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Chapter 300 

Linear Regression 
and Correlation 
Introduction  
Linear Regression refers to a group of techniques for fitting and studying the straight-line relationship between 
two variables. Linear regression estimates the regression coefficientsβ0  and 1β  in the equation 

Y Xj j j= + +β β ε0 1  

where X  is the independent variable, Y is the dependent variable, β0  is the Y  intercept, β1  is the slope, and ε  is 
the error.  

 
In order to calculate confidence intervals and hypothesis tests, it is assumed that the errors are independent and 
normally distributed with mean zero and variance 2σ . 

Given a sample of N observations on X and Y, the method of least squares estimates β0  and β1  as well as various 
other quantities that describe the precision of the estimates and the goodness-of-fit of the straight line to the data. 
Since the estimated line will seldom fit the data exactly, a term for the discrepancy between the actual and fitted 
data values must be added. The equation then becomes  

y b b x e
y e

j j j

j j

= + +
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0 1


 

http://www.ncss.com/


NCSS Statistical Software NCSS.com   
Linear Regression and Correlation 

300-2 
 © NCSS, LLC. All Rights Reserved. 

where j is the observation (row) number, b0  estimates 0β , b1  estimates 1β , and ej  is the discrepancy between 
the actual data value y j  and the fitted value given by the regression equation, which is often referred to as y j . 
This discrepancy is usually referred to as the residual. 

Note that the linear regression equation is a mathematical model describing the relationship between X and Y. In 
most cases, we do not believe that the model defines the exact relationship between the two variables. Rather, we 
use it as an approximation to the exact relationship. Part of the analysis will be to determine how close the 
approximation is. 

Also note that the equation predicts Y from X. The value of Y depends on the value of X. The influence of all other 
variables on the value of Y is lumped into the residual.  

Correlation 
Once the intercept and slope have been estimated using least squares, various indices are studied to determine the 
reliability of these estimates. One of the most popular of these reliability indices is the correlation coefficient. The 
correlation coefficient, or simply the correlation, is an index that ranges from -1 to 1. When the value is near zero, 
there is no linear relationship. As the correlation gets closer to plus or minus one, the relationship is stronger. A 
value of one (or negative one) indicates a perfect linear relationship between two variables.  

Actually, the strict interpretation of the correlation is different from that given in the last paragraph. The 
correlation is a parameter of the bivariate normal distribution. This distribution is used to describe the association 
between two variables. This association does not include a cause and effect statement. That is, the variables are 
not labeled as dependent and independent. One does not depend on the other. Rather, they are considered as two 
random variables that seem to vary together. The important point is that in linear regression, Y is assumed to be a 
random variable and X is assumed to be a fixed variable. In correlation analysis, both Y and X are assumed to be 
random variables. 

Possible Uses of Linear Regression Analysis 
Montgomery (1982) outlines the following four purposes for running a regression analysis. 

Description 
The analyst is seeking to find an equation that describes or summarizes the relationship between two variables. 
This purpose makes the fewest assumptions. 

Coefficient Estimation  
This is a popular reason for doing regression analysis. The analyst may have a theoretical relationship in mind, 
and the regression analysis will confirm this theory. Most likely, there is specific interest in the magnitudes and 
signs of the coefficients. Frequently, this purpose for regression overlaps with others.  

Prediction 
The prime concern here is to predict the response variable, such as sales, delivery time, efficiency, occupancy rate 
in a hospital, reaction yield in some chemical process, or strength of some metal. These predictions may be very 
crucial in planning, monitoring, or evaluating some process or system. There are many assumptions and 
qualifications that must be made in this case. For instance, you must not extrapolate beyond the range of the data. 
Also, interval estimates require that normality assumptions to hold. 
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Control 
Regression models may be used for monitoring and controlling a system. For example, you might want to 
calibrate a measurement system or keep a response variable within certain guidelines. When a regression model is 
used for control purposes, the independent variable must be related to the dependent variable in a causal way. 
Furthermore, this functional relationship must continue over time. If it does not, continual modification of the 
model must occur. 

Assumptions 
The following assumptions must be considered when using linear regression analysis. 

Linearity 
Linear regression models the straight-line relationship between Y and X. Any curvilinear relationship is ignored. 
This assumption is most easily evaluated by using a scatter plot. This should be done early on in your analysis. 
Nonlinear patterns can also show up in residual plot. A lack of fit test is also provided. 

Constant Variance 
The variance of the residuals is assumed to be constant for all values of X. This assumption can be detected by 
plotting the residuals versus the independent variable. If these residual plots show a rectangular shape, we can 
assume constant variance. On the other hand, if a residual plot shows an increasing or decreasing wedge or bowtie 
shape, nonconstant variance (heteroscedasticity) exists and must be corrected. 

The corrective action for nonconstant variance is to use weighted linear regression or to transform either Y or X in 
such a way that variance is more nearly constant. The most popular variance stabilizing transformation is the to 
take the logarithm of Y.  

Special Causes 
It is assumed that all special causes, outliers due to one-time situations, have been removed from the data. If not, 
they may cause nonconstant variance, nonnormality, or other problems with the regression model. The existence 
of outliers is detected by considering scatter plots of Y and X as well as the residuals versus X. Outliers show up as 
points that do not follow the general pattern. 

Normality 
When hypothesis tests and confidence limits are to be used, the residuals are assumed to follow the normal 
distribution. 

Independence 
The residuals are assumed to be uncorrelated with one another, which implies that the Y’s are also uncorrelated. 
This assumption can be violated in two ways: model misspecification or time-sequenced data. 

1. Model misspecification. If an important independent variable is omitted or if an incorrect functional form 
is used, the residuals may not be independent. The solution to this dilemma is to find the proper 
functional form or to include the proper independent variables and use multiple regression. 

2. Time-sequenced data. Whenever regression analysis is performed on data taken over time, the residuals 
may be correlated. This correlation among residuals is called serial correlation. Positive serial correlation 
means that the residual in time period j tends to have the same sign as the residual in time period (j - k), 
where k is the lag in time periods. On the other hand, negative serial correlation means that the residual in 
time period j tends to have the opposite sign as the residual in time period (j - k). 
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The presence of serial correlation among the residuals has several negative impacts. 

1. The regression coefficients remain unbiased, but they are no longer efficient, i.e., minimum variance 
estimates. 

2. With positive serial correlation, the mean square error may be seriously underestimated. The impact of 
this is that the standard errors are underestimated, the t-tests are inflated (show significance when there is 
none), and the confidence intervals are shorter than they should be. 

3. Any hypothesis tests or confidence limits that require the use of the t or F distribution are invalid. 

You could try to identify these serial correlation patterns informally, with the residual plots versus time. A better 
analytical way would be to use the Durbin-Watson test to assess the amount of serial correlation. 

Technical Details  

Regression Analysis 
This section presents the technical details of least squares regression analysis using a mixture of summation and 
matrix notation. Because this module also calculates weighted linear regression, the formulas will include the 
weights, wj . When weights are not used, the wj  are set to one. 

Define the following vectors and matrices. 
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Least Squares  
Using this notation, the least squares estimates are found using the equation. 

( )b X WX X'WY= ′ −1
 

Note that when the weights are not used, this reduces to 

( )b X X X'Y= ′ −1
 

The predicted values of the dependent variable are given by 

Y b'X=  
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The residuals are calculated using 

e Y Y= −   

Estimated Variances  
An estimate of the variance of the residuals is computed using 

s
N

2

2
=

−
e'We

 

An estimate of the variance of the regression coefficients is calculated using 

( )

V
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An estimate of the variance of the predicted mean of Y at a specific value of X, say X0 , is given by 

( )( )s s X
XY Xm | ,

0

2 2
0

1

0

1
1

=








−X'WX  

An estimate of the variance of the predicted value of Y for an individual for a specific value of X, say X0 , is 
given by 

s s sY X Y XI m| |0 0

2 2 2= +  

Hypothesis Tests of the Intercept and Slope 
Using these variance estimates and assuming the residuals are normally distributed, hypothesis tests may be 
constructed using the Student’s t distribution with N - 2 degrees of freedom using 

t b
sb

b
0

0

0 0=
− B

 

and 

t b
sb

b
1

1

1 1=
− B

 

Usually, the hypothesized values of B0  and B1 are zero, but this does not have to be the case. 

Confidence Intervals of the Intercept and Slope 
A ( )%1100 α−  confidence interval for the intercept, 0β , is given by 

b t sN b0 ± − −1 2 2 0α / ,  

A ( )%1100 α−  confidence interval for the slope, 1β , is given by 

b t sN b1 ± − −1 2 2 1α / ,  
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Confidence Interval of Y for Given X 
A ( )%1100 α−  confidence interval for the mean of Y at a specific value of X, say X0 , is given by 

b b X t sN Y Xm0 0 1 2 2 0
+ ± − −1 α / , |  

Note that this confidence interval assumes that the sample size at X is N. 

A ( )%1100 α−  prediction interval for the value of Y for an individual at a specific value of X, say X0 , is given 
by 

b b X t sN Y XI0 0 1 2 2 0
+ ± − −1 α / , |  

Working-Hotelling Confidence Band for the Mean of Y 
A ( )%1100 α−  simultaneous confidence band for the mean of Y at all values of X is given by 

2,2,1|10 2 −−±+ NXY FsXbb
m α  

This confidence band applies to all possible values of X. The confidence coefficient, ( )%1100 α− , is the percent 
of a long series of samples for which this band covers the entire line for all values of X from negativity infinity to 
positive infinity. 

Confidence Interval of X for Given Y 
This type of analysis is called inverse prediction or calibration. A ( )%1100 α−  confidence interval for the mean 
value of X for a given value of Y is calculated as follows. First, calculate X from Y using 

X Y b
b

=
− 0

1

 

Then, calculate the interval using  
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A ( )%1100 α−  confidence interval for an individual value of X for a given value of Y is  

( ) ( )( ) ( )
( )
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=
∑
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R-Squared (Percent of Variation Explained ) 
Several measures of the goodness-of-fit of the regression model to the data have been proposed, but by far the 
most popular is R2 . R2  is the square of the correlation coefficient. It is the proportion of the variation in Y that is 
accounted by the variation in X. R2  varies between zero (no linear relationship) and one (perfect linear 
relationship). 

R2 , officially known as the coefficient of determination, is defined as the sum of squares due to the regression 
divided by the adjusted total sum of squares of Y. The formula for R2  is 

( )
R

SS
SS

Model

Total

2
21= −

−



















=

e'We

Y'WY
1'WY
1'W1

 

R2  is probably the most popular measure of how well a regression model fits the data. R2  may be defined either 
as a ratio or a percentage. Since we use the ratio form, its values range from zero to one. A value of R2  near zero 
indicates no linear relationship, while a value near one indicates a perfect linear fit. Although popular, R2  should 
not be used indiscriminately or interpreted without scatter plot support. Following are some qualifications on its 
interpretation:  

1. Additional independent variables. It is possible to increase R2  by adding more independent variables, but 
the additional independent variables may actually cause an increase in the mean square error, an 
unfavorable situation. This usually happens when the sample size is small. 

2. Range of the independent variable. R2  is influenced by the range of the independent variable. R2  
increases as the range of X increases and decreases as the range of the X decreases.  

3. Slope magnitudes. R2  does not measure the magnitude of the slopes.  

4. Linearity. R2  does not measure the appropriateness of a linear model. It measures the strength of the 
linear component of the model. Suppose the relationship between X and Y was a perfect circle. Although 
there is a perfect relationship between the variables, the R2  value would be zero. 

5. Predictability. A large R2  does not necessarily mean high predictability, nor does a low R2  necessarily 
mean poor predictability.  

6. No-intercept model. The definition of R2  assumes that there is an intercept in the regression model. 
When the intercept is left out of the model, the definition of R2  changes dramatically. The fact that your 
R2  value increases when you remove the intercept from the regression model does not reflect an increase 
in the goodness of fit. Rather, it reflects a change in the underlying definition of R2 . 
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7. Sample size. R2  is highly sensitive to the number of observations. The smaller the sample size, the larger 
its value. 

Rbar-Squared (Adjusted R-Squared) 
R2  varies directly with N, the sample size. In fact, when N = 2, R2 = 1. Because R2  is so closely tied to the 
sample size, an adjusted R2  value, called R 2 , has been developed. R 2  was developed to minimize the impact of 
sample size. The formula for R 2  is 

( )( )( )
R

N p R
N p

2
2

1
1 1

= −
− − −

−













 

where p is 2 if the intercept is included in the model and 1 if not. 

Probability Ellipse 
When both variables are random variables and they follow the bivariate normal distribution, it is possible to 
construct a probability ellipse for them (see Jackson (1991) page 342). The equation of the ( )100 1− α %  
probability ellipse is given by those values of X and Y that are solutions of 
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Orthogonal Regression Line 
The least squares estimates discussed above minimize the sum of the squared distances between the Y’s and there 
predicted values. In some situations, both variables are random variables and it is arbitrary which is designated as 
the dependent variable and which is the independent variable. When the choice of which variable is the dependent 
variable is arbitrary, you may want to use the orthogonal regression line rather than the least squares regression 
line. The orthogonal regression line minimizes the sum of the squared perpendicular distances from the each 
observation to the regression line. The orthogonal regression line is the first principal component when a principal 
components analysis is run on the two variables. 

Jackson (1991) page 343 gives a formula for computing the orthogonal regression line without computing a 
principal components analysis. The slope is given by 

b
s s s s s

sortho
YY XX YY XX XY

XY
,1

24
2

=
− + − +

 

where 
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w X X Y Y
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=
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−
=
∑

1

1
 

The estimate of the intercept is then computed using 

b Y b Xortho y ortho, ,= − 1  

Although Jackson gives formulas for a confidence interval on the slope and intercept, we do not provide them in 
NCSS because their properties are not well understood and the require certain bivariate normal assumptions. 
Instead, NCSS provides bootstrap confidence intervals for the slope and intercept. 
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The Correlation Coefficient 
The correlation coefficient can be interpreted in several ways. Here are some of the interpretations. 

1. If both Y and X are standardized by subtracting their means and dividing by their standard deviations, the 
correlation is the slope of the regression of the standardized Y on the standardized X.  

2. The correlation is the standardized covariance between Y and X.  

3. The correlation is the geometric average of the slopes of the regressions of Y on X and of X on Y. 

4. The correlation is the square root of R-squared, using the sign from the slope of the regression of Y on X. 

The corresponding formulas for the calculation of the correlation coefficient are  

( )( )
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where sXY  is the covariance between X and Y, bXY  is the slope from the regression of X on Y, and bYX  is the 
slope from the regression of Y on X. sXY  is calculated using the formula 

( )( )
s

w X X Y Y

NXY

j j j
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N

=
− −

−
=
∑

1

1
 

The population correlation coefficient, ρ , is defined for two random variables, U and W, as follows 

( )( )[ ]
( ) ( )

ρ σ
σ σ

µ µ

=

=
− −

UW

U W

U WU W

U W

2 2

E

Var Var

 

Note that this definition does not refer to one variable as dependent and the other as independent. Rather, it simply 
refers to two random variables. 

Facts about the Correlation Coefficient 
The correlation coefficient has the following characteristics. 

1. The range of r is between -1 and 1, inclusive. 

2. If r = 1, the observations fall on a straight line with positive slope. 

3. If r = -1, the observations fall on a straight line with negative slope. 

4. If r = 0, there is no linear relationship between the two variables. 

5. r is a measure of the linear (straight-line) association between two variables. 
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6. The value of r is unchanged if either X or Y is multiplied by a constant or if a constant is added. 

7. The physical meaning of r is mathematically abstract and may not be very help. However, we provide it 
for completeness. The correlation is the cosine of the angle formed by the intersection of two vectors in 
N-dimensional space. The components of the first vector are the values of X while the components of the 
second vector are the corresponding values of Y. These components are arranged so that the first 
dimension corresponds to the first observation, the second dimension corresponds to the second 
observation, and so on. 

Hypothesis Tests for the Correlation 
You may be interested in testing hypotheses about the population correlation coefficient, such as ρ ρ= 0 . When 
ρ0 0= , the test is identical to the t-test used to test the hypothesis that the slope is zero. The test statistic is 
calculated using 

t r
r

N

N − =
−
−

2 21
2

 

However, when ρ0 0≠ , the test is different from the corresponding test that the slope is a specified, nonzero, 
value. 

NCSS provides two methods for testing whether the correlation is equal to a specified, nonzero, value.  

Method 1. This method uses the distribution of the correlation coefficient. Under the null hypothesis that ρ ρ= 0  
and using the distribution of the sample correlation coefficient, the likelihood of obtaining the sample correlation 
coefficient, r, can be computed. This likelihood is the statistical significance of the test. This method requires the 
assumption that the two variables follow the bivariate normal distribution. 

Method 2. This method uses the fact that Fisher’s z transformation, given by 

( )F r r
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To test the hypothesis that 0ρρ = , you calculate z using  
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and use the fact that z is approximately distributed as the standard normal distribution with mean equal to zero and 
variance equal to one. This method requires two assumptions. First, that the two variables follow the bivariate 
normal distribution. Second, that the distribution of z is approximated by the standard normal distribution.  

This method has become popular because it uses the commonly available normal distribution rather than the 
obscure correlation distribution. However, because it makes an additional assumption, it is not as accurate as is 
method 1. In fact, we have included in for completeness, but recommend the use of Method 1. 

Confidence Intervals for the Correlation 
A ( )%1100 α−  confidence interval for ρ  may be constructed using either of the two hypothesis methods 
described above. The confidence interval is calculated by finding, either directly using Method 2 or by a search 
using Method 1, all those values of ρ0  for which the hypothesis test is not rejected. This set of values becomes 
the confidence interval. 

Be careful not to make the common mistake in assuming that this confidence interval is related to a 
transformation of the confidence interval on the slope β1 . The two confidence intervals are not simple 
transformations of each other. 

Spearman Rank Correlation Coefficient 
The Spearman rank correlation coefficient is a popular nonparametric analog of the usual correlation coefficient. 
This statistic is calculated by replacing the data values with their ranks and calculating the correlation coefficient 
of the ranks. Tied values are replaced with the average rank of the ties. This coefficient is really a measure of 
association rather than correlation, since the ranks are unchanged by a monotonic transformation of the original 
data. 

When N is greater than 10, the distribution of the Spearman rank correlation coefficient can be approximated by 
the distribution of the regular correlation coefficient. 

Note that when weights are specified, the calculation of the Spearman rank correlation coefficient uses the 
weights. 

Smoothing with Loess 
The loess (locally weighted regression scatter plot smoothing) method is used to obtain a smooth curve 
representing the relationship between X and Y. Unlike linear regression, loess does not have a simple 
mathematical model. Rather, it is an algorithm that, given a value of X, computes an appropriate value of Y. The 
algorithm was designed so that the loess curve travels through the middle of the data, summarizing the 
relationship between X and Y. 

The loess algorithm works as follows. 

1. Select a value for X. Call it X0. 

2. Select a neighborhood of points close to X0. 

3. Fit a weighted regression of Y on X using only the points in this neighborhood. In the regression, the 
weights are inversely proportional to the distance between X and X0. 

4. To make the procedure robust to outliers, a robust regression may be substituted for the weighted 
regression in step 3. This robust procedure modifies the weights so that observations with large residuals 
receive smaller weights. 

5. Use the regression coefficients from the weighted regression in step 3 to obtained a predicted value for Y 
at X0. 

6. Repeat steps 1 - 5 for a set of X’s between the minimum and maximum of X. 
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Mathematical Details of Loess 
This section presents the mathematical details of the loess method of scatter plot smoothing. Note that implicit in 
the discussion below is the assumption that Y is the dependent variable and X is the independent variable. 

Loess gives the value of Y for a given value of X, say X0. For each observation, define the distance between X and 
X0 as 

j jd   X X= − 0  

Let q be the number of observations in the neighborhood of X0. Define q as [fN] where f is the user-supplied 
fraction of the sample. Here, [Z] is the largest integer in Z. Often f = 0.40 is a good choice. The neighborhood is 
defined as the observations with the q smallest values of jd . Define qd  as the largest distance in the 
neighborhood of observations close to X0. 

The tricube weight function is defined as 

( ) ( )T u u u
u

= − <

≥







1 1
0 1

3 3

 

The weight for each observation is defined as 

j
j

q
w   T

X X
d

=
−











0
 

The weighted regression for X0 is defined by the value of b0, b1, and b2 that minimize the sum of squares 

( ) ( )( )T
X X

d
 Y b b X b Xj

qj

N

j j j

−







 − − −

=
∑

0
0 1 2

1

2 2

 

Note the if b2 is zero, a linear regression is fit. Otherwise, a quadratic regression is fit. The choice of linear or 
quadratic is an option in the procedure. The linear option is quicker, while the quadratic option fits peaks and 
valleys better. In most cases, there is little difference except at the extremes in the X space. 

Once b0, b1, and b2 have be estimated using weighted least squares, the loess value is computed using 

( ) ( ) ( )Y X b b X b Xloess 0 0 1 0 2 0 2= − −  

Note that a separate weighted regression must be run for each value of X0. 

Robust Loess 
Outliers often have a large impact on least squares impact. A robust weighted regression procedure may be used 
to lessen the influence of outliers on the loess curve. This is done as follows. 

The q loess residuals are computed using the loess regression coefficients using the formula 

( )r Y Y Xj j loess j= − 
 

New weights are defined as 

j last j
j

w   w B
r
M

=










, 6
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where wlast j,  is the previous weight for this observation, M is the median of the q absolute values of the residuals, 
and B(u) is the bisquare weight function defined as 

( ) ( )B u u u
u

= − <
≥







1 1
0 1

2 2

 
This robust procedure may be iterated up to five items, but we have seen little difference in the appearance of the 
loess curve after two iterations. 

Note that it is not always necessary to create the robust weights. If you are not going to remove the outliers from 
you final results, you probably should not remove them from the loess curve by setting the number of robust 
iterations to zero. 

 

Testing Assumptions Using Residual Diagnostics 
Evaluating the amount of departure in your data from each linear regression assumption is necessary to see if any 
remedial action is necessary before the fitted results can be used. First, the types of plots and statistical analyses 
the are used to evaluate each assumption will be given. Second, each of the diagnostic values will be defined. 

Notation – Use of (j) and p 
Several of these residual diagnostic statistics are based on the concept of studying what happens to various aspects 
of the regression analysis when each row is removed from the analysis. In what follows, we use the notation (j) to 
mean that observation j has been omitted from the analysis. Thus, b(j) means the value of b calculated without 
using observation j. 
Some of the formulas depend on whether the intercept is fitted or not. We use p to indicate the number of 
regression parameters.  When the intercept is fit, p will be two. Otherwise, p will be one. 

1 – No Outliers 
Outliers are observations that are poorly fit by the regression model. If outliers are influential, they will cause 
serious distortions in the regression calculations. Once an observation has been determined to be an outlier, it 
must be checked to see if it resulted from a mistake. If so, it must be corrected or omitted. However, if no mistake 
can be found, the outlier should not be discarded just because it is an outlier. Many scientific discoveries have 
been made because outliers, data points that were different from the norm, were studied more closely. Besides 
being caused by simple data-entry mistakes, outliers often suggest the presence of an important independent 
variable that has been ignored. 

Outliers are easy to spot on bar charts or box plots of the residuals and RStudent. RStudent is the preferred 
statistic for finding outliers because each observation is omitted from the calculation making it less likely that the 
outlier can mask its presence. Scatter plots of the residuals and RStudent against the X variable are also helpful 
because they may show other problems as well. 

2 – Linear Regression Function - No Curvature 
The relationship between Y and X is assumed to be linear (straight-line). No mechanism for curvature is included 
in the model. Although a scatter plot of Y versus X can show curvature in the relationship, the best diagnostic tool 
is the scatter plot of the residual versus X. If curvature is detected, the model must be modified to account for the 
curvature. This may mean adding a quadratic terms, taking logarithms of Y or X, or some other appropriate 
transformation. 
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Loess Curve 
A loess curve should be plotted between X and Y to see if any curvature is present. 

Lack of Fit Test 
When the data include repeat observations at one or more X values (replicates), the adequacy of the linear model 
can be evaluated numerically by performing a lack of fit test. This test procedure detects nonlinearities.  

The lack of fit test is constructed as follows. First, the sum of squares for error is partitioned into two quantities: 
lack of fit and pure error. The pure error sum of squares is found by considering only those observations that are 
replicates. The X values are treated as the levels of the factor in a one-way analysis of variance. The sum of 
squares error from this analysis measures the underlying variation in Y that occurs when the value of X is held 
constant. Thus it is called pure error. When the pure error sum of squares is subtracted from the error sum of 
squares of the linear regression, the result is measure of the amount of nonlinearity in the data. An F-ratio can be 
constructed from these two values that will test the statistical significant of the lack of fit. The F-ratio is 
constructed using the following equation. 

F

SS
DF

SS
DF

DF DF

Lack of fit

Pure Error
1 2

1

2

, =  

where DF2 is the degrees of freedom for the error term in the one-way analysis of variance and DF1 is N - DF2 - 
2. 

3 – Constant Variance 
The errors are assumed to have constant variance across all values of X. If there are a lot of data (N > 100), 
nonconstant variance can be detected on a scatter plot of the residuals versus X. However, the most direct 
diagnostic tool to evaluate this assumption is a scatter plot of the absolute values of the residuals versus X. Often, 
the assumption is violated because the variance increases with X. This will show up as a ‘megaphone’ pattern to 
this plot. 

When nonconstant variance is detected, a variance-stabilizing transformation such as the square-root or logarithm 
may be used. However, the best solution is probably to use weighted regression, with weights inversely 
proportional to the magnitude of the residuals. 

Modified Levene Test 
The modified Levene test can be used to evaluate the validity of the assumption of constant variance. It has been 
shown to be reliable even when the residuals do not follow a normal distribution. 

The test is constructed by grouping the residuals according to the values of X. The number of groups is arbitrary, 
but usually, two groups are used.  In this case, the absolute residuals of observations with low values of X are 
compared against those with high values of X. If the variability is constant, the variability in these two groups of 
residuals should be equal. The test is computed using the formula 
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where 
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and ~e1  is the median of the group of residuals for low values of X and ~e2  is the median of the group of residuals 
for high values of X. The test statistic L is approximately distributed as a t statistic with N - 2 degrees of freedom. 

4 – Independent Errors 
The Y’s, and thus the errors, are assumed to be independent. This assumption is usually ignored unless there is a 
reason to think that it has been violated, such as when the observations were taken across time. An easy way to 
evaluate this assumption is a scatter plot of the residuals versus their sequence number (assuming that the data are 
arranged in time sequence order). This plot should show a relative random pattern.  

The Durbin-Watson statistic is used as a formal test for the presence of first-order serial correlation. A more 
comprehensive method of evaluation is to look at the autocorrelations of the residuals at various lags. Large 
autocorrelations are found by testing each using Fisher’s z transformation. Although Fisher’s z transformation is 
only approximate in the case of autocorrelations, it does provide a reasonable measuring stick with which to judge 
the size of the autocorrelations.  

If independence is violated, confidence intervals and hypothesis tests are erroneous. Some remedial method that 
accounts for the lack of independence must be adopted, such as using first differences or the Cochrane-Orcutt 
procedure. 

Durbin-Watson Test 
The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. It is calculated 
as follows 
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The distribution of this test is difficult because it involves the X values. Originally, Durbin-Watson (1950, 1951) gave 
a pair of bounds to be used. However, there is a large range of ‘inclusion’ found when using these bounds. Instead of 
using these bounds, we calculate the exact probability using the beta distribution approximation suggested by Durbin-
Watson (1951). This approximation has been shown to be accurate to three decimal places in most cases which is all 
that are needed for practical work. 
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5 – Normality of Residuals 
The residuals are assumed to follow the normal probability distribution with zero mean and constant variance. 
This can be evaluated using a normal probability plot of the residuals. Also, normality tests are used to evaluate 
this assumption. The most popular of the five normality tests provided is the Shapiro-Wilk test.  

Unfortunately, a breakdown in any of the other assumptions results in a departure from this assumption as well. 
Hence, you should investigate the other assumptions first, leaving this assumption until last. 

Influential Observations 
Part of the evaluation of the assumptions includes an analysis to determine if any of the observations have an 
extra large influence on the estimated regression coefficients, on the fit of the model, or on the value of Cook’s 
distance. By looking at how much removing an observation changes the results, an observation’s influence can be 
determined. 

Five statistics are used to investigate influence. These are Hat diagonal, DFFITS, DFBETAS, Cook’s D, and 
COVARATIO. 

Definitions Used in Residual Diagnostics 

Residual 
The residual is the difference between the actual Y value and the Y value predicted by the estimated regression 
model. It is also called the error, the deviate, or the discrepancy. 

j j je   y y= −   

Although the true errors, ε j , are assumed to be independent, the computed residuals, ej , are not. Although the 
lack of independence among the residuals is a concern in developing theoretical tests, it is not a concern on the 
plots and graphs. 

The variance of the ε j  is σ 2 . However, the variance of the ej  is not σ 2 . In vector notation, the covariance 
matrix of e is given by 
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The matrix H is called the hat matrix since it puts the ‘hat’ on y as is shown in the unweighted case. 
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Hence, the variance of ej  is given by 

( ) ( )V e hj jj= −σ 2 1  

where hjj  is the jth diagonal element of H. This variance is estimated using 

( ) ( )V e s hj jj= −2 1
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Hat Diagonal 

The hat diagonal, hjj , is the jth diagonal element of the hat matrix, H where 

( )H W X X'WX X W
1
2

1
2

1= − '  

H captures an observation’s remoteness in the X-space. Some authors refer to the hat diagonal as a measure of 
leverage in the X-space. As a rule of thumb, hat diagonals greater than 4/N are considered influential and are 
called high-leverage observations. 

Note that a high-leverage observation is not a bad observation. Rather, high-leverage observations exert extra 
influence on the final results, so care should be taken to insure that they are correct. You should not delete an 
observation just because it has a high-influence. However, when you interpret the regression equation, you should 
bear in mind that the results may be due to a few, high-leverage observations. 

Standardized Residual 
As shown above, the variance of the observed residuals is not constant. This makes comparisons among the 
residuals difficult. One solution is to standardize the residuals by dividing by their standard deviations. This will 
give a set of residuals with constant variance. 

The formula for this residual is 

j
j
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r   e
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s(j) or MSEi 
This is the value of the mean squared error calculated without observation j. The formula for s(j) is given by 
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RStudent 
Rstudent is similar to the studentized residual. The difference is the s(j) is used rather than s in the denominator. 
The quantity s(j) is calculated using the same formula as s, except that observation j is omitted. The hope is that 
be excluding this observation, a better estimate of σ 2  will be obtained. Some statisticians refer to these as the 
studentized deleted residuals. 

( )j
j

jj
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s j h
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If the regression assumptions of normality are valid, a single value of the RStudent has a t distribution with N - 2 
degrees of freedom. It is reasonable to consider |RStudent| > 2 as outliers. 
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DFFITS 
DFFITS is the standardized difference between the predicted value with and without that observation. The 
formula for DFFITS is 

( )
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=
−

 

1

  

The values of ( )y jj  and ( )s j2  are found by removing observation j before the doing the calculations. It 
represents the number of estimated standard errors that the fitted value changes if the jth observation is omitted 
from the data set. If |DFFITS| > 1, the observation should be considered to be influential with regards to 
prediction. 

Cook’s D 
The DFFITS statistic attempts to measure the influence of a single observation on its fitted value. Cook’s distance 
(Cook’s D) attempts to measure the influence each observation on all N fitted values. The formula for Cook’s D is 
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The ( )y ij  are found by removing observation i before the calculations. Rather than go to all the time of 
recalculating the regression coefficients N times, we use the following approximation 
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This approximation is exact when no weight variable is used.  

A Cook’s D value greater than one indicates an observation that has large influence. Some statisticians have 
suggested that a better cutoff value is 4 / (N - 2). 

CovRatio 
This diagnostic flags observations that have a major impact on the generalized variance of the regression 
coefficients. A value exceeding 1.0 implies that the ith observation provides an improvement, i.e., a reduction in 
the generalized variance of the coefficients. A value of CovRatio less than 1.0 flags an observation that increases 
the estimated generalized variance. This is not a favorable condition. 

The general formula for the CovRatio is 
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where p = 2 if the intercept is fit or 1 if not. 
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Belsley, Kuh, and Welsch (1980) give the following guidelines for the CovRatio: 

If CovRatio > 1 + 3p / N then omitting this observation significantly damages the precision of at least some of the 
regression estimates. 

If CovRatio < 1 - 3p / N then omitting this observation significantly improves the precision of at least some of the 
regression estimates.  

DFBETAS 
The DFBETAS criterion measures the standardized change in a regression coefficient when an observation is 
omitted. The formula for this criterion is 

( )
( )kj
k k

kk
DFBETAS  =  b b j

s j c
−

  

where ckk  is a diagonal element of the inverse matrix ( )X'WX −1
. 

Belsley, Kuh, and Welsch (1980) recommend using a cutoff of 2 / N  when N is greater than 100. When N is 
less than 100, others have suggested using a cutoff of 1.0 or 2.0 for the absolute value of DFBETAS. 

Press Value 
PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection  to validate a 
regression model. To calculate PRESS, each observation is individually omitted. The remaining N - 1 
observations are used to calculate a regression and estimate the value of the omitted observation. This is done N 
times, once for each observation. The difference between the actual Y value and the predicted Y with the 
observation deleted is called the prediction error or PRESS residual. The sum of the squared prediction errors is 
the PRESS value. The smaller PRESS is, the better the predictability of the model. 

The formula for PRESS is 
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Press R-Squared 
The PRESS value above can be used to compute an R2 -like statistic, called R2Predict, which reflects the 
prediction ability of the model. This is a good way to validate the prediction of a regression model without 
selecting another sample or splitting your data. It is very possible to have a high R2  and a very low R2Predict. 
When this occurs, it implies that the fitted model is data dependent. This R2Predict ranges from below zero to 
above one. When outside the range of zero to one, it is truncated to stay within this range. 

Predict
2

Total
R  =   -  PRESS

SS
1  

Sum |Press residuals| 
This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value for the PRESS is 
due to one or a few large PRESS residuals, this statistic may be a more accurate way to evaluate predictability. 
This quantity is computed as 
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Bootstrapping 
Bootstrapping was developed to provide standard errors and confidence intervals for regression coefficients and 
predicted values in situations in which the standard assumptions are not valid. In these nonstandard situations, 
bootstrapping is a viable alternative to the corrective action suggested earlier. The method is simple in concept, 
but it requires extensive computation time. 

The bootstrap is simple to describe. You assume that your sample is actually the population and you draw B 
samples (B is over 1000) of size N from your original sample with replacement. With replacement means that 
each observation may be selected more than once. For each bootstrap sample, the regression results are computed 
and stored.  

Suppose that you want the standard error and a confidence interval of the slope. The bootstrap sampling process 
has provided B estimates of the slope. The standard deviation of these B estimates of the slope is the bootstrap 
estimate of the standard error of the slope. The bootstrap confidence interval is found by arranging the B values in 
sorted order and selecting the appropriate percentiles from the list. For example, a 90% bootstrap confidence 
interval for the slope is given by fifth and ninety-fifth percentiles of the bootstrap slope values. The bootstrap 
method can be applied to many of the statistics that are computed in regression analysis.  

The main assumption made when using the bootstrap method is that your sample approximates the population 
fairly well. Because of this assumption, bootstrapping does not work well for small samples in which there is little 
likelihood that the sample is representative of the population. Bootstrapping should only be used in medium to 
large samples. 

When applied to linear regression, there are two types of bootstrapping that can be used. See Neter, Kutner, 
Nachtsheim, Wasserman (1996) page 430. 

Modified Residuals 
Davison and Hinkley (1999) page 279 recommend the use of a special rescaling of the residuals when 
bootstrapping to keep results unbiased. These modified residuals are calculated using 
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Bootstrap the Observations 
The bootstrap samples are selected from the original sample of X and Y pairs. This method is appropriate for data 
in which both X and Y have been selected at random. That is, the X values were not predetermined, but came in as 
measurements just as the Y values.  

An example of this situation would be if a population of individuals is sampled and both Y and X are measured on 
those individuals only after the sample is selected. That is, the value of X was not used in the selection of the 
sample. 
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Bootstrap the Residuals 
The bootstrap samples are constructed using the modified residuals. In each bootstrap sample, the randomly 
sampled modified residuals are added to the original fitted values forming new values of Y. This method forces 
the original structure of the X values to be retained in every bootstrap sample. 

This method is appropriate for data obtained from a designed experiment in which the values of X are preset by 
the experimental design. 

Because the residuals are sampled and added back at random, the method must assume that the variance of the 
residuals is constant. If the sizes of the residuals are proportional to X, this method should not be used. 

Bootstrap Prediction Intervals 
Bootstrap confidence intervals for the mean of Y given X are generated from the bootstrap sample in the usual 
way. To calculate prediction intervals for the predicted value (not the mean) of Y given X requires a modification 
to the predicted value of Y  to be made to account for the variation of Y about its mean. This modification of the 
predicted Y values in the bootstrap sample, suggested by Davison and Hinkley, is as follows. 

( )  * *y y x b b e  + += − − +1 1  

where e  +
* is a randomly selected modified residual. By adding the randomly sample residual we have added an 

appropriate amount of variation to represent the variance of individual Y’s about their mean value. 

Randomization Test 
Because of the strict assumptions that must be made when using this procedure to test hypotheses about the slope, NCSS 
also includes a randomization test as outlined by Edgington (1987). Randomization tests are becoming more and more 
popular as the speed of computers allows them to be computed in seconds rather than hours. 

A randomization test is conducted by enumerating all possible permutations of the dependent variable while leaving the 
independent variable in the original order. The slope is calculated for each permutation and the number of permutations 
that result in a slope with a magnitude greater than or equal to the actual slope is counted. Dividing this count by the 
number of permutations tried gives the significance level of the test.  

For even moderate sample sizes, the total number of permutations is in the trillions, so a Monte Carlo approach is used in 
which the permutations are found by random selection rather than complete enumeration. Edgington suggests that at least 
1,000 permutations be selected. We suggest that this be increased to 10,000.  

Data Structure 
The data are entered as two variables. If weights or frequencies are available, they are entered separately in other 
variables. An example of data appropriate for this procedure is shown below. These data are the heights and 
weights of twenty individuals. The data are contained in the LINREG1 database. We suggest that you open this 
database now so that you can follow along with the examples. 
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LinReg1 dataset (subset) 

Height Weight 
64 159 
63 155 
67 157 
60 125 
52 103 
58 122 
56 101 
52 82 
79 228 
76 199 
73 195 

Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present on a row for all but the 
dependent variable, a predicted value and confidence limits are generated for that row.  

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variable 

Y: Dependent Variable(s) 
Specifies a dependent (Y) variable. This variable should contain only numeric values. If more than one variable is 
specified, a separate analysis is run for each. 

X: Independent Variable 
Specifies the variable to be used as independent (X) variable. This variable should contain only numeric values. 

Frequency Variable 
Specify an optional frequency (count) variable. This variable contains integers that represent the number of 
observations (frequency) associated with each observation. If left blank, each observation has a frequency of one. 
This variable lets you modify that frequency. This is especially useful when your data are already tabulated and 
you want to enter the counts. 

Weight Variable 
A weight variable may be specified to set the (non-negative) weight given to each observation in a weighted 
regression. By default, each observation receives an equal weight of 1 / N (where N is the sample size). This 
variable allows you to specify different weights for different observations. 

NCSS automatically scales the weights so that they sum to one. Hence, you can enter integer numbers and NCSS 
will scale them to appropriate fractions.  

The weight variable is commonly created in the Robust Regression procedure. 
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Model Specification 

Remove Intercept 
Specifies whether to remove the Y-intercept term from the regression model. In most cases, you will want to keep 
the intercept term by leaving this option unchecked. 

Note that removing the Y-intercept from the regression equation distorts many of the common regression 
measures such as R-Squared, mean square error, and t-tests. You should not use these measures when the 
intercept has been omitted. 

Resampling 

Calculate Bootstrap C.I.’s 
This option causes bootstrapping to be done and all associated bootstrap reports and plots to be generated. 
Bootstrapping may be very time consuming when the sample size is large (say > 1000). 

Run randomization tests 
Check this option to run the randomization test. Note that this test is computer-intensive and may require a great 
deal of time to run. 

Alpha Levels 

Alpha for C.I.’s and Tests 
Alpha is the significance level used in the hypothesis tests. One minus alpha is the confidence level (confidence 
coefficient) of the confidence intervals.  

A value of 0.05 is commonly used. This corresponds to a chance of 1 out of 20. You should not be afraid to use 
other values since 0.05 became popular in pre-computer days when it was the only value available. Typical values 
range from 0.001 to 0.20. 

Alpha for Assumptions 
This value specifies the significance level that must be achieved to reject a preliminary test of an assumption. In 
regular hypothesis tests, common values of alpha are 0.05 and 0.01. However, most statisticians recommend that 
preliminary tests use a larger alpha such as 0.15 or 0.20.  

We recommend 0.20. 

Reports Tab 
The following options control which reports and plots are displayed. Since over 25 reports are available, you may 
want to spend some time deciding which reports you want to display on a routine basis and create a template that 
saves your favorite choices. 

Select Report / Plot Group 

Select a Group of Reports and Plots 
This option allows you to specify a group of reports and plots without checking them individually. The checking 
of individual reports and plots is only useful when this option is set to Display only those items that are 
CHECKED BELOW. Otherwise, the checking of individual reports and plots is ignored. 

http://www.ncss.com/


NCSS Statistical Software NCSS.com   
Linear Regression and Correlation 

300-24 
 © NCSS, LLC. All Rights Reserved. 

Report Options 

Show Notes 
This option controls whether the available notes and comments that are displayed at the bottom of each report. 
This option lets you omit these notes to reduce the length of the output. 

Show All Rows 
This option makes it possible to display predicted values for only a few designated rows. 
When checked predicted values, residuals, and other row-by-row statistics, will be displayed for all rows used in 
the analysis.  
When not checked, predicted values and other row-by-row statistics will be displayed for only those rows in 
which the dependent variable’s value is missing. 

Select Reports – Summaries 

Run Summary ... Summary Matrices 
Each of these options specifies whether the indicated report is calculated and displayed. Note that since some of 
these reports provide results for each row, they may be too long for normal use when requested on large 
databases. 

Select Reports – Estimation 

Regression Estimation 
Indicate whether to display this report.  

Select Reports – ANOVA 

ANOVA 
Indicate whether to display this report.  

Select Reports – Assumptions 

Assumptions 
Indicate whether to display this report.  

Levene Groups 
This option sets the number of groups used in Levene’s constant-variance of residuals test. In most cases, a ‘2’ 
should be used. In all cases, the number of groups should be small enough so that you have at least 25 
observations in each group. 

Durbin-Watson 
Indicate whether to display this report.  

PRESS 
Indicate whether to display this report.  
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Select Reports – Prediction 

Predict Y at these X Values 
Enter an optional list of X values at which to report predicted values of Y and confidence intervals. Note that these 
values are also reported on in the bootstrap reports. 

You can enter a single number or a list of numbers. The list can be separated with commas or spaces. The list can 
also be of the form XX:YY(ZZ) which means XX to YY by ZZ. 

Examples: 

10 

10 20 30 40 50 

0:100(10) 

0:90(10) 100:900(100) 1000 5000 

Predicted Y – C.L. 
Indicate whether to display the confidence limits for the mean of Y at a specific X.  

Predicted Y – P.L. 
Indicate whether to display the prediction limits for Y at a specific X.  

Select Reports – Row-by-Row Lists 

Original Data ... Predicted X Individuals 
Indicate whether to display these reports. Note that since these reports provide results for each row, they may be 
too long for normal use when requested on large databases. 

Select Reports – Regression Diagnostics 

Residuals ... Outlier-Influence Chart 
Indicate whether to display these reports.  

Format Tab 
These options specify the number of decimal places shown when the indicated value is displayed in a report. The 
number of decimal places shown in plots is controlled by the Tick Labels buttons on the Axis Setup window. 

Report Options 

Precision 
Specifies the precision of numbers in the report. Single precision will display seven-place accuracy, while the 
double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 
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Report Options – Decimal Places 

Probability ... Matrix Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. Note that this 
option in no way influences the accuracy with which the calculations are done. 

Enter 'All' to display all digits available. The number of digits displayed by this option is controlled by whether 
the PRECISION option is SINGLE or DOUBLE. 

Plots Tab 
These options specify which plots are produced as well as the plot format. 

Select Plots 

Y vs X Plot ... Probability Plot 
Indicate whether to display these plots. Click the plot format button to change the plot settings. 

Plot Options  

Y vs X Plot Size and All Other Plot Sizes 
These options control the size of the plots. Possible choices are shown below. 

• Small 
Each plot is about 2.5 inches wide. Two plots are shown per line. Six plots fit on a page. 

• Medium 
Each plot is about 4.5 inches wide. One plot is shown per line. Two plots fit on a page. 

• Large 
Each plot is about 5.5 inches wide. One plot is shown per line. One plot fits on a page.] 

Resampling Tab 
This panel controls the bootstrapping and randomization test. Note that bootstrapping and the randomization test 
are only used when Calculate Bootstrap C.I.'s and Run Randomization Tests are checked, respectively. 

Bootstrap Calculation Options 
The following options control the calculation of bootstrap confidence intervals. 

Bootstrap Calculation Options – Sampling 

Samples (N) 
This is the number of bootstrap samples used. A general rule of thumb is that you use at least 100 when standard 
errors are your focus or at least 1000 when confidence intervals are your focus. If computing time is available, it 
does not hurt to do 4000 or 5000. 

We recommend setting this value to at least 3000. 
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Sampling Method 
Specify which of the two sampling methods are to be used in forming the bootstrap sample. 

• Observations 
Each bootstrap sample is obtained as a random sample with replacement from the original X-Y pairs. This 
method is appropriate when the X values were not set before the original sample was taken. 

• Residuals 
Each bootstrap sample is obtained as a random sample with replacement from the original set of residuals. 
These residuals are added to the predicted values to form the bootstrap sample. The original X structure is 
maintained by each bootstrap sample. This method is appropriate when a limited number of X values were 
selected by the experimental design. 

We recommend setting this value to at least 3000. 

Retries 
If the results from a bootstrap sample cannot be calculated, the sample is discarded and a new sample is drawn in 
its place. This parameter is the number of times that a new sample is drawn before the algorithm is terminated. 
We recommend setting the parameter to at least 50. 

Bootstrap Calculation Options – Estimation 

Percentile Type 
The method used to create the percentiles when forming bootstrap confidence limits. You can read more about the 
various types of percentiles in the Descriptive Statistics chapter. We suggest you use the Ave X(p[n+1]) option. 

C.I. Method 
This option specifies the method used to calculate the bootstrap confidence intervals. The reflection method is 
recommended. 

• Percentile 
The confidence limits are the corresponding percentiles of the bootstrap values.  

• Reflection 
The confidence limits are formed by reflecting the percentile limits. If X0 is the original value of the 
parameter estimate and XL and XU are the percentile confidence limits, the Reflection interval is (2 X0 - XU, 
2 X0 - XL). 

Bootstrap Confidence Coefficients 
These are the confidence coefficients of the bootstrap confidence intervals. Since bootstrapping calculations may 
take several minutes, it may be useful to obtain confidence intervals using several different confidence 
coefficients. 

All values must be between 0.50 and 1.00. You may enter several values, separated by blanks or commas. A 
separate confidence interval is given for each value entered.  

Examples: 

0.90 0.95 0.99 

0.90:.99(0.01) 

0.90.  
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Randomization Test Options 

Monte Carlo Samples 
Specify the number of Monte Carlo samples used when conducting randomization tests. You also need to check 
the ‘Run Randomization Tests’ box to run this test. 
Somewhere between 1,000 and 100,000 Monte Carlo samples are usually necessary. Although the default is 
1,000, we suggest the use of 10,000 when using this test. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to specify variables 
that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data storage, so no 
data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the right. If a 
column contains data, the data are replaced by the storage values. Care must be used with this option because 
it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the variables immediately 
to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-hand side of the 
data. 

Warning: any existing data in these variables is automatically replaced, so be careful. 

Data Storage Options – Select Items to Store 

Predicted Y ... LOESS Values 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the Store First Variable 
In option.  
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Example 1 – Running a Linear Regression Analysis 
This section presents an example of how to run a linear regression analysis of the data in the LinReg1 dataset. In 
this example, we will run a regression of Height on Weight. Predicted values of Height are wanted at Weight 
values equal to 90, 100, 150, 200, and 250. 

This regression program outputs over thirty different reports and plots, many of which contain duplicate 
information. For the purposes of annotating the output, we will output all of the reports. Normally, you would 
only select a few these reports. 

You may follow along here by making the appropriate entries or load the completed template Example 1 by 
clicking on Open Example Template from the File menu of the Linear Regression and Correlation window. 

1 Open the LinReg1 dataset. 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Click on the file LinReg1.NCSS. 
• Click Open. 

2 Open the Linear Regression and Correlation window. 
• Using the Analysis menu or the Procedure Navigator, find and select the Linear Regression and 

Correlation procedure. 
• On the menus, select File, then New Template. This will fill the procedure with the default template.  

3 Specify the variables. 
• On the Linear Regression and Correlation window, select the Variables tab.  
• Set the Y: Dependent Variable box to Height.  
• Set the X: Independent Variable box to Weight.  
• Check the Calculate Bootstrap C.I.'s and Run Randomization Tests boxes. 

4 Specify the randomization test options. 
• Select the Resampling tab. 
• Set the Monte Carlo Samples to 1000. 

5 Specify the reports. 
• Select the Reports tab. 
• Set the Predict Y at these X Values box to 90 100 150 200 250.  
• Under Select a Group of Reports and Plots, select Display ALL reports & plots. As we mentioned 

above, normally you would only view a few of these reports, but we are selecting them all so that we can 
document them. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the green Run button. 
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Linear Regression Plot Section 
 

 
 

The plot shows the data and the linear regression line. This plot is very useful for finding outliers and 
nonlinearities. It gives you a good feel for how well the linear regression model fits the data. 

Run Summary Section 
 
Parameter Value Parameter Value 
Dependent Variable Height Rows Processed 20 
Independent Variable Weight Rows Used in Estimation 20 
Frequency Variable None Rows with X Missing 0 
Weight Variable None Rows with Freq Missing 0 
Intercept 35.1337 Rows Prediction Only 0 
Slope 0.1932 Sum of Frequencies 20 
R-Squared 0.9738 Sum of Weights 20.0000 
Correlation 0.9868 Coefficient of Variation 0.0226 
Mean Square Error 1.970176 Square Root of MSE 1.40363 
 

This report summarizes the linear regression results. It presents the variables used, the number of rows used, and 
the basic least squares results. These values are repeated later in specific reports, so they will not be discussed 
further here. 

Coefficient of Variation 
The coefficient of variation is a relative measure of dispersion, computed by dividing the square root of the mean 
square error by the mean of Y. By itself, it has little value, but it can be useful in comparative studies. 

CV MSE
Y

=  
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Summary Statement 
 
The equation of the straight line relating Height and Weight is estimated as: Height = 
(35.1337) + (0.1932) Weight using the 20 observations in this dataset. The y-intercept, the 
estimated value of Height when Weight is zero, is 35.1337 with a standard error of 1.0887. The 
slope, the estimated change in Height per unit change in Weight, is 0.1932 with a standard 
error of 0.0075. The value of R-Squared, the proportion of the variation in Height that can be 
accounted for by variation in Weight, is 0.9738. The correlation between Height and Weight is 
0.9868. 
A significance test that the slope is zero resulted in a t-value of 25.8679. The significance 
level of this t-test is 0.0000. Since 0.0000 < 0.0500, the hypothesis that the slope is zero is 
rejected. 
The estimated slope is 0.1932. The lower limit of the 95% confidence interval for the slope is 
0.1775 and the upper limit is 0.2089. The estimated intercept is 35.1337. The lower limit of 
the 95% confidence interval for the intercept is 32.8464 and the upper limit is 37.4209. 
 

This report gives an explanation of the results in text format. 

Descriptive Statistics Section 
 
Parameter Dependent Independent 
Variable Height Weight 
Count 20 20 
Mean 62.1000 139.6000 
Standard Deviation 8.4411 43.1221 
Minimum 51.0000 82.0000 
Maximum 79.0000 228.0000 

 

This report presents the mean, standard deviation, minimum, and maximum of the two variables. It is particularly 
useful for checking that the correct variables were selected. 

Regression Estimation Section  
 
 Intercept Slope 
Parameter B(0) B(1) 
Regression Coefficients 35.1337 0.1932 
Lower 95% Confidence Limit 32.8464 0.1775 
Upper 95% Confidence Limit 37.4209 0.2089 
Standard Error 1.0887 0.0075 
Standardized Coefficient 0.0000 0.9868 
 
T Value 32.2716 25.8679 
Prob Level 0.0000 0.0000 
Prob Level (Randomization Test N =1000)  0.0010 
Reject H0 (Alpha = 0.0500) Yes Yes 
Power (Alpha = 0.0500) 1.0000 1.0000 
 
Regression of Y on X 35.1337 0.1932 
Inverse Regression from X on Y 34.4083 0.1984 
Orthogonal Regression of Y and X 35.1076 0.1934 
 
Estimated Model 
( 35.1336680743148) + ( .193168566802902) * (Weight) 
 

This section reports the values and significance tests of the regression coefficients. Before using this report, check 
that the assumptions are reasonable by looking at the tests of assumptions report. 

Regression Coefficients 
The regression coefficients are the least-squares estimates of the Y-intercept and the slope. The slope indicates 
how much of a change in Y occurs for a one-unit change in X. 
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Lower - Upper 95% Confidence Limits  
These are the lower and upper values of a 100(1-α)% interval estimate for βj based on a t-distribution with N - 2 
degrees of freedom. This interval estimate assumes that the residuals for the regression model are normally 
distributed.  

The formulas for the lower and upper confidence limits are 

jbnj stb 2,21 −−± α  

Standard Error 
The standard error of the regression coefficient, sb j

, is the standard deviation of the estimate. It provides a 
measure of the precision of the estimated regression coefficient. It is used in hypothesis tests or confidence limits. 

Standardized Coefficient 
Standardized regression coefficients are the coefficients that would be obtained if you standardized both variables. 
Here standardizing is defined as subtracting the mean and dividing by the standard deviation of a variable. A 
regression analysis on these standardized variables would yield these standardized coefficients. 

The formula for the standardized regression coefficient is: 

1 1,  std
X

Y
b  =  b s

s






   

where sY  and sX  are the standard deviations for the dependent and independent variables, respectively. 

Note that in the case of linear regression, the standardized coefficient is equal to the correlation between the two 
variables. 

T-Value  
These are the t-test values for testing the hypotheses that the intercept and the slope are zero versus the alternative 
that they are nonzero. These t-values have N - 2 degrees of freedom. 

To test that the slope is equal to a hypothesized value other than zero, inspect the confidence limits. If the 
hypothesized value is outside the confidence limits, the hypothesis is rejected. Otherwise, it is not rejected.  

Prob Level 
This is the two-sided p-value for the significance test of the regression coefficient. The p-value is the probability 
that this t-statistic will take on a value at least as extreme as the actually observed value, assuming that the null 
hypothesis is true (i.e., the regression estimate is equal to zero). If the p-value is less than alpha, say 0.05, the null 
hypothesis is rejected. 

Prob Level (Randomization Test) 
This is the two-sided p-value for the randomization test of whether the slope is zero. Since this value is based on a 
randomization test, it does not require all of the assumptions that the t-test does. The number of Monte Carlo 
samples of the permutation distribution of the slope is shown in parentheses. 

Reject H0 (Alpha = 0.05) 
This value indicates whether the null hypothesis was reject. Note that the level of significance was specified as the 
value of Alpha. 

Power (Alpha = 0.05) 
Power is the probability of rejecting the null hypothesis that the regression coefficient is zero when in truth, the 
regression coefficient is some value other than zero. The power is calculated for the case when the estimate 
coefficient is the actual coefficient, the estimate variance is the true variance, and Alpha is the given value.  
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High power is desirable. High power means that there is a high probability of rejecting the null hypothesis when 
the null hypothesis is false. This is a critical measure of sensitivity in hypothesis testing. This estimate of power is 
based upon the assumption that the residuals are normally distributed. 

Regression of Y on X 
These are the usual least squares estimates of the intercept and slope from a linear regression of Y on X. These 
quantities were given earlier and are reproduced here to allow easy comparisons. 

Regression of X on Y 
These are the estimated intercept and slope derived from the coefficients of linear regression of X on Y. These 
quantities may be useful in calibration and inverse prediction. 

Orthogonal Regression of Y and X 
The are the estimates of the intercept and slope from an orthogonal regression of Y on X. This equation minimizes 
the sum of the squared perpendicular distances between the points and the regression line. 

Estimated Model 
This is the least squares regression line presented in double precision. Besides showing the regression model in 
long form, it may be used as a transformation by copying and pasting it into the Transformation portion of the 
spreadsheet. 

Bootstrap Section 
 
---  Estimation Results ------ | --- Bootstrap Confidence Limits ---- 
Parameter Estimate | Conf. Level Lower Upper 
Intercept 
Original Value 35.1337 | 0.9000 33.5138 36.8691 
Bootstrap Mean 35.1391 | 0.9500 33.1520 37.2812 
Bias (BM - OV) 0.0055 | 0.9900 32.6492 38.1285 
Bias Corrected 35.1282    
Standard Error 1.0178    
Slope 
Original Value 0.1932 | 0.9000 0.1815 0.2047 
Bootstrap Mean 0.1931 | 0.9500 0.1785 0.2069 
Bias (BM - OV) 0.0000 | 0.9900 0.1729 0.2118 
Bias Corrected 0.1932    
Standard Error 0.0071    
Correlation 
Original Value 0.9868 | 0.9000 0.9799 0.9973 
Bootstrap Mean 0.9865 | 0.9500 0.9789 1.0000 
Bias (BM - OV) -0.0003 | 0.9900 0.9772 1.0000 
Bias Corrected 0.9871    
Standard Error 0.0056    
R-Squared 
Original Value 0.9738 | 0.9000 0.9601 0.9943 
Bootstrap Mean 0.9733 | 0.9500 0.9582 0.9996 
Bias (BM - OV) -0.0005 | 0.9900 0.9548 1.0000 
Bias Corrected 0.9743    
Standard Error 0.0109    
Standard Error of Estimate 
Original Value 1.4036 | 0.9000 1.1710 1.8446 
Bootstrap Mean 1.3241 | 0.9500 1.1225 1.9071 
Bias (BM - OV) -0.0795 | 0.9900 1.0355 2.0552 
Bias Corrected 1.4832    
Standard Error 0.2046    
Orthogonal Intercept 
Original Value 35.1076 | 0.9000 33.4855 36.8576 
Bootstrap Mean 35.1123 | 0.9500 33.1251 37.2581 
Bias (BM - OV) 0.0047 | 0.9900 32.6179 38.1223 
Bias Corrected 35.1028    
Standard Error 1.0231  
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Orthogonal Slope 
Original Value 0.1934 | 0.9000 0.1816 0.2048 
Bootstrap Mean 0.1933 | 0.9500 0.1786 0.2071 
Bias (BM - OV) 0.0000 | 0.9900 0.1731 0.2120 
Bias Corrected 0.1934    
Standard Error 0.0071    
Predicted Mean and Confidence Limits of Height when Weight = 90.0000 
Original Value 52.5188 | 0.9000 51.8172 53.2993 
Bootstrap Mean 52.5220 | 0.9500 51.6895 53.4913 
Bias (BM - OV) 0.0032 | 0.9900 51.4648 53.8741 
Bias Corrected 52.5157    
Standard Error 0.4549  
 
(Report continues for the other values of Weight) 
 
Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000. 
 

 

This report provides bootstrap estimates of the slope and intercept of the least squares regression line and the 
orthogonal regression line, the correlation coefficient, and other linear regression quantities. Note that bootstrap 
confidence intervals and prediction intervals are provided for each of the X (Weight) values. Details of the 
bootstrap method were presented earlier in this chapter. 

Note that since these results are based on 3000 random bootstrap samples, they will differ slightly from the results 
you obtain when you run this report. 

Original Value 
This is the parameter estimate obtained from the complete sample without bootstrapping. 

Bootstrap Mean 
This is the average of the parameter estimates of the bootstrap samples. 

Bias (BM - OV) 
This is an estimate of the bias in the original estimate. It is computed by subtracting the original value from the 
bootstrap mean. 

Bias Corrected 
This is an estimated of the parameter that has been corrected for its bias. The correction is made by subtracting the 
estimated bias from the original parameter estimate. 

Standard Error 
This is the bootstrap method’s estimate of the standard error of the parameter estimate. It is simply the standard 
deviation of the parameter estimate computed from the bootstrap estimates. 

Conf. Level 
This is the confidence coefficient of the bootstrap confidence interval given to the right. 

Bootstrap Confidence Limits - Lower and Upper 
These are the limits of the bootstrap confidence interval with the confidence coefficient given to the left. These 
limits are computed using the confidence interval method (percentile or reflection) designated on the Bootstrap 
panel. 

Note that to be accurate, these intervals must be based on over a thousand bootstrap samples and the original 
sample must be representative of the population. 
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Bootstrap Histograms Section 
 

        
 

(five more histograms are shown) 
  

Each histogram shows the distribution of the corresponding parameter estimate. 

Correlation and R-Squared Section 
 
   Spearman 
 Pearson  Rank 
 Correlation  Correlation 
Parameter Coefficient R-Squared Coefficient 
Estimated Value 0.9868 0.9738 0.9759 
Lower 95% Conf. Limit (r dist’n) 0.9646  
Upper 95% Conf. Limit (r dist’n) 0.9945  
Lower 95% Conf. Limit (Fisher’s z) 0.9662  0.9387 
Upper 95% Conf. Limit (Fisher’s z) 0.9949  0.9906 
Adjusted (Rbar)  0.9723  
T-Value for H0: Rho = 0 25.8679 25.8679 18.9539 
Prob Level for H0: Rho = 0 0.0000 0.0000 0.0000 
 

This report provides results about Pearson’s correlation, R-squared, and Spearman’s rank correlation. 

Pearson Correlation Coefficient 
Details of the calculation of this value were given earlier in the chapter. Remember that this value is an index of 
the strength of the linear association between X and Y. The range of values is from -1 to 1. Strong association 
occurs when the magnitude of the correlation is close to one. Low correlations are those near zero. 

Two sets of confidence limits are given. The first is a set of exact limits computed from the distribution of the 
correlation coefficient. These limits assume that X and Y follow the bivariate normal distribution. The second set 
of limits are limits developed by R. A. Fisher as an approximation to the exact limits. The approximation is quite 
good as you can see by comparing the two sets of limits. The second set is provided because they are often found 
in statistics books. In most cases, you should use the first set based on the r distribution because they are exact. 
You may want to compare these limits with those found for the correlation in the Bootstrap report. 

The two-sided hypothesis test and probability level are for testing whether the correlation is zero. 

Prob Level (Randomization Test) 
This is the two-sided p-value for the randomization test of whether the slope is zero. This probability value may 
also be used to test whether the Pearson correlation is zero. Since this value is based on a randomization test, it 
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does not require all of the assumptions that the parametric test does. The number of Monte Carlo samples of the 
permutation distribution of the slope is shown in parentheses. 

Spearman Rank Correlation Coefficient 
The Spearman’s rank correlation is simply the Pearson correlation computed on the ranks of X and Y rather than 
on the actual data. By using the ranks, some of the assumptions may be relaxed. However, the interpretation of the 
correlation is much more difficult. 

The confidence interval for this correlation is calculated using the Fisher’s z transformation of the rank 
correlation. 

The two-sided hypothesis test and probability level are for testing whether the rank correlation is zero. 

R-Squared 
R2 , officially known as the coefficient of determination, is defined as 

Total

Model

SS
SS

R =2  

R2  is probably the most popular statistical measure of how well the regression model fits the data. R2  may be 
defined either as a ratio or a percentage. Since we use the ratio form, its values range from zero to one. A value of 
R2  near zero indicates no linear relationship between the Y and X, while a value near one indicates a perfect 
linear fit. Although popular, R2  should not be used indiscriminately or interpreted without scatter plot support. 
Following are some qualifications on its interpretation:  

1. Linearity. R2  does not measure the appropriateness of a linear model. It measures the strength of the 
linear component of the model. Suppose the relationship between X and Y was a perfect circle. The R2  

value of this relationship would be zero. 

2. Predictability. A large R2  does not necessarily mean high predictability, nor does a low R2  necessarily 
mean poor predictability.  

3. No-intercept model. The definition of R2  assumes that there is an intercept in the regression model. 
When the intercept is left out of the model, the definition of R2  changes dramatically. The fact that your 
R2  value increases when you remove the intercept from the regression model does not reflect an increase 
in the goodness of fit. Rather, it reflects a change in the underlying meaning of R2 . 

4. Sample size. R2  is highly sensitive to the number of observations. The smaller the sample size, the larger 
its value. 

Adjusted R-Squared 
This is an adjusted version of R2 . The adjustment seeks to remove the distortion due to a small sample size. 

( )adjusted
2R  =   -  R N -

N -
1 1 1

2
2− 
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Analysis of Variance Section 
 
  Sum of Mean  Prob Power 
Source DF Squares Square F-Ratio Level (5%) 
Intercept 1 77128.2 77128.2 
Slope 1 1318.337 1318.337 669.1468 0.0000 1.0000 
Error 18 35.46317 1.970176 
   Lack of Fit 16 34.96317 2.185198 8.7408 0.1074 
   Pure Error 2 0.5 0.25 
Adj. Total 19 1353.8 71.25263 
Total 20 78482 
s = Square Root(1.970176) = 1.40363 
 

An analysis of variance (ANOVA) table summarizes the information related to the sources of variation in data. 

Source 
This represents the partitions of the variation in Y. There are four sources of variation listed: intercept, slope, 
error, and total (adjusted for the mean).  

DF 
The degrees of freedom are the number of dimensions associated with this term. Note that each observation can 
be interpreted as a dimension in N-dimensional space. The degrees of freedom for the intercept, model, error, and 
adjusted total are 1, 1, N - 2, and N - 1, respectively. 

Sum of Squares 
These are the sums of squares associated with the corresponding sources of variation. Note that these values are in 
terms of the dependent variable, Y. The formulas for each are 

interceptSS   NY= 2  

( )slopeSS  Y Y= ∑ −
2
 

( )errorSS  Y Y= ∑ − 
2
 

( )totalSS  Y  Y= ∑ −
2

 

Note that the lack of fit and pure error values are provided if there are observations with identical values of the 
independent variable. 

Mean Square 
The mean square is the sum of squares divided by the degrees of freedom. This mean square is an estimated 
variance. For example, the mean square error is the estimated variance of the residuals (the residuals are 
sometimes called the errors). 

F-Ratio 
This is the F statistic for testing the null hypothesis that the slope equals zero. This F-statistic has 1 degree of 
freedom for the numerator variance and N - 2 degrees of freedom for the denominator variance. 

Prob Level 
This is the p-value for the above F test. The p-value is the probability that the test statistic will take on a value at 
least as extreme as the observed value, assuming that the null hypothesis is true. If the p-value is less than alpha, 
say 0.05, the null hypothesis is rejected. If the p-value is greater than alpha, the null hypothesis is accepted. 

Power(5%) 
Power is the probability of rejecting the null hypothesis that the slope is zero when it is not. 
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S = Root Mean Square Error 
s is the square root of the mean square error. It is an estimate of the standard deviation of the residuals. 
 

Summary Matrices 
 
 X’X X’X X’Y X’X Inverse X’X Inverse 
Index 0 1 2 0 1 
0 20 2792 1242 0.6015912 -3.951227E-03 
1 2792 425094 180208 -3.951227E-03 2.830392E-05 
2 (Y’Y)   78482   
Determinant  706616   1.415196E-06 
 
Variance - Covariance Matrix of Regression Coefficients 
 VC(b) VC(b) 
Index 0 1 
0 1.185241 -7.784612E-03 
1 -7.784612E-03 5.576369E-05 
 

This section provides the matrices from which the least square regression values are calculated. Occasionally, 
these values may be useful in hand calculations. 

Tests of Assumptions Section 
 
   Is the Assumption 
 Test Prob Reasonable at the 0.2000 
Assumption/Test Value Level Level of Significance? 
Residuals follow Normal Distribution? 
Shapiro Wilk 0.9728 0.812919 Yes 
Anderson Darling 0.2652 0.694075 Yes 
D’Agostino Skewness -0.9590 0.337543 Yes 
D’Agostino Kurtosis 0.1205 0.904066 Yes 
D’Agostino Omnibus 0.9343 0.626796 Yes 
 
Constant Residual Variance? 
Modified Levene Test 0.0946 0.761964 Yes 
 
Relationship is a Straight Line? 
Lack of Linear Fit F(16, 2) Test 8.7408 0.107381 No 
 
No Serial Correlation? 
Evaluate the Serial-Correlation report and the Durbin-Watson test if you have  
equal-spaced, time series data. 
 

This report presents numeric tests of some of the assumptions made when using linear regression. The results of 
these tests should be compared to an appropriate plot to determine if the assumption is valid or not. 
Note that a ‘Yes’ means that there is not enough evidence to reject the assumption. This lack of assumption test 
rejection may be because the sample size is too small or the assumptions of the test were no met. It does not 
necessarily mean that the data met assumption. Likewise, a ‘No’ may occur because the sample size is very large. 
It is almost always possible to fail a preliminary test given a large enough sample size. No assumption is every fits 
perfectly. Bottom line, you should also investigate plots designed to check the assumptions. 

Residuals follow Normal Distribution? 
This section displays the results of five normality tests of the residuals. The Shapiro-Wilk and Anderson-Darling 
tests are usually considered as the best. 

Unfortunately, these tests have small statistical power (probability of detecting nonnormal data) unless the sample 
sizes are large, say over 300. Hence, if the decision is to reject normality, you can be reasonably certain that the 
data are not normal. However, if the decision is not to reject, the situation is not as clear. If you have a sample size 

http://www.ncss.com/


NCSS Statistical Software NCSS.com   
Linear Regression and Correlation 

300-39 
 © NCSS, LLC. All Rights Reserved. 

of 300 or more, you can reasonably assume that the actual distribution is closely approximated by the normal 
distribution. If your sample size  

is less than 300, all you know for sure is that there was not enough evidence in your data to reject the normality of 
residuals assumption. In other words, the data might be nonnormal, you just could not prove it. In this case, you 
must rely on the graphics to justify the normality assumption. 

Shapiro-Wilk W Test 
This test for normality, developed by Shapiro and Wilk (1965), has been found to be the most powerful test in 
most situations. It is the ratio of two estimates of the variance of a normal distribution based on a random sample 
of N observations. The numerator is proportional to the square of the best linear estimator of the standard 
deviation. The denominator is the sum of squares of the observations about the sample mean. W may be written as 
the square of the Pearson correlation coefficient between the ordered observations and a set of weights which are 
used to calculate the numerator. Since these weights are asymptotically proportional to the corresponding 
expected normal order statistics, W is roughly a measure of the straightness of the normal quantile-quantile plot. 
Hence, the closer W is to one, the more normal the sample is. 

The probability values for W are valid for samples in the range of 3 to 5000. 

The test is not calculated when a frequency variable is specified. 

Anderson-Darling Test 
This test, developed by Anderson and Darling (1954), is based on EDF statistics. In some situations, it has been 
found to be as powerful as the Shapiro-Wilk test. 

The test is not calculated when a frequency variable is specified. 

D’Agostino Skewness 
D’Agostino (1990) proposed a normality test based on the skewness coefficient, b1 . Because the normal 
distribution is symmetrical, b1  is equal to zero for normal data. Hence, a test can be developed to determine if 
the value of b1  is significantly different from zero. If it is, the data are obviously nonnormal. The test statistic is, 
under the null hypothesis of normality, approximately normally distributed. The computation of this statistic is 
restricted to sample sizes greater than 8. The formula and further details are given in the Descriptive Statistics 
chapter. 

D’Agostino Kurtosis 
D’Agostino (1990) proposed a normality test based on the kurtosis coefficient, b2 . For the normal distribution, 
the theoretical value of b2  is 3. Hence, a test can be developed to determine if the value of b2  is significantly 
different from 3. If it is, the residuals are obviously nonnormal. The test statistic is, under the null hypothesis of 
normality, approximately normally distributed for sample sizes N > 20. The formula and further details are given 
in the Descriptive Statistics chapter. 

D’Agostino Omnibus 
D’Agostino (1990) proposed a normality test that combines the tests for skewness and kurtosis. The statistic, K 2 , 
is approximately distributed as a chi-square with two degrees of freedom. 

Constant Residual Variance? 
Linear regression assumes that the residuals have constant variance. The validity of this assumption can be 
checked by looking at a plot of the absolute values of the residuals versus the X variable. The modified Levene 
test may be used when a numerical answer is needed.  

If your data fail this test, you may want to use a logarithm transformation or a weighted regression. 
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Modified Levene Test 
The modified Levene test can be used to evaluated the validity of the assumption of constant variance. It has been 
shown to be reliable even when the residuals do not follow a normal distribution. The mathematical details of the 
test were presented earlier in this chapter. 

Relationship is a Straight Line? 
Linear regression assumes that the relationship between X and Y is a straight line (linear). The validity of this 
assumption can be checked by looking at the plot Y versus X and at the plot of the residuals versus X. The lack of 
fit test may be used when a numerical answer is needed.  

If your data fail this test, you may want to use a different model which accounts for the curvature. The Growth 
and Other Models procedure in curve fitting is a good choice when curvature exists in your data. 

Lack of Linear Fit Test 
The lack-of-fit test is used to test for a departure from the linear fit. This test requires that there are multiple 
observations for at least one X value. When such is the case, an estimate of pure error and lack of fit can be found 
and an F test created. The mathematical details of the test were presented earlier in this chapter.  

Serial Correlation and Durbin-Watson Sections 
 
Serial Correlation of Residuals Section 
 Serial  Serial  Serial 
Lag Correlation Lag Correlation Lag Correlation 
1 0.1029 9 -0.2353 17  
2 -0.4127* 10 -0.0827 18  
3 0.0340 11 -0.0316 19  
4 0.2171 12 -0.0481 20  
5 -0.1968 13 0.0744 21  
6 -0.0194 14 0.0073 22  
7 0.2531 15  23  
8 -0.0744 16  24  
 
Durbin-Watson Test For Serial Correlation 
  Did the Test Reject 
Parameter Value H0: Rho(1) = 0? 
Durbin-Watson Value 1.6978 
Prob. Level: Positive Serial Correlation 0.2366 No 
Prob. Level: Negative Serial Correlation 0.7460 No 
 

This section reports on the autocorrelation structure of the residuals. Of course, if your data were not taken 
through time, this section should be ignored. 

Lag 
The lag, k, is the number of periods back.  

Serial Correlation 
The serial correlation reported here is the sample autocorrelation coefficient of lag k. It is computed as 

k
i-k i

i
2r  =  e e

e
     for k = 1,2,...,24∑

∑   
The distribution of these autocorrelations may be approximated by the distribution of the regular correlation 
coefficient. Using this fact, Fisher’s Z transformation may be used to find large autocorrelations. If the Fisher’s Z 
transformation of the autocorrelation is greater than 1.645, the autocorrelation is assumed to be large and the 
observation is starred. 
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Durbin-Watson Value 
The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. It is calculated 
as follows 

( )
DW =  

e e

e

j j
j

N

j
2

j

N

− −
=

=

∑

∑

1
2

2

1

 

The distribution of this test is mathematically difficult because it involves the X values. Originally, Durbin-Watson 
(1950, 1951) gave a pair of bounds to be used. However, there is a large range of indecision that can be found when 
using these bounds. Instead of using these bounds, NCSS calculates the exact probability using the beta distribution 
approximation suggested by Durbin-Watson (1951). This approximation has been shown to be accurate to three 
decimal places in most cases. 

PRESS Section 
 
 From From 
 PRESS Regular 
Parameter Residuals Residuals 
Sum of Squared Residuals 43.15799 35.46317 
Sum of |Residuals| 24.27421 22.02947 
R-Squared 0.9681 0.9738 
 

This section reports on the PRESS statistics. The regular statistics, computed on all of the data, are provided to the 
side to make comparison between corresponding values easier. 

Sum of Squared Residuals 
PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection to validate a 
regression model. To calculate PRESS, each observation is individually omitted. The remaining N - 1 
observations are used to calculate a regression and estimate the value of the omitted observation. This is done N 
times, once for each observation. The difference between the actual Y value and the predicted Y with the 
observation deleted is called the prediction error or PRESS residual. The sum of the squared prediction errors is 
the PRESS value. The smaller PRESS is, the better the predictability of the model. 

Sum of |Press residuals| 
This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value for the PRESS is 
due to one or a few large PRESS residuals, this statistic may be a more accurate way to evaluate predictability.  

Press R-Squared 
The PRESS value above can be used to compute an R2 -like statistic, called R2Predict, which reflects the 
prediction ability of the model. This is a good way to validate the prediction of a regression model without 
selecting another sample or splitting your data. It is very possible to have a high R2  and a very low R2Predict. 
When this occurs, it implies that the fitted model is data dependent. This R2Predict ranges from below zero to 
above one. When outside the range of zero to one, it is truncated to stay within this range.  
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Predicted Values and Confidence Limits Section 
 
 Predicted Standard Lower 95% Upper 95% 
Weight Height Error Confidence Confidence 
(X) (Yhat|X) of Yhat Limit of Y|X Limit of Y|X 
90.0000 52.5188 0.4855 51.4989 53.5388 
100.0000 54.4505 0.4312 53.5446 55.3565 
150.0000 64.1090 0.3233 63.4297 64.7882 
200.0000 73.7674 0.5495 72.6129 74.9218 
250.0000 83.4258 0.8821 81.5725 85.2791 
 

The predicted values and confidence intervals of the mean response of Y given X are provided here. The values of 
X used here were specified in the Predict Y at these X Values option on the Variables panel. 
It is important to note that violations of any regression assumptions will invalidate this interval estimate. 

X 
This is the value of X at which the prediction is made. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted value.  

Lower 95% Confidence Limit of Y|X 
This is the lower limit of a 95% confidence interval estimate of the mean of Y at this value of X. 

Upper 95% Confidence Limit of Y|X 
This is the upper limit of a 95% confidence interval estimate of the mean of Y at this value of X. Note that you set 
the alpha level on the Variables panel. 

Predicted Values and Prediction Limits Section 
 
 Predicted Standard Lower 95% Upper 95% 
Weight Height Error Prediction Prediction 
(X) (Yhat|X) of Yhat Limit of Y|X Limit of Y|X 
90.0000 52.5188 1.4852 49.3985 55.6392 
100.0000 54.4505 1.4684 51.3656 57.5355 
150.0000 64.1090 1.4404 61.0828 67.1351 
200.0000 73.7674 1.5074 70.6005 76.9342 
250.0000 83.4258 1.6578 79.9429 86.9087 
 

The predicted values and prediction intervals of the response of Y given X are provided here. The values of X used 
here were specified in the Predict Y at these X Values option on the Variables panel. 
It is important to note that violations of any regression assumptions will invalidate this interval estimate. 

X 
This is the value of X at which the prediction is made. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted value.  
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Lower 95% Prediction Limit of Y|X 
This is the lower limit of a 95% prediction interval estimate of the mean of Y at this value of X. 

Upper 95% Prediction Limit of Y|X 
This is the upper limit of a 95% prediction interval estimate of the mean of Y at this value of X. Note that you set 
the alpha level on the Variables panel. 

Residual Plots 
The residuals can be graphically analyzed in numerous ways. For certain, the regression analyst should examine 
all of the basic residual graphs:  the histogram, the density trace, the normal probability plot, the serial correlation 
plots (for time series data), the scatter plot of the residuals versus the sequence of the observations (for time series 
data), and the scatter plot of the residuals versus the independent variable. 

For the scatter plots of residuals versus either the predicted values of Y or the independent variables, Hoaglin 
(1983) explains that there are several patterns to look for. You should note that these patterns are very difficult, if 
not impossible, to recognize for small data sets. 

Point Cloud 
A point cloud, basically in the shape of a rectangle or a horizontal band, would indicate no relationship between 
the residuals and the variable plotted against them. This is the preferred condition. 

Wedge 
An increasing or decreasing wedge would be evidence that there is increasing or decreasing (nonconstant) 
variation. A transformation of Y may correct the problem, or weighted least squares may be needed. 

Bowtie 
This is similar to the wedge above in that the residual plot shows a decreasing wedge in one direction while 
simultaneously having an increasing wedge in the other direction. A transformation of Y may correct the problem, 
or weighted least squares may be needed. 

Sloping Band 
This kind of residual plot suggests adding a linear version of the independent variable to the model. 

Curved Band 
This kind of residual plot may be indicative of a nonlinear relationship between Y and the independent variable 
that was not accounted for. The solution might be to use a transformation on Y to create a linear relationship with 
X. Another possibility might be to add quadratic or cubic terms of a particular independent variable. 

Curved Band with Increasing or Decreasing Variability 
This residual plot is really a combination of the wedge and the curved band. It too must be avoided. 
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Residuals Plots 
 
Residuals vs X Plot 
 

  
 

This plot is useful for showing nonlinear patterns and outliers. The preferred pattern is a rectangular shape or 
point cloud. Any other nonrandom pattern may require a redefining of the regression model. 
 

 
|Residual| vs X Plot 
 

  
 

This plot is useful for showing nonconstant variance in the residuals. The preferred pattern is a rectangular shape 
or point cloud. The most common type of nonconstant variance occurs when the variance is proportion to X. This 
is shown by a funnel shape. Remedies for nonconstant variances were discussed earlier. 
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Rstudent vs X Plot 

 

  
 
This is a scatter plot of the RStudent residuals versus the independent variable. The preferred pattern is a 
rectangular shape or point cloud. This plot is helpful in identifying any outliers. 
 

 
Sequence Plot: Residuals vs Row 
 

  
 

Sequence plots may be useful in finding variables that are not accounted for by the regression equation. They are 
especially useful if the data were taken over time. 
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Serial Correlation Plot: Residuals vs Lagged Residuals 
 

  
 

This is a scatter plot of the ith residual versus the ith-1 residual. It is only useful for time series data where the order 
of the rows on the database is important. 
The purpose of this plot is to check for first-order autocorrelation. You would like to see a random pattern, i.e., a 
rectangular or uniform distribution of the points. A strong positive or negative trend indicates a need to redefine 
the model with some type of autocorrelation component.  

Positive autocorrelation or serial correlation means that the residual in time period t tends to have the same sign as 
the residual in time period (t - 1). On the other hand, a strong negative autocorrelation means that the residual in 
time period t tends to have the opposite sign as the residual in time period (t - 1).  

Be sure to check the Durbin-Watson statistic. 

Distributional Plots of Residuals 
 

  
 

The purpose of the histogram and density trace of the residuals is to evaluate whether they are normally 
distributed. Unless you have a large sample size, it is best not to rely on the histogram for visually evaluating 
normality of the residuals. The better choice would be the normal probability plot. 
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If the residuals are normally distributed, the data points of the normal probability plot will fall along a straight 
line. Major deviations from this ideal picture reflect departures from normality. Stragglers at either end of the 
normal probability plot indicate outliers. Curvature at both ends of the plot indicates long or short distributional 
tails. Convex, or concave, curvature indicates a lack of symmetry. Gaps, plateaus, or segmentation indicate 
clustering and may require a closer examination of the data or model. Of course, use of this graphic tool with very 
small sample sizes is unwise.  
If the residuals are not normally distributed, the t-tests on regression coefficients, the F-tests, and the interval 
estimates are not valid. This is a critical assumption to check. 

Original Data Section 
 
   Predicted 
 Weight Height Height 
Row (X) (Y) (Yhat|X) Residual 
1 159.0000 64.0000 65.8475 -1.8475 
2 155.0000 63.0000 65.0748 -2.0748 
3 157.0000 67.0000 65.4611 1.5389 
4 125.0000 60.0000 59.2797 0.7203 
5 103.0000 52.0000 55.0300 -3.0300 
6 122.0000 58.0000 58.7002 -0.7002 
. . . . . 
. . . . . 
. . . . . 

 

This report lists the values of X, Y, the predicted value of Y, and the residual. 
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Predicted Values of Means Section 
 
   Predicted Standard Lower 95% Upper 95% 
 Weight Height Height Error Conf. Limit Conf. Limit 
Row (X) (Y) (Yhat|X) of Yhat of Y Mean|X of Y Mean|X 
1 159.0000 64.0000 65.8475 0.3457 65.1212 66.5737 
2 155.0000 63.0000 65.0748 0.3343 64.3725 65.7771 
3 157.0000 67.0000 65.4611 0.3397 64.7475 66.1748 
4 125.0000 60.0000 59.2797 0.3323 58.5817 59.9778 
5 103.0000 52.0000 55.0300 0.4162 54.1557 55.9044 
6 122.0000 58.0000 58.7002 0.3403 57.9854 59.4151 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

The predicted values and confidence intervals of the mean response of Y given X are given for each observation.  

X 
This is the value of X at which the prediction is made. 

Y 
This is the actual value of Y. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted mean value.  

Lower 95% Confidence Limit of Y|X 
This is the lower limit of a 95% confidence interval estimate of the mean of Y at this value of X. 

Upper 95% Confidence Limit of Y|X 
This is the upper limit of a 95% confidence interval estimate of the mean of Y at this value of X. Note that you set 
the alpha level on the Variables panel. 

Predicted Values and Prediction Limits Section 
 
   Predicted Standard Lower 95% Upper 95% 
 Weight Height Height Error Prediction Prediction 
Row (X) (Y) (Yhat|X) of Yhat Limit of Y|X Limit of Y|X 
1 159.0000 64.0000 65.8475 1.4456 62.8104 68.8845 
2 155.0000 63.0000 65.0748 1.4429 62.0434 68.1062 
3 157.0000 67.0000 65.4611 1.4441 62.4271 68.4952 
4 125.0000 60.0000 59.2797 1.4424 56.2493 62.3101 
5 103.0000 52.0000 55.0300 1.4640 51.9542 58.1058 
6 122.0000 58.0000 58.7002 1.4443 55.6659 61.7346 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

The predicted values and confidence intervals of the mean response of Y given X are given for each observation. 

X 
This is the value of X at which the prediction is made. 

Y 
This is the actual value of Y. 
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Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted value suitable for creating a prediction limit for an 
individual.  

Lower 95% Prediction Limit of Y|X 
This is the lower limit of a 95% prediction interval estimate of Y at this value of X. 

Upper 95% Prediction Limit of Y|X 
This is the upper limit of a 95% prediction interval estimate of Y at this value of X. Note that you set the alpha 
level on the Variables panel. 

Working-Hotelling Simultaneous Confidence Band 
 
   Predicted Standard Lower 95% Upper 95% 
 Weight Height Height Error Conf. Band Conf. Band 
Row (X) (Y) (Yhat|X) of Yhat of Y Mean|X of Y Mean|X 
1 159.0000 64.0000 65.8475 0.3457 64.8036 66.8914 
2 155.0000 63.0000 65.0748 0.3343 64.0654 66.0842 
3 157.0000 67.0000 65.4611 0.3397 64.4353 66.4869 
4 125.0000 60.0000 59.2797 0.3323 58.2764 60.2831 
5 103.0000 52.0000 55.0300 0.4162 53.7732 56.2868 
6 122.0000 58.0000 58.7002 0.3403 57.6727 59.7278 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

The predicted values and confidence band of the mean response function are given for each observation. Note that 
this is a confidence band for all possible values of X along the real number line. The confidence coefficient is the 
proportion of time that this procedure yields a band that includes the true regression line when a large number of 
samples are taken using the X values as in this sample. 

X 
This is the value of X at which the prediction is made. 

Y 
This is the actual value of Y. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted mean value.  

Lower 95% Confidence Band of Y|X 
This is the lower limit of the 95% confidence band for the value of Y at this X. 

Upper 95% Confidence Band of Y|X 
This is the upper limit of the 95% confidence band for the value of Y at this X. 
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Residual Section 
 
   Predicted   Percent 
 Weight Height Height  Standardized Absolute 
Row (X) (Y) (Yhat|X) Residual Residual Error 
1 159.0000 64.0000 65.8475 -1.8475 -1.3580 2.8867 
2 155.0000 63.0000 65.0748 -2.0748 -1.5220 3.2933 
3 157.0000 67.0000 65.4611 1.5389 1.1299 2.2968 
4 125.0000 60.0000 59.2797 0.7203 0.5282 1.2004 
5 103.0000 52.0000 55.0300 -3.0300 -2.2604 5.8270 
6 122.0000 58.0000 58.7002 -0.7002 -0.5142 1.2073 
. . . . . . . 
. . . . . . . 
. . . . . . . 

 

This is a report showing the value of the residual at each observation. 

X 
This is the value of X at which the prediction is made. 

Y 
This is the actual value of Y. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Residual 
This is the difference between the actual and predicted values of Y.  

Standardized Residual 
The variance of the observed residuals is not constant. This makes comparisons among the residuals difficult. One 
solution is to standardize the residuals by dividing by their standard deviations. This gives a set of residuals with 
constant variance. 

The formula for this residual is 

j
j

jj
r   e

s h
=
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Percent Absolute Error 
The percent is the absolute value of the Residual divided by the Actual value. Scrutinize observations with the 
large percent errors. 
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Residual Diagnostics Section 
 
 Weight   Hat   
Row (X) Residual RStudent Diagonal Cook's D MSEi 
1 159.0000 -1.8475 -1.3931 0.0607 0.0595 1.8723 
2 155.0000 -2.0748 -1.5845 0.0567 0.0696 1.8176 
3 157.0000 1.5389 1.1392 0.0586 0.0397 1.9381 
4 125.0000 0.7203 0.5173 0.0560 0.0083 2.0537 
5 103.0000 -3.0300 *-2.5957 0.0879 0.2462 1.4939 
6 122.0000 -0.7002 -0.5034 0.0588 0.0083 2.0554 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

This is a report gives residual diagnostics for each observation. These were discussed earlier in the technical of 
this chapter and we refer you to that section for the technical details. 

X 
This is the value of X at which the prediction is made. 

Residual 
This is the difference between the actual and predicted values of Y.  

RStudent 
Sometimes called the externally studentized residual, RStudent is a standardized residual that has the impact of a 
single observation removed from the mean square error. If the regression assumption of normality is valid, a 
single value of the RStudent has a t distribution with N - 2 degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Hat Diagonal 
The hat diagonal captures an observation’s remoteness in the X-space. Some authors refer to the hat diagonal as a 
measure of leverage in the X-space.  

Hat diagonals greater than 4 / N are considered influential. However, an influential observation is not a bad 
observation. An influential observation should be checked to determine if it is also an outlier. 

Cook’s D 
Cook’s D attempts to measure the influence the observation on all N fitted values. The formula for Cook’s D is 
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The ( )y ij  are found by removing observation i before the calculations. A Cook’s D value greater than one 
indicates an observation that has large influence. Some statisticians have suggested that a better cutoff value is 4 / 
(N - 2). 

MSEi 
This is the value of the mean squared error calculated without observation j.  
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Leave One Row Out Section 
 
Row RStudent DFFITS Cook's D CovRatio DFBETAS(0) DFBETAS(1) 
1 -1.3931 -0.3540 0.0595 0.9615 0.0494 -0.1483 
2 -1.5845 -0.3885 0.0696 0.9023 0.0228 -0.1337 
3 1.1392 0.2842 0.0397 1.0279 -0.0284 0.1087 
4 0.5173 0.1260 0.0083 1.1511 0.0739 -0.0414 
5 * -2.5957 -0.8059 0.2462 0.6304 -0.6820 0.5292 
6 -0.5034 -0.1258 0.0083 1.1564 -0.0800 0.0486 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

Each column gives the impact on some aspect of the linear regression of omitting that row. 

RStudent 
Sometimes called the externally studentized residual, RStudent is a standardized residual that has the impact of a 
single observation removed from the mean square error. If the regression assumption of normality is valid, a 
single value of the RStudent has a t distribution with N - 2 degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Dffits 
Dffits is the standardized difference between the predicted value of Y with and without observation j. It represents 
the number of estimated standard errors that the predicted value changes if that observation is omitted. Dffits > 1 
would flag observations as being influential in prediction. 

Cook’s D 
Cook’s D attempts to measure the influence the observation on all N fitted values. The formula for Cook’s D is 
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The ( )y ij  are found by removing observation i before the calculations. A Cook’s D value greater than one 
indicates an observation that has large influence. Some statisticians have suggested that a better cutoff value is 4 / 
(N - 2). 

CovRatio 
This diagnostic flags observations that have a major impact on the generalized variance of the regression 
coefficients. A value exceeding 1.0 implies that the observation provides an improvement, i.e., a reduction in the 
generalized variance of the coefficients. A value of CovRatio less than 1.0 flags an observation that increases the 
estimated generalized variance. This is not a favorable condition. 

DFBETAS(0) and DFBETAS(1) 
DFBETAS(0) and DFBETAS(1) are the standardized change in the intercept and slope when an observation is 
omitted from the analysis. Belsley, Kuh, and Welsch (1980) recommend using a cutoff of 2 / N  when N is 
greater than 100. When N is less than 100, others have suggested using a cutoff of 1.0 or 2.0 for the absolute value 
of DFBETAS. 
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Outlier Detection Chart 
 
 Weight   Standardized    
Row (X) Residual  Residual  RStudent  
1 159.0000 -1.8475 |.............. -1.3580 |.............. -1.3931 |.............. 
2 155.0000 -2.0748 |.............. -1.5220 |.............. -1.5845 |.............. 
3 157.0000 1.5389 |.............. 1.1299 |.............. 1.1392 |.............. 
4 125.0000 0.7203 |.............. 0.5282 |.............. 0.5173 |.............. 
5 103.0000 -3.0300 |.............. -2.2604 |.............. * -2.5957 |.............. 
6 122.0000 -0.7002 |.............. -0.5142 |.............. -0.5034 |.............. 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 

 

Outliers are rows that are far removed from the rest of the data. Since outliers can have dramatic effects on the 
results, corrective action, such as elimination, must be carefully considered. Outlying rows should not be removed 
unless a good reason for their removal can be given. 
An outlier may be defined as a row in which |RStudent| > 2. Rows with this characteristic have been starred. 

X 
This is the value of X. 

Residual 
This is the difference between the actual and predicted values of Y.  

Standardized Residual 
The variance of the observed residuals is not constant. This makes comparisons among the residuals difficult. One 
solution is to standardize the residuals by dividing by their standard deviations. This gives a set of residuals with 
constant variance. 

RStudent 
Sometimes called the externally studentized residual, RStudent is a standardized residual that has the impact of a 
single observation removed from the mean square error. If the regression assumption of normality is valid, a 
single value of the RStudent has a t distribution with N - 2 degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Influence Detection Chart 
 
 Weight       
Row (X) DFFITS  Cook's D  DFBETAS(1)  
1 159.0000 -0.3540 |.............. 0.0595 |.............. -0.1483 |.............. 
2 155.0000 -0.3885 |.............. 0.0696 |.............. -0.1337 |.............. 
3 157.0000 0.2842 |.............. 0.0397 |.............. 0.1087 |.............. 
4 125.0000 0.1260 |.............. 0.0083 |.............. -0.0414 |.............. 
5 103.0000 -0.8059 ||............. 0.2462 ||||||......... 0.5292 |||............ 
6 122.0000 -0.1258 |.............. 0.0083 |.............. 0.0486 |.............. 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 

 

Influential rows are those whose omission results in a relatively large change in the results. They are not 
necessarily harmful. However, they will distort the results if they are also outliers. The impact of influential rows 
should be studied very carefully. The accuracy of the data values should be double-checked. 
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X 
This is the value of X. 

Dffits 
Dffits is the standardized difference between the predicted value of Y with and without observation j. It represents 
the number of estimated standard errors that the predicted value changes if that observation is omitted. Dffits > 1 
would flag observations as being influential in prediction. 

Cook’s D 
Cook’s D attempts to measure the influence the observation on all N fitted values. The formula for Cook’s D is 
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The ( )y ij  are found by removing observation i before the calculations. A Cook’s D value greater than one 
indicates an observation that has large influence. Some statisticians have suggested that a better cutoff value is 4 / 
(N - 2). 

DFBETAS(1) 
DFBETAS(1) is the standardized change in the slope when an observation is omitted from the analysis. Belsley, 
Kuh, and Welsch (1980) recommend using a cutoff of 2 / N  when N is greater than 100. When N is less than 
100, others have suggested using a cutoff of 1.0 or 2.0 for the absolute value of DFBETAS. 

Outlier & Influence Detection Chart 
 
      Hat  
 Weight RStudent  Cooks D  Diagonal  
Row (X) (Outlier)  (Influence)  (Leverage)  
1 159.0000 -1.3931 |.............. 0.0595 |.............. 0.0607 |.............. 
2 155.0000 -1.5845 |.............. 0.0696 |.............. 0.0567 |.............. 
3 157.0000 1.1392 |.............. 0.0397 |.............. 0.0586 |.............. 
4 125.0000 0.5173 |.............. 0.0083 |.............. 0.0560 |.............. 
5 103.0000 * -2.5957 |.............. 0.2462 ||||||......... 0.0879 |.............. 
6 122.0000 -0.5034 |.............. 0.0083 |.............. 0.0588 |.............. 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 

 

This report provides diagnostics about whether a row is an outlier, influential, and has high leverage. Outliers are 
rows that are removed from the rest of the data. Influential rows are those whose omission results in a relatively 
large change in the results. This report lets you see both. 

X 
This is the value of X. 

RStudent (Outlier) 
RStudent is a standardized residual that has the impact of a single observation removed from the mean square 
error. If the regression assumption of normality is valid, a single value of the RStudent has a t distribution with N 
- 2 degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Cook’s D (Influence) 
Cook’s D attempts to measure the influence the observation on all N fitted values. The formula for Cook’s D is 
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The ( )y ij  are found by removing observation i before the calculations. A Cook’s D value greater than one 
indicates an observation that has large influence. Some statisticians have suggested that a better cutoff value is 4 / 
(N - 2). 

Hat Diagonal (Leverage) 
The hat diagonal captures an observation’s remoteness in the X-space. Some authors refer to the hat diagonal as a 
measure of leverage in the X-space.  

Hat diagonals greater than 4 / N are considered influential. However, an influential observation is not a bad 
observation. An influential observation should be checked to determine if it is also an outlier. 

Inverse Prediction of X Means 
 
   Predicted  Lower 95% Upper 95% 
 Height Weight Weight  Conf. Limit Conf. Limit 
Row (Y) (X) (Xhat|Y) X-Xhat|Y of X Mean|Y of X Mean|Y 
1 64.0000 159.0000 149.4360 9.5640 145.9832 153.0193 
2 63.0000 155.0000 144.2591 10.7409 140.8441 147.7361 
3 67.0000 157.0000 164.9664 -7.9664 161.1310 169.1387 
4 60.0000 125.0000 128.7287 -3.7287 125.1181 132.1948 
5 52.0000 103.0000 87.3141 15.6859 81.4894 92.4444 
6 58.0000 122.0000 118.3750 3.6250 114.3947 122.0735 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

This report provides inverse prediction or calibration results. Although a regression of Y on X has been fit, our 
interest here is predicting the value of X from the value of Y. This report provides both a point estimate and an 
interval estimate of the predicted mean of X given Y. 

Y 
This is the actual value of Y. 

X 
This is the value of X at which the prediction is made. 

Predicted X (Xhat|Y) 
The predicted value of X for the value of Y indicated. 

Lower 95% Confidence Limit of X Mean|Y 
This is the lower limit of a 95% confidence interval estimate of the mean of X at this value of Y. 

Upper 95% Confidence Limit of X Mean|Y 
This is the upper limit of a 95% confidence interval estimate of the mean of X at this value of Y. 
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Inverse Prediction of X Individuals 
 
   Predicted  Lower 95% Upper 95% 
 Height Weight Weight  Prediction Prediction 
Row (Y) (X) (Xhat|Y) X-Xhat|Y Limit of X|Y Limit of X|Y 
1 64.0000 159.0000 149.4360 9.5640 133.7858 165.2167 
2 63.0000 155.0000 144.2591 10.7409 128.5906 159.9896 
3 67.0000 157.0000 164.9664 -7.9664 149.3036 180.9662 
4 60.0000 125.0000 128.7287 -3.7287 112.9365 144.3765 
5 52.0000 103.0000 87.3141 15.6859 70.7003 103.2335 
6 58.0000 122.0000 118.3750 3.6250 102.4436 134.0246 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

This report provides inverse prediction or calibration results. Although a regression of Y on X has been fit, our 
interest here is predicting the value of X from the value of Y. This report provides both a point estimate and an 
interval estimate of the predicted value of X given Y. 

Y 
This is the actual value of Y. 

X 
This is the value of X at which the prediction is made. 

Predicted X (Xhat|Y) 
The predicted value of X for the value of Y indicated. 

Lower 95% Prediction Limit of X|Y 
This is the lower limit of a 95% prediction interval estimate of X at this value of Y. 

Upper 95% Prediction Limit of X|Y 
This is the upper limit of a 95% prediction interval estimate of X at this value of Y. 
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