
Am. J. Hum. Genet. 67:1208–1218, 2000

1208

Linkage Disequilibrium Analysis of Biallelic DNA Markers, Human
Quantitative Trait Loci, and Threshold-Defined Case and Control Subjects
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Linkage disequilibrium (LD) mapping has been applied to many simple, monogenic, overtly Mendelian human
traits, with great success. However, extensions and applications of LD mapping approaches to more complex human
quantitative traits have not been straightforward. In this article, we consider the analysis of biallelic DNA marker
loci and human quantitative trait loci in settings that involve sampling individuals from opposite ends of the trait
distribution. The purpose of this sampling strategy is to enrich samples for individuals likely to possess (and not
possess) trait-influencing alleles. Simple statistical models for detecting LD between a trait-influencing allele and
neighboring marker alleles are derived that make use of this sampling scheme. The power of the proposed method
is investigated analytically for some hypothetical gene-effect scenarios. Our studies indicate that LD mapping of
loci influencing human quantitative trait variation should be possible in certain settings. Finally, we consider possible
extensions of the proposed methods, as well as areas for further consideration and improvement.

Introduction

Recent technological advances in molecular genetics
have provided researchers with extremely powerful tools
that they can use to probe the genetic basis of traits and
diseases. Although there are many different strategies for
exploiting these technologies, one that has been receiving
considerable recent attention is the association study.
The association study involves a simple comparison of
the frequencies of an allele or haplotype between indi-
viduals with and without a trait of interest. If compelling
evidence for frequency differences exist, then either the
locus (or loci) in question harbors alleles that causally
or directly influence the trait, or the alleles are in linkage
disequilibrium (LD) with alleles at a neighboring locus
that directly influence the trait in question.

When testing a particular locus and its alleles for
association with a trait or disease, one will rarely know,
in the absence of ancillary information, whether or not
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an association is likely to arise from causality or LD.
In fact, mapping trait-influencing loci under the as-
sumption that LD patterns can reveal the approximate
location of a trait-influencing gene has become an im-
portant and commonly used strategy in positional clon-
ing and association mapping in general (see, e.g., Jorde
1995). Unfortunately, the success of LD mapping has
been confined largely to monogenic, overtly Mendelian
traits. Part of the reason for the lack of success in ex-
ploitation of LD mapping strategies for more-complex
traits is the lack of analysis methods and study designs
that can accommodate their multifactorial nature or can
extract as much association information as possible
from a sample. This is particularly true for quantitative
or metrical traits, such as cholesterol or blood pressure
level—that is, those traits that vary continuously in the
population at large, since they are typically influenced
by a number of genetic and nongenetic factors, the in-
dividual effects of which are often obscured by the ef-
fects of the others. An additional issue that plagues LD-
mapping studies of quantitative traits is population
stratification and cryptic heterogeneity, which, fortu-
nately, can be dealt with for analyses involving quan-
titative traits in a manner analogous to the methods
used for qualitative traits (see, e.g., Devlin and Roeder
[1999], Pritchard and Rosenberg [1999], and Pritchard
et al. [2000] for discussion).

One strategy for extracting as much information from
a sample for a quantitative trait as possible is to derive
that sample from the extremes of the trait distribution
in question (see, e.g., Gu et al. 1997, Risch and Zhang
1995, and Xu et al. 1999). In this study, we consider
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conducting a single-locus association analysis between
a biallelic marker locus and individuals sampled at op-
posite ends of a quantitative trait distribution. We derive
equations for assessment of the power of the proposed
method as a function of many factors. An appendix
offers a description of the notation used. Our results
suggest that single-locus LD mapping using the pro-
posed sampling strategy can be quite powerful in certain
settings. We also discuss possible extensions of the pro-
posed method, as well as some of its limitations.

Materials and Methods

Basic Mixture Model

Consider a locus with two alleles, denoted as “�”
and “�,” that influence a quantitative phenotype.
There are three possible (diploid) genotypes, ��, ��,
and ��. Associated with each of these genotypes is
a phenotypic mean effect, , and variance (where2m jg g

). For simplicity’s sake, we assumeg p {��, � �, � �}
that , although this assumption2 2 2 2j p j p j p j�� �� �� r

may be problematic for marker-locus alleles merely
linked to a quantitative trait locus (QTL), as discussed
later. The variation in trait values, x, among individuals
with the same genotype, g, is assumed to be charac-
terized by the normal density function, denoted

.2f(xFm ,j )g g

Let p be the frequency of the “�” allele and q p
be the frequency of the “�” allele. If Hardy-(1 � p)

Weinberg equilibrium of the alleles is assumed, the fre-
quencies of the three genotypes are as follows: f p��

, , and . The population-level var-2 2p f p 2pq f p q�� ��

iation of x, then, can be described as a mixture distri-
bution, denoted as “ .” Assume equality of genotype-r(•)
specific trait variances, let , and2Q p {p,m ,m ,m ,j }�� �� �� r

then let

2r(xFQ) p f f(xFm ,j )�� �� r

2�f f(xFm ,j )�� �� r

2�f f(xFm ,j ) . (1)�� �� r

See MacLean et al. (1976) and Schork et al. (1996) for
discussions. To simplify things even further, consider as-
signing , , , and .2m p �a m p d m p a j p 1�� �� �� r

Then, a model for the dominance of the � allele over
the � allele would assume , a model for recessivityd p a
of the � allele would assume , a purely additived p �a
model would assume , and assumptions wherebyd p 0

would provide models suggestive of semi-�a ! d ! a
dominance. The additive genetic variance attributable to
the locus for any model can thus be calculated as

, the dominance variance can be2 2j p 2pq[a � d(p � q)]a

computed as , and the total genetic vari-2 2j p [2pqd]d

ance can be computed as . Given that2 2 2j p j � jG a d

, the broad-sense heritability attributable to the2j p 1r

locus is , whereas the narrow sense her-2 2H p j /(j � 1)B G G

itability is . Note that the total variance2 2H p j /(j � 1)N a G

for the trait, for arbitrary , is .2 2 2 2j j p j � jr t G r

Sampling Extremes

We will now consider the sampling of individuals from
the ends of the trait distribution to maximize the prob-
ability of obtaining individuals with and without the �
(�) allele. For the sake of convenience, assume that in-
terest is in the allele associated with higher trait values.
We consider thresholds for sampling that will define
“case subjects” (i.e., individuals in the upper end of the
trait distribution) and “control subjects” (i.e., individ-
uals in the lower end of the trait distribution). To define
case subjects, we consider individuals whose trait value
is in the upper percentile of the trait distribution.au

Control subjects are considered individuals with trait
values in the lower percentile of the trait distribution.al

Trait values that must either be surpassed, , for case-tu

subject assignment or not surpassed, , for control-sub-tl

ject assignment can be obtained by solving the integrals

tl

r(xFQ)dx p a� l
��

and

�

r(xFQ)dx p a . (2)� u
tu

Let P denote a probability, such that with a subscriptPv

denotes a specific probability, and P() denotes a prob-
ability function that can be evaluated at a certain point.
From equation (1), the conditional probability of pos-
sessing the � allele, given that an individual is a case
subject (i.e., has a trait value that surpasses the threshold

), can be computed from Bayes’ rule:tu

P p P(�Fx 1 t )�Fu u

� �2p f(xFa,1)dx � pq f(xFd,1)dx∫ ∫t tu u
p . (3)

P(x 1 t ) p au u

Given control-subject status, similar conditional prob-
abilities can be computed for the possession of the �
allele.
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Table 1

Basic Design for Investigating the Association Between a
Marker Allele (or Haplotype) and Threshold-Defined Case
and Control Subjects

Allele Upper Percentile Lower Percentile Total

M n pu MFu n pl MFl n�

m n (p p 1 � p )u mFu MFu n (p p 1 � p )l mFl MFl n�

Total nu n p cnl u N

Conditional Marker Frequencies: Single-Locus

Consider a marker locus with two alleles, M and m,
that is linked to a locus that influences a quantitative
trait for which the sampling strategy described in the
previous section has been applied. Let the M allele be
in disequilibrium with the � allele at the trait locus.
Further, let s be the frequency of the M allele and t p

be the frequency of the m allele. Using standard(1 � s)
equations, the frequency of the four possible two-locus
haplotypes across the trait and marker loci are given by

f p ps � d�M

f p pt � d�m

f p qs � d�M

f p qt � d , (4)�m

where is the disequilibrium strength value between al-d

leles at the two loci. After some simple algebra, it can
be shown that the frequency of the M allele among in-
dividuals sampled from the upper end of the trait dis-
tribution is given by

d(P � p)�FuP p s � . (5)MFu p(1 � p)

Similar equations can be derived for the frequency with
which an individual sampled from the lower end of the
trait distribution will carry the M allele, . EquationsPMFl

of this type have also been derived by Slatkin (1999)
and Neilsen and colleagues (Nielsen et al. 1998; Nielsen
and Weir 1999), in slightly different contexts.

Testing LD: Power Considerations

The derivations above make it relatively easy to pursue
power studies for test settings involving different marker
and trait allele frequencies, interlocus distances, and LD
strengths. Table 1 depicts a simple 2 # 2 contingency
table that can be set up to assess the association between
the marker-locus alleles and case-/control-subject status.

For present purposes, the statistic of interest that can
be derived from the 2 # 2 table is the odds ratio

n p # n pu MFu l mFlOR p . (6)
n p # n pl MFl u mFu

Schlesselman (1982) discusses calculations for assessing
the power of tests of the hypothesis (i.e.,H :OR p 10

the marker locus is not in LD with the trait locus, or
the locus being tested for LD does not have an effect on
the trait of interest). In particular, if is the number ofnu

case subjects in the study, is the number ofn p cnl u

control subjects (i.e., c is the control-subject:case-subject

ratio and the total number of subjects is ),N p n � nu l

, , is the quantile′ ′ ′¯ ¯¯p p (p � cp )/(1 � c) q p 1 � p zMFl MFu a

associated with a standard normal distribution for the
(type I error) probability , anda

2 ′ ′ 1/2¯ ¯z p [n (p � p ) /(1 � 1/c)p q ] � z , (7)b u MFu MFl a

then, assuming relevant parameters have been set to hy-
pothesized values, ,2Q p {z ,n ,c,m ,m ,m ,j ,p,s,d}a u �� �� ��

power can be calculated as

Power(Q) p 1 � P(Z � z FQ)b

zb

p 1 � f(xF0,1)dx , (8)�
��

where is the standard normal-density functionf(xF0,1)
evaluated at value x. Thus, given assumptions about a
number of parameters—the trait-locus allele frequencies,
locus-specific heritability and dominance effects, LD
strength, marker-locus allele frequencies, thresholds for
defining case-/control-subject status, number of case sub-
jects, ratio of control to case subjects, and type I–error
rate—one can compute the power to detect an LD-in-
duced association between a biallelic marker locus and
a QTL through tests of OR.

Results

In this section, we consider some computations involving
the equations and derivations described in the previous
section. We also showcase the effects of various param-
eters and assumptions on power to detect a locus effect.
We perform the calculations in a few hypothetical sit-
uations, with the understanding that the reader may be
interested in some unique or specific situations not
overtly addressed in this paper. A computer program that
can carry out the relevant calculations is available from
the authors.

Conditional Marker Allele Probabilities

Table 2 offers some examples of calculations using
equations 1–6 and ultimately gives the conditional prob-
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Table 2

Conditional Probability that an Individual Possesses a Trait-Value-Increasing Allele, Given that His or Her Trait Value Is in the Lower and
Upper Percentiles of the Trait Distribution and under the Assumption of Different Trait-Locus Allele Effects

TRAIT-LOCUS

ALLELE

FREQUENCY d

LOCUS

HERITABILITY PROBABILITY (THRESHOLD) FOR

Broad-
Sense

Narrow-
Sense a p .10l a p .10u a p .05l a p .05u a p .25l a p .05u

.5 .0 .333 .333 .155 (�1.580) .846 (1.580) .116 (�2.015) .886 (2.015) .234 (�.839) .886 (2.015)

.5 .5 .360 .320 .088 (�1.420) .759 (1.810) .049 (�1.908) .781 (2.212) .197 (�.581) .781 (2.212)

.3 .0 .296 .296 .060 (�1.917) .660 (1.148) .043 (�2.322) .725 (1.598) .098 (�1.222) .725 (1.598)

.3 .5 .393 .367 .021 (�1.857) .626 (1.481) .012 (�2.284) .654 (1.915) .052 (�1.102) .654 (1.915)

.1 .0 .152 .152 .013 (�2.174) .312 (.601) .010 (�2.551) .375 (1.021) .022 (�1.541) .375 (1.021)

.1 .5 .265 .265 .004 (�2.164) .391 (.826) .002 (�2.543) .454 (1.307) .008 (�1.516) .454 (1.307)

.5 1.0 .429 .286 .049 (�1.333) .665 (2.111) .021 (�1.865) .667 (2.500) .174 (�.360) .667 (2.500)

.5 �1.0 .429 .286 .334 (�2.113) .951 (1.330) .334 (�2.502) .981 (1.863) .388 (�1.438) .961 (1.863)

.3 1.0 .500 .412 .009 (�1.836) .582 (1.863) .003 (�2.273) .586 (2.295) .025 (�1.031) .586 (2.295)

.3 �1.0 .247 .114 .231 (�2.228) .667 (.668) .231 (�2.599) .811 (1.206) .231 (�1.600) .811 (.189)

.1 1.0 .381 .361 .001 (�2.160) .454 (1.116) .001 (�2.542) .496 (1.681) .002 (�1.505) .496 (1.681)

.1 �1.0 .038 .007 .091 (�2.277) .159 (.319) .091 (�2.641) .203 (.702) .091 (�1.667) .203 (.702)

NOTE.—For all runs, . The table entries essentially give solutions to equation (3), with thresholds (in parentheses) defined as in equationa p 1
(2); probabilities of possessing the allele are shown, given trait values in the lower percentile and the upper percentile.a al u

Table 3

Sample Sizes Necessary to Detect an Association between a Marker Locus and a Trait-Influencing
Locus Assuming Different Values for the Trait-Locus Allele Frequencies, Locus Effect Sizes, and
LD Strength

TRAIT-LOCUS

ALLELE

FREQUENCY LD (D′)

LOCUS-
SPECIFIC

HERITABILITY

(LOCUS

EFFECT)

NECESSARY SAMPLE SIZE FOR ASSUMED MODEL OF

INHERITANCE AND ASSUMED TYPE I–ERROR RATE

Dominant Recessive Additive

.05 .00001 .05 .00001 .05 .00001

.10 .75 .10 150 425 1,001 2,856 140 394

.10 .50 .10 330 941 2,215 6,318 305 871

.10 .25 .10 1,297 3,700 8,701 24,819 1,197 3,415

.10 .75 .20 77 220 974 2,778 71 203

.10 .50 .20 172 482 2,154 6,143 156 444

.10 .25 .20 650 1,855 8,458 24,126 602 1,716

.25 .75 .10 56 160 105 302 48 135

.25 .50 .10 125 357 229 655 106 305

.25 .25 .10 500 1,427 885 2,524 417 1,191

.25 .75 .20 29 86 50 146 24 70

.25 .50 .20 67 193 110 315 113 157

.25 .25 .20 270 767 417 1,190 216 615

NOTE.—The associated marker-locus allele was assumed to have a frequency of .25, sampling was
assumed to involve the upper and lower 10th percentiles of the trait distribution, and the power was
assumed to be 80%. The entries reflect the number of case and control subjects (which are assumed
to be sampled equally in number).

ability that an individual sampled from the upper and
lower ends of the trait distribution possesses an allele in
LD with a trait-influencing allele. Note that when there
is no dominance and the alleles are equally frequent (i.e.,
the value of p—that is, the column listed as p—is 0.5,
and the value of d is 0), the quantiles used to define the
upper and lower percentiles of the trait distribution are
equal in absolute value, as expected.

Basic Sample-Size-Requirement Studies

Table 3 offers some examples of sample-size-require-
ment calculations for some select assumptions about the
trait and marker-locus allele frequencies, dominance and
locus effects, and LD strength. Table 3 makes it clear
that if the trait-locus effect is modest (e.g., ∼20% of the
variation explained) and/or the trait-locus allele fre-
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Figure 1 Effect of sampling thresholds on the power to identify a QTL via association mapping. Simulating conditions were: D′ between
trait/marker loci p 0.75, pM p 0.25, and p� p.025, when the dominant model is assumed. Type I–error rate was set to .05.

quency matches the associated marker-locus allele fre-
quency, then it might be possible to detect an effect with
realistic sample sizes even at genomewide rates. These
are meant as examples only, since there are an infinite
number of situations one might want to consider in
terms of power. It is important, however, to consider the
impact that assumptions about the potential locus ef-
fect—and, more importantly, the sampling scheme—
have on power. We focus on the effects of some of these
parameters in isolation in the sections that follow.

Influence of the definition of “extremes.”—By sam-
pling more and more extreme individuals, one can in-
crease the power of an association study in certain in-
stances. Figure 1 depicts power curves with the
assumption that individuals have been sampled in a sym-
metrical way from the upper and lower percentiles of a
trait distribution. Four different settings were studied
with respect to sample size and locus effect (i.e., sample
sizes of 100 and 50 case and control subjects, respec-
tively, and locus-specific heritabilities of .1 and .25, re-
spectively). It was assumed that the trait-locus effect was
dominant, with the dominant allele having a frequency
of .25 and an associated marker-locus allele frequency
of .25. The marker and trait alleles were assumed to be
in LD at 75% of the maximum for loci with the specified
allele frequencies (assuming Lewontin’s D′ as scaled to

a maximum achievable LD given allele frequencies [Le-
wontin 1988]). A type I–error rate of .05 was also as-
sumed. Figure 1 clearly shows that sampling more ex-
treme individuals results in greater power. However, for
the case subjects examined, the drop-off in power is not
large if the sample is large or the locus effect is
pronounced.

Influence of the locus effect.—Obviously, the larger
the trait-influencing locus effect is, the easier it will be
to detect an association between that locus and a marker-
locus allele. Figure 2 depicts power curves for trait-lo-
cus–specific heritabilities ranging from .0 to .5 for sam-
ples of sizes 25, 50, 100, and 250 case and control
subjects. The trait-locus allele was assumed to be dom-
inant with a .25 frequency, and the associated marker-
locus allele was assumed to have a frequency of .25. The
marker and trait alleles were assumed to be in LD at
75% of the maximum for loci with the specified allele
frequencies. Case and control subjects were assumed to
be drawn from the upper and lower 25% of the trait
distribution, respectively. A type I–error rate of .05 was
also assumed. Figure 2 clearly shows that as the locus
effect increases, the power increases greatly. Thus, even
with relatively small sample size (∼50 case and control
subjects), the power to detect a locus with a moderate
effect, given the assumed sampling scheme, is quite good.
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Figure 2 Effect of the heritability of a QTL on the power to identify that locus via association mapping

Influence of LD strength.—Clearly, if a marker locus
and a trait-influencing locus do not have alleles in LD,
then the marker-locus alleles will not act as good “sur-
rogates” for the trait-influencing alleles. Thus, the
strength of the LD between the marker and the trait-
locus alleles is of extreme importance in detecting an
association. It is important, therefore, to consider just
how strong LD has to be before one can detect an as-
sociation. Since the frequency of the alleles can have an
impact on both LD strength and one’s ability to detect
it, we have chosen to exemplify the influence of LD
strength on mapping power by fixing the sampling strat-
egy and locus effect parameters and varying LD strength
and heritability. Figure 3 depicts the expected increase
in power with increasing LD between the marker and
trait loci. The trait-locus allele was assumed to be dom-
inant with a .25 frequency, and the associated marker-
locus allele was assumed to have a frequency of .25.
Case and control subjects were assumed to be drawn
from the upper and lower 25% of the trait distribution.
A type I–error rate of .05 was assumed.

Influence of Trait and Marker Loci Allele Frequencies

The single-locus test described here relies on the LD
between the marker and trait loci, as shown in figure 3.
Because LD strength is dependent on allele frequencies,
it is also of interest to measure the simultaneous effects

of marker and trait allele frequencies on power of the
extreme sampling method. Figure 4 shows power as a
function of SNP marker allele frequency for trait allele
frequencies of .1, .2, .3, .4, and .5, when the disequilib-
rium between them is held constant at 75%, the max-
imum possible for the given frequencies. One hundred
case subjects and 100 control subjects sampled from the
upper and lower 10th percentiles of the trait distribution
were assumed, as was a locus-specific heritability of
20%. The type I–error rate was set to .05. Although this
plot demonstrates reasonable power for all of the trait
allele frequencies, because of the high level of LD, it can
be seen that the maximum power is achieved when the
trait and marker allele frequencies are equal. This is in-
tuitive and has implications for association studies, as
described in the Discussion section. In addition, this issue
has been addressed by others, in slightly different con-
texts (Schaid and Sommer 1994; McGinnis 1998; Schaid
and Rowland 1998).

Influence of the definition of “control subject.”—Often,
in case/control studies, a researcher will sample individ-
uals with a disease and then merely define control subjects
as individuals without the disease. This definition of “con-
trol subject” can create a very heterogeneous group. As
has been emphasized throughout this paper, for a quan-
titative phenotype, one can select control subjects who
may lead to increases in mapping power, because they are
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Figure 3 Effect of LD strength between marker and trait loci on the power to identify a QTL via association mapping

less similar to the case subjects with respect to phenotype
(i.e., their trait values are further removed from the case
subjects’ trait values, making it less likely that they share
genes for that trait).Figure 5 displays, in two ways, the
effect of varying definitions of “control subject.” Figure
5A shows the increase in power with increasing number
of control subjects, while keeping the other parameters
constant. In this scheme, 100 case subjects were taken
from the upper 25% of the trait distribution, and the
varying number of control subjects was assumed to be
sampled from the lower 25%. Under the conditions
shown, reasonable power can be obtained from a control-
subject/case-subject ratio !1, even for low heritability val-
ues. Figure 5B demonstrates the effect of varying the lower
threshold of the trait distribution used for control subject
sampling, while keeping the number of case subjects to
control subjects constant at 100. One hundred case sub-
jects were assumed to be sampled from the top 25% of
trait distribution, the trait-locus allele frequency was as-
sumed to be .25, the associated marker-locus allele fre-
quency was also assumed to be .25, and the LD between
the alleles was assumed to be 75% of its maximum and
the trait-locus allele was assumed to be dominant. The
type I–error rate was set to .05. Figure 5 shows that power
decreases as less extreme control-subject–samplingthresh-
olds are used. However, even for low heritability, the

power for sampling control subjects from the lower half
of the trait distribution is still quite good under the con-
ditions studied.

Discussion

Association mapping, although not without its prob-
lems, is enjoying a tremendous resurgence of interest
because of the availability of polymorphic marker da-
tabases, high-throughput genotyping equipment, and a
recognition of the limits of conventional linkage analysis
mapping strategies for identifying the determinants of
common complex diseases (Risch and Merikangas 1996;
Collins et al. 1997, 1998). A predominant issue that has
arisen in the wake of this intense interest concerns the
manner in which one should conduct an association
study, especially with respect to quantitative traits. For
example, many researchers have devised analogs of the
standard transmission-disequilibrium test (TDT) for
quantitative traits (see, e.g., Allison 1997) with the hope
that the advantages associated with the TDT (i.e., a con-
trol for population stratification) could be exploited
(Spielman et al. 1993; Ewens and Spielman 1995; Spiel-
man and Ewens 1996). Others have developed models
for association analysis of quantitative traits that make
use of fixed and random effects models for family-based
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Figure 4 Effect of quantitative trait and marker-locus allele frequencies on the power to identify the QTL via association mapping.

collections (Boerwinkle et al. 1986; George and Elston
1987; Amos et al. 1996). These models have the clear
advantage of allowing for the control or accommodation
of residual genetic and familial effects on the trait. In
addition, the sampling units—families or pedigrees—
can be used in complementary linkage analysis studies
as well (Schork 2000).

Unfortunately, the problem with both the TDT and
random-effects–models approach is that they require
family or (at least) parental information. Such infor-
mation may be difficult or impossible to collect. Al-
though one conceivably could collect a random sample
of unrelated individuals and examine associations be-
tween a quantitative trait and marker-locus alleles, using
analysis of variance and related statistical procedures,
these strategies would not be optimal. The proposed
sampling scheme, involving unrelated individuals sam-
pled from thresholds defined by the trait distribution,
is intuitive and can result in substantial power increases.
In addition, many of the problems thought to plague
case/control samples, such as stratification and cryptic
heterogeneity, can be overcome with an appropriate use
of DNA markers and analysis strategies (Pritchard et
al. 2000; Schork et al., in press). Unfortunately, there
are some drawbacks, both with the proposed method

and with our derivations concerning its power. First,
our derivations require knowledge of the trait distri-
bution, so that relevant sampling thresholds can be de-
fined. Rarely will one know the actual distribution of
trait values in the population. However, large epide-
miological studies often can estimate such distributions
and therefore can provide approximate thresholds.

Second, our calculations assume that the trait values
were distributed as normal variates, with constant var-
iances across the genotype categories. It is unlikely that
a trait will exhibit such homoscedasticity across geno-
type categories. It is also unlikely that a trait will exhibit
perfect normality. This is especially true if multiple loci
influence the trait of interest. Such multilocus influences
can easily affect the power to detect a locus effect with
simple sampling frameworks (Allison et al. 1998). We
view our assumptions of normality and homoscedastic-
ity as working assumptions. We encourage others to
investigate alternatives.

Third, although we concentrated on single-locus as-
sociations, we recognize that haplotype and multilocus
analyses might be more powerful. Haplotype and mul-
tilocus analyses may be able to exploit LD relationships
among multiple markers and thereby make up for weak
LD between any marker allele and the trait-influencing



Figure 5 Effect of the definition of a “control subject” on the power to identify a QTL via association mapping. A, Power as a function of the number of control subjects sampled while keeping
case-subject sample size and sampling percentiles constant (control subjects sampled from the bottom 25th percentile). B, Power as a function of control subject–sampling threshold while keeping
case- and control-subject sampling sizes constant (100 each).
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allele (Long et al. 1995; Clark et al. 1998; Schork et
al., in press). Unfortunately, power calculations assum-
ing multiple haplotypes would be complicated to pur-
sue. We therefore leave the details of such studies to
further research.

One interesting facet of our study results concerns the
effect of marker and trait-locus allele frequencies (e.g.,
table 3 and fig. 4). It is clear that, in certain situations,
power increases in mapping will occur if the trait-influ-
encing allele and associated marker-locus allele have the
same frequency. This is likely due to the fact that if, for
example, the associated marker-locus allele frequency is
much greater than the trait-locus allele frequency, there
will be many control subjects possessing the associated
allele. This will obviously weaken evidence for an as-
sociation, especially if the LD is weak between the trait
and marker-locus alleles. The implications of this phe-
nomenon for mapping studies are far-reaching. Con-
sider the development and use of a map of markers that
have similar allele frequencies. Such a map might not
be ideal for detecting associations with alleles that have
different allele frequencies from those of the markers.
Overcoming this problem may be possible by studying
haplotypic associations, which might provide greater
specificity and matching of disease-allele frequencies.
Obviously, greater research into this and related issues
are needed.
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Appendix

Notation

x Trait value
�, � Alleles at the trait-influencing locus
mg Mean genotype effect: { }g p ��, � �, � �

2jg Variance of trait values associated with genotype g
2jr Variance of trait values, assuming equality of genotype

variances
2jG Total trait variance caused by genetic effects at single

locus
2ja Total trait variance caused by additive genetic effects

at a single locus
2jd Total trait variance caused by dominance genetic ef-

fects at a single locus
p, q Frequencies of the � and � alleles, respectively
fg Frequency of trait-influencing genotype g

r(•) Trait distribution in the population
a � allele effect
d Dominance effect

HB Broad-sense heritability
HN Narrow-sense heritability
t , tu l Threshold values for defining case and control sub-

jects, respectively
a , au l Percentiles for sampling case and control subjects,

respectively
M, m Alleles at the marker locus
s, t Frequencies of the M and m alleles, respectively
d LD strength between trait and marker alleles.
PMFu Probability of possessing a marker allele given case-

subject status
n , nu l Number of case and control subjects, respectively
N Total number of case and control subjects
c Ratio of case subjects and control subjects
OR Odds ratio for a 2 # 2 table assessing the marker and

case/control status relationship
a, b Type I– and type II–error rates
z , za b a, b quantiles of the standard normal distribution.
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