
AN INTEL COMPANY

A How-to Guide for Embedded Development

Accelerate DevOps with
Continuous Integration and
Simulation

WHEN IT MATTERS, IT RUNS ON WIND RIVER

EXECUTIVE SUMMARY

Adopting the practice of continuous integration (CI) can be difficult, especially when

developing software for embedded systems. Practices such as DevOps and CI are

designed to enable engineers to constantly improve and update their products, but

these processes can break down without access to the target system, a way to collabo-

rate with other teams and team members, and the ability to automate tests. This paper

outlines how simulation can enable teams to more effectively manage their integration

and test practices.

Key points include:

•	 How a combination of actual hardware and simulation models can allow your testing to

scale beyond what is possible with hardware alone

•	 Recommended strategies to increase effectiveness of simulated testing

•	 How simulation can automate testing for any kind of target

•	 How simulation can enable better collaboration and more thorough testing

•	 Some problems encountered when using hardware alone, and how simulation can

overcome them

TABLE OF CONTENTS

Executive Summary. . 2

Introduction . . 3

Continuous Integration and Simulation . . 3

Hardware-Based Continuous Integration . . 4

Using Simulation for Continuous Integration . . 6

Simics Virtual Platforms . . 7

Workflow Optimization Using Checkpoints . . 8	

Testing for Faults and Rare Events . . 9

Simulation-Based CI and the Product Lifecycle. . 10

Conclusion . 11

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

2 | White Paper

AN INTEL COMPANY

™

INTRODUCTION

CI is an important component of a modern DevOps practice.

While the details of CI differ depending on whom you ask, a key

feature is that rather than waiting until the last minute to integrate

all the many different pieces of code in a system, integration—

and most importantly, integration testing—is performed as early

as possible, as soon as code is ready to run. You cannot really

adopt DevOps, or even Agile software development, fully unless

you have automated builds, automated tests, and automated suc-

cessive integration—that is, continuous integration. Embedded

software developers are actively embracing DevOps, but they are

often blocked from doing so fully due to the issues inherent in

working with embedded hardware.

A properly implemented and employed CI system shortens the

lead time from coding to deployed products and increases the

overall quality of the code and the system being shipped. With

CI, errors are found faster, which leads to lower cost for fixing the

errors and lower risk of showstopper integration issues when it is

time to ship the product.

In CI, each piece of code that is added or changed should be

tested as soon as possible and as quickly as possible, to make

sure that feedback reaches the developers while the new code

is still fresh in their minds. Ideally, tests should be run and results

reported back to the developers within minutes. The most com-

mon technique is to build and test as part of the check-in cycle for

all code, which puts access to test systems on the critical path for

developers.

Testing soon and testing quickly is logistically simple for IT applica-

tions, where any standard computer or cloud computing instance

can be used for testing. However, for embedded systems and dis-

tributed systems, it can be a real issue to perform continuous inte-

gration and immediate, automated testing. The problem is that

running code on an embedded system typically requires a particu-

lar type of board, or even multiple boards. If multiple boards are

involved, they need to be connected in the correct way, and the

connections between them configured appropriately. There is also

a need for some kind of environment in which to test the system—

an embedded system rarely operates in isolation; it is, rather, a

system that is deeply embedded in its environment and depends

on having the environment in order to do anything useful. CI for

embedded systems thus tends to be more difficult to achieve due

to the dependency on particular hardware, and the dependence

on external inputs and outputs (I/Os) and the hardware necessary

to drive the I/Os.

Using simulation for the embedded system and its environment

offers a potential solution that allows for true automated testing

and CI, even for embedded software developers. Wind River®

Simics® helps achieve this by using high-speed virtual platform

models of the embedded system along with models of networks

and simulators for the physical environment that the embedded

system interacts with.

CONTINUOUS INTEGRATION AND SIMULATION

A CI setup is fundamentally an automatic test framework, where

code is successively integrated into larger and larger subsystems.

As shown in Figure 1, the CI setup typically consists of a number

of CI loops, each loop including a larger and larger subset of the

system—both hardware and software.

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

3 | White Paper

Embedded software developers are actively

embracing DevOps, but they are often blocked

from doing so fully due to the issues inherent in

working with embedded software.

AN INTEL COMPANY

™

The CI system is typically started when code is checked in by devel-

opers. Since code needs to have some basic level of quality before

being checked in, there is normally a separate pre-CI test phase

where developers test their code manually or by using small-scale

automatic tests to make sure the code is at least basically sound and

probably won’t break the build. Once the code seems reasonably

stable, it is submitted to the main automatic build system and sent

into the CI system proper. The work of the CI system is to a large

extent regression testing—making sure that the component that

was changed or added does not break existing expected behaviors

of the system.

It is critical to perform testing at multiple levels of integration, since

each level tends to catch different types of bugs. Just doing system-

level end-to-end testing on a completely integrated system will miss

large classes of errors that are easy to find with more fine-grained

tests. Running unit tests is necessary to ensure system-level quality,

but it is not sufficient. Integration testing will reveal many types of

issues that are not found in unit tests, and each level of integration

will reveal its own set of bugs.

Each successive CI loop covers a larger scope and takes more time

to run. The first-level loops should ideally complete in a few min-

utes, to provide very quick developer feedback. At the tail end of

the process, the largest loops can run for days or even weeks.

The largest loops are sometimes considered part of the CI process,

and sometimes are handled by a specialized quality assurance or

delivery team that makes sure the code truly meets the quality cri-

teria needed to ship. If the code that comes out of the final CI loop

is ready to ship, we enter the domain of continuous delivery (CD),

which is the next step beyond CI. Simulation can be used for all but

the last and largest test loops. In the end, you have to “test what

you ship and ship what you test,” and that means you have to test

the system on the hardware that will be shipping—but that is the

last step before release, and most testing up to that point can be

done using simulation.

CI cannot necessarily be applied arbitrarily to any existing soft-

ware stack; in most cases, the software architecture has had to

be changed to facilitate CI and DevOps. A key requirement for

success is that it be possible to build and integrate parts of a sys-

tem, and that subsets of the entire system can be tested in iso-

lation—that is, the system must be modular in order to enable

CI. Additionally, unit tests and subsystem tests must be defined,

if they do not already exist. Using simulation and making testing

automated does not automatically mean that you have a CI system.

HARDWARE-BASED CONTINUOUS INTEGRATION

The basic way to perform testing and CI for embedded systems is

to use hardware. As shown in Figure 2, a hardware test setup often

consists of a board under test, a master PC that loads software onto

the board and runs it, and a test data PC equipped with interfaces

such as serial, AFDX, ARINC 429, MIL-STD-1553, CAN, Ethernet,

FlexRay, 802.15.4, and other specific buses and networks used to

communicate with the real target board.

Figure 1. Continuous integration loops

Build System

Developer Writes New
Code or Fixes Old Code

CI Loop 1: Unit Test

CI Loop 2: Subsystem-Level Test

CI Loop 3: System-Level Test

Good to Deliver

Pre-CI Test

CI Loop 4: Large System-Level Test

Suitable for
Simulation-
Based Testing

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

4 | White Paper

Figure 2.	 Typical hardware lab test rig

Bus, Network, …

Data Generator
or World Model

Target Provisioning
and Control

JTAG, Serial,
Ethernet, Flash
Programmer, …

System Under Test

Test Manager
Build Server

AN INTEL COMPANY

™

To test the embedded software on the system under test, it is nec-

essary to have input data to communicate to the target. That is the

job of the data generator or world model PC in Figure 2. The input

data can come from recordings of real-world inputs, from manually

written files of input data, or from models that run in real time. For

example, a satellite test bed would have a simulation of how the

stars move as the satellite orbits the earth, and it would provide

pictures of the sky as inputs to the star tracking system.

While the data generator is shown as a PC in Figure 2, it can also

be specialized test hardware, in particular for high-performance

systems where the data volumes needed are huge and latency

requirements are tight. It is not uncommon to have a whole rack

of specialized computer boards connected to a hardware test sys-

tem over a large number of special cables. Needless to say, such

setups can quickly become very expensive and unwieldy—not to

mention quite cumbersome to maintain over time.

The target provisioning and control PC is responsible for manag-

ing the target system, including loading software on it, resetting it,

starting target software, and cleaning up between tests. The PCs

directly connected to the target system are controlled by a test

management system that often runs on a central server.

Hardware test setups are necessary for doing tests on the hard-

ware and are universally used for at least the final integration test-

ing, and sometimes also earlier integration testing. But access to

hardware test setups is typically limited, since there are not that

many setups to go around.

Another common problem is that the hardware test lab setups

are so complicated that only a few engineers (or even just one)

master it. This unintentional specialization, with each team only

really knowing how to run a few types of tests, in turn leads to bot-

tlenecks, long turnaround times, and inefficient communication.

Such specialization runs counter to the Agile collaborative spirit,

where flexibility, velocity, and quick feedback loops are essential.

Furthermore, hardware test setups can be difficult to automate

and configure quickly enough for small CI loops. The result is

that in practice, hardware can be so difficult to set up, control,

and fully automate that many companies have given up on using

it for CI entirely. Instead, testing on hardware is done only quite

late in the process using a mostly complete system—essentially

going straight to classic big-bang waterfall integration rather than

a gradual CI process. And with this practice comes the well-known

effect that defects are expensive to fix, since they are found late

in the process.

To work around the inconvenience and lack of access to hardware,

companies have tried various solutions.

Unit testing can be performed on development boards using

the same architecture as the target board, as long as tests do

not depend on accessing application-specific hardware. Stubs

can be used to imitate the rest of the systems. This solution gets

around the need to have real target boards, but at the cost of

not really running the final integrated software stack. Once it is

time to do integration tests, the actual target hardware is needed.

Development boards are also hardware resources and will be lim-

ited in availability too.

Another common solution is to develop an API-based or shim-

layer-based simulator. In such a setup, the software is compiled

to run on a Windows- or Linux-based PC, and the target hardware

and operating system are represented by a set of API calls that can

be used on both the target and the host. This solution provides

an environment where application code can run, but it will not be

compiled with the real target compiler, it will not be integrated in

the same way that software is for the real system, and it will not

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

5 | White Paper

Another common problem is that the hardware

test lab setups are so complicated that only a

few engineers (or even just one) master it. This

unintentional specialization, with each team only

really knowing how to run a few types of tests,

in turn leads to bottlenecks, long turnaround

times, and inefficient communication. Such

specialization runs counter to the Agile

collaborative spirit, where flexibility, velocity,

and quick feedback loops are essential.

AN INTEL COMPANY

™

run the real OS kernel. Such a setup offers a quick way to do initial

testing on the development host, but it also tends to hide errors

related to the real target behavior and build tools. In many cases,

tests just cannot be run on this type of simulation, since they need

a larger context than is available. Thus, API-based tests are most

often used to test a few well-behaved applications, but extending

them to the full system is very rare, and also quite complicated.

They are most useful as quick pre-CI tests. API-based simulators

also require the development organization to create and maintain

an additional build variant as well as the simulation framework

itself. This cost can be quite significant in practice, even if it seems

small initially.

Many companies evolve a hybrid of several of these approaches.

One common hybrid is to combine a PC modeling the environ-

ment with a development board. Any differences between the

development board and the target end-system are then addressed

with software changes in the code or in a shim layer on the target.

Sometimes the hybrid system can end up being more expensive

than simply using the production hardware that was eliminated as

a cost-saving measure.

Overall, hardware solutions have various issues that prevent com-

panies from moving fully to a CI flow that is as smooth and efficient

as that experienced by general IT companies.

USING SIMULATION FOR CONTINUOUS INTEGRATION

To get around the problems caused by using hardware for CI, com-

panies have turned to simulation based on Simics. Using simulation,

testing can be performed using standard PCs and servers, reducing

the reliance on hardware and expanding the access to hardware

virtually. With simulation, the test setup shown above in Figure 2

would look like the one in Figure 3. The PCs servicing and control-

ling the target board are replaced with simulation modules, and the

target board is replaced with a virtual platform.

Compared to hardware, managing a simulated test system is

much easier. Because the simulation is just software, it will not run

out of control, hang, or become unresponsive due to a bad hard-

ware configuration or total target software failure. The simulator

program itself will always remain in control and allow runs to be

started and stopped at will. It is also easier to manage multiple

software programs than multiple hardware units. Where a physical

test system will need to coordinate multiple pieces of hardware

and software, as shown in Figure 2, a simulation-based setup has

the much simpler task of coordinating a few software programs, as

shown in Figure 3.

With a simulation, the same physical hardware box—a generic PC

or server or cloud instance—can be used to run tests for a wide

variety of target systems. This provides much more flexibility than

hardware labs, since one hardware system cannot be repurposed

to test software build for another system.

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

6 | White Paper

Overall, hardware solutions have various issues

that prevent companies from moving fully to a

CI flow that is as smooth and efficient as that

experienced by general IT companies.

Figure 3. Simulation-based lab test rig

Virtual Platform for
System Under Test

Back Door
or Network

Test Manager Build Server

Data Generator
or World Model,
Implemented in
Simulation

Bus, Network, …

Simulation
Tool to Set Up
Target System
Software

Figure 4. Test management and simulation

Test Manager

Test Inputs

Test Results

Real Hardware

Simulation

AN INTEL COMPANY

™

As shown in Figure 4, the simulator augments the availability of

physical boards, removing the constraints that hardware availabil-

ity places on both developers’ spontaneous testing and structured

CI testing. With simulation, each user can have a system of any

kind to run whenever they need it. It is also possible to temporarily

increase the testing pool by borrowing computer resources from

other groups within the same company, or even by renting time on

a cloud computing service.

In contrast, with physical labs, hardware availability is almost always

an issue. The number of physical systems available is limited, and

time on them tightly controlled, forcing developers to limit test-

ing or test when their time slot comes up rather than when their

code is in good shape to be tested. It is also common to see test

campaigns becoming longer and longer on hardware, as tests are

added over time while the number of labs remains the same. The

time from the point when a job is submitted for execution to the

point when it is completed gets longer and longer, as it has to wait

for a hardware unit to become available. With a simulation-based

setup, test latency is shorter, and thus it is possible to provide

faster—and therefore better—feedback to the developers.

Test latency is also reduced by the potential for more parallel test-

ing, making it possible to run through a particular set of tests in

shorter time than on hardware. We have seen users previously

limited by hardware greatly increase their test coverage and fre-

quency thanks to parallel testing; if you can run your test suites

daily rather than weekly, errors will get found earlier, regressions

will be caught more quickly, and fewer errors will make it out in the

field, reducing development costs and increasing product quality.

When limited by hardware availability, real-world tests are often

designed to fit into available testing resources rather than to

detect problems. This is a necessity, as some testing is still infi-

nitely better than no testing. But with virtually unlimited hardware

availability, tests do not have to be scaled down or modified to

match available hardware; instead, the virtual hardware can be set

up to match the tests that need to be performed. This includes

creating virtual setups that have no counterpart in the physical lab,

as well as dynamically varying the hardware setup during a test.

Thus, the attainable test matrix is expanded beyond what is pos-

sible with the physical labs.

At the same time, the simulation setup does not have to corre-

spond to the complete physical hardware system to be useful.

Rather, the most common way to enable CI using simulation is to

design a set of configurations that are useful for particular classes

of test cases, and that do not include the entirety of the system.

If some piece of hardware is not actually being used, it can be

skipped or replaced by a dummy in the model, reducing the work

needed to build the model and the execution power needed to

run it. Simulation setups must always be designed with the use

cases in mind. The simulation setup scales with the tests to be

performed.

SIMICS VIRTUAL PLATFORMS

The virtual platforms suitable for use in CI are fast functional trans-

action-level models such as Simics. A fast virtual platform such as

Simics typically does not model the detailed implementation of

the hardware, such as bus protocols, clocks, pipelines, and caches.

In this way, Simics provides a simulation that runs fast enough to

run real workloads and that can typically cover between 80% and

95% of all software tests and issues. To cover the tests that depend

on real-world timing and absolute performance, hardware will have

to be used, which is expected and normal. There is a basic choice

to be made between running a lot of software with a simplified

timing model, and very little software with a high level of detail. In

today’s systems, it is usually the case that more issues are found by

running a lot of code rather than by cranking up the detail level.

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

7 | White Paper

Figure 5. Simics simulation

Simics

Embedded Board

OS

Application

Host Hardware

Host OS

Boot Code and Drivers

Embedded Board

OS

Application

Boot Code and Drivers

Network

CPU

CPU

RAM

PIC FLASH

Eth

ADC

UART

PCIe

GPIO

Timer

Scripting Debug Analysis Inspection Config

External
Connections

AN INTEL COMPANY

™

A typical Simics target setup is shown in Figure 5. The target soft-

ware running on the simulated hardware boards includes low-level

firmware and boot loaders, hypervisors, operating systems, driv-

ers, middleware, and applications. To achieve this, Simics accu-

rately models the aspects of the real system that are relevant for

software, such as CPU instruction sets, device registers, memory

maps, interrupts, and the functionality of the peripheral devices.

You can run multiple boards inside a single simulation, along

with the networks connecting them. It is also possible to connect

the simulated computer boards (virtual platforms) to the outside

world via networks or integrations with other simulators. Simics

has proven to be fast enough to run even very large workloads,

including thousands of target processors.

Figure 5 also shows that Simics provides features such as configu-

ration management, scripting, automated debugging, and analy-

sis tools that help when constructing simulated CI and software

development environments. When using Simics, the entire state

of the simulated system can be saved to disk as a checkpoint for

later restoration, which enables issue management workflows and

optimizations for starting runs from a known good and reusable

state, as illustrated in Figure 7.

In Figure 3 we see a simulation-internal connection between the

data generator or world model and the system under test. With

simulation, you could potentially do this in various simulation-

specific ways, but for most integration tests it is usually a good

idea to connect the virtual platform running the control software

to a simulation of the environment in the same way that they are

connected in the real world. The recommended structure of such

simulations is shown in Figure 6. There is a simulated control com-

puter board featuring simulation of the hardware I/O ports, and

running an integrated software stack including the device drivers

for the I/O hardware. The modeled I/O devices connect to mod-

els of the sensors and actuators that are part of the system being

designed. There are also cases where the simulation of the rest of

the world is run on another virtual platform (one of the machines

in Figure 5 would actually simulate the environment for the other).

WORKFLOW OPTIMIZATION USING CHECKPOINTS

Using Simics for virtual platform simulation makes it possible to

optimize the test workflows, including new ways to provide feed-

back to the developers from test runs. Simics checkpoints cap-

ture the entire state of the simulated system to disk and allow the

saved state to be instantly brought up in Simics on the same or a

different machine, at any point in time and at any location. The first

use of checkpoints is to save intermediate points in the test flow,

such as the point after a system has finished booting, or after the

software to test has been loaded. Figure 7 shows a typical Simics-

based workflow where the system is first booted, then the booted

state is saved and used as the starting point for loading software.

Once software is loaded onto the system, another checkpoint is

saved, and this checkpoint is used as the starting point for a series

of tests. Since checkpoints should be handled as read-only items,

it is possible to base many test runs off the same checkpoint. On

a hardware system, each test would have to start by booting the

system or cleaning it in some way to remove the effects of the

test. In a simulator, each run can start from a known consistent and

good state, with no pollution from other tests. By removing this

overhead, checkpoints can save a lot of time when starting tests,

as well as avoid spurious results by ensuring a consistent initial

state across batches of tests.

Figure 6. Connecting the virtual platform to the environment

Complete Simulation System

System Being Designed

Simulation of the System
Mechanics, Electronics,

Physics, etc.

Simics: Simulation of the
Control Computer

Control Application

Control Computer

Target OS

DAC/GPIO/…

ADC/GPIO/…

Actuator
Simulation

Sensor
Simulation

Simulation of the World in
Which the System Operates

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

8 | White Paper

AN INTEL COMPANY

™

Figure 7 also shows how checkpoints are used to manage issue

reports from testing. In addition to the traditional information in

an issue report (text describing what happened, collections of logs

and serial port output, version and configuration data, etc.), check-

points (containing a recording of all asynchronous inputs) can be

used to provide the developer responsible for the code that broke

the test with the precise hardware and software state at the time

the issue hit. This ability removes the guesswork in understanding

what the test did and how the software failed and is a tremendous

boost for debugging efficiency.

This type of efficient feedback loop from testing to development

is especially important for CI, since the developer is expected to

deal quickly with issues that are found, while being quite removed

from the actual testing going on. In manual interactive testing, the

distance is typically much smaller as the developer is doing the

testing just as the code is being developed. Using checkpoints

and automated issue generation brings down the time needed to

get back to a developer and provides more information to make it

easier to understand what happened.

The checkpointing methodology works with external simulators

or data generators, by simply recording the interaction between

Simics and the external simulator. When reproducing the issue,

the data exchange is simply replayed, without the need for the

external simulator or data source. Such record–replay debugging

is a very powerful paradigm for dealing with issues that appear

in complex real-time and distributed systems with many things

happening at once. Once a recording has been replayed in a

Simics session, reverse debugging can be used within that session

to quickly and efficiently diagnose the issue.

TESTING FOR FAULTS AND RARE EVENTS

Since the goal of CI is to ensure that code keeps working, it is

important to test as many different scenarios as possible, and to

keep doing so in an automated fashion every time a piece of code

is changed and reintegrated. This is particularly tricky for code that

handles faults and erroneous conditions in a system. Testing such

code using hardware is difficult, and yet it is critical to ensuring

system reliability and resiliency. Hardware test rigs for fault injec-

tion tend to be expensive, and testing is often destructive, which

limits how much testing can realistically be performed.

In a simulator, in contrast, injecting faults is very easy, since any

part of the state can be accessed and changed. Thus, systematic,

automatic, and reproducible testing of hardware fault handlers

and system error recovery mechanisms can be made part of the

CI testing. This practice will ensure that fault handling remains

functional over time and will increase system quality. Often, the

fault and error handling code in a system is the least tested, and

a constant source of issues. Using simulation and injected faults,

such code can be tested to a much higher extent than is possible

using hardware.

One example of the type of testing that simulation allows is the

pulling of a board from a system, and checking that the system

detects that the board is removed and rebalances the software

load to the new system configuration. In the context of CI, doing

so makes it possible to test that the platform and middleware per-

form as designed when integrated with the hardware and each

other.

Simulation also enables the introduction of varying environmental

conditions as part of CI and testing. In the end, an embedded

system is integrated into the world, and that integration needs

to be tested—not for ”faults” exactly, but rather for behavior that

is expected from an uncooperative physical world. Testing how a

system responds to various environmental conditions is an impor-

tant use case for simulation, and one where simulation is being

used extensively for physical systems already. For example, for a

wireless network system such as the one shown in Figure 8, the

integrated software behavior should be tested in the presence

Figure 7. Workflow with Simics checkpoints

Boot and
Setup

Test A

A
Load
Software

Test B

Test Q

D
Developer

C

Q
Stimuli
Recording

Issue
Reporting
System

Q

A: Saved checkpoint
of system ready to
accept code for testing

C: Saved checkpoint
of system ready to
run tests

Developer submits
code to be tested

If issues are found in testing,
a collaboration checkpoint is
passed back to the developer
for immediate diagnosis

C’

Tests run automatically in paral-
lel on a set of servers

Load
Software

Stimuli
Recording

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

9 | White Paper

AN INTEL COMPANY

™

of weak signals and asymmetric reachability. Such testing is easy

to perform using a model of the network, but difficult to perform

in the real world. Each network link is available for change in the

simulation, while trying to jam a real-world radio signal in a con-

trolled way is very difficult.

Simulation is often the only practical way to systematically and

continuously perform testing of system scaling. For example, in

sensor systems in the Internet of Things, you often need to have

hundreds or even thousands of nodes in a single system to test

the software and system behavior. In a simulated setting, it is pos-

sible to automatically create very large setups without having to

spend the incredible amount of time it would take to set up, main-

tain, and reconfigure such a system in hardware form. Even when

hardware is very cheap, configuring and deploying hundreds of

separate hardware units is expensive.

As shown in Figure 8, a simulation can be scaled from a small unit

test network (1) to a small system test (2), and finally to a complete

system including multiple types of nodes and a very large number

of small sensor nodes (3). In Simics, each such configuration can

be programmatically created by selecting the number of nodes of

each type and their connectivity.

Another example would be testing software for hardware that is

in development or in prototype state; such hardware is usually

very limited in quantity, and getting tens or hundreds of nodes

for testing networked systems and distributed systems is just not

possible.

SIMULATION-BASED CI AND THE PRODUCT LIFECYCLE

The use of simulation to support CI means that it will be used dur-

ing most of the product lifecycle. Figure 9 shows that CI (and thus

CI using simulation) is applicable from platform development all

the way to deployment and maintenance.

In platform development, hardware is integrated with the OS

driver stack and firmware, and middleware is integrated on top of

the operating system. Once the platform is sufficiently stable to

allow application development to begin, integration testing also

includes applications. Applications integrate with the target OS

and middleware, as well as with each other. The platform tests are

also part of the integration testing even as applications are added;

there might be several different sets of CI loops that start at vari-

ous points in the system integration.

CI means that integration testing is being pulled into earlier devel-

opment phases—the whole point is to avoid waiting until the stan-

dard test phase to do integration. Indeed, as shown in Figure 10,

test and integration morphs from a separate phase to a parallel

track of development, where tests are designed and executed

from very early on in the software lifecycle. Testing and test devel-

opment become part of the development effort, supporting the

evolution of the system and its software over time.

When using simulation for integration testing, the simulation

setup is useful even after the first release of the integrated system

has shipped. As the software is maintained with bug fixes, and new

software is developed and software functionality expanded, CI is

a key part of development practices. As the software continuously

evolves, it has to be continuously integrated and tested so that

existing functionality keeps working, and new functionality inte-

grates correctly into the system.Figure 8. Example of scaling up the simulated target system

Server

gw

gw

1

2

3

Wide-Area Network
or Internet Connection

Wireless Mesh Network

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

10 | White Paper

Figure 9. Traditional product lifecycle

Continuous Integration

Design
Platform

Development
Application

Development

Test &
Integration

Deploy &
Maintain

Product Timeline

AN INTEL COMPANY

™

In addition to development, simulation can also be used to sup-

port other organizations within the company dealing with deploy-

ment of the system, such as support and training departments. A

simulation setup can be used to reproduce issues from the field,

and once an issue is reproduced, the bug reporting workflow

illustrated in Figure 7 and discussed above can be applied. The

simulation can also be used to support training of operators on

a system.

CONCLUSION

CI is an important part of modern software engineering prac-

tice. By using CI, companies achieve higher quality and enable

further enhancements, such as continuous delivery or continu-

ous deployment, among other benefits. However, implementing

CI for embedded systems can be a real challenge due to the

dependency on particular processors, particular hardware, and

particular environments. Using simulation for both the computer

hardware and the environment surrounding an embedded system

can enable CI for systems that seem “impossible” to automati-

cally test. Simulation can also bring other benefits, such as faster

feedback loops with better information to developers for issues

discovered in testing, and expansion of testing to handle faults

and difficult-to-set-up configurations.

Using Simics, many companies have successfully turned to simula-

tion to augment their testing hardware setups and realize unprec-

edented development efficiencies.

Figure 10. Continuous testing and integration

Design
Platform

Development
Application

Development

Deploy &
Maintain

Product Timeline
Continuous Testing

Continuous Integration

ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

Wind River is a global leader in delivering software for the intelligent edge. Its comprehensive portfolio is supported by world-class professional services and support and a broad partner ecosystem.
Wind River is accelerating digital transformation of critical infrastructure systems that demand the highest levels of safety, security, and reliability.

© 2019 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 07/2019

AN INTEL COMPANY

™

