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ABSTRACT

MARTIN, J. C., A. S. GARDNER, M. BARRAS, and D. T. MARTIN. Modeling Sprint Cycling Using Field-Derived Parameters and

Forward Integration. Med. Sci. Sports Exerc.,Vol. 38, No. 3, pp. 592–597, 2006. We previously reported that a mathematical model

could accurately predict steady-state road-cycling power when all the model parameters were known. Application of that model to

competitive cycling has been limited by the need to obtain accurate parameter values, the non–steady-state nature of many cycling

events, and because the validity of the model at maximal power has not been established. Purpose: We determined whether modeling

parameters could be accurately determined during field trials and whether the model could accurately predict cycling speed during

maximal acceleration using forward integration. Methods: First, we quantified aerodynamic drag area of six cyclists using both wind

tunnel and field trials allowing for these two techniques to be compared. Next, we determined the aerodynamic drag area of three

world-class sprint cyclists using the field-test protocol. Track cyclists also performed maximal standing-start time trials, during which

we recorded power and speed. Finally, we used forward integration to predict cycling speed from power–time data recorded during the

maximal trials allowing us to compare predicted speed with measured speed. Results: Field-based values of aerodynamic drag area

(0.258 T 0.006 m2) did not differ (P = 0.53) from those measured in a wind tunnel (0.261 T 0.006 m2). Forward integration modeling

accurately predicted cycling speed (y = x, r2 = 0.989) over the duration of the standing-start sprints. Conclusions: Field-derived values

for aerodynamic drag area can be equivalent to values derived from wind tunnel testing, and these values can be used to accurately

predict speed even during maximal-power acceleration by world-class sprint cyclists. This model could be useful for assessing

aerodynamic issues and for predicting how subtle changes in riding position, mass, or power output will influence cycling speed.
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M
athematical cycling models (4,5,8,12,14) allow

scientists, coaches, and athletes to systematically

examine the extent to which alterations to various

aspects of the cyclist, his or her bicycle, or environmental

conditions might alter cycling performance. Although in-

dividual models include specific nuances, most include

terms for power produced by the cyclist and power required

to overcome aerodynamic drag, rolling resistance, drive

train friction, and to accelerate or raise the cyclist’s center

of mass. The relative importance of each of those terms

depends on the instantaneous conditions, but for steady-state

riding over relatively flat terrain, aerodynamic drag has been

reported to be the dominant term, requiring up to 96% of the

cyclist’s power (12). Consequently, minimizing aerody-

namic drag is paramount in efforts to optimize cycling

performance. For other conditions, such as maximal

acceleration from a standing start or cycling up steep

grades, changes in kinetic or potential energy will consume

most of the cyclist’s power (8). Furthermore, a cyclist can

experience several conditions within a single competitive

event. During a 1-km track cycling time trial, for example,

power produced at the start will mostly act to accelerate

the rider, whereas power produced later in the race will

mostly act to overcome aerodynamic drag. Thus, decisions

regarding the relative importance of aerodynamic drag and

body or bicycle mass, and the timing of application of

power (i.e., pacing strategies) require careful analysis that

can be facilitated with mathematical modeling.

Previously, we (12) reported that a mathematical model

could account for 97% of the variability in steady-state road

cycling power when all the model parameters (aerodynamic

drag, rolling resistance, friction in the bearings and chain

drive system, and changes in kinetic and potential energy)

were known. Measuring these parameters, however, requires

sophisticated wind tunnel (12), tire (9), and bearing testing

(3). Additionally, although our model predicted cycling

power quite well, our measurement intervals were fairly

large (472 m) and our model did not account for rapid

changes in power or speed. Finally, as others have done

(13,14), we focused on modeling endurance cycling

(~200 W) rather than sprint cycling where maximal power

can exceed 1000 W. It is worth pointing out that of the eight
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world championship time-trial events held by the Union

Cycliste Internationale (six individual and two team events),

only two (men’s and women’s road individual time trials)

are performed at submaximal steady-state intensities. The

remaining six events (500-m time trial, 1000-m time trial,

3000-m pursuit, 4000-m pursuit, team pursuit, and team

sprint) are performed at intensities beyond maximal aerobic

power output, with three of these being truly maximal (2).

Thus, whereas our previous model has been useful (8,10,11),

its application has been limited by the need to obtain

accurate parameter values, the non–steady-state nature of

many cycling events, and because the validity of the model

at maximal power has not been established.

In this investigation, our goal was to broaden the

application of our previous model by adapting it to field-

based parameters and by applying it to non–steady-state,

maximal-power cycling. More specifically, we designed a

series of experiments to determine whether model param-

eters could be accurately quantified during field tests,

and whether a model, using field-based parameters, could

accurately predict cycling speed during high-power, non–

steady-state cycling. We hypothesized that values for

aerodynamic drag could be accurately derived from field

test data and that speed during non–steady-state cycling

could be accurately modeled using a simple linear forward

integration technique.

METHODS

Overview. To accomplish our stated objectives we

performed three discrete tasks. First, we modified our

previous model so that it depended only on two co-

efficients: aerodynamic drag area (coefficient of drag �
frontal area; CDA) and a global coefficient of friction (K).

Second, we determined those coefficients from field test

data and compared them with CDA values measured in a

wind tunnel and with previously reported values for

coefficients of rolling resistance (CRR). Third, we used

field-derived coefficients and forward integration to predict

cycling speed from known power–time data and compared

predicted speed with measured speed to establish the

validity of the forward integration technique. For these

final trials, we recorded data during maximal standing-start

accelerations performed by world-class sprint cyclists.

Task 1: Model modification. In our previous model

(12), we expressed power as a function of aerodynamic

drag, rolling resistance, bearing friction, changes in kinetic

and potential energy, and drive system efficiency. Each

term in the model was a function of either ground speed

(Sg) or the product of air speed squared and ground speed

(SgSa
2). Consequently, we rewrote our original equation to

include only two coefficients:

Power ¼ ½CDA� ð2QS2
aSGÞ þ K� ðSgFNÞ þ $PE=$tþ $KE=$t�E ½1�

in which CDA represents the combined effective frontal

area of the bike and rider and of the wheel spokes (CDA

and FW in our previous model), K represents a global

coefficient of friction (including CRR and bearing friction

in our previous model), E is efficiency of the drive system

(assumed to be 97.7% based on our previous findings (12)),

PE is potential energy, KE is kinetic energy, Q is air

density, and FN is the normal force exerted by the bicycle

tires on the rolling surface (essentially weight of the

bicycle and rider). Equation 1 was rearranged to form an

expression with only the two resistance terms on one side

and the power and energy terms on the other:

P� Ej$PE=$tj$KE=$t ¼ CDA� ð2QS2
aSgÞ þ K� ðSgFNÞ ½2�

Using this form of the equation, we can determine CDA

and K via regression analysis.

Task 2: Parameter determination and compari-
son. In our previous study (12), we obtained CDA of six

male cyclists from wind tunnel testing conducted at an air

speed of approximately 13.4 mIsj1 and at yaw angles (i.e.,

the angle of alignment between the bicycle and the air

stream) of 0, 5, 10, and 15-. In that previous study, each

cyclist also performed cycling trials on a straight concrete

surface with a grade of 0.3%, during which we measured

bicycle ground speed, cycling power, air speed, and wind

direction. Each cyclist rode the test section in both

directions at three different speeds (approximately 7, 9,

and 11 mIsj1), and one subject rode at a fourth speed

(12 mIsj1).

In the present study, we reused those previously obtained

data to produce field-derived values for CDA and K.

Specifically, we used those power, ground speed, wind

speed, air density, and energy data, and the assumed value

for drive system efficiency, to determine field-based CDA

and K values in a two-step process. First, we determined

a value for the quantities on the left side of Equation 2

(P � E j $PE/$t j $KE/$t) and for several terms on the

right side of the equation (1/2 Q Sa
2 Sg and SgFN) for each

trial, and determined CDA and K for each subject via

multiple linear regression. We then entered the mean value

for K into Equation 2 and determined individual CDA values

via linear regression. We used this two-step process to

establish a single value for K, which we expected to be

constant for a specific bicycle tire and surface combination.

Task 3: Forward integration modeling of non–
steady-state cycling performance. Three world-class

sprint cyclists (subject 1, a male match-sprint specialist:

1.83 m, 96 kg; subject 2, a male kilometer time-trial spe-

cialist: 1.82 m, 87 kg; and subject 3, a female 500-m spe-

cialist: 1.65 m, 68 kg) volunteered to participate in this phase

of the investigation. Each subject had been world champion at

least once in a track sprint cycling event, and all were

Olympic medalists. We explained the requirements of the

investigation to each cyclist, and she or he gave written

informed consent. The Australian Institute of Sport human

research ethics committee approved the methods used in

this investigation. These three cyclists only performed field

trials; they did not participate in wind tunnel testing. Each

cyclist performed steady-state trials (6–21 s) on an indoor

velodrome at speeds ranging from 6 to 16 mIsj1 in seated and

standing positions while power and speed were recorded
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at a frequency of 5 Hz with a dynamically calibrated

professional version Schoberer Resistance Mechanism

(SRM) Powermeter (Germany). We determined the model-

ing coefficients CDA and K from the steady-state data, as

described above. The steady-state trials used to calculate

CDA and K were performed on a 250-m velodrome

(Superdrome, Adelaide, South Australia) that is approxi-

mately oval in shape. When cycling through a turn, the

rider’s center of mass travels a shorter path than the wheels

because of the lean angle and, thus, moves at a reduced

speed. To account for that difference during the calculation

of CDA and K, we assumed that the track was circular with a

circumference of 250 m, and that the wheels traveled a

circular path with a radius that was greater than that of the

center of mass by the height of the center of mass multiplied

by the sine of the lean angle (where lean angle = arctangent

[centripetal acceleration/gravity]). We assumed that the

height of the center of mass was equal to the height of the

top of the saddle. Those assumptions would not provide

accurate results at any specific point, but should provide a

realistic approximation for the average data. We determined

the normal force on the track surface as the vector sum

of weight and centripetal force (using the circular-track

assumption) and used the value associated with each speed

in the regression procedure.

Each subject performed a maximal standing-start time

trial of a length specific to her or his competitive event.

During each trial, power and speed were recorded using

the same SRM Powermeter as in the steady-state trials.

Power and speed data, together with field-derived CDA and

K, were used to evaluate the accuracy of linear forward

integration modeling in which the conditions at one point in

time are used to predict conditions at a subsequent point

in time. Initial conditions were established using the first

registered power values that were recorded once the

pedaling rate exceeded 30 rpm (7). Using Equation 2, we

modeled the power required to maintain the initial speed and

assumed that the difference between required power and

measured power (excess power) produced acceleration (a =

excess power/speed/mass). The increase in speed that

should occur in the time from one data point to the next is

the product of acceleration and change in time (change in

time is the reciprocal of sampling frequency). Thus, for the

initial timepoint, we knew the speed and calculated the

acceleration. Speed of the center of mass at the next time

point (0.2 s later) was predicted based on the initial mea-

sured speed, acceleration, and data collection frequency:

Si+1 =Si + ai/f. From point 2 forward, only predicted speed

and measured power values were used in the model. To

account for the moment of inertia of the two wheels we

added the mass of two tires and two rims (~1 kg) to total

mass of body and bicycle. As described above, the wheels

move faster than the center of mass when cycling around a

turn. We predicted the speed of the wheels based on lean

angle, which was determined from the speed of the center

of mass and track geometry. We assumed that the center of

mass of the bike–rider system was located at the height of

the saddle. If that assumption were incorrect, the model

would incorrectly predict speed in the turns. Track geometry

was modeled as a straight away and two constant radius

turns (r = 20.7 m for the 200-m track used by one cyclist,

and r = 27 m for the 250-m track used by the other two

cyclists), and the radius was determined from the known

length of the track and of the straight. This technique

produced discontinuities in predicted speed of the wheels at

the entrance and exit of each turn. We used a moving

average (1 s) of the sine of the lean angle to account for the

transitions and provide continuous wheel speed predictions.

Finally, we used our model to evaluate the performance

improvements that might be realized by decreasing mass by

2%, decreasing CDA by 2%, decreasing both mass and drag

by 2%, and by decreasing mass and power by 2%.

Statistics. CDA values determined from wind tunnel

testing were compared with those determined from field

trials with a paired Student_s t-test. The relationships of

modeled and measured speed for the maximal standing-

start time trials were determined with linear regression.

The 95% confidence interval for Pearson’s correlation

coefficient was determined using the method of Fisher (6).

A Bland–Altman plot was generated to allow inspection of

the modeled and measured speed data.

RESULTS

Parameter determination and comparison. The

CDA values determined from wind tunnel testing for each

subject, interpolated to represent the yaw angles encoun-

tered during the cycling trials, averaged 0.261 T 0.006 m2,

and individual values are shown in Table 1. Field-derived

values of CDA averaged 0.258 T 0.006 m2 and did not

differ (P = 0.53) from wind tunnel values (Table 1). The

field-derived global coefficient of friction (K) while

cycling on the taxiway was 0.0043 T 0.0006.

Forward integration modeling of non–steady-
state cycling performance. Field-derived values of

CDA for the sprint cyclists were 0.245 T 0.044 m2 for the

seated position and 0.304 T 0.055 m2 for the standing

position, and individual values are reported in Table 2 and

shown in Figure 1 as a sample data set of power versus

speed. Subjects 2 and 3 used aerodynamic handlebars with

elbow support for the seated position, whereas subject 1

used traditional racing handlebars. The mean value for K was

0.0025 T 0.001. Power, measured speed, and modeled speed

for each subject during his or her time trial, which was a

length appropriate to his or her specialization, are shown

in Figure 2 (250 m for subject 1, a male match-sprint

TABLE 1. Drag area values measured in wind tunnel and those derived from our
field test procedure. Values did not differ.

CDA (m2) Wind Tunnel Field Derived

Subject 1 0.247 0.252
Subject 2 0.291 0.269
Subject 3 0.240 0.241
Subject 4 0.251 0.251
Subject 5 0.252 0.253
Subject 6 0.285 0.283
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specialist; 500 m for subject 3, a female 500-m time-trial

specialist; and 1000 m for subject 2, a male kilometer time-

trial specialist). Power produced by these world-class sprint

cyclists was remarkably high, with a maximum value of

2517 W (for one revolution) for one of the male subjects.

Predicted and measured speed for all subjects were highly

correlated (y = x, r2 = 0.989, 95% confidence interval for r2:

0.987–0.990, SEE = 0.25). Additionally, a Bland–Altman

plot (1) indicated agreement of the modeled and measured

speed data (Fig. 3).

Performance changes that might result from changes in

model parameters are presented in Table 3. Predicted time

savings were small but possibly meaningful for internation-

ally competitive sprint cyclists. Reduced mass produced

greater time savings for the 250-m time trial, whereas re-

duced drag area produced greater time savings for the 500-

and 1000-m time trials. In each scenario, reduced drag

area and reduced mass additively improved performance.

Decreased mass and power (a realistic scenario when re-

ducing body mass) actually increased performance time

(reduced performance).

DISCUSSION

Our two main findings were that field-derived values

for modeling coefficients were equivalent to values derived

from sophisticated wind tunnel testing, and that those

coefficients could be used to accurately model speed during

maximal-power, non–steady-state cycling with forward

integration. These findings support our hypotheses and

greatly broaden the application of our previous cycling

model by eliminating the requirement for wind tunnel

testing and by providing the means to assess maximal-

power, nonjsteady-state cycling performance. Our new

modeling technique can be used to quantify and possibly

minimize drag area. Additionally, our model could be

used to predict performance changes that might result

from changes in various parameters (e.g., mass, equipment,

frontal surface area).

Our finding that CDA values determined in field trials

were nearly identical to those determined in the wind

tunnel is important because access to wind tunnel testing

is both limited and expensive. Our data demonstrate that

5–10 steady-state cycling trials can be used to reproduce

CDA values obtained from wind tunnel testing. The mathe-

matics we described are not particularly sophisticated.

TABLE 2. Drag area.

CDA (m2) Seated Standing

Subject 1 0.332 0.414
Subject 2 0.215 0.245
Subject 3 0.186 0.252

Drag area values of the three world-class cyclists who participated in the second
phase of this study. Note that subject 1 used conventional handlebars, whereas subjects
2 and 3 used aerodynamic handlebars with elbow supports.

FIGURE 1—Example of a power–speed data set. Power and speed
were used to determine CDA and K via multiple linear regression.

FIGURE 2—Power, measured speed, and predicted speed. Power
(open circles) and speed (black line) were measured during maximal
standing-start time trials performed by three world-class cyclists,
and speed was predicted (gray line) using forward integration. Panel
A displays the data from a 250-m time trial (subject 1), panel B dis-
plays the data from a 1000-m time trial (subject 2), and panel C
displays the data from a 500-m time trial (subject 3). Our model
accurately predicted speed throughout the trials (y = x, r2 = 0.989,
SEE = 0.25 mIsj1).
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Furthermore, we believe a technically skilled person could

perform the field-based trials required to use our modeling

procedures. Briefly, each bicycle must be equipped with

an accurate power measurement device such as the SRM

Powermeter or the Powertap (7). Wind speed and direction

must be recorded during each trial, and elevation change

across the test section (which influences change in poten-

tial energy) must be determined (surveys of most public

road ways are generally available from local government

offices). Finally, environmental conditions, including tem-

perature, barometric pressure, and relative humidity must

be recorded and used to determine air density. In the pres-

ent study, we only evaluated the positions normally used

by each subject; however, a sport scientist or cyclist could

perform similar testing using a number of positions to

identify a position that would minimize drag area. Thus,

we believe that this work may have important practical

applications because a cycling team could own a single

power meter and optimize the aerodynamic drag of its

members at relatively little expense. Such optimization

could provide a substantial competitive edge in time-trial

and triathlon events (11).

Our global coefficient of friction, K, included rolling

resistance and wheel-bearing friction, and therefore we ex-

pected it to be somewhat greater than previously reported

values for coefficient of rolling resistance (CRR). Our field-

derived values for K, 0.0042 for the taxiway and 0.0025

for the velodrome, confirmed our expectation. Our value of

K for the track cyclists is larger than previous investigators

have reported for CRR of silk track tires on smooth surfaces

of 0.0016 (9). However, the cyclists who participated in the

second phase of this study used training tires for the steady-

state trials, which have thicker casings and more durable

tread compounds. Additionally, that coefficient is likely

influenced by side loading or ‘‘tire scrub’’ associated with

riding on the banked velodrome surface.

One particularly intriguing aspect of these data was the

range of drag area values of the two male track sprint

cyclists. Subject 1 was a match-sprint specialist with a body

mass of 96 kg who used traditional racing handlebars. His

drag area values (0.332 m2 seated and 0.414 m2 standing)

were much greater than those for subject 2 (87 kg) who

used aerodynamic handlebars and exhibited drag area val-

ues of 0.215 m2 when seated and 0.245 m2 when standing.

Thus, the drag areas of subjects 1 and 2 differed by 68%

when standing (i.e., effect of aerodynamic handlebars would

be absent) even though their body mass differed by only

10%, and predicted body surface area (15) differed by only

4% (2.18 m2 vs 2.09 m2). Consequently, the dramatic

difference in drag area between these two world-class

cyclists is not simply caused by body mass or surface area.

Future research involving drag area and full anthropometric

descriptions may provide a means for predicting body types

with low drag area.

Our linear forward integration technique produced

remarkably accurate predictions of speed during maximal

standing-start acceleration and fatigue-related deceleration.

The model produced similar predictive accuracy with

cyclists who produced peak power outputs from 1377 to

2517 W and performed time trials from 250 to 1000 m in

length. The accuracy was particularly satisfying because

of the simple nature of the model and because of the

capacities of our subjects. Specifically, our subjects were

among the most successful track sprint cyclists in the

world, and thus their acceleration likely represents the

upper limits of human performance and a most severe

modeling challenge. Even so, our modeling technique

accounted for 99% of the variation in actual speed and

predicted speed with a standard error of 0.25 mIsj1. Such

high precision in these extreme conditions suggests that our

model will accurately predict cycling speed in most non–

steady-state situations.

Modeling speed during velodrome cycling presented

several unique challenges. First, the speed of the center of

mass differed from the speed of the wheels when cycling in

the turns because of lean angle. We modeled the velodrome

with constant radius curves and straights. Such simple

geometry almost certainly does not represent actual velo-

drome geometry; however, our attempts to obtain actual

specifications from the track designers failed. Even so, our

simple geometry was adequate to model speed with minimal

errors. In addition, the center of aerodynamic pressure may

not have been at the same position as the center of mass, and

thus the appropriate air speed may have differed from the

speed of the center of mass while in the turns. We did not

attempt to account for this potential difference in our model.

Indeed, we are unaware of any published values for the

height of the center of pressure. Centripetal force increased

normal force while cycling in the turns. To account for that

increase, we modeled normal force (which determines rolling

resistance) as the vector sum of gravity and centripetal force

TABLE 3. Modeled scenarios.

Predicted Time
Changes (s)

Reduced
Mass

Reduced
Drag

Reduced Mass
and Drag

Reduced Mass
and Power

Subject 1 250 m j0.061 j0.030 j0.091 +0.031
Subject 2 1000 m j0.140 j0.314 j0.456 +0.320
Subject 3 500 m j0.093 j0.120 j0.214 +0.123

Predicted time changes (s) for each time trial for four scenarios: 2% decrease in
mass, 2% decrease in aerodynamic drag, 2% reduction in both drag and mass, and
2% reductions in both mass and power. For each subject, the time changes are
specific to her or his competition distance. A negative sign indicates reduction in
performance time (improved performance), and a positive sign indicates increased
performance time (decreased performance).

FIGURE 3—Bland–Altman plot of measured and modeled speed data.
The plot indicated agreement between the two measures with no
apparent bias.
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acting along the longitudinal axis of the rider. Velodrome

surfaces are banked, even on the straight portions of the track.

Because of this banking, the tires were subjected to side

loading, which potentially increased the rolling resistance.

We did not model the side loading in any specific way, but

it is likely to contribute to our value for K (as previously

discussed). Finally, our velodrome model did not provide

gradual transitions between the straights and the turns. We

modeled the transitions as a 1-s (5 point) moving average in

the sine of the lean angle. Although this transition did not

exactly duplicate the speed changes at each turn entry and

exit, it served as a reasonable approximation as shown in

Figure 2.

One of the most important applications of our model

may be in predicting the effects of changes in model

parameters on cycling performance. With this in mind, we

modeled four scenarios for each subject: 2% reduction in

mass, 2% reduction in CDA, 2% reductions in drag and

mass, and 2% reductions in mass and power (Table 3). The

reduced mass was predicted to give a greater performance

advantage for subject 1 in the 250-m time trial, whereas the

reduced drag produced a larger performance increase for

subjects 2 and 3 in the 500- and 1000-m time trials, re-

spectively. Additionally, the predicted performance changes

related to mass and drag were approximately additive,

suggesting that mass and aerodynamic drag influence

performance via different mechanisms such as initial

acceleration (related to mass) and maximal speed (related

to aerodynamic drag). Finally, the combination of reduced

mass and power resulted in increased performance time for

all three athletes, which underscores the potential dangers

associated with reducing weight at the risk of decreasing

power. Although these changes in performance time

may seem small, they are large enough to have a substantial

impact on final standings in world-class competition. For

example, at the 2005 Track Cycling World Championships,

the first three finishers in the women’s 500-m time trial were

separated by 0.19 s, which is less than the difference our

model predicts for a 2% decrease in aerodynamic drag.

Similarly, the top two finishers in the men’s 1000-m time

trial at that event were separated by only 0.065 s, which is

less of an advantage than our model predicts for either

the reduced mass or drag. Thus, the small but important

improvements in performance predicted by our model

should be given serious consideration by athletes, coaches,

and sport scientists.

In summary, we have demonstrated that field-derived

values for modeling coefficients were equivalent to those

derived from sophisticated testing and that those coefficients

can be used to accurately predict speed during maximal-

power, non–steady-state cycling using linear forward inte-

gration. We believe that this modeling procedure will allow

cyclists, coaches, and sport scientists to perform aerodynamic

testing, optimization, and modeling without the use of a wind

tunnel. Additionally, by using forward integration of known

power–time profiles, cyclists can make realistic predictions of

potential performance benefits or decrements from variations

in any of the model parameters.

This study was only possible because of the cooperation of
many people across three continents. We would like to thank the
world champion athletes who donated their valuable training time,
Prof. Allan Hahn and the staff in the physiology department at the
AIS, Steve Hed who provided funding for the wind tunnel testing,
and John Cobb for his technical assistance in the wind tunnel.

REFERENCES

1. BLAND, J. M., and D. G. ALTMAN. Statistical methods for assess-

ing agreement between two methods of clinical measurement.

Lancet 1:307–310, 1986.

2. CRAIG, N. P., and K. I. NORTON. Characteristics of track cycling.

Sports Med. 31:457–468, 2001.

3. DAHN, K., L. MAI, J. POLAND, and C. JENKINS. Frictional resistance

in bicycle wheel bearings. Cycling Science 1:28–32, 1991.

4. DAVIES, C. T. Effect of air resistance on the metabolic cost and

performance of cycling. Eur. J. Appl. Physiol. Occup. Physiol. 45:

245–254, 1980.

5. DI PRAMPERO, P. E., G. CORTILI, P. MOGNONI, and F. SAIBENE. Equa-

tion of motion of a cyclist. J. Appl. Physiol. 47:201–206, 1979.

6. FISHER, R. A. On the probable error of a coefficient of correlation

deduced from a small sample. Metron :3–32, 1921.

7. GARDNER, A. S., S. STEPHENS, D. T. MARTIN, E. LAWTON, H. LEE,

and D. JENKINS. Accuracy of SRM and power tap power monitoring

systems for bicycling. Med. Sci. Sports Exerc. 36:1252–1258, 2004.

8. JEUKENDRUP, A. E., and J. MARTIN. Improving cycling performance:

how should we spend our time and money. Sports Med. 31:559– 569,

2001.

9. KYLE, C. R. The mechanics and aerodynamics of cycling. In:

Medical and Scientific Aspects of Cycling, E.D. Burke (Ed.).

Champaign, Ill: Human Kinetics, 1988, p. 235.

10. MARTIN, J. C., and J. E. COBB. Bicycle frame, wheels, and tires.

In: High Performance Cycling, A. E. Jeukendrup (Ed.). Indian-

apolis, In: Human Kinetics, 2002, p. 113.

11. MARTIN, J. C., and J. E. COBB. Body position and aerodynamics.

In: High Performance Cycling, A. E. Jeukendrup (Ed.). Indian-

apolis, In: Human Kinetics, 2002, p. 103.

12. MARTIN, J. C., D. L. MILLIKEN, J. E. COBB, K. L. MCFADDEN, and

A. R. COGGAN. Validation of a mathematical model for road

cycling power. J. Appl. Biomech. 14:276–291, 1998.

13. OLDS, T. S., K. I. NORTON, and N. P. CRAIG. Mathematical

model of cycling performance. J. Appl. Physiol. 75:730–737,

1993.

14. OLDS, T. S., K. I. NORTON, E. L. LOWE, S. OLIVE, F. REAY, and

S. LY. Modeling road-cycling performance. J. Appl. Physiol. 78:

1596–1611, 1995.

15. WANG, Y., J. MOSS, and R. THISTED. Predictors of body surface

area. J. Clin. Anesth. 4:4–10, 1992.

MODELING NON–STEADY-STATE CYCLING Medicine & Science in Sports & Exercise
T

597


