that can accommodate many different types of target variables and 
covariate relationships. However, it does have a number of shortcomings, most notably:

• Predictions must be based on a linear functions of the predictors. Certainly, there 
are workarounds to handle non-linearity (such as polynomials or hinge functions) 
but those must be explicitly specified by the modeler.

• GLMs exhibit instability in the face of thin data or highly correlated predictors.
• Full credibility is given to the data for each coefficient, with no regard to the thinness 

on which it is based.
• GLMs assume the random component of the outcome is uncorrelated among risks.
• The exponential family parameter f  must be held constant across risks.

Many of the more advanced predictive modeling techniques used by data scientists in 
other disciplines, such as neural nets, random forests or gradient boosting machines, do not 
have these flaws, and are therefore able to produce stronger models that yield more accurate 
predictions. However, using those methods would entail a huge loss of interpretability, 
which, for many actuarial applications, is as great a necessity as predictive accuracy, if 
not greater.

Fortunately, a number of extensions to GLMs have been developed that address 
some of the limitations noted above. We briefly discuss some of them in this section. As 
each of the models presented here is either based on the GLM framework or something 
very similar, using them sacrifices little or no loss in interpretability, while potentially 
yielding increased flexibility, robustness and accuracy.

We caution that the discussions below are meant to be brief overviews of these models, 
and are intended to introduce the reader to them and motivate further learning. Each has 
many nuances and complexities not covered here, and the reader is urged to refer to 
other statistical texts that cover these methods in greater detail prior to attempting to 
use them in a real business scenario.

9.1. Generalized Linear Mixed Models (GLMMs)
In a standard GLM, the randomness of the outcome is considered to be the only 

source of randomness in the model; the coefficients themselves are assumed to be 
fixed values. To be sure, from our perspective, where the coefficients are unknown 
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and will need to be estimated from random data, the estimates of those parameters are 
random. (This is the randomness that statistics such as the standard error are meant 
to describe.) However, the underlying model assumes that some fixed set of values 
exist that always describe the relationship between the predictors and the expected 
value of the target variable. To see this, take a look back at Equation 2: the equals sign 
indicates a deterministic relationship involving fixed values; the only tilde (denoting 
randomness) appears in Equation 1.

The practical effect of this is that in seeking to maximize likelihood, the fitting 
procedure “moves” the coefficients as close to the data as possible, even for those where 
the data is thin. In other words, it gives the data full credibility, since we have not 
supplied it with any information to signal that the coefficients should behave otherwise.

A useful extension to the GLM is the generalized linear mixed model, or GLMM, 
which allows for some of the coefficients to be modeled as random variables themselves. 
In this context, predictors with coefficients modeled as random variables are called 
random effects; parameters modeled as having fixed values are called fixed effects. In 
practice, random effects would be estimated for categorical variables with many levels 
that lack the credibility for their coefficients to be estimated fully from their own data.

To illustrate, we present a simple example of an auto severity model with three 
predictors: driver age (a continuous variable), marital status (coded as 0 = unmarried, 
1 = married) and territory, a categorical variable with 15 levels. Driver age and marital 
status will be designated as fixed effects in our model; territory, with many of its levels 
sparse and lacking credibility, will be designated as a random effect.

We denote driver age as x1 and marital status as x2. The territory variable is 
transformed to 15 dummy-coded (0/1) variables of a design matrix, where 1 indicates 
membership in that territory.13 Rather than denote those 15 predictors as x3 . . . x17, we 
will use a new symbol—namely, z—to distinguish random effects from fixed effects, 
and so the territory variables are denoted z1 . . . z15. The coefficients for the fixed effects 
are denoted b 1,b 2, and the coefficients for the random effects are denoted g 1 . . . g 15.

A typical setup for this model might be as follows:

g x x z zim b b b g g( ) = + + + + +. . . (19)0 1 1 2 2 1 1 15 15

∼y gamma im f( ), (20)

g ∼normal n s, ( )( ) 21

Equations 19 and 20 are the familiar fixed and random components of a regular 
GLM. Equation 21 introduces a probability distribution for the fifteen g  parameters, 
which are taken to be independent and identically distributed random variables in this 
model. (The normal distribution is used here for illustrative purposes; depending on 
the implementation, a different distribution may be used.)

13 For random effects we do not designate a base level, and so all 15 levels get a column in the design matrix.
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In maximizing likelihood for this setup, we now have two probability distributions 
to simultaneously consider: the distribution of outcomes y of Equation 20, and the 
distribution of random coefficients g  of Equation 21. Moving any of the g  coefficients 
close to the data raises the likelihood of y, while moving it away from the mean of the 
other g s lowers the likelihood of g . In being forced to balance those two opposing 
forces, the model will produce territory relativities that are somewhere between the 
full-credibility estimates of a GLM and the grand mean for territory. The less data 
available for a territory, the closer its estimate will be to the mean. This effect is referred 
to as shrinkage.

Figure 23 shows an example of the estimates produced by a GLMM compared 
with those estimated by a standard GLM. The dotted line shows the grand mean 
log relativity across all territories. For territories where the data is the sparsest—and 
the standard errors the widest—the GLMM estimates move farther from the GLM 
indications and closer toward the mean.

In practice, GLMMs are estimated as a two-step process. First, estimates of all the 
“fixed” parameters underlying the model are produced. For the fixed effects, this stage 
would produce actual estimates of the coefficient; for the random effects, on the other 
hand, this stage produces estimates related to the probability distribution that their 
coefficients follow. The second stage produces estimates for all levels of categorical 
variables that were specified as random effects. These estimates use a Bayesian procedure 
that factors in the estimated randomness of the parameter as estimated by the first step 
as well as the volume of data available at each level.

In our example, the initial fitting procedure produces estimates for the following 
parameters: the intercept, b 0; the coefficients for the fixed effects, b 1 and b 2; the 

Figure 23.  A comparison of GLM and GLMM estimates. 
The filled squares show the GLM estimates, and the 
error bars indicate the 95% confidence intervals around 
those estimates. The unfilled squares show the GLMM 
estimates. The vertical bars are proportional to the 
volume of data within each territory.
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dispersion parameter, f ; and, the parameters related to the distribution of the  
g  coefficients—namely, n and s . Note that at this stage, the g  coefficients themselves 
have not been estimated; we’ve only estimated their distribution.

A second stage will produce the estimates of the g  coefficients. Rather than basing the 
estimate for each territory entirely on its own data—as a regular GLM would do—the 
GLMM estimates will incorporate several pieces of information: the observed severity 
within the territory; the estimated distribution of the g  parameters; and the estimated 
variance of y. Generally, estimates for more dense levels will be closer to those indicated 
by the data, while estimates for more sparse levels are driven closer to the overall mean.

If any of this seems eerily similar to Bühlmann-Straub credibility, that’s because it is. 
In fact, the variance of the g  distribution—denoted s  above—is analogous to the familiar 
credibility concept of “between-variance” among the theoretical means; residual variance 
in the model—represented by f—corresponds to the “within-variance.” The estimated 
g  for each territory will in effect be a blend between the grand mean severity among 
territories (n ) and the territory’s own observed severity, with the weighting determined 
based on the expected “within-variance” given the volume of data in the territory, relative 
to the “between-variance.” Thus, the GLMM is a useful means of introducing classical 
credibility concepts into a GLM for multi-level categorical variables.14

Correlation Among Random Outcomes.  In addition to allowing for credibility, 
the GLMM is also a means of inducing correlation into a model. Consider the case 
where a multi-year dataset may contain multiple renewals of the same policy. If we are 
concerned that the correlation among policy records is large enough so as distort the 
GLM results, we may wish to include policy ID as a random effect in a GLMM. In 
this instance, although the GLMM will produce an estimate for each policy ID, those 
are probably not of interest to us.

9.2. GLMs with Dispersion Modeling (DGLMs)
Recall that a constraint built into GLMs is that the dispersion parameter of the 

exponential family (f ) must be held constant for all records. An extension to the GLM 
that loosens up this restriction is a GLM with a dispersion modeling component, 
which allows for each record to have a unique f  as well as m , controlled by a linear 
combination of coefficients and predictors. Those predictors may be the same as those 
that predict the m  parameter, or they may be different. This type of model is sometimes 
called a double-generalized linear model (or DGLM).15

The mathematical specification of a DGLM is as follows:

∼y Exponentiali i im f( ), (22)

g x x xi i i p ipm b b b b( ) = + + + +. . . (23)0 1 1 2 2

14 See Klinker (2011) for a more detailed discussion on the relationship between classical credibility and GLMMs.
15 Smyth and Jørgensen (2002).
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g z z zd i i i n inf g g g g( ) = + + + +. . . (24)0 1 1 2 2

Equation 22 is similar to Equation 1, with a subtle difference: the f  parameter now 
has a subscript i attached to it, indicating that it may vary by record. Equation 23 is 
identical to Equation 2.

The chief innovation of the DGLM is Equation 24, which specifies the relationship 
between the dispersion parameter and the predictors z1 . . . zn, which may or may not 
be the same as the m predictors, x1 . . . xn. Coefficients for z1 . . . zn—denoted here as 
g 1 . . . g n—are estimated by the model. The linear combination of those predictors and 
coefficients equals the dispersion parameter transformed by a link function, denoted 
here as gd(.). The subscript d is added to distinguish it from the link function applied 
to m in Equation 23, since those two need not be the same; in practice, though, it is 
common to use a log link for both.

Implementation.  DGLMs are implemented in the “dglm” package available for both 
the R and S-Plus statistical languages. However, where the distribution is a member 
of the Tweedie family (that is, either the normal, Poisson, gamma, inverse Gaussian or 
Tweedie distribution), the DGLM parameters can be closely approximated using any 
GLM estimation software with the following iterative procedure:

1. Begin by assigning a value of 1 to all f i.
2. Run a GLM to estimate the b  coefficients as usual, but with one modification: the 

weight variable should be the inverse of the dispersion parameter for each record—
that is, 1/f i. If we wish to use a weight in the model, we must divide it by f  (i.e., 
set the weight variable to w i/f i).

3. Using the predictions generated by the model estimated in step 2, calculate the 
unit deviance for each record. The unit deviance is defined as:

d f y y f yi i i i i i i if m m m[ ]( ) ( )= = − =2 ln ln

 Note that this formula is the same as that of the deviance residual, but without the 
sign adjustment.16

4. Run a GLM specified as follows:
• The target variable is the unit deviance calculated in step 3.
• The distribution is gamma.
• As predictors, use whatever variables we believe may affect dispersion. These are 

the z variables of Equation 24, which may or may not be the same as the main 
GLM predictors.

16 For the Tweedie distribution, that formula works out to be the following:
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5. Set the dispersion parameters f i to be the predictions generated by the model of 
step 4.

6. Repeat steps 2 through 5 until the model converges (that is, the model parameters 
cease to change significantly between iterations).

Where to Use It.  In a general sense, using a DGLM rather than a GLM may produce 
better predictions of the mean, particularly in cases where certain classes of business are 
inherently more volatile than others. Allowing the dispersion parameter to “float” will in 
turn allow the model to give less weight to the historical outcomes of the volatile business, 
and more weight to the stable business whose data is more informative—thereby ignoring 
more noise and picking up more signal.

The following are particular scenarios where using a DGLM rather than a GLM 
may provide additional benefit:

• For some actuarial applications, the full distribution of the outcome variable, rather 
than just the mean, is desired. In such scenarios, a GLM with constant dispersion 
may be too simplistic to adequately describe the distribution. The DGLM, on the 
other hand, models two distributional parameters for each risk and thereby has 
greater flexibility to fit the distributional curves.

• GLMs that use the Tweedie distribution to model pure premium or loss ratio, 
by keeping the dispersion parameter constant, contain the implicit assumption 
that all predictors have the same directional effect on frequency and severity. (See 
Section 2.7.3 for further discussion on this.) The DGLM, on the other hand, by 
allowing the dispersion parameter to vary, provides the flexibility for the model to 
mold itself to the frequency and severity effects observed in the data.

9.3. Generalized Additive Models (GAMs)
As noted in the introduction to this chapter, a hallmark assumption of the GLM 

is linearity in the predictors. While non-linear effects can be accommodated by 
adding various transformations of the predictors into the linear equation, those are 
workarounds that must be specified manually.

The generalized additive model (GAM) is a GLM-like model that handles non-
linearity natively. The mathematical specification of a GAM is as follows:

∼y Exponentiali im f( ), (25)

g f x f x f xi i i p ipm b ( )( ) ( ) ( )= + + + +. . . (26)0 1 1 2 2

Equation 25 is identical to equation 1. GAMs, like GLMs, assume the random 
component of the outcome to follow an exponential family distribution.

Equation 26 is similar to equation 2, but with an important twist: the addends making 
up the linear predictor are no longer linear functions of the predictors—rather, they are 
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any arbitrary functions of the predictors. Those functions, denoted f1(.) . . . fn(.) specify the 
effects of the predictors on the (transformed) mean response as smooth curves. The shapes 
of these curves are estimated by the GAM software.

Note that the “additive” of “generalized additive model” refers to the fact that 
the linear predictor is a series of additive terms (though free from the constraint of 
linearity). As with a GLM, we can specify a log link, which would turn the model 
multiplicative.

Unlike in a GLM, where the effect of a variable on the response can be easily 
determined by examining its coefficient, for a GAM we are provided no such convenient 
numeric description of the effect. As such, predictor effects must be assessed graphically. 
Figure 24 shows examples of such graphs, using the example severity model discussed 
back in Section 5.4. For this illustration, two continuous variables—building age and 
amount of insurance, both logged—are included in a GAM, and their estimated smooth 
functions are graphed in the left and right panels, respectively.

For building age, the GAM estimated a clearly non-linear function, with mean 
severity first rising, reaching a peak at around building age e2.8 = 16 years, then 
declining. (Compare this to Figures 10 and 11.) For amount of insurance, on the other 
hand, although the GAM was free to fit any arbitrary function, the one it estimated is 
nearly linear (albeit with some curvature), indicating that a linear fit would probably 
suffice for this variable.

The GAM allows us to choose from among several different methods for estimating 
the smooth functions; we will not delve into those details here. Each of those methods 
allows us to specify parameters that control the degree of smoothness for each function. 
Those parameters must be fine-tuned carefully, as allowing for too-flexible a function 
runs the risk of overfitting.

Implementation.  GAMs are available through the R packages “gam” or “mgcv,” or 
through PROC GAM in SAS.
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9.4. MARS Models
Another GLM variant that is great at handling non-linearities is multivariate 

adaptive regression splines, or MARS. Rather than fit smooth functions for the 
predictors, as does the GAM discussed in the preceding section, MARS models operate 
by incorporating piecewise linear functions, or hinge functions, into a regular GLM. 
These hinge functions are the same as those discussed in Section 5.4.4. However, in 
that section we manually created the functions and determined cut points by eyeballing 
partial residual plots; MARS models create the functions and optimize the cut points 
automatically.

To illustrate, we continue with our example severity model of the previous section. 
This time, we will use a MARS model to capture potential non-linearity in the building 
age and amount of insurance variables. Table 14 shows the portion of the resulting 
coefficient table relating to those two variables.

In the output above, the function h(.) refers to the “hinge function” discussed in  
Section 5.4.4. For example, “h(log(AoC)-1.94591)” is defined as max(log(AoC )- 
1.94591,0).

Looking at the three hinge functions for building age, notice that this handling of 
that variable is fairly similar to the piecewise linear functions we set up in Section 5.4.4, 
which had cut points at 2.75 and 3.5. The MARS model also found another cut point 
at 1.95. MARS did not include the unaltered log(AoC) term in this model, meaning 
that the response curve for log(AoC) below 1.95 is flat. (In a practical sense, that means 
this model would not differentiate between buildings of ages 1 to 7 years.)

Figure 25 graphs the response curves indicated by this model for those two variables. 
The ×’s mark the locations of the cut points. Compare those to the curves indicated by 
the GAM output of the previous section.

As with GAMs, MARS has tuning parameters to control the flexibility of the fit. 
A more flexible model will create more cut points, allowing for finer segmentation. Of 
course, with that additional flexibility comes the risk of chasing noise.

Table 14.  Partial Output of MARS  
Coefficient Table

Parameter Estimate Std. Error p-Value

. . . . . . . . . . . .

‘h(log(AoC)-1.94591)’ 1.8977 0.1976 <0.0001

‘h(log(AoC)-2.70805)’ -2.9557 0.2598 <0.0001

‘h(log(AoC)-3.46574)’ 1.2980 0.3457 0.0002

‘h(log(aoi)-9.39124)’ 0.3949 0.0359 <0.0001

‘h(log(aoi)-13.2124)’ 0.0611 0.0657 0.3526

‘h(log(aoi)-15.7578)’ 0.7151 0.2263 0.0016

. . . . . . . . . . . .
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In addition to its natural ability to handle non-linearities, MARS has a number of 
additional highly useful features, including:

• It performs its own variable selection. Unlike a GLM—which will generate a coef-
ficient for each predictor input by the user—MARS will keep only those that are 
significant. (Tuning parameters are available to control how many variables are 
retained.)

• It can also search for significant interactions. It is quite flexible in this regard; in 
addition to the 2-way interactions discussed in Section 5.6, it can search for 3-way 
(or higher degree) interactions, as well as interactions among the piecewise linear 
functions.

Even where we require our final model to be in the form of a standard GLM, MARS 
may still be a very valuable tool in the model refinement process: we can run a MARS 
model on the data, examine its output—hinge functions it created, interactions it 
discovered, and so on—and copy whichever terms we like into our GLM. Consider the 
output shown in Table 14; it is very easy to simply replicate those same hinge functions 
in our GLM, and get the same benefit of the non-linear fit.

Used in this way, MARS may uncover non-linear transformations or interactions 
we may not have thought to try. Great care needs to be taken, though, as such a “deep 
search” through the data can easily turn up spurious effects.

Implementation.  MARS is available as commercial software from Salford Systems. 
Implementations of the same procedure (not called MARS, due to Salford Systems’ 
trademark on the name) are available through the “earth” package in R and PROC 
ADAPTIVEREG in SAS (beginning with SAS/STAT version 13.1).

9.5. Elastic Net GLMs
When modeling in situations where there is a large number of potential predictor 

variables, overfitting can be a real concern for GLMs. GLMs make full use of all the 
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predictors fed into it to fit the training data as best as possible—that is, it will find 
coefficients for all predictors such that the deviance of the training set is minimized. 
Including too many predictors will cause the model to pick up random noise in the 
training data, yielding a model that may perform poorly on unseen data. In such a 
scenario, variable selection—choosing the right variables to include in the model while 
omitting the others—can be quite challenging.

Elastic net GLMs provide a powerful means of protecting against overfitting even 
in the presence of many predictors. Elastic nets GLMs are, at the core, identical to GLMs 
in their mathematical specification. The chief difference is in the method by which the 
coefficients are fit. Rather than aggressively minimizing deviance on the training set—as 
a regular GLM would—elastic nets enable you to constrain the fit, by minimizing a 
function that is deviance subject to a penalty term for the size and magnitude of the 
coefficients. This penalty term can be fine-tuned to allow you to find the right balance 
where the model fits the training data well—but at the same time, the coefficients of 
the model are not too large.

The function minimized by elastic nets is as follows:17

Deviance l a b a b∑∑( )( )+ + −1
1
2

(27)2

The first additive term of the above expression is just the GLM deviance; if this were 
a regular GLM, we’d be minimizing just that. The elastic net adds the part following 
the plus sign, called the penalty term. Let’s examine that closely.

Inside the parentheses is a weighted average of the sum of the absolute values of the 
coefficients and the halved sum of squared coefficients, with the weights determined 
by a , a parameter between 0 and 1 that we control. This use of a weighted average is 
primarily due to the fact that this model is a generalization of two earlier variations on 
this same concept: the lasso model, which uses absolute value of coefficients, and ridge 
model, which uses squared coefficients. The important thing to recognize, though, is 
that the terms inside the parentheses yield an increasing function of the magnitude of 
the coefficients, or the degree by which the coefficients deviate from zero. Thus, a greater 
penalty is applied for larger coefficients.18

The more important tuning parameter in Equation 27 is the l that sits outside 
the parentheses. This allows us to control the severity of the penalty that gets applied. 
The practical effect of raising l is that it forces coefficients to shrink closer to zero, 
to compensate for the increased penalty, in minimizing Equation 27. Under certain  

17 In Equation 27, the vector of coefficients represented by b  does not include b 0, the intercept term, which does 
not contribute to the penalty.

18 In elastic net models, all predictor variables are automatically centered and scaled prior to running the model. 
This way, the resulting b  coefficients are on similar scales, and so the magnitude of deviation from zero means 
roughly the same thing for all variables, regardless of the scales of the original variables. Note, however, that 
most implementations of elastic nets will return the coefficients on the scales of the original variables, so this 
standardization that happens behind the scenes poses no obstacle to implementation of the resulting model.
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conditions, some less-important predictors will be assigned coefficients of zero (effectively 
removing them from the model entirely).

In Figure 26 we illustrate this effect for a simple model that has five predictors, 
which we name A through E. Each predictor is represented by a different curve. For 
each, the value that the coefficient assigns to the predictor is plotted on the y-axis for 
different values of l , with l  decreasing from left to right along the x-axis.

At the far left of the graph—where l  is at its highest—the penalty for coefficient 
size is severe, and so no variables make it in with a non-zero coefficient. As we move 
rightward, dialing down l  and thereby easing up on the penalty, Variable E—clearly the 
most significant variable here—enters our model and grows in influence as l  declines. 
Moving farther to the right, more variables make their way in and their coefficients 
grow—eventually converging toward the maximum likelihood estimates that a regular 
GLM would give them.

In practice, the l  parameter is usually fine-tuned through cross validation. Doing 
so produces a model that is likely to perform better on unseen data than would a 
regular GLM. After all, a GLM is just a special case of the elastic net (where l  = 0) 
and so the fine-tuning procedure has the flexibility to produce a standard GLM if 
in fact it is the best model. Usually, though, the model can be improved by setting a 
non-zero penalty.

As we have seen, a non-zero penalty causes the model parameters to exhibit the 
shrinkage effect that is characteristic of actuarial credibility models as well as GLMMs 
discussed above. In fact, it has been shown that elastic nets bear direct relationships 
to many classical credibility models.19 Thus, as with GLMMs discussed above, elastic 
nets provide a convenient means of incorporating familiar credibility concepts into the 
GLM framework.

19 See Miller (2015) for further discussion on this equivalence and its derivation. Many thanks to Dmitriy Guller 
for bringing this result to our attention.
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Elastic nets also have the advantage of being able to perform automatic variable 
selection, as variables that are not important enough to justify their inclusion in the 
model under the penalty constraint will be removed.

Furthermore, elastic nets perform much better than GLMs in the face of highly 
correlated predictors. The penalty term provides protection against the coefficients 
“blowing up” as they might in a GLM. Rather, one or two variables of a group of correlated 
predictors will typically be selected, and they will be assigned moderate coefficients.

The main disadvantage of elastic nets is that they are much more computationally 
complex than standard GLMs. The computational resources and time needed to fit 
elastic nets and optimize l  may make elastic nets impractical for large datasets.

Implementation.  Elastic nets are implemented in the “glmnet” package in R.20 
It is also available in SAS (beginning with SAS/STAT version 13.1) using PROC 
GLMSELECT.

20 As of this writing, the glmnet package does not support the gamma or Tweedie distributions. Fortunately, 
the “HDtweedie” package provides an implementation of glmnet for the Tweedie distribution; the gamma 
distribution is accessible through this package by setting the Tweedie p parameter to be 2.
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