
ECP Milestone Report

Public release of CEED 1.0

WBS 2.2.6.06, Milestone CEED-MS13

Jed Brown

Ahmad Abdelfata

Jean-Sylvain Camier

Veselin Dobrev

Jack Dongarra

Paul Fischer

Aaron Fisher

Yohann Dudouit

Azzam Haidar

Kazem Kamran

Tzanio Kolev

Misun Min

Thilina Ratnayaka

Mark Shephard

Cameron Smith

Stanimire Tomov

Vladimir Tomov

Tim Warburton

March 31, 2018

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of

Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public

from the following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone 703-605-6000 (1-800-553-6847)

TDD 703-487-4639

Fax 703-605-6900

E-mail info@ntis.gov

Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data

Exchange representatives, and International Nuclear Information System representatives

from the following source:

O�ce of Scientific and Technical Information

PO Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reports@osti.gov

Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency

of the United States Government. Neither the United States Government

nor any agency thereof, nor any of their employees, makes any warranty,

express or implied, or assumes any legal liability or responsibility for

the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial

product, process, or service by trade name, trademark, manufacturer,

or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or any

agency thereof. The views and opinions of authors expressed herein do

not necessarily state or reflect those of the United States Government or

any agency thereof.

ECP Milestone Report
Public release of CEED 1.0

WBS 2.2.6.06, Milestone CEED-MS13

O�ce of Advanced Scientific Computing Research
O�ce of Science

US Department of Energy

O�ce of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

March 31, 2018

Exascale Computing Project (ECP) iii CEED-MS13

ECP Milestone Report
Public release of CEED 1.0

WBS 2.2.6.06, Milestone CEED-MS13

Approvals

Submitted by:

Tzanio Kolev, LLNL Date
CEED PI

Approval:

Andrew R. Siegel, Argonne National Laboratory Date
Director, Applications Development
Exascale Computing Project

Exascale Computing Project (ECP) iv CEED-MS13

Revision Log

Version Creation Date Description Approval Date

1.0 March 31, 2018 Original

Exascale Computing Project (ECP) v CEED-MS13

EXECUTIVE SUMMARY

In this milestone, we created and made publicly available the first full CEED software distribution, release
CEED 1.0, consisting of software components such as MFEM, Nek5000, PETSc, MAGMA, OCCA, etc.,
treated as dependencies of CEED. The release consists of 12 integrated Spack packages for libCEED, mfem,
nek5000, nekcem, laghos, nekbone, hpgmg, occa, magma, gslib, petsc and pumi plus a new CEED meta-
package. We choose to use the Spack package manager to provide a common, easy-to-use build environment,
where the user can build the CEED distribution with all dependencies.

The artifacts delivered include a consistent build system based on the above 13 Spack packages, docu-
mentation and verification of the build process, as well as improvements in the integration between di↵erent
CEED components. As part of CEED 1.0, we also released the next version of libCEED, which contains
major improvements in the OCCA backend and a new MAGMA backend. See the CEED website, http:
//ceed.exascaleproject.org/ceed-1.0/ and the CEED GitHub organization, http://github.com/ceed
for more details.

In addition to details and results from the above R&D e↵orts, in this document we are also reporting
on other project-wide activities performed in Q2 of FY18, including: benchmark release by the Paranumal
team, collaboration with SciDAC projects, organization of batched BLAS mini-symposium at SIAM PP18,
collaboration with Zfp, the OCCA 1.0-alpha pre-release, and other outreach e↵orts.

Exascale Computing Project (ECP) vi CEED-MS13

TABLE OF CONTENTS

Executive Summary vi

List of Figures viii

1 Introduction 1

2 The CEED 1.0 Distribution 1

2.1 Spack packages . 1
2.2 Testing and documentation . 2
2.3 libCEED improvements . 4

2.3.1 OCCA backend . 4
2.3.2 New MAGMA backend . 5

2.4 Interoperability . 6
2.4.1 Parallel conforming mesh adaptation . 6

3 CEED Kernels and Benchmarks 9

3.1 Bake-o↵ kernels (BKs) . 9
3.2 New fused GPU kernels using register shu✏ing . 9

3.2.1 Overview . 9
3.2.2 Preliminary results . 10

3.3 Optimizing finite element sti↵ness operations on the NVIDIA V100 SXM2 GPU 11
3.3.1 Micro-benchmarking the NVIDIA V100 SXM2 GPU 12
3.3.2 Revisiting the VT CEED hexahedral bake-o↵ kernels on the NVIDIA V100 13
3.3.3 Optimizing finite element sti↵ness action kernels for a�ne tetrahedral elements 13
3.3.4 Appendix: Code listing for ellipticAxTet3DK10.okl . 17

3.4 MAGMA batched kernels . 18

4 CEED Applications and Miniapps 22

4.1 ExaSMR . 22
4.2 MARBL . 22
4.3 ExaWind . 23
4.4 Laghos . 23

4.4.1 Laghos developments . 23
4.4.2 Initial RAJA and pure CPU, GPU ports . 23
4.4.3 First wave results . 25
4.4.4 Second wave results . 27
4.4.5 Third wave results . 27

5 Other Project Activities 29

5.1 Benchmark release by Paranumal team . 29
5.2 SciDAC collaborations . 29
5.3 Batched BLAS minisymposium at SIAM PP18 . 31
5.4 Collaboration with Zfp . 31
5.5 OCCA 1.0-alpha pre-release . 31
5.6 Outreach . 31

6 Conclusion 31

Exascale Computing Project (ECP) vii CEED-MS13

LIST OF FIGURES

1 Machines used to verify the CEED 1.0 distribution . 3
2 libCEED allows di↵erent ECP applications to share highly optimized discretization kernels . 4
3 Connections between the CEED software components created during the project (before: left,

after: right). Discretization libraries are in blue, miniapps in green, performance libraries in
orange, and discretization tools in purple. Note the central role of libCEED. 7

4 An example of order elevation on complex geometry: linear element (left) and quadratic
element (right) . 8

5 Curved mesh adaptation. 3D CAD model of the pillbox (top) with the loaded surface colored,
side view of the initial mesh (bottom left) and final adapted mesh after deformation (bottom
right). 8

6 Performance on Pascal P100 for BK 0.5 . 10
7 Performance on Pascal P100 for BK 1.0 . 11
8 Left: Roofline model for the NVIDIA V100 SXM2 16GB Volta class GPU. Each shaded region

corresponds to the target band for a kernel with a given number of shared+L1 bytes accessed
per flop. Right: occaBench benchmark performance results for mixed streaming and compute
on NVIDIA V100 SXM2 16GB Volta class GPU. 12

9 VT experiments on an NVIDIA V100 SXM2 GPU with 4096 hexes. Left: BK1 with (N + 2)3

intermediate Gauss Legendre quadrature nodes. Middle: BK3 with (N+2)3 intermediate Gauss
Legendre quadrature nodes. Right: BK3 with (N + 1)3 Gauss-Lobatto-Legendre quadrature
nodes. 13

10 Performance results for the BK3 bake-o↵ kernel on a mesh of 320,000 a�ne tetrahedral elements
on Volta Titan V GPU. Left: FP64 floating point performance for kernels K0:10 for polynomial
degrees 1:8. Right: FP64 throughput measured in giga-nodes per second. 15

11 Left: FP64 GFLOPS/s performance of the optimal kernel from K0:10 for each polynomial
degree on a V100. Right: throughput measured in billion nodes per second (GNODES/s) on a
single V100. 15

12 Left: FP64 GFLOPS/s performance of the cuBLAS implementation on a V100. Right:
throughput measured in billion nodes per second (GNODES/s) on V100. 17

13 Memory hierarchies of the experimental CPU and GPU hardware targeted for development
and optimization of Batched BLAS in MAGMA. 19

14 Batched DGEMM on P100 GPU (Left) and V100 GPU (Right). 19
15 Performance comparison (in Gflop/s) of fused batched DGEMMs on P100 GPU (Left) vs.

non-fused batched DGEMMs on V100 GPU (Right). 20
16 Batched DGEMM in cuBLAS and MAGMA vs. Batched fused DGEMM in MAGMA on

matrices of sizes coming from real applications (in the MFEM library). The speedups reported
are compared to the cuBLAS non-fused batched DGEMMs. 21

17 Laghos P0,2D serial speedup: RAJA/Master and OCCA/Master 25
18 Laghos P0,2D test case: CUDA Speedup: OCCA/RAJA . 27
19 Laghos Kernels serial speedup on Ray with templated arguments 28
20 Laghos P1,2D CUDA speedup: OCCA/templated-RAJA on GeForce GTX 1070 28
21 Laghos P0,2D CUDA speedup: OCCA/templated-RAJA on Ray 29
22 Laghos P1,3D CUDA NVVP Kernels profile . 29
23 Laghos P1,3D CUDA Kernels speedup vs. OCCA . 30

Exascale Computing Project (ECP) viii CEED-MS13

1. INTRODUCTION

In this milestone, we created and made publicly available the first full CEED software distribution, release
CEED 1.0, consisting of software components such as MFEM, Nek5000, PETSc, MAGMA, OCCA, etc.,
treated as dependencies of CEED. The release consists of 12 integrated Spack packages for libCEED, mfem,
nek5000, nekcem, laghos, nekbone, hpgmg, occa, magma, gslib, petsc and pumi plus a new CEED meta-
package. We choose to use the Spack package manager to provide a common, easy-to-use build environment,
where the user can build the CEED distribution with all dependencies.

The artifacts delivered include a consistent build system based on the above 13 Spack packages, docu-
mentation and verification of the build process, as well as improvements in the integration between di↵erent
CEED components. As part of CEED 1.0, we also released the next version of libCEED, which contains
major improvements in the OCCA backend and a new MAGMA backend. See the CEED website, http:
//ceed.exascaleproject.org/ceed-1.0/ and the CEED GitHub organization, http://github.com/ceed
for more details.

2. THE CEED 1.0 DISTRIBUTION

The CEED distribution is a collection of software packages that integrate to enable e�cient discretization
algorithms for high-order PDE-based applications on unstructured grids.

CEED is using the Spack package manager to enable the compatible building and installation of its
software components. Spack is a package manager for scientific software that supports multiple versions,
configurations, platforms, and compilers. While Spack does not change the build system that already exists
in each CEED component, it coordinates the dependencies between these components and enables them to
be build with the same compilers and options.

2.1 Spack packages

In its initial version, CEED 1.0, the CEED software suite consists of the following 12 packages, plus a new
CEED meta-package in Spack:

• GSLIB

• HPGMG

• Laghos

• libCEED

• MAGMA

• MFEM

• Nek5000

• Nekbone

• NekCEM

• PETSc

• PUMI

• OCCA

If Spack is already installed on your system and is part of your PATH, you can install the CEED software
simply with:

1 spack install -v ceed

Exascale Computing Project (ECP) 1 CEED-MS13

To enable package testing during the build process, use instead:

1 spack install -v --test=all ceed

If you don’t have Spack, you can download it and install CEED with the following commands:

1 git clone https:// github.com/spack/spack.git
2 cd spack
3 ./bin/spack install -v ceed

Spack will install the CEED packages (and the libraries they depend on) in a subtree of ./opt/spack/
that is specific for the architecture and compiler used (multiple compiler and/or architecture builds can
coexist in a single Spack directory). You can then use this installation to build for example MFEM-codes as
follows:

1 git clone git@github.com:mfem/mfem.git
2 cd mfem; git checkout v3.3.2
3 cd examples
4 make CONFIG_MK=‘spack location -i mfem ‘/ share/mfem/config.mk
5 cd ../ miniapps/electromagnetics
6 make CONFIG_MK=‘spack location -i mfem ‘/ share/mfem/config.mk

Similarly, libCEED-based applications can be build with

1 git clone git@github.com:CEED/libCEED.git
2 cd libCEED/examples/ceed
3 make CEED_DIR=‘spack location -i libceed ‘
4 ./ex1 -ceed /cpu/self

2.2 Testing and documentation

The build process has been documented on the CEED project website at to make it easier for application
scientist that may be new to Spack to install and use our software, see http://ceed.exascaleproject.
org/ceed-1.0. This documentation includes a comprehansive collection of machine-specific settings for the
leadership computing facilities at ALCF, OLCF, NERSC and LLNL. Such configuration files can significantly
speed-up the Spack installation by providing the locations of common build tools (e.g. MPI). One example is
the packages.yaml file for the TOSS3 system type at Livermore Computing.

1 packages:
2 all:
3 compiler: [intel , gcc , clang , pgi]
4 providers:
5 mpi: [mvapich2 , mpich , openmpi]
6 blas: [intel -mkl , openblas]
7 lapack: [intel -mkl , openblas]
8 intel -mkl:
9 paths:

10 intel -mkl@2018 .0.128: /usr/tce/packages/mkl/mkl -2018.0
11 buildable: False
12 mvapich2:
13 paths:
14 mvapich2@2 .2% intel@18 .0.1: /usr/tce/packages/mvapich2/mvapich2 -2.2-intel -18.0.1
15 mvapich2@2 .2% gcc@4 .9.3: /usr/tce/packages/mvapich2/mvapich2 -2.2-gcc -4.9.3
16 mvapich2@2 .2% gcc@7 .1.0: /usr/tce/packages/mvapich2/mvapich2 -2.2-gcc -7.1.0
17 buildable: False
18

19 cmake:
20 paths:
21 cmake@3 .8.2: /usr/tce/packages/cmake/cmake -3.8.2
22 buildable: False
23 python:
24 paths:
25 python@2 .7.14: /usr/tce/packages/python/python -2.7.14
26 buildable: False
27 zlib:
28 paths:
29 zlib@1 .2.7: /usr
30 buildable: False

Exascale Computing Project (ECP) 2 CEED-MS13

Another example is the packages.yaml file for ALCF’s Theta machine:

1 packages:
2 all:
3 compiler: [intel@16 .0.3.210 , gcc@5 .3.0]
4 providers:
5 mpi: [mpich]
6 intel -mkl:
7 paths:
8 intel -mkl@16 .0.3.210% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /opt/intel
9 buildable: False

10 mpich:
11 modules:
12 mpich@7 .6.3% gcc@5 .3.0 arch=cray -CNL -mic_knl: cray -mpich /7.6.3
13 mpich@7 .6.3% intel@16 .0.3.210 arch=cray -CNL -mic_knl: cray -mpich /7.6.3
14 buildable: False
15

16 cmake:
17 paths:
18 cmake@3 .5.2% gcc@5 .3.0 arch=cray -CNL -mic_knl: /usr
19 cmake@3 .5.2% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /usr
20 buildable: False
21 libx11:
22 paths:
23 libx11@system: /usr
24 version: [system]
25 buildable: False
26 libxt:
27 paths:
28 libxt@system: /usr
29 version: [system]
30 buildable: False
31 python:
32 paths:
33 python@2 .7.13% gcc@5 .3.0 arch=cray -CNL -mic_knl: /usr
34 python@2 .7.13% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /usr
35 buildable: False

We developed and tested machine-specific configurations for Spack packages and compilers on a variety of
other machines. The full list is presented in Figure 1.

f2f7287

786 lines (668 sloc) 24.3 KB

spack install ceed

darwin-x86_64 �

linux-rhel7-x86_64 �

cray-CNL-haswell �

cray-CNL-ivybridge �

cray-CNL-mic_knl �

cray-cnl5-interlagos �

blueos_3_ppc64le_ib � �

toss_3_x86_64_ib � �

Figure 1: Machines used to verify the CEED 1.0 distribution

Exascale Computing Project (ECP) 3 CEED-MS13

2.3 libCEED improvements

The CEED API library, libCEED, was released in milestone CEED-MS10 as a lightweight portable library
that allows a wide variety of ECP applications to share highly optimized discretization kernels. This central
role of libCEED is illustrated in Figure 2.

A main component of the CEED 1.0 e↵ort, was the continued improvement of libCEED and specifically
the release of its next version, libCEED-0.2. A lot of that work was focused on adding new backends and
extending the existing ones as described below.

libCEED

MAGMA

OCCA

GSLIB

HPGMG

Nek5000

Nekbone

NekCEM

PUMI

PETSc
GPU

CPU

Laghos

MFEM

NATIVE

libCEED drives ECP Applications

Figure 2: libCEED allows di↵erent ECP applications to share highly optimized

discretization kernels

2.3.1 OCCA backend

The OCCA backend saw signifcant improvements from libCEED-0.1 to libCEED-0.2. With the latest version,
four di↵erent OCCA backends are available to libCEED applications:

• /cpu/occa – serial backend

• /gpu/occa – CUDA backend

• /omp/occa – OpenMP backend

• /ocl/occa – OpenCL backend

We emphasize that a single backend implementation can be shared between very di↵erent frontend applications.
To illustrate this point we provide below a complete demo for installing CEED 1.0 and using the same
/gpu/occa libCEED kernels in MFEM, PETSc and Nek example codes.

1 # Install CEED 1.0 distribution via Spack
2 git clone git@github.com:spack/spack.git
3 cd spack
4 spack install ceed+cuda
5

6 # Setup CEED component directories
7 setenv CEED_DIR ‘spack location -i libceed ‘
8 setenv MFEM_DIR ‘spack location -i mfem ‘
9 setenv PETSC_DIR ‘spack location -i petsc ‘

10 setenv NEK5K_DIR ‘spack location -i nek5000 ‘

Exascale Computing Project (ECP) 4 CEED-MS13

11

12 # Clone libCEED examples directory as proxy for libCEED -based codes
13 git clone git@github.com:CEED/libCEED.git
14 mv libCEED/examples ceed -examples
15 rm -rf libCEED
16

17 # libCEED examples
18 cd ceed -examples/ceed
19 make
20 ./ex1 -ceed /gpu/occa
21 cd ../..
22

23 # MFEM+libCEED examples
24 cd ceed -examples/mfem
25 make
26 ./bp1 -ceed /gpu/occa -no-vis
27 cd ../..
28

29 # PETSc+libCEED examples
30 cd ceed -examples/petsc
31 make
32 ./bp1 -ceed /gpu/occa
33 cd ../..
34

35 # Nek+libCEED examples
36 cd ceed -examples/nek5000
37 ./make -nek -examples.sh
38 ./run -nek -example.sh -ceed /gpu/occa -b 3
39 cd ../..

2.3.2 New MAGMA backend

As part of CEED 1.0 we integrated a MAGMA backend in libCEED. This is our initial integration that sets
up the framework of using MAGMA and provides the libCEED functionality through MAGMA kernels as one
of libCEED’s computational backends. As any other backend, the MAGMA backend provides extended basic
data structures for CeedVector, CeedElemRestriction, and CeedOperator, and implements the fundamental
CEED building blocks to work with the new data structures.

In general, the MAGMA-specific data structures keep the libCEED pointers to CPU data but also add
corresponding device (e.g., GPU) pointers to the data. Coherency is handled internally, and thus seamlessly
to the user, through the functions/methods that are provided to support them. These functions are specified
and follow the libCEED API. For example, CeedVector Magma and CeedElemRestriction Magma are given
as follows:

1 typedef struct {
2 CeedScalar *array , *darray;
3 int own_ , down_;
4 } CeedVector_Magma;
5

6 typedef struct {
7 CeedInt *indices , *dindices;
8 int own_ , down_;
9 } CeedElemRestriction_Magma;

Here array is pointer to CPU/Host memory and darray is the corresponding GPU/Device pointer. The
added ’d’ superscript always indicates that certain data/pointer is on the device. Either of the CPU or device
data, pointed to by these pointers, can be owned (memory has to be freed when destroying the structure) or
not, which is controlled by the own and down fields for the host and device, respectively. This allows us
to run certain parts of the code on CPU or on the devices, or both, and subsequently add some run-time
scheduling mechanism, if needed.

There are two ways that MAGMA kernels can be invoked in this backend. The first one is if the
functionality needed is already implemented in MAGMA. Examples are the tensor contractions that we
are developing, e.g., as described in Section 3.4. The second way is for kernels/computations that are not
available. Often, these are not computationally intensive kernels, and therefore has not been need to port

Exascale Computing Project (ECP) 5 CEED-MS13

them in high-performance numerical libraries, but still for completeness and in order to avoid data transfers
between device and CPU is best to have them available on the device as well. For these cases we provide a
MAGMA code generator that translates code from a MAGMA domain specific language (DSL) to CUDA.
We have identified a number of templates/motifs to support and can add others as needed. We keep this port
for now with a code generator, vs. including static code, in order to allow easily to modify and tune the
templates later without changing the libCEED codes.

Here is an example of using the generator and the MAGMA DSL API. The following code is part of the
CPU CeedElemRestrictionApply routine in libCEED.

1 const CeedScalar *uu;
2 CeedScalar *vv;
3 ierr = CeedVectorGetArrayRead(u, CEED_MEM_HOST , &uu); CeedChk(ierr);
4 ierr = CeedVectorGetArray(v, CEED_MEM_HOST , &vv); CeedChk(ierr);
5 ...
6 for (CeedInt e = 0; e < nelem; e++)
7 for (CeedInt d = 0; d < ncomp; d++)
8 for (CeedInt i=0; i < elemsize; i++)
9 vv[i + elemsize *(d+ncomp*e)] = uu[indices[i+elemsize*e]+ndof*d];

10 ...
11 for (CeedInt e = 0; e < nelem; e++)
12 for (CeedInt d = 0; d < ncomp; d++)
13 for (CeedInt i=0; i < elemsize; i++)
14 vv[indices[i + elemsize*e]+ndof*d] += uu[i + elemsize *(d+e*ncomp)];

Here the uu and vv data pointers are obtained from the u and v CeedVectors, respectively, and subsequently
vv is modified on the CPU. The corresponding device code, implemented using MAGMA’s DSL, is given as
follows:

1 const CeedScalar *uu;
2 CeedScalar *vv;
3 ierr = CeedVectorGetArrayRead(u, CEED_MEM_DEVICE , &uu); CeedChk(ierr);
4 ierr = CeedVectorGetArray(v, CEED_MEM_DEVICE , &vv); CeedChk(ierr);
5 ...
6 magma_template <<e=0:nelem , d=0:ncomp , i=0: elemsize >>
7 (const CeedScalar *uu , CeedScalar *vv , CeedInt *dindices , int ndof) {
8 vv[i + iend*(d+dend*e)] = uu[dindices[i+iend*e]+ndof*d];
9 }

10 ...
11 magma_template <<e=0:nelem , d=0:ncomp , i=0: elemsize >>
12 (const CeedScalar *uu , CeedScalar *vv , CeedInt *dindices , CeedInt ndof) {
13 magmablas_datomic_add(&vv[dindices[i+iend*e]+ndof*d], uu[i+iend*(d+e*dend)]);
14 }

Currently, the tensor contractions needed are called by sending the data needed to the device, performing
the computations using MAGMA, and sending back the results. This is just a functionality port for now to
verify and pass all error/correctness checks the tests. Performance will be targeted next, when we minimize
the data transfers and add further optimizations.

2.4 Interoperability

In addition to improving each of the software components in CEED, the project has also been working on
improving the interoperability between them, with libCEED, the common API we are developing, a prime
example. There are, however, many other synergistic connections that we have developed inside CEED, as
presented in Figure 3. The rest of this section is devoted on providing a short description of one of these
connections: between PUMI and MFEM.

2.4.1 Parallel conforming mesh adaptation

The Parallel Unstructured Mesh Infrastructure (PUMI) [11, 5, 4] and mesh adaptation component MeshAdapt
[8, 9] have been integrated into the MFEM to support the conforming adaptation of high-order curved meshes.
PUMI, provides management of distributed partitioned meshes by providing a full range of services from
supporting mesh entity adjacencies, inter-part communications, read only copies, mesh migration, mesh entity
creation and deletion, relating field information to mesh entities and maintaining the association of mesh

Exascale Computing Project (ECP) 6 CEED-MS13

Figure 3: Connections between the CEED software components created during

the project (before: left, after: right). Discretization libraries are in blue, miniapps

in green, performance libraries in orange, and discretization tools in purple. Note

the central role of libCEED.

entities to the original domain topological entities. PUMI is capable of handling general non-manifold models
and e↵ectively supporting automated adaptive analysis with a full range of operations on massively parallel
computers. It consists of five libraries responsible for, phased message passing and thread management,
geometric model interface, unstructured mesh representation, mesh partitioning and field management.

PUMI’s MeshAdapt module provides high order conforming unstructured curved mesh adaptation on
general 3D domains. The current starting point for an adaptive simulation can be a linear or quadratic
geometry mesh. In this case the geometric representation of the mesh is increased to meet the required
geometric accuracy as dictated by the order of finite element basis functions (currently mesh geometry up
to order 6 is supported). After the order elevation, load balancing [12] is performed to maintain balanced
distribution of computation among processes. The finite element solver is called, and the solution field is
obtained. To adaptively improve solution accuracy PUMI APIs are used to extract the field information
needed to perform error estimation and correction indication. The output of the correction process is mesh
size field which can be either an isotropic size field or an anisotropic mesh metric field. The mesh adaptation
process employs local curved mesh modification operators that check for unsatisfactory element shape quality,
and if there is any, improve the shape quality using proper local mesh modification operation such as edge/face
swap, and/or curved element reshape operations [8, 9]. The adapted mesh is dynamically load balanced and
the next analysis step is executed.

Currently the PUMI/MFEM integration in CEED supports conforming adaptation of unstructured
tetrahedral meshes. PUMI APIs are used to load the parallel mesh along with the model that can be either a
CAD model or a mesh model. If a CAD model, native or Parasolid, is provided, then the full range of mesh
geometric interrogations is available through the PUMI APIs.

In our MFEM implementation the desired geometric order is indicated by the -go argument at the
command line and the curvature is increased using a Bezier representation of the model (see Figure 4).
Afterwards the mesh is loaded into the MFEM parallel mesh data structures. Examples of this process with
explanation are provided in MFEM examples under the pumi subdirectory.

As the PUMI mesh is classified [2] on the CAD model, attributes can be directly assigned to the topological
entities of the geometric model. Once the mesh is loaded, classification is used to modify the attribute of
each boundary element. The same applies after each mesh modification process as the boundary conditions
are assigned to the CAD model and are not a↵ected by the mesh. Figure 5 shows an example of the mesh
adaptation procedure applied to a pillbox model of an accelerator cavity. The model is considered as a
multi-material cantilever beam and is solved for linear elasticity equation. A vertical Loading is applied to
the middle section that has the nominal sti↵ness of K=10 while the lower and upper section have the sti↵ness
of 100 and 1, respectively. A uniform first order tetrahedral mesh is used as the input. After loading, the
mesh geometric approximation is increased to second order and then the boundary conditions are assigned

Exascale Computing Project (ECP) 7 CEED-MS13

Figure 4: An example of order elevation on complex geometry: linear element

(left) and quadratic element (right)

using the classification, finally the elasticity problem is solved. Once the solution is obtained, SPR error
estimation is performed to provide the size field for each element and MeshAdapt is called to perform the
curved mesh adaptation.

Figure 5: Curved mesh adaptation. 3D CAD model of the pillbox (top) with

the loaded surface colored, side view of the initial mesh (bottom left) and final

adapted mesh after deformation (bottom right).

Exascale Computing Project (ECP) 8 CEED-MS13

3. CEED KERNELS AND BENCHMARKS

3.1 Bake-o↵ kernels (BKs)

In addition to the CEED Bake-o↵ Problems (BPs) introduced in CEED-MS6 and described on our website,
http://ceed.exascaleproject.org/bps. The CEED team has also introduced companion bake-o↵ kernels
that share the BP numbering but work on element (E-vector) level, i.e. they focus on the dense linear
algebra kernels, ignoring the parallel and element scatter/gather (the actions of P and G and their transposes
in the BP notation). A short summary of our benchmark and kernels is as follows:

Bake-o↵ Problems (BPs)

• BP1: scalar PCG with mass matrix, q = p+ 2

• BP2: vector PCG with mass matrix, q = p+ 2

• BP3: scalar PCG with sti↵ness matrix, q = p+ 2

• BP3.5: scalar PCG with sti↵ness matrix, q = p+ 1

• BP4: vector PCG with sti↵ness matrix, q = p+ 2

These are all T-vector-to-T-vector and consist of parallel scatter + element scatter + element evaluation
kernel + element gather + parallel gather. The case q = p + 1 correspond to using the same quadrature
points as the degrees of fredom.

Bake-o↵ Kernels (BKs)

• BK1: scalar E-vector-to-E-vector evaluation of mass matrix, q = p+ 2

• BK2: vector E-vector-to-E-vector evaluation of mass matrix, q = p+ 2

• BK3: scalar E-vector-to-E-vector evaluation of sti↵ness matrix, q = p+ 2

• BK3.5: scalar E-vector-to-E-vector evaluation of sti↵ness matrix, q = p+ 1

• BK4: vector E-vector-to-E-vector evaluation of sti↵ness matrix, q = p+ 2

The BKs are parallel to the BPs, except they do not include parallel and element scatter/gather (the actions
of P and G and their transposes).

3.2 New fused GPU kernels using register shu✏ing

3.2.1 Overview

In this section we describe new BK and BP algorithms that take advantage of the __shfl_sync() intrinsic to
avoid using shared memory for the computation. Using __shfl_sync() requires algorithms to be designed at
the warp level. This constraint results in a maximum block size of 32 threads on the NVidia GPUs considered
here. Therefore, no more than 32 threads can be used to compute the tensor contractions for a single element.
Ideally, we want to use as close as possible to 32 threads to use all available computational power. Each
thread is also limited by a maximum of 255 registers on the current GPU architecture. Using the smallest
number of registers can also improve GPU utilization, and thereby also increase performance. The following
paragraphs describe the di↵erent approaches explored so far for performing the tensor contraction on an
input tensor (degrees of freedom) of size N3.

3Dreg: The simplest approach is to use one thread to perform the entire fused tensor contraction for one
element. Since no communication occurs between threads, this approach does not require __shfl_sync().
This is highly e�cient, but is also highly limited by the maximum number of registers per thread. For even
moderate orders, the algorithm requires more registers than are available per thread and spills to local cache.
This algorithm becomes ine�cient as soon as it spills.

Exascale Computing Project (ECP) 9 CEED-MS13

2Dreg 1Dshfl: To overcome the limitation of the previous algorithm, this approach uses N threads per
element storing a plane of N2 values of the input tensor. The contractions inside each plane do not require
communication between threads, and __shfl_sync() is used for the remaining contractions between planes.
Theoretically up to N = 32 planes should be supported, but the register limitation occurs for substantially
smaller N . Since only N threads work on an element, the reads and writes cannot be coalesced unless the
input arrays are interleaved. It is not currently assumed that the input data can be easily stored in this
format, so the performance numbers below will be slightly lower due to this e↵ect.

1Dreg 2Dshfl: The register limitation of the 2Dreg 1Dshfl algorithm can be overcome by using N2

threads, each storing one column of N values of the input tensor. Therefore, __shfl_sync() is now used
to perform contractions inside planes of threads. This result in more __shfl_sync() contractions than the
previous algorithm. Unfortunately, this algorithm is quickly limited by the warp size (32 threads). N = 6
requires 36 threads communicating, thus this approach is limited to N < 6. Despite this drawback, there are
numerous benefits: the algorithm can be extended to BP3 because the number of registers is low.

1Dreg 2Dshfl 2cols: Instead of storing only one column per thread, this approach uses N2/2 threads,
each storing two columns of N values. Thus, it achieves a good balance between thread and register usage, in
fact up to N = 8 fits into the registers available on the GPU. This approach also works for BP3 up to N = 8.

3.2.2 Preliminary results

We show here preliminary results obtained with a NVidia Pascal P100 GPU. All of our di↵erent algorithms
– written directly in CUDA – are compared to the existing unoptimized baseline GPU implementation in
MFEM. This baseline kernel happens to be implemented with OCCA, but is not highly optimized and not
representative of OCCA performance in general.

Figures 7 and 6 show GFlops and Bandwidth performance obtained for BK1 and BK0.5 – a version of BK1
with q = p+ 1 respectively. We computed the maximum GFlops performance by considering the Flops/Byte
achievable at maximum bandwidth. Since these algorithms are bandwidth limited, we see that the bandwidth
usage directly drive the GFlops performance. The kernels achieve maximum performance when data can be
perfectly read and written. Thus, reading and writing in a so-called coalesced way is a major limiting factor
for these algorithms. Because of this, we see that the performance of BK1 is not as good as the performance of
BK0.5. Indeed, for certain orders the performance is impacted by the fact that not all threads of a warp are
reading and writing. This e↵ect is amplified when degrees of freedom and quadrature points are of di↵erent
sizes, as is the case in BK1. For this reason, we are exploring di↵erent algorithms to read and write perfectly
independently of the number of degrees of freedom and quadrature points.

Figure 6: Performance on Pascal P100 for BK 0.5

Exascale Computing Project (ECP) 10 CEED-MS13

Figure 7: Performance on Pascal P100 for BK 1.0

Table 1 shows a comparison of the performance of BP1 using 1Dreg 2Dshfl 2cols compared to the
unoptimized baseline implementation. These tables show the percentage of time spent in the most critical
parts of BP1. The scatter and gather algorithms are common for the baseline and optimized algorithms. The
Mult percentage corresponds to the time spent in the element level batched tensor contractions.

We see that even though the speedup obtained by our algorithm is significant over the baseline algorithm,
the overall speedup is limited due to the scatter and gather. This shows that fusing the scattering and the
gathering of degrees of freedom with the fused tensor contraction kernels will be critical.

Order Method Scatter (%) Mult (%) Gather (%) MDOF/S

2
baseline 44.49 24.8 17.15 447.85
optimized 52.16 11.68 20.14 511.07

4
baseline 21.20 47.72 10.21 715.97
optimized 33.59 16.46 16.14 1010.88

6
baseline 14.83 48.44 8.73 812.133
optimized 22.83 17.78 13.43 1001.57

Order Kernel Speedup Overall Speedup
2 ⇥2.5 ⇥1.14
4 ⇥4.6 ⇥1.41
6 ⇥4.2 ⇥1.23

Table 1: Performance for BP 1.0 using 1Dreg 2Dshfl 2cols vs baseline OCCA

implementation

3.3 Optimizing finite element sti↵ness operations on the NVIDIA V100 SXM2 GPU

The CEED team at Virginia Tech (VT) performed a detailed analysis of the NVIDIA V100 16GB SXM2
GPU (referred to V100 henceforth). Understanding the performance characteristics of this device was of
paramount performance in optimizing finite element sti↵ness matrix action kernels. In particular determining
performance limiters related to accessing global device memory, shared memory, as well as the nature of the
V100 shared memory and L1 cache was critical in guiding the choice of kernel optimizations. In Section 3.3.1
we describe steps taken to benchmark and model the performance of the V100.

In Section 3.3.2 we benchmark the performance of the hand tuned bake-o↵ kernels on the V100. In Section
3.3.3 we describe a sequence of progressively optimized finite element kernels developed for evaluating the
action of the sti↵ness matrix for a�ne geometry tetrahedral elements with Lagrange Warp & Blend basis up
to degree 8. The performance of these kernels was then compared against the performance of a new CUDA &

Exascale Computing Project (ECP) 11 CEED-MS13

cuBLAS based implementation discussed in Section 3.3.3. Both of these implementations will be released
during the next project period.

Finally, analysis of the compute kernels highlight how heavily the block dense elemental operator matrices
are compute bound so going forward we are investigating alternative polynomial basis choices that induces
sparse elemental sti↵ness matrices.

3.3.1 Micro-benchmarking the NVIDIA V100 SXM2 GPU

0 2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

Arithmetic Intensity (flops/byte)

G
FL

O
PS

/s

16 ≤ SB/F

 8 ≤ SB/F ≤ 16

 4 ≤ SB/F ≤ 8

 2 ≤ SB/F ≤ 4

 SB/F ≤ 2

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

Arithmetic Intensity (OPS/byte)

G
ig

a
O

PS
/s

OCCA:CUDA:FP32
OCCA:CUDA:FP64
OCCA:CUDA:INT32

Figure 8: Left: Roofline model for the NVIDIA V100 SXM2 16GB Volta class

GPU. Each shaded region corresponds to the target band for a kernel with a

given number of shared+L1 bytes accessed per flop. Right: occaBench benchmark

performance results for mixed streaming and compute on NVIDIA V100 SXM2

16GB Volta class GPU.

Starting from public performance data, the card has:

• Theoretical device memory bandwidth of 900GB/s. Using cudaMemcpy we measure achievable memory
bandwidth of 790GB/s.

• Combined shared memory & L1 cache with which we guesstimate to have throughput: (SH + L1) GB/s
= 80 (cores) x 32 (SIMD width) x 4 (word bytes) x 1.245 (base clock) ⇡ 12.748 TB/s

• Theoretical peak flops of 7TFLOPS/s (FP64).

Combining the V100 performance characteristics we visualize the FP64 performance as a graded roofline
model in Figure 8(top). Interpreting this diagram: each band shows the maximum performance we can
expect for a given range of combined shared & L1 memory accesses where we have assumed the same memory
bus is used for both caches. We note that a kernel may drop below the performance band suggested by a
naive estimate of arithmetic intensity and local cache accesses if there is one or more additional performance
limiter. For instance: use of special function units, extremely low occupancy caused by excess registers or
shared memory usage, or spilling to local (i.e. L1) memory may impact performance.

The VT team added the mixbench mixed workload microbenchmarking code [6, 7] to the occaBench
portable benchmarking suite. Initially, the default settings for occaBench gave erroneously high throughput
estimates on the V100, likely due to a di↵erent cache configuration than earlier GPUs. We modified the work
load for the benchmarking kernel and were able to obtain performance that did not exceed the manufacturer
spec. The occaBench code running on the V100 in OCCA:CUDA mode on a vector of length 10,240,000
achieves the performance shown in Figure 8(bottom). It is notable that the peak measured FP64 performance
of the V100 is very close to the manufacturer spec. To achieve near peak requires a kernel with arithmetic
intensity in excess of eight flops per byte of data accessed in global device memory.

Exascale Computing Project (ECP) 12 CEED-MS13

3.3.2 Revisiting the VT CEED hexahedral bake-o↵ kernels on the NVIDIA V100

To warm up on the V100 we benchmarked the BK1,BK3, and BK3 collocation kernels using a mesh of 4096
hexahedral elements. The performance results in Figure 9 show that:

BK1: achieves close to streaming bandwidth up to degree 9 on the V100.

BK3: (GL integration) performance is limited by shared + L1 memory accesses and by the requirement to
stream seven geometric factors per Gauss-Legendre quadrature node.

BK3: (GLL integration) performance is limited by by capacity of the global device memory to stream seven
geometric factors per Gauss-Lobatto-Legendre quadrature node.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

Polynomial Degree (N)

G
FL

O
PS

CEED BP1 (GL) with OCCA:CUDA:V100

Empirical bound based on d2d copies
BP1: Kernel 1 − no optimizations
BP1: Kernel 2 − shared memory instead of global
BP1: Kernel 3 − shared + registers
BP1: Kernel 4 − constant input variables
BP1: Kernel 5 − padding
BP1: Kernel 6 − loop unrolling
BP1: Kernel 7 − less barriers
BP1: Kernel 8 − less shared r/w

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

Polynomial Degree (N)

G
FL

O
PS

CEED BK3 (GL) with OCCA:CUDA:V100

Empirical bound based on d2d copies
BP3: kernel 1 (no opt)
BP3: kernel 2 (const var, load q to registers)
BP3: kernel 3 (loop unrolling)
BP3: kernel 4 (padding)
BP3: kernel 5 (different interpolation)
BP3: kernel 6 (different differentiation)
BP3: kernel 7 (less shared memory)
BP3: kernel 8 (D and DT stored in shared)
BP3: kernel 9 (reduced shared fetches)
BP3: kernel 10 (only use 2D shared)
BP3: kernel 11 (double outputs per thread)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Polynomial Degree (N)

G
FL

O
PS

CEED BK3 (GLL) with OCCA:CUDA:V100

Empirical bound based on d2d copies
BP3: kernel 1 (no opt)
BP3: kernel 2 (const var, q to registers)
BP3: kernel 3 (loop unrolling)
BP3: kernel 4 (padding)
BP3: kernel 5 (different interpolation)
BP3: kernel 6 (different differentiation)
BP3: kernel 7 (less shared memory)
BP3: kernel 8 (D and DT in shared)
BP3: kernel 9 (reduced shared use)
BP3: kernel 10 (only use 2D shared)

Figure 9: VT experiments on an NVIDIA V100 SXM2 GPU with 4096 hexes.

Left: BK1 with (N +2)
3
intermediate Gauss Legendre quadrature nodes. Middle:

BK3 with (N + 2)
3
intermediate Gauss Legendre quadrature nodes. Right: BK3

with (N + 1)
3
Gauss-Lobatto-Legendre quadrature nodes.

Overall the performance of the VT BK kernels on the V100 is comparable to the performance on the NVIDIA
P100 with performance gains proportional to improvements in the global device memory bandwidth and the
increased shared memory throughput. No additional kernel optimizations were performed in this study, i.e.
the kernels were tuned for the P100 architecture and yet still delivered strong performance on the V100.

3.3.3 Optimizing finite element sti↵ness action kernels for a�ne tetrahedral elements

The target of this work is the optimization of GPU kernels for the BK3 benchmark kernel problem posed on
a mesh of tetrahedral finite elements that are a�ne images of a reference element. We took two separate
approaches:

V1: We constructed a sequence of progressively optimized elliptic operator action kernels for nodal tetrahedra
using the Open Concurrent Compute Abstraction (OCCA) in the OCCA Kernel Language (OKL). The
performance of these kernels was compared to a roofline model that neglects the movement of reference
element matrices.

V2: We repeated V1 but using a CUDA kernel based implementation combined with calls to the cuBLAS
library. The elemental sti↵ness matrices are block dense with O

�
N6

�
entries thus the operations are

compute bound, and it was reasonable to compare the custom built kernels of V1 with the performance
of generic cuBLAS kernels.

V1: nodal a�ne tetrahedra implemented using OCCA/OKL. First we developed a sequence of
progressively optimized monolithic BK3 kernels that compute the expression

ren =

m=Np�1X

m=0

Se
nmqem,

Exascale Computing Project (ECP) 13 CEED-MS13

where each elemental sti↵ness matrix is given by

Se
nm :=

Z

De

rln ·rlm + �lnlm,

where ln is the Lagrange interpolant function associated with node n of the nodes in a degree N Warp &
Blend family of interpolation nodes for the tetrahedra [13]. Here De refers to element e. The sti↵ness matrix
is constructed on the fly via the a�ne map assumption

Se = Ge
rrS

rr +Ge
rs (S

rs + Ssr) +Ge
rt

�
Srt + Str

�
+Ge

ssS
ss +Ge

st

�
Sst + Sts

�
+Ge

ttS
tt + JeM,

= Ge
rrS

rr +Ge
rsŜ

rs +Ge
rtŜ

rt +Ge
ssS

ss +Ge
stŜ

st +Ge
ttS

tt + JeM,

where the geometric factors are entries from the symmetric Jacobian matrix

Ge
rr, G

e
rs, G

e
rt, G

e
ss, G

e
st, G

e
tt.

The six reference sti↵ness matrices and one reference mass matrix have entries given by

Srr
nm :=

Z

D̂

@ln
@r

@lm
@r

, Sss
nm :=

Z

D̂

@ln
@s

@lm
@s

, Stt
nm :=

Z

D̂

@ln
@t

@lm
@t

, M :=

Z

D̂
lnlm,

Ŝrs
nm :=

Z

D̂

@ln
@r

@lm
@s

+
@ln
@s

@lm
@r

, Ŝrt
nm :=

Z

D̂

@ln
@r

@lm
@t

+
@ln
@t

@lm
@r

, Ŝst
nm :=

Z

D̂

@ln
@s

@lm
@s

+
@ln
@t

@lm
@s

,

where D̂ is the reference bi-unit tetrahedron with local coordinate system �1 r, s, t; r + s+ t 1.
With this notation in hand we see that the action of the sti↵ness matrix consists of seven matrix-vector

multiplications per element. We started with an initial kernel implementation and then constructed ten
progressively optimized kernels from the base kernel with optimizations rationalized as follows:

K0: Baseline kernel with minimal optimizations, while avoiding most pitfalls like poor memory layout.
K1: Annotate pointers as const where appropriate to help the compiler perform safe optimizations where

possible.
K2: Unroll innermost serial loops.
K3: Reduce number of reads of qe from global device memory.
K4: Prefetch qe to shared memory. This is less important on Volta class GPUs because of the unified shared

and L1 caches on each core.
K5: Prefetch the seven geometric factors to shared memory. Again this is less important on Volta class

GPUs.
K6: We reduce from ten matrix-vector multiplies to seven matrix multiplies (and we read only seven

matrices). This potentially reduces the kernel execution time by 30%.
K7: Each thread processes node n for p_Ne elements. The goal is to reuse entries from the references sti↵ness

matrices and reduce tra�c to the L1 (and possibly L2) cache.
K8: Each thread-block uses p_Nb times p_Np threads. The goal is to better align the number of threads per

thread-block with the number of SIMD lanes on a GPU core. The p_Nb parameter was co-optimized
withe the p_Ne parameter.

K9: Replace the use of a list of elements to process with a single integer o↵set into a list of elements that is
pre-sorted.

K10: Revert to not pre-fetching the geometric factors into shared memory in response to profiling information.

Each optimization is applied in addition to prior optimizations, with the exception of kernel K10 where an
unsuccessful optimization was removed. The optimizations for kernels K7 & K8 were guided by assumptions
we made about the underlying Volta streaming multiprocessor architecture. In Figure 8 we show a graded
roofline model where the color coded regions indicate the maximum expected performance based on the
average number of FP64 floating point operations performed per byte accessed from the unified L1+shared
memory cache. It is notable that to achieve optimal FP64 throughput on the V100 GPU it is necessary to
access less than two bytes from shared/L1 cache on average per floating point operation. This is particularly
challenging to achieve. More details about the optimization process can be found in this blog entry. For
reference we include kernel K10 at the end of this document in Appendix 3.3.4.

In Figure 10 we show performance results for K0:10 on a V100. The left chart shows that

Exascale Computing Project (ECP) 14 CEED-MS13

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

Polynomial degree (N)

G
FL

O
PS

/s

Elliptic Stiffness Mat−vec Product (FP64, affine tets)

K0: baseline
K1: const
K2: unrolling
K3: fewer device loads
K4: prefetch q to shared
K5: prefetch geofactors to shared
K6: exploit matrix symmetry
K7: multiple outputs per thread
K8: SIMD cramming
K9: replace element list with offset
K10: geofactors in registers

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Polynomial degree (N)

G
N

O
D

ES
/s

Elliptic Stiffness Mat−vec Product (FP64, affine tets)

K0: baseline
K1: const
K2: unrolling
K3: fewer device loads
K4: prefetch q to shared
K5: prefetch geofactors to shared
K6: exploit matrix symmetry
K7: multiple outputs per thread
K8: SIMD cramming
K9: replace element list with offset
K10: geofactors in registers

Figure 10: Performance results for the BK3 bake-o↵ kernel on a mesh of

320,000 a�ne tetrahedral elements on Volta Titan V GPU. Left: FP64 floating

point performance for kernels K0:10 for polynomial degrees 1:8. Right: FP64

throughput measured in giga-nodes per second.

104 105 106

 DOFS

0

1000

2000

3000

4000

5000

6000

 G
FL

O
PS

/s

Custom version: achieved GFLOPS/s (FP64) on Volta V100

N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8

104 105 106

 DOFS

0

5

10

15

20

25

30

 G
N

O
D

ES
/s

Custom version: achieved GNODES/s (FP64) on Volta V100

N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8

Figure 11: Left: FP64 GFLOPS/s performance of the optimal kernel from

K0:10 for each polynomial degree on a V100. Right: throughput measured in

billion nodes per second (GNODES/s) on a single V100.

• The kernels achieve up to a peak of approximately 5.5 TFLOPS/s which is a little shy of the 6.5
TFLOPS/s peak performance measured with the occaBench benchmark (see Figure 8).

• There is a large spread between the lowest performing and best performing kernel at each order.

• K8:10 are the best performing kernels. These kernels require input parameters p_Ne and p_Nb. These
are calibrated through an exhaustive computational study. The results shown in the figure were obtained
using the best parameters.

• The K5 optimization was performance negative, rectified by the K10 optimization.

The right chart of Figure 10 shows that although the best kernels are well tuned the overall throughput
strongly drops as polynomial degree increases. This is expected because the arithmetic intensity increase is
cubic with N and the higher order kernels are strongly compute bound.

In Figure 11 we explore the dependence of the best kernel at each polynomial order on the number of
tetrahedral elements. It is clear that in general it takes in excess of O

�
105

�
FEM elemental degrees of freedom

to hit the asymptotic best performance.

Exascale Computing Project (ECP) 15 CEED-MS13

V2: CUDA+cuBLAS Implementation for Nodal Tetrahedra. After the first phase of this e↵ort we
decided to o✏oad the arithmetically intense matrix-multiplication to cuBLAS. We constructed a CUDA
implementation that first calls the cuBLAS version of the BLAS double precision general matrix-matrix
multiplication subroutine (dgemm) to compute the eight matrix products all-at-once by stacking the mass
matrix and six reference sti↵ness matrices into a single matrix d_Dcombined, i.e.,

1 void gpuBlasGemm(cublasHandle_t &handle , const dfloat *A, const dfloat *B, dfloat *C, const
int m, const int k, const int n) {

2

3 const int lda=m,ldb=k,ldc=m;
4 const dfloat alf = 1, bet = 0;
5 const dfloat *alpha = &alf , *beta = &bet;
6

7 // Do the actual multiplication
8 if(sizeof(dfloat)==8)
9 cublasDgemm(handle , CUBLAS_OP_N , CUBLAS_OP_N , m, n, k, (double *)alpha , (double *)A, lda ,

(double *)B, ldb , (double *)beta , (double *)C, ldc);
10 else
11 cublasSgemm(handle , CUBLAS_OP_N , CUBLAS_OP_N , m, n, k, (float*)alpha , (float *)A, lda , (

float *)B, ldb , (float *)beta , (float *)C, ldc);
12

13 }
14

15 ...
16

17 gpuBlasGemm(handle , d_Dcombined , d_q , d_Dq , 7*p_Np , E, p_Np , 0);

The above code places the result in the array d_Dq with Nggeo*Np*E entries, where Nggeo is the number of
geometric factors, Np is the number of nodes per element and E is the number of elements in mesh. This
array is further reduced to an array with Np*E entries using a CUDA kernel listed below.

1 __global__ void geofactorsKernelv1(const int Nelements , const dfloat * __restrict__ ggeo ,
const dfloat * __restrict__ q, const dfloat lambda , dfloat * __restrict__ Aq){

2

3 const int p_Np = blockDim.x; // define this
4 const int e = blockIdx.x;
5 const int t = threadIdx.x;
6

7 const dfloat Grr = ggeo[e*p_Nggeo + p_G00ID];
8 const dfloat Grs = ggeo[e*p_Nggeo + p_G01ID];
9 const dfloat Grt = ggeo[e*p_Nggeo + p_G02ID];

10 const dfloat Gss = ggeo[e*p_Nggeo + p_G11ID];
11 const dfloat Gst = ggeo[e*p_Nggeo + p_G12ID];
12 const dfloat Gtt = ggeo[e*p_Nggeo + p_G22ID];
13 const dfloat J = ggeo[e*p_Nggeo + p_GWJID];
14 const int base = e*p_Nggeo*p_Np + t;
15

16 Aq[t+p_Np*e] =
17 Grr*q[base + 0*p_Np] + Grs*q[base + 1*p_Np] + Grt*q[base + 2*p_Np] + Gss*q[base + 3*p_Np

] + Gst*q[base + 4*p_Np] + Gtt*q[base + 5*p_Np] + J*lambda*q[base + 6*p_Np];
18 }

We note that in this approach we move more data compared to V1, as we need to both, allocate memory for
d_Dcombined and for d_Dq. We do not use these data structures in V1. In addition, the execution consists of
two stages and requires two kernel launches unlike the V1 implementation where we launch only one kernel.

In Figure 12 we show throughput performance. Comparing with the performance of the V1 kernels in
Figure 11 several things are apparent:

• The extra streaming steps for the intermediate results produced by cublasDgemm and consumed in
geofactorsKernelv1 reduces the N = 1 throughput from 30 GNODES/s to 2 GNODES/s. At this
low degree the computation is bandwidth limited and the performance ratio is driven by the need to
write and then read 14 extra sets of node data.

• The cuBLAS version achieves similar performance at the highest order.

Exascale Computing Project (ECP) 16 CEED-MS13

104 105 106

 DOFS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
 G

FL
O

PS
/s

cuBLAS version: achieved GFLOPS/s (FP64) on Volta V100

N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8

104 105 106

 DOFS

0

1

2

3

4

5

6

 G
N

O
D

ES
/s

cuBLAS version: achieved GNODES/s (FP64) on Volta V100

N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8

Figure 12: Left: FP64 GFLOPS/s performance of the cuBLAS implementation

on a V100. Right: throughput measured in billion nodes per second (GNODES/s)

on V100.

Although the cuBLAS implementation exercise was simpler than designing, implementing, testing, modeling,
and tuning bespoke kernels it also induced significantly more data movement and required excessive temporary
data storage. Finally, the tuned OKL kernels deliver strong performance at all orders in contrast to cuBLAS
which underperformed until degree N = 7.

3.3.4 Appendix: Code listing for ellipticAxTet3DK10.okl

1 kernel void ellipticPartialAxTet3D_Ref10(const int Nelements ,
2 const int elementOffset ,
3 const datafloat * restrict ggeo ,
4 const datafloat * restrict SrrT , const datafloat * restrict SrsT , const datafloat *

restrict SrtT ,
5 const datafloat * restrict SsrT , const datafloat * restrict SssT , const datafloat *

restrict SstT ,
6 const datafloat * restrict StrT , const datafloat * restrict StsT , const datafloat *

restrict SttT ,
7 const datafloat * restrict MM ,
8 const datafloat lambda , const datafloat * restrict q, datafloat * restrict Aq){
9

10 for(int eo=0;eo<Nelements;eo+=p_Ne*p_Nb;outer0){
11

12 shared datafloat s_q[p_Ne][p_Nb][p_Np];
13

14 for(int b=0;b<p_Nb ;++b;inner1){
15 for(int n=0;n<p_Np ;++n;inner0){
16

17 occaUnroll(p_Ne)
18 for(int et=0;et<p_Ne ;++et){
19 const int ebase = eo + b + p_Nb*et;
20 const int e = elementOffset + ebase;
21

22 if(ebase <Nelements){
23 const int id = n + e*p_Np;
24 s_q[et][b][n] = q[id];
25 }
26 }
27 }
28 }
29

30 barrier(localMemFence);
31

Exascale Computing Project (ECP) 17 CEED-MS13

32 for(int b=0;b<p_Nb ;++b;inner1){
33 for(int n=0;n<p_Np ;++n;inner0){
34

35 datafloat qrr[p_Ne], qrs[p_Ne], qrt[p_Ne], qss[p_Ne], qst[p_Ne], qtt[p_Ne], qM[p_Ne
];

36

37 occaUnroll(p_Ne)
38 for(int et=0;et<p_Ne ;++et){
39 qrr[et] = 0; qrs[et] = 0; qrt[et] = 0; qss[et] = 0; qst[et] = 0; qtt[et] = 0;

qM[et] = 0;
40 }
41

42 // overall this does p_Ne *14 flops for (7+ p_Ne)*| datafloat| L1+shared accesse
43 // arithmetic intensity is (p_Ne *14/((7+ p_Ne)*8)) flops per byte
44 occaUnroll(p_Np)
45 for (int k=0;k<p_Np;k++) {
46

47 const datafloat Srr_nk = SrrT[n+k*p_Np], Srs_nk = SrsT[n+k*p_Np], Srt_nk = SrtT[
n+k*p_Np];

48 const datafloat Sss_nk = SssT[n+k*p_Np], Sst_nk = SstT[n+k*p_Np], Stt_nk = SttT[
n+k*p_Np];

49 const datafloat MM_nk = MM[n+k*p_Np];
50

51 occaUnroll(p_Ne)
52 for(int et=0;et<p_Ne ;++et){
53

54 const datafloat qk = s_q[et][b][k];
55 qrr[et] += Srr_nk*qk; qrs[et] += Srs_nk*qk; qrt[et] += Srt_nk*qk;
56 qss[et] += Sss_nk*qk; qst[et] += Sst_nk*qk; qtt[et] += Stt_nk*qk;
57 qM[et] += MM_nk*qk;
58 }
59 }
60

61 occaUnroll(p_Ne)
62 for(int et=0;et<p_Ne ;++et){
63 const int ebase = eo + b + p_Nb*et;
64 const int e = elementOffset + ebase;
65 if(ebase <Nelements){
66

67 int gid = e*p_Nggeo;
68

69 datafloat Grr = ggeo[gid + p_G00ID], Grs = ggeo[gid + p_G01ID], Grt = ggeo[gid
+ p_G02ID], Gss = ggeo[gid + p_G11ID];

70 datafloat Gst = ggeo[gid + p_G12ID], Gtt = ggeo[gid + p_G22ID], J = ggeo[gid
+ p_GWJID];

71

72 const int id = n + e*p_Np;
73 Aq[id] = Grr*qrr[et] + Grs*qrs[et] + Grt*qrt[et] + Gss*qss[et] + Gst*qst[et] +

Gtt*qtt[et] + J*lambda*qM[et];
74 }
75 }
76 }
77 }
78 }
79 }

3.4 MAGMA batched kernels

The direct use of generic BLAS in the CEED applications has performance shortcomings. As reported in this
section above, one way to address these shortcomings is through custom-built OCCA kernels, which has been
a success on targeted applications and cases. Another aspect on the work in CEED is to further extend and
co-design these kernels with application developers, hardware vendors, and ECP software technologies projects
and to make them available through general interfaces. In particular, our e↵orts here have been to overcome
the above mentioned shortcomings of BLAS by extending it with Batched BLAS kernels. Subsequently,
the CEED libraries will leverage the software sustainability and performance portability benefits that get
associated with the use of the BLAS standard.

Exascale Computing Project (ECP) 18 CEED-MS13

To this end, we organize the tensor contractions in CEED in terms of Batched BLAS calls, and in
particular, batched general matrix-matrix multiplications (GEMMs), and concentrate on the development of
these kernels for various architectures. The architectures targeted so far and some of their memory hierarchy
characteristics are given in Figure 13. We developed a number of algorithms and techniques that allow
us to have a single source for the cross-architecture support for highly e�cient, small size matrix-matrix
products [10]. The code is also very simple to extend. For example, adding support for IBM processors with
Altivec SIMD instructions only required us to add an overload for each SIMD functions we needed.

REGISTERS	

MAIN	MEMORY	BANDWIDTH	

PCI		EXPRESS	GEN3	X16	
NVLINK		

INTERCONNECT	
INFINIBAND	EDR	
	

L3	CACHE	

L2	CACHE	

L1	CACHE	&	GPU	SHARED	MEMORY	

MAIN	MEMORY	

Intel	Haswell	
E5-2650	v3		

Intel	KNL	7250	
DDR5|MCDRAM	

IBM	
Power	8	

ARM	
Cortex	A57	

Nvidia	
P100	

Nvidia	
V100	

10	cores	
368	Gflop/s	
105	WaUs	

68	cores	
2662	Gflop/s	
215	WaUs	

10	cores	
296	Gflop/s	
190	WaUs	

4	cores	
32	Gflop/s	
7	WaUs	

56	SM	64	cores	
4700	Gflop/s	
250	WaUs	

80	SM	64	cores	
7500	Gflop/s	
300	WaUs	

16/core	AVX2	 32/core	AVX-512	 32/core	 32/core	 256	KB/SM	 256	KB/SM	

32	KB/core	 32	KB/core	 64	KB/core	 32	KB/core	 64	KB/SM	 96	KB/SM	

256	KB/core	 1024	KB/2cores	 512	KB/core	 2	MB	 4	MB	 6	MB	

25	MB	 0...16	GB	 8	MB/core	 N/A	 N/A	 N/A	

64	GB	 				384	|16	GB	 32	GB	 4	GB	 16	GB	 16	GB	

68	GB/s	 				115	|	421	GB/s	 85	GB/s	 26	GB/s	 720	GB/s	 900	GB/s	

16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	 300	GB/s	(NVL)	

12	GB/s	 12	GB/s	 12	GB/s	 12	GB/s	 12	GB/s	 12	GB/s	

Memory	hierarchies	for	different	type	of	architectures	

Memory	hierarchies		

Figure 13: Memory hierarchies of the experimental CPU and GPU hardware

targeted for development and optimization of Batched BLAS in MAGMA.

Figure 14 summarizes our performance results on Batched DGEMMs of square matrices of small sizes on
the P100 GPU (Left) vs. V100 GPU (Right). The two GPUs used are both PCIe versions, which are slightly
slower from their NVLink counterparts that are in systems like the SummitDev at ORNL. The V100 for
NVLink has double precision peak of 7.5 TeraFlops vs 7 TeraFlop for PCIe.

�

���

���

���

���

����

����

� � �� �� �� �� �� ��

���
��

���
��

�
��
��
�

������ ����

�����
������
����������

�
���
���
���
���
����
����
����
����
����

� � �� �� �� �� �� ��

���
��

���
��

�
��
��
�

������ ����

�����
������
����������

Figure 14: Batched DGEMM on P100 GPU (Left) and V100 GPU (Right).

The performance target is to get close to the theoretical peaks. In this case, as sizes are small, the kernels
are memory bound and the peaks are given by the dashed lines of the roof-line models on Figure 14. The

Exascale Computing Project (ECP) 19 CEED-MS13

dashed lines are computed based on achievable maximum bandwidth of 580 GB/s for the P100, and 850
GB/s for the V100 GPU. In either case we are close (within 90+%) to these peaks. The di↵erence between
the V100 and P100 is as expected about 50%, which is similar to the di↵erences in their bandwidth and
compute peak specifications.

While one can use directly these MAGMA batched BLAS kernels to accelerate the computations, the
tensor contractions in CEED, if properly organized, can have higher computational intensity (computation vs.
data needed) than that of a single GEMM. In particular, the application of a CEED di↵erential operator can
be expressed as a batch over the finite elements e, e.g., batch<e=0..nelems>{ BT

e De. ⇤ (BeAeBe
T)Be },

where the matrices involved are small, dense, and depend on the partulcar element e. This computation has
much larger computational intensity than the one that splits it into a number of batched GEMM calls, e.g,

batch<e=0..nelems> { Ce = AeBe
T

};
batch<e=0..nelems> { Ce = BeCe };
batch<e=0..nelems> { Ce = De. ⇤ Ce };
batch<e=0..nelems> { Ce = CeBe };
batch<e=0..nelems> { Ce = BT

e Ce };

Figure 15 compares the performances of fused vs. non-fused batched DGEMMs in MAGMA on small
square matrices of sizes up to 16. In both cases the computation is for BT

e De. ⇤ (BeAeBe
T)Be.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Performance Using Fused DGEMM, Batch = 100k, P100 GPU

cuBLAS MAGMA

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Performance Using Fused DGEMM, Batch = 100k, V100 GPU

cuBLAS MAGMA

Figure 15: Performance comparison (in Gflop/s) of fused batched DGEMMs

on P100 GPU (Left) vs. non-fused batched DGEMMs on V100 GPU (Right).

The e↵ect on performance of the two approaches (fused GEMMs vs. non-fused) for realistic matrix sizes,
taken from the MFEM code, is illustrated in Figure 16. Thus, although both approaches reach performances
close to their theoretical peaks, the fused one benefits significantly from its reduced data transfers.

To achieve this fusion of the GEMMs, we developed device functions that can be called in a sequence,
as illustrated in Listing 1. The data used by the kernel is first loaded into shared memory and registers,
subsequently used by the kernels through the shared memory or register shu✏ing (when needed), and finally
the result is written back to the main memory only once.

1 template <int M, int N, int DIMX , int DIMY , int sM, int sN > __global__ void
2 zgemm_batched_tensor_kernel(const magmaDoubleComplex alpha ,
3 magmaDoubleComplex const * const * dA_array , int ldda ,
4 magmaDoubleComplex const * dB , int lddb ,
5 magmaDoubleComplex const * dD , int lddd ,
6 const magmaDoubleComplex beta ,
7 magmaDoubleComplex ** dC_array , int lddc ,
8 const int batchCount) {
9 const int tx = threadIdx.x, ty = threadIdx.y, tz = threadIdx.z, bx = blockIdx.x;

10

11 const int batchid = bx * blockDim.z + tz;
12 if(batchid >= batchCount) return;
13

14 const magmaDoubleComplex* dA = dA_array[batchid];

Exascale Computing Project (ECP) 20 CEED-MS13

90.86x
56.34x 33.93x 22.4x

14.15x

11.69x 100.28x

89.39x

67.54x

46.52x

0

200

400

600

800

1000

1200

(2x2)
1048576

(3x2)
1048576

(3x3)
262144

(4x3)
262144

(5x4)
131072

(6x5)
65536

(7x6)
32768

(8x7)
32768

(9x8)
16384

(10x9)
8192

G
flo

p/
s

Batch BT D (BABT) B, double precision, Tesla V100 GPU

cuBLAS

MAGMA

MAGMA-Fused

Figure 16: Batched DGEMM in cuBLAS and MAGMA vs. Batched fused

DGEMM in MAGMA on matrices of sizes coming from real applications (in the

MFEM library). The speedups reported are compared to the cuBLAS non-fused

batched DGEMMs.

15 magmaDoubleComplex* dC = dC_array[batchid];
16

17 const int wdim = max(sM , sN);
18 const int slda = SLDA(wdim), sldb = SLDA(sM), sldc = SLDA(wdim);
19 const magmaDoubleComplex c_one = MAGMA_Z_ONE , c_zero = MAGMA_Z_ZERO;
20 magmaDoubleComplex* sA = (magmaDoubleComplex *)(zdata);
21 magmaDoubleComplex* sC = (magmaDoubleComplex *)(sA + blockDim.z * slda * wdim);
22 magmaDoubleComplex* sB = (magmaDoubleComplex *)(sC + blockDim.z * sldc * wdim);
23 magmaDoubleComplex* sD = (magmaDoubleComplex *)(sB + sldb * sN);
24

25 sA += tz * slda * wdim;
26 sC += tz * sldc * wdim;
27

28 // read
29 zread <sN, sN, DIMX , DIMY >(N, N, dA, ldda , sA , slda , tx , ty);
30 if(tz == 0){
31 zread <sM, sN, DIMX , DIMY >(M, N, dB, lddb , sB , sldb , tx , ty);
32 zread_diagonal <sM , DIMX >(M, dD , lddd , sD , tx , ty);
33 }
34 __syncthreads ();
35

36 /**** computing B’ D (B A B’) B ****/
37 // compute sC = AB’
38 zgemm_device_nt <sN, sM, N, DIMX , DIMY >(c_one , sA ,slda , sB ,sldb , c_zero , sC ,sldc , tx,ty);
39 __syncthreads ();
40

41 // compute sA = sB (B) x sC (AB ’)
42 zgemm_device_nn <sM, sM, N, DIMX , DIMY >(c_one , sB ,sldb , sC ,sldc , c_zero , sA ,slda , tx,ty);
43 __syncthreads ();
44

45 // compute sC = sA (B A B’) x sB (B)
46 zgemm_device_nn <sM, sN, M, DIMX , DIMY >(c_one , sA ,slda , sB ,sldb , c_zero , sC ,sldc , tx,ty);
47 __syncthreads ();
48

49 // compute sC = sD (D) x sC (BAB’ B)
50 zgemm_device_prediag_nn <sM, sN, DIMX , DIMY >(sD , sC , sldc , tx , ty);
51 __syncthreads ();

Exascale Computing Project (ECP) 21 CEED-MS13

52

53 // compute sA = sB’ (B ’) x sC (D B A B’ B)
54 zgemm_device_tn <sN, sN, M, DIMX , DIMY >(c_one , sB ,sldb , sC ,sldc , c_zero , sA ,slda , tx,ty);
55 __syncthreads ();
56

57 // write
58 zwrite <sN , sN , DIMX , DIMY >(N, N, sA , slda , dC , lddc , tx , ty);
59 }

Listing 1: Design for tensor contractions through fused Batched BLAS in

MAGMA. BLAS routines, e.g., GEMMs are defined as device functions and called

in a sequence (as needed for a particular tensor contraction) from the same kernel.

Further details and summary of our results on the batched fused BLAS can be found in our poster, submitted
and accepted for presentation at GTC’18 [1].

4. CEED APPLICATIONS AND MINIAPPS

4.1 ExaSMR

Multiscale Control in Time. ExaSMR’s RANS model requires e�cient simulations for the flow and
heat evolution involving time-scale di↵erence at several orders of di↵erence. CEED team has developed
a steady-state solver for solving nonlinear convection-di↵usion equation based on a psedo-timestepping
approach that allows freezing the velocity while heat transfer occurs insignificant amount. CEED team
implemented a robust algorithm with solid studies on the choices of parameters that can assure e�cient
and reliable performance. Our approach is based on the Jacobian-free Newton Krylov method during the
pseudo-timestepping using the backward di↵erence formula for linearization at a local time step and solves
the linearized system by GMRES with our spectral element multigrid preconditioner. Then a Jacobian-Free
Newton Krylov method for solving the pseudo time-transient step is applied, which allows increasing timestep
size as the Newton iteration evolves to reach a steady state solution.

4.2 MARBL

As discussed in prior milestone reports, we have been rewriting the Lagrangian phase of BLAST (the ALE
component of MARBL). The objective of this refactoring is to execute batched EOS and material constitutive
model calls and provide separation between finite element assembly and physics-related calculations. The
new structures closely resemble those of the Laghos miniapp, which is expected to allow straightforward
inclusion of any optimizations done in Laghos and libCEED functionality. The MARBL-related activities
during this reporting period were focused on the following tasks:

1. Achieved a fully functional refactored Lagrangian phase. The refactoring of the key compu-
tational component of the BLAST Lagrangian hydrodynamics solver was recently completed. The
complete version now includes support for multi-material closure model calculations, elasto-plastic flow
(material strength) models, magneto-hydrodynamics and radiation-hydrodynamics coupling.

2. Integrated all Laghos partial assembly (PA) kernels into BLAST. The remaining Laghos
kernels were moved into BLAST. In this period we added (i) the PA operators for tensor-based
evaluation of gradients, Jacobians and interpolated function values at quadrature points, and (ii) a
diagonal preconditioner for the partially assembled velocity mass matrix.

3. Derived BLAST-specific modifications of the PA operators. As Laghos is a single-material
miniapp with simplified physics, a set of extensions was needed to support all of BLASTs capabilities.
All PA operators were extended by functionality for axisymmetric computations and multi-material
simulations.

4. Extensive testing and debugging of the new functionality and comparisons to the BLAST’s

established baseline version. Because the new code provides a completely new execution path, we
performed comprehensive comparisons to the established results. We achieved complete agreement

Exascale Computing Project (ECP) 22 CEED-MS13

between the baseline code and the refactored code. We are still analyzing di↵erences that appear when
some of the PA kernels are used.

4.3 ExaWind

McAllister-Takahashi Blade Validation Problem. We have engaged with ExaWind project milestone
on single blade-resolved simulation in non-rotating turbulent flow. ExaWind milestone is to establish baseline
capabilities for blade-resolved simulations in terms of turbulence modeling, towards full wind plant simulations,
for predicting the formation and evolution of blade-tip vortices that are important in analyzing turbine
wakes. CEED and ExaWind teams are currently engaged with a finite-length NACA0015 blade simulations
with the experimental data performed in a wind tunnel by McAlister and Takahashi. ExaWind team uses
the low-Mach-number Navier-Stokes solver, Nalu on unstructured grids, utilizing Trilinos and the Sierra
Toolkit for parallelization and I/O. CEED team will conduct simulations with Nek5000 and provide its
performance and the detail analysis of flow measurement on the tip vortex evolution for flat- and rounded-tip
configurations that would leverage the validation process of ExaWind results.

4.4 Laghos

4.4.1 Laghos developments

Laghos (LAGrangian High-Order Solver) is a miniapp developed in CEED that solves the time-dependent
Euler equations of compressible gas dynamics in a moving Lagrangian frame using unstructured high-order
finite element spatial discretization and explicit high-order time-stepping. In CEED, Laghos serves as a proxy
for a sub-component of the MARBL/LLNLApp application. Laghos captures the basic structure and user
interface of many other compressible shock hydrocodes, including the BLAST code at LLNL. The miniapp is
build on top of a general discretization library (MFEM), thus separating the pointwise physics from finite
element and meshing concerns. It exposes the principal computational kernels of explicit time-dependent
shock-capturing compressible flow, including the FLOP-intensive definition of artificial viscosity at quadrature
points. The implementation is based on the numerical algorithm from [3].

Since it was introduced in milestone CEED-MS6 and ported to the Open Concurrent Compute Abstraction
(OCCA) for CEED-MS8, a number of additional features and improvements have been added to Laghos,
including a GPU Direct-capable MPI communicator that now allows all the data to stay on the device
during the communication phases. We conducted detailed performance comparison of RAJA, OCCA and pure
programming models to evaluate the cost of portability abstractions. This involved extracting the OCCA
kernels, simplifying code and creating di↵erent OCCA-agnostic versions to conduct head-to-head performance
comparisons. Here are the di↵erent stand-alone ports for Laghos that have been developed so far:

• pure CPU: with or without the use of lambda statements (C++ �-functions), with or without using
templates (<>) to allow fair comparison with OCCA’s Just-In-Time (JIT) capabilities,

• pure GPU: with or without the �-functions or the templates <>,

• pure RAJA: CPU or GPU versions, only through � for-loop bodies.

These ports target the partial assembly kernels, where the amount of data storage, memory transfers, and
FLOPs are lower, especially for higher orders. Table 2 presents the number of source lines of code; all of
these ports represent less then 8k lines of code (kloc), more than a half for the kernels and 1kloc for the
GPU Direct-capable MPI communicator.

4.4.2 Initial RAJA and pure CPU, GPU ports

In order to have a fair comparison between the di↵erent versions, we started with OCCA kernels from
CEED-MS8. Currently, there are two flavors of OCCA kernels: one version is for CPU and another for
GPU-High-Order. The GPU ones use share memory, are launched with a topology that matches their nested
for-loops ranges, which are features that require some recent or work-in-progress developments for the RAJA
abstraction layer.

Exascale Computing Project (ECP) 23 CEED-MS13

SLOC (cpp) Directory
4775 kernels
1277 fem
772 linalg
651 general
332 config
210 tests
36 top dir

Table 2: SLOC

Thus, the pure CPU and GPU versions are very useful to compare and measure the overhead of compilers,
impact of UVM and the � functions, or just the GPU-High-Order kernels versus the CPU ones,

The first step has been to extract all of these kernels to some C-style ones:

• in and out data arguments types are turned to double*,

• o↵set computation are hidden in macros X(q,e) vs. X[ijN(q,e,NUM QUAD)]

• outer, inner, share OCCA keywords have been removed. The first two can be handled by some macros
hiding the way the for loop is going to iterate, but the share is still a challenge,

• most of the OCCA properties (bool, int) that are set while parsing the kernel have been added as
template parameters. The templates parameters allows to do some static (not yet dynamic) partial
evaluation, however reducing the arguments that are known at compile time, in order to specialize the
kernel.

Table 3 presents an example of such a port. NUM DOFS and NUM QUAD are passed as templates parameters and
used for the for-loop range and o↵set computation.

OCCA Kernel Language kernel C-style kernel

Table 3: OCCA to C-kernel example

Exascale Computing Project (ECP) 24 CEED-MS13

4.4.3 First wave results

Sources, remotes and branches are set as follow:

• Master version comes from https://github.com/CEED/Laghos/tree/master.

• Kernels version is from https://github.com/CEED/Laghos/tree/raja-dev: compiled with the cpu
makefile target, this version uses the kernels ported from OCCA and produces an executable for CPU
and GPU, each of them with or without � functions and with or without the template parameters.

• Raja version is from https://github.com/CEED/Laghos/tree/raja-dev too: compiled with the
raja makefile target, this version uses the nvcc compiler from cuda-9.0 SDK and uses RAJA from
https://github.com/LLNL/RAJA. The produced executable can use a serial CPU policy or a CUDA
GPU one, that can be chosen at runtime on the command line.

• Occa version is from https://github.com/dmed256/Laghos/tree/occa-dev, uses MFEM’s https:
//github.com/mfem/mfem/tree/occa-dev branch, and OCCA from https://github.com/libocca/
occa. The executable can target multiple backends at runtime: serial CPU, OpenMP, OpenCL and GPU.

• The hardware used for these first results was on one Intel(R) Xeon(R) CPU E5-1620v4@3.50GHz for
the serial results and one GeForceGTX (Pascal) device or the Ray machine at LLNL (a CORAL early
access architecture) for the CUDA results.

Table 4 shows the first results we obtained: Master is our reference implementation, that we are comparing
to the three others (Kernels, Raja and Occa), that now use the same underlying kernels, except for the
CUDA OCCA ones. These kernels are however called di↵erently (directly or through RAJA and through
OCCA), with additional properties set accordingly to possibilities of each layer.
The Kernels and Raja versions are similar, which is what was expected, slightly better than the Master

version. The Occa version is behind, which is in agreement with what was presented in the CEED MS8
report (3.1.2 Laghos on OCCA).
Table 5 compares the two CUDA versions, showing an order of magnitude for Occa over Raja. But again, it
is no more a head-to-head comparison, because of Occa’s high-order CUDA kernels.

Figure 17: Laghos P0,2D serial speedup: RAJA/Master and OCCA/Master

Figure 17 provides another way to see the relative performances of two versions. The surface shows the
speedup of the Raja and Occa versions compared to the Master one, sweeping di↵erent orders and di↵erent
number of elements per node. The Raja version is about twice as fast as the Master one, and Occa exposes
the zone where it is less e�cient.
Figure 18 presents the OCCA/RAJA speedup of one 2D problem (P0) Laghos test case. For high orders and
fewer degrees of freedom per node, OCCA’s CUDA kernels are showing their e�ciency.

Exascale Computing Project (ECP) 25 CEED-MS13

Table 4: Laghos serial results: Master, Kernels, Raja and Occa

Table 5: Laghos CUDA results: Raja and Occa

Exascale Computing Project (ECP) 26 CEED-MS13

Figure 18: Laghos P0,2D test case: CUDA Speedup: OCCA/RAJA

4.4.4 Second wave results

The second part of the optimization consisted in:

1. Switching to the CUDA driver (vs. runtime) API, similar to OCCA.

2. Adding a way for the Kernels to be launched with or without the lambda-body capture mechanism.

3. Adding a template feature to the Kernels, in order to take advantage at compile time of these static
inputs (some of the main for-loop ranges). This feature allows that option to be comparable with the
Just-In-Time (JIT) feature of OCCA.

4. Being able to run with or without UVM, adopting the simple convention that all MFEM data resides
on the host, and the RAJA one on the device, with explicit movements through simple type conversions.

5. Working on reducers and the dot product, to be competitive with the ones used by OCCA.

Figure 19 shows the gain in performances when adding the template feature that mimics OCCA’s JIT
capability. A gain of two to four is obtained on this test case on Ray’s Power processors.
Figures 20 and 21 are the speedups of OCCA versus templated-RAJA with the second wave of optimizations.
There is no more an order of magnitude between the two versions, but still an e�cient zone that OCCA
exploits by using his high-order kernels.

4.4.5 Third wave results

The third part of the optimization process continued by:

1. Optimizing the data movement: most of the kernels now have zero data transfers between the host and
the device.

2. Cleaning all (re)allocations that are not required during the time steps: each allocation is done during
the setup phase, no more during solver iterations or for local vectors declarations and references.

3. Porting the high-order kernels to the Kernels GPU executable (<gpuK-share>), to be able to test
these kernels while RAJA implements nested for-loops with in-middle code, as well as shared memory
local array declarations.

Exascale Computing Project (ECP) 27 CEED-MS13

Figure 19: Laghos Kernels serial speedup on Ray with templated arguments

Figure 20: Laghos P1,2D CUDA speedup: OCCA/templated-RAJA on

GeForce GTX 1070

4. Porting some of MFEM’s communication operators to the device: Restriction and
ConformingProlongation, allowing when possible direct communication from device memory between
MPI ranks.

Figure 22 is an example of NVIDIA’s NVVP profiler output for Laghos. Even if the MemCpy DtoH, DtoD
and HtoD seem heavily used, only 8 bytes for the results of the reduction flies from the device to the host to
pinned memory. The main of the time in now spent in the mass kernel, which represents here up to 80% of
the computation.
Figure 23 is the latest performance results obtained on Ray, showing now a speedup up to four times compared
to the Occa version. The high-order kernels are the same now, but the Laghos miniapp has been optimized:

Exascale Computing Project (ECP) 28 CEED-MS13

Figure 21: Laghos P0,2D CUDA speedup: OCCA/templated-RAJA on Ray

Figure 22: Laghos P1,3D CUDA NVVP Kernels profile

data movement and memory allocations are now optimal, such optimizations could be pushed to the OCCA
branch.

5. OTHER PROJECT ACTIVITIES

5.1 Benchmark release by Paranumal team

The CEED group at Virginia Tech released standalone implementations of CEED’s BP1.0, BP3.0, and
BP3.5 benchmarks at https://github.com/kswirydo/CEED-Ax. For results and discussion, see their new
Paranumal blog at www.paranumal.com.

5.2 SciDAC collaborations

Several CEED researchers have been also in collaboration with domain and application scientist under the
SciDAC program The FASTMath applied math SciDAC institute addresses the needs of DOE applications in
the following eight areas:

• Structured mesh spatial discretization

Exascale Computing Project (ECP) 29 CEED-MS13

Figure 23: Laghos P1,3D CUDA Kernels speedup vs. OCCA

• Unstructured mesh spatial discretization

• Time integrators

• Linear systems solvers

• Solution of eigenvalue problems

• Numerical optimization

• Uncertainty quantification

• Data analytics

The primary interactions between CEED and FASTMath relate to unstructured mesh spatial discretization
where Dobrev, Kolev, Shephard and Smith are members of both CEED and the FASTMath unstructured
mesh teams. Unstructured mesh areas of interaction where CEED will interact with, and take advantage of,
FASTMath developments include:

• Non-conforming parallel mesh adaptation

• Conforming parallel mesh adaptation

• Support for the representation and adaptation of high-order curved meshes for complex domains.

• Support of solution fields and discretization error estimators.

• Dynamic load balancing.

CEED will also track FASTMath developments in linear system solvers and data analytics (the in situ
visualization work) and take advantage of all appropriate advances.

Exascale Computing Project (ECP) 30 CEED-MS13

5.3 Batched BLAS minisymposium at SIAM PP18

CEED’s UTK team organized a two-session minisymposium at the SIAM Conference on Parallel Processing
and Scientific Computing (SIAM PP’18) in Tokyo, Japan from March 7-10, 2018, devoted on the “Batched
BLAS Standardization”. This is part of our e↵orts on standardization and co-design of exascale discretization
APIs with application developers, hardware vendors and ECP software technologies projects. The goal is
to extend the BLAS standard to include batched BLAS computational patterns/application motifs that
are essential for representing and implementing tensor contractions. Besides participation from the CEED
project, we invited stakeholders from ORNL, Sandia, NVidia, Intel, IBM, and Universities [14].

5.4 Collaboration with Zfp

CEED researchers begun a collaboration with the Zfp team on compression algorithms that are specifically
tailored to high-order finite element data. Our initial goal was to apply Zfp as an HDF5 filter to MFEM-
generated data. An HDF5 DataCollection class was developed in MFEM and the mesh-explorer miniapp was
enhanced to write to the new format. Investigation is ongoing, but the initial results are promising.

5.5 OCCA 1.0-alpha pre-release

Several pre-releases of OCCA 1.0, featuring new parser and many other improvements, were published on
GitHub at https://github.com/libocca/occa. A number of CEED packages, including libCEED and
Paranumal are being updated to use the new features.

5.6 Outreach

CEED researchers were involved in a number of outreach activities, including a successful breakout session
on high-order methods and application at the ECP second annual meeting in Knoxville, a talk on Laghos at
JOWOG 34 at SNL and a poster accepted at GTC18 [1]. The MFEM project was highlighted in the Jan/Feb
issue of LLNL’s Science and Technology Review magazine (including the cover of the magazine). The team also
finalized the upcoming CEED-organized minisymposium, ”E�cient High-Order Finite Element Discretizations
at Large Scale”, at the International Conference in Spectral and High-Order Methods (ICOSAHOM18).

6. CONCLUSION

In this milestone, we created and made publicly available the first CEED software release consisting of
software components such as MFEM, Nek5000, PETSc, MAGMA, OCCA, etc., treated as dependencies
of CEED. The artifacts delivered include a consistent build system based on the 12 integrated Spack
packages, plus a new CEED meta-package, documentation and verification of the build process, as well
as improvements in the integration between di↵erent CEED components, see the CEED website, http:
//ceed.exascaleproject.org/ceed-1.0/ and the CEED GitHub organization, http://github.com/ceed
for more information. . In this report, we also described additional CEED activities performed in Q2 of FY18,
including: benchmark release by the Paranumal team, collaboration with SciDAC projects, organization of
batched BLAS mini-symposium at SIAM PP18, collaboration with Zfp, the OCCA 1.0-alpha pre-release, and
other outreach e↵orts.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC,
a collaborative e↵ort of two DOE organizations—the O�ce of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable exascale ecosystem—including
software, applications, hardware, advanced system engineering, and early testbed platforms—to support the
nation’s exascale computing imperative.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344, LLNL-TR-748602.

Exascale Computing Project (ECP) 31 CEED-MS13

REFERENCES

[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Tensor contractions using
optimized batch gemm routines. http://icl.cs.utk.edu/projectsfiles/magma/pubs/72-gtc18_
tensor_poster.pdf. GPU Technology Conference (GTC), Poster, March 26-29, 2018, San Jose, CA.

[2] M.W. Beall, J. Walsh, and M.S. Shephard. A comparison of techniques for geometry access related to
mesh generation. Engineering with Computers, 20:210–221, 2004.

[3] V. A. Dobrev, T. V. Kolev, and R. N. Rieben. High-order curvilinear finite element methods for
Lagrangian hydrodynamics. SIAM J. Sci. Comp., 34(5):B606–B641, 2012.

[4] Dan Ibanez and Mark S Shephard. Modifiable array data structures for mesh topology. SIAM Journal
on Scientific Computing, 39(2):C144–C161, 2017.

[5] Daniel A. Ibanez, E. Seegyoung Seol, Cameron W. Smith, and Mark S. Shephard. Pumi: Parallel
unstructured mesh infrastructure. ACM Transactions on Mathematical Software (TOMS), 42(3):17,
2016.

[6] Elias Konstantinidis and Yiannis Cotronis. A practical performance model for compute and memory
bound gpu kernels. In Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro
International Conference on, pages 651–658. IEEE, 2015.

[7] Elias Konstantinidis and Yiannis Cotronis. A quantitative roofline model for gpu kernel performance
estimation using micro-benchmarks and hardware metric profiling. Journal of Parallel and Distributed
Computing, 107:37–56, 2017.

[8] Qiukai Lu, Mark S. Shephard, Saurabh Tendulkar, and Mark W. Beall. Parallel mesh adaptation
for high-order finite element methods with curved element geometry. Engineering with Computers,
30(2):271–286, 2014.

[9] Xiao-Juan Luo, Mark S. Shephard, Lie-Quan Lee, Lixin Ge, and Cho Ng. Moving curved mesh adaptation
for higher-order finite element simulations. Engineering with Computers, 27(1):41–50, 2011.

[10] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcoub, and J. Dongarra. Algorithms
and optimization techniques for high-performance matrix-matrix multiplications of very small matrices.
Parellel Comput. Syst. Appl., 2018. (submitted).

[11] PUMI: Parallel unstructured mesh infrastructure, 2016. http://www.scorec.rpi.edu/pumi.

[12] Michel Rasquin, Cameron Smith, Kedar Chitale, E Seegyoung Seol, Benjamin A Matthews, Je↵rey L
Martin, Onkar Sahni, Raymond M Loy, Mark S Shephard, and Kenneth E Jansen. Scalable Implicit
Flow Solver for Realistic Wing Simulations with Flow Control. Computing in Science & Engineering,
(6):13–21, 2014.

[13] T Warburton. An explicit construction of interpolation nodes on the simplex. Journal of engineering
mathematics, 56(3):247–262, 2006.

[14] Mawussi Zounon, Azzam Haidar, and Siva Rajamanickam (Organizers). On Batched BLAS Standard-
ization. http://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=63546, March 7-10
2018. Mini-symposium at SIAM PP’18, Tokyo, Japan.

Exascale Computing Project (ECP) 32 CEED-MS13

