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EXECUTIVE SUMMARY 

Adopting the practice of continuous integration (CI) can be difficult, especially when 

developing software for embedded systems. Practices such as DevOps and CI are 

designed to enable engineers to constantly improve and update their products, but 

these processes can break down without access to the target system, a way to collabo-

rate with other teams and team members, and the ability to automate tests. This paper 

outlines how simulation can enable teams to more effectively manage their integration 

and test practices. 

Key points include:

•	 How a combination of actual hardware and simulation models can allow your testing to 

scale beyond what is possible with hardware alone

•	 Recommended strategies to increase effectiveness of simulated testing

•	 How simulation can automate testing for any kind of target

•	 How simulation can enable better collaboration and more thorough testing 

•	 Some problems encountered when using hardware alone, and how simulation can 

overcome them
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INTRODUCTION

CI is an important component of a modern DevOps practice. 

While the details of CI differ depending on whom you ask, a key 

feature is that rather than waiting until the last minute to integrate 

all the many different pieces of code in a system, integration—

and most importantly, integration testing—is performed as early 

as possible, as soon as code is ready to run. You cannot really 

adopt DevOps, or even Agile software development, fully unless 

you have automated builds, automated tests, and automated suc-

cessive integration—that is, continuous integration. Embedded 

software developers are actively embracing DevOps, but they are 

often blocked from doing so fully due to the issues inherent in 

working with embedded hardware. 

A properly implemented and employed CI system shortens the 

lead time from coding to deployed products and increases the 

overall quality of the code and the system being shipped. With 

CI, errors are found faster, which leads to lower cost for fixing the 

errors and lower risk of showstopper integration issues when it is 

time to ship the product. 

In CI, each piece of code that is added or changed should be 

tested as soon as possible and as quickly as possible, to make 

sure that feedback reaches the developers while the new code 

is still fresh in their minds. Ideally, tests should be run and results 

reported back to the developers within minutes. The most com-

mon technique is to build and test as part of the check-in cycle for 

all code, which puts access to test systems on the critical path for 

developers. 

Testing soon and testing quickly is logistically simple for IT applica-

tions, where any standard computer or cloud computing instance 

can be used for testing. However, for embedded systems and dis-

tributed systems, it can be a real issue to perform continuous inte-

gration and immediate, automated testing. The problem is that 

running code on an embedded system typically requires a particu-

lar type of board, or even multiple boards. If multiple boards are 

involved, they need to be connected in the correct way, and the 

connections between them configured appropriately. There is also 

a need for some kind of environment in which to test the system—

an embedded system rarely operates in isolation; it is, rather, a 

system that is deeply embedded in its environment and depends 

on having the environment in order to do anything useful. CI for 

embedded systems thus tends to be more difficult to achieve due 

to the dependency on particular hardware, and the dependence 

on external inputs and outputs (I/Os) and the hardware necessary 

to drive the I/Os. 

Using simulation for the embedded system and its environment 

offers a potential solution that allows for true automated testing 

and CI, even for embedded software developers. Wind River® 

Simics® helps achieve this by using high-speed virtual platform 

models of the embedded system along with models of networks 

and simulators for the physical environment that the embedded 

system interacts with. 

CONTINUOUS INTEGRATION AND SIMULATION

A CI setup is fundamentally an automatic test framework, where 

code is successively integrated into larger and larger subsystems. 

As shown in Figure 1, the CI setup typically consists of a number 

of CI loops, each loop including a larger and larger subset of the 

system—both hardware and software.
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The CI system is typically started when code is checked in by devel-

opers. Since code needs to have some basic level of quality before 

being checked in, there is normally a separate pre-CI test phase 

where developers test their code manually or by using small-scale 

automatic tests to make sure the code is at least basically sound and 

probably won’t break the build. Once the code seems reasonably 

stable, it is submitted to the main automatic build system and sent 

into the CI system proper. The work of the CI system is to a large 

extent regression testing—making sure that the component that 

was changed or added does not break existing expected behaviors 

of the system. 

It is critical to perform testing at multiple levels of integration, since 

each level tends to catch different types of bugs. Just doing system-

level end-to-end testing on a completely integrated system will miss 

large classes of errors that are easy to find with more fine-grained 

tests. Running unit tests is necessary to ensure system-level quality, 

but it is not sufficient. Integration testing will reveal many types of 

issues that are not found in unit tests, and each level of integration 

will reveal its own set of bugs.

Each successive CI loop covers a larger scope and takes more time 

to run. The first-level loops should ideally complete in a few min-

utes, to provide very quick developer feedback. At the tail end of 

the process, the largest loops can run for days or even weeks. 

The largest loops are sometimes considered part of the CI process, 

and sometimes are handled by a specialized quality assurance or 

delivery team that makes sure the code truly meets the quality cri-

teria needed to ship. If the code that comes out of the final CI loop 

is ready to ship, we enter the domain of continuous delivery (CD), 

which is the next step beyond CI. Simulation can be used for all but 

the last and largest test loops. In the end, you have to “test what 

you ship and ship what you test,” and that means you have to test 

the system on the hardware that will be shipping—but that is the 

last step before release, and most testing up to that point can be 

done using simulation. 

CI cannot necessarily be applied arbitrarily to any existing soft-

ware stack; in most cases, the software architecture has had to 

be changed to facilitate CI and DevOps. A key requirement for 

success is that it be possible to build and integrate parts of a sys-

tem, and that subsets of the entire system can be tested in iso-

lation—that is, the system must be modular in order to enable 

CI. Additionally, unit tests and subsystem tests must be defined, 

if they do not already exist. Using simulation and making testing 

automated does not automatically mean that you have a CI system. 

HARDWARE-BASED CONTINUOUS INTEGRATION

The basic way to perform testing and CI for embedded systems is 

to use hardware. As shown in Figure 2, a hardware test setup often 

consists of a board under test, a master PC that loads software onto 

the board and runs it, and a test data PC equipped with interfaces 

such as serial, AFDX, ARINC 429, MIL-STD-1553, CAN, Ethernet, 

FlexRay, 802.15.4, and other specific buses and networks used to 

communicate with the real target board.  

Figure 1. Continuous integration loops
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To test the embedded software on the system under test, it is nec-

essary to have input data to communicate to the target. That is the 

job of the data generator or world model PC in Figure 2. The input 

data can come from recordings of real-world inputs, from manually 

written files of input data, or from models that run in real time. For 

example, a satellite test bed would have a simulation of how the 

stars move as the satellite orbits the earth, and it would provide 

pictures of the sky as inputs to the star tracking system. 

While the data generator is shown as a PC in Figure 2, it can also 

be specialized test hardware, in particular for high-performance 

systems where the data volumes needed are huge and latency 

requirements are tight. It is not uncommon to have a whole rack 

of specialized computer boards connected to a hardware test sys-

tem over a large number of special cables. Needless to say, such 

setups can quickly become very expensive and unwieldy—not to 

mention quite cumbersome to maintain over time.

The target provisioning and control PC is responsible for manag-

ing the target system, including loading software on it, resetting it, 

starting target software, and cleaning up between tests. The PCs 

directly connected to the target system are controlled by a test 

management system that often runs on a central server.  

Hardware test setups are necessary for doing tests on the hard-

ware and are universally used for at least the final integration test-

ing, and sometimes also earlier integration testing. But access to 

hardware test setups is typically limited, since there are not that 

many setups to go around. 

Another common problem is that the hardware test lab setups 

are so complicated that only a few engineers (or even just one) 

master it. This unintentional specialization, with each team only 

really knowing how to run a few types of tests, in turn leads to bot-

tlenecks, long turnaround times, and inefficient communication. 

Such specialization runs counter to the Agile collaborative spirit, 

where flexibility, velocity, and quick feedback loops are essential. 

Furthermore, hardware test setups can be difficult to automate 

and configure quickly enough for small CI loops. The result is 

that in practice, hardware can be so difficult to set up, control, 

and fully automate that many companies have given up on using 

it for CI entirely. Instead, testing on hardware is done only quite 

late in the process using a mostly complete system—essentially 

going straight to classic big-bang waterfall integration rather than 

a gradual CI process. And with this practice comes the well-known 

effect that defects are expensive to fix, since they are found late 

in the process. 

To work around the inconvenience and lack of access to hardware, 

companies have tried various solutions. 

Unit testing can be performed on development boards using 

the same architecture as the target board, as long as tests do 

not depend on accessing application-specific hardware. Stubs 

can be used to imitate the rest of the systems. This solution gets 

around the need to have real target boards, but at the cost of 

not really running the final integrated software stack. Once it is 

time to do integration tests, the actual target hardware is needed. 

Development boards are also hardware resources and will be lim-

ited in availability too. 

Another common solution is to develop an API-based or shim-

layer-based simulator. In such a setup, the software is compiled 

to run on a Windows- or Linux-based PC, and the target hardware 

and operating system are represented by a set of API calls that can 

be used on both the target and the host. This solution provides 

an environment where application code can run, but it will not be 

compiled with the real target compiler, it will not be integrated in 

the same way that software is for the real system, and it will not 
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run the real OS kernel. Such a setup offers a quick way to do initial 

testing on the development host, but it also tends to hide errors 

related to the real target behavior and build tools. In many cases, 

tests just cannot be run on this type of simulation, since they need 

a larger context than is available. Thus, API-based tests are most 

often used to test a few well-behaved applications, but extending 

them to the full system is very rare, and also quite complicated. 

They are most useful as quick pre-CI tests. API-based simulators 

also require the development organization to create and maintain 

an additional build variant as well as the simulation framework 

itself. This cost can be quite significant in practice, even if it seems 

small initially. 

Many companies evolve a hybrid of several of these approaches. 

One common hybrid is to combine a PC modeling the environ-

ment with a development board. Any differences between the 

development board and the target end-system are then addressed 

with software changes in the code or in a shim layer on the target. 

Sometimes the hybrid system can end up being more expensive 

than simply using the production hardware that was eliminated as 

a cost-saving measure.

Overall, hardware solutions have various issues that prevent com-

panies from moving fully to a CI flow that is as smooth and efficient 

as that experienced by general IT companies. 

USING SIMULATION FOR CONTINUOUS INTEGRATION

To get around the problems caused by using hardware for CI, com-

panies have turned to simulation based on Simics. Using simulation, 

testing can be performed using standard PCs and servers, reducing 

the reliance on hardware and expanding the access to hardware 

virtually. With simulation, the test setup shown above in Figure 2 

would look like the one in Figure 3. The PCs servicing and control-

ling the target board are replaced with simulation modules, and the 

target board is replaced with a virtual platform.

Compared to hardware, managing a simulated test system is 

much easier. Because the simulation is just software, it will not run 

out of control, hang, or become unresponsive due to a bad hard-

ware configuration or total target software failure. The simulator 

program itself will always remain in control and allow runs to be 

started and stopped at will. It is also easier to manage multiple 

software programs than multiple hardware units. Where a physical 

test system will need to coordinate multiple pieces of hardware 

and software, as shown in Figure 2, a simulation-based setup has 

the much simpler task of coordinating a few software programs, as 

shown in Figure 3. 

With a simulation, the same physical hardware box—a generic PC 

or server or cloud instance—can be used to run tests for a wide 

variety of target systems. This provides much more flexibility than 

hardware labs, since one hardware system cannot be repurposed 

to test software build for another system. 
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Figure 3. Simulation-based lab test rig
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As shown in Figure 4, the simulator augments the availability of 

physical boards, removing the constraints that hardware availabil-

ity places on both developers’ spontaneous testing and structured 

CI testing. With simulation, each user can have a system of any 

kind to run whenever they need it. It is also possible to temporarily 

increase the testing pool by borrowing computer resources from 

other groups within the same company, or even by renting time on 

a cloud computing service.

In contrast, with physical labs, hardware availability is almost always 

an issue. The number of physical systems available is limited, and 

time on them tightly controlled, forcing developers to limit test-

ing or test when their time slot comes up rather than when their 

code is in good shape to be tested. It is also common to see test 

campaigns becoming longer and longer on hardware, as tests are 

added over time while the number of labs remains the same. The 

time from the point when a job is submitted for execution to the 

point when it is completed gets longer and longer, as it has to wait 

for a hardware unit to become available. With a simulation-based 

setup, test latency is shorter, and thus it is possible to provide 

faster—and therefore better—feedback to the developers.  

Test latency is also reduced by the potential for more parallel test-

ing, making it possible to run through a particular set of tests in 

shorter time than on hardware. We have seen users previously 

limited by hardware greatly increase their test coverage and fre-

quency thanks to parallel testing; if you can run your test suites 

daily rather than weekly, errors will get found earlier, regressions 

will be caught more quickly, and fewer errors will make it out in the 

field, reducing development costs and increasing product quality.

When limited by hardware availability, real-world tests are often 

designed to fit into available testing resources rather than to 

detect problems. This is a necessity, as some testing is still infi-

nitely better than no testing. But with virtually unlimited hardware 

availability, tests do not have to be scaled down or modified to 

match available hardware; instead, the virtual hardware can be set 

up to match the tests that need to be performed. This includes 

creating virtual setups that have no counterpart in the physical lab, 

as well as dynamically varying the hardware setup during a test. 

Thus, the attainable test matrix is expanded beyond what is pos-

sible with the physical labs. 

At the same time, the simulation setup does not have to corre-

spond to the complete physical hardware system to be useful. 

Rather, the most common way to enable CI using simulation is to 

design a set of configurations that are useful for particular classes 

of test cases, and that do not include the entirety of the system. 

If some piece of hardware is not actually being used, it can be 

skipped or replaced by a dummy in the model, reducing the work 

needed to build the model and the execution power needed to 

run it. Simulation setups must always be designed with the use 

cases in mind. The simulation setup scales with the tests to be 

performed. 

SIMICS VIRTUAL PLATFORMS 

The virtual platforms suitable for use in CI are fast functional trans-

action-level models such as Simics. A fast virtual platform such as 

Simics typically does not model the detailed implementation of 

the hardware, such as bus protocols, clocks, pipelines, and caches. 

In this way, Simics provides a simulation that runs fast enough to 

run real workloads and that can typically cover between 80% and 

95% of all software tests and issues. To cover the tests that depend 

on real-world timing and absolute performance, hardware will have 

to be used, which is expected and normal. There is a basic choice 

to be made between running a lot of software with a simplified 

timing model, and very little software with a high level of detail. In 

today’s systems, it is usually the case that more issues are found by 

running a lot of code rather than by cranking up the detail level.  
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Figure 5. Simics simulation
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A typical Simics target setup is shown in Figure 5. The target soft-

ware running on the simulated hardware boards includes low-level 

firmware and boot loaders, hypervisors, operating systems, driv-

ers, middleware, and applications. To achieve this, Simics accu-

rately models the aspects of the real system that are relevant for 

software, such as CPU instruction sets, device registers, memory 

maps, interrupts, and the functionality of the peripheral devices. 

You can run multiple boards inside a single simulation, along 

with the networks connecting them. It is also possible to connect 

the simulated computer boards (virtual platforms) to the outside 

world via networks or integrations with other simulators. Simics 

has proven to be fast enough to run even very large workloads, 

including thousands of target processors. 

Figure 5 also shows that Simics provides features such as configu-

ration management, scripting, automated debugging, and analy-

sis tools that help when constructing simulated CI and software 

development environments. When using Simics, the entire state 

of the simulated system can be saved to disk as a checkpoint for 

later restoration, which enables issue management workflows and 

optimizations for starting runs from a known good and reusable 

state, as illustrated in Figure 7.

In Figure 3 we see a simulation-internal connection between the 

data generator or world model and the system under test. With 

simulation, you could potentially do this in various simulation-

specific ways, but for most integration tests it is usually a good 

idea to connect the virtual platform running the control software 

to a simulation of the environment in the same way that they are 

connected in the real world. The recommended structure of such 

simulations is shown in Figure 6. There is a simulated control com-

puter board featuring simulation of the hardware I/O ports, and 

running an integrated software stack including the device drivers 

for the I/O hardware. The modeled I/O devices connect to mod-

els of the sensors and actuators that are part of the system being 

designed. There are also cases where the simulation of the rest of 

the world is run on another virtual platform (one of the machines 

in Figure 5 would actually simulate the environment for the other).

WORKFLOW OPTIMIZATION USING CHECKPOINTS 

Using Simics for virtual platform simulation makes it possible to 

optimize the test workflows, including new ways to provide feed-

back to the developers from test runs. Simics checkpoints cap-

ture the entire state of the simulated system to disk and allow the 

saved state to be instantly brought up in Simics on the same or a 

different machine, at any point in time and at any location. The first 

use of checkpoints is  to save intermediate points in the test flow, 

such as the point after a system has finished booting, or after the 

software to test has been loaded. Figure 7 shows a typical Simics-

based workflow where the system is first booted, then the booted 

state is saved and used as the starting point for loading software. 

Once software is loaded onto the system, another checkpoint is 

saved, and this checkpoint is used as the starting point for a series 

of tests. Since checkpoints should be handled as read-only items, 

it is possible to base many test runs off the same checkpoint. On 

a hardware system, each test would have to start by booting the 

system or cleaning it in some way to remove the effects of the 

test. In a simulator, each run can start from a known consistent and 

good state, with no pollution from other tests. By removing this 

overhead, checkpoints can save a lot of time when starting tests, 

as well as avoid spurious results by ensuring a consistent initial 

state across batches of tests.

Figure 6. Connecting the virtual platform to the environment
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Figure 7 also shows how checkpoints are used to manage issue 

reports from testing. In addition to the traditional information in 

an issue report (text describing what happened, collections of logs 

and serial port output, version and configuration data, etc.), check-

points (containing a recording of all asynchronous inputs) can be 

used to provide the developer responsible for the code that broke 

the test with the precise hardware and software state at the time 

the issue hit. This ability removes the guesswork in understanding 

what the test did and how the software failed and is a tremendous 

boost for debugging efficiency. 

This type of efficient feedback loop from testing to development 

is especially important for CI, since the developer is expected to 

deal quickly with issues that are found, while being quite removed 

from the actual testing going on. In manual interactive testing, the 

distance is typically much smaller as the developer is doing the 

testing just as the code is being developed. Using checkpoints 

and automated issue generation brings down the time needed to 

get back to a developer and provides more information to make it 

easier to understand what happened. 

The checkpointing methodology works with external simulators 

or data generators, by simply recording the interaction between 

Simics and the external simulator. When reproducing the issue, 

the data exchange is simply replayed, without the need for the 

external simulator or data source. Such record–replay debugging 

is a very powerful paradigm for dealing with issues that appear 

in complex real-time and distributed systems with many things 

happening at once. Once a recording has been replayed in a 

Simics session, reverse debugging can be used within that session 

to quickly and efficiently diagnose the issue. 

TESTING FOR FAULTS AND RARE EVENTS 

Since the goal of CI is to ensure that code keeps working, it is 

important to test as many different scenarios as possible, and to 

keep doing so in an automated fashion every time a piece of code 

is changed and reintegrated. This is particularly tricky for code that 

handles faults and erroneous conditions in a system. Testing such 

code using hardware is difficult, and yet it is critical to ensuring 

system reliability and resiliency. Hardware test rigs for fault injec-

tion tend to be expensive, and testing is often destructive, which 

limits how much testing can realistically be performed. 

In a simulator, in contrast, injecting faults is very easy, since any 

part of the state can be accessed and changed. Thus, systematic, 

automatic, and reproducible testing of hardware fault handlers 

and system error recovery mechanisms can be made part of the 

CI testing. This practice will ensure that fault handling remains 

functional over time and will increase system quality. Often, the 

fault and error handling code in a system is the least tested, and 

a constant source of issues. Using simulation and injected faults, 

such code can be tested to a much higher extent than is possible 

using hardware.  

One example of the type of testing that simulation allows is the 

pulling of a board from a system, and checking that the system 

detects that the board is removed and rebalances the software 

load to the new system configuration. In the context of CI, doing 

so makes it possible to test that the platform and middleware per-

form as designed when integrated with the hardware and each 

other. 

Simulation also enables the introduction of varying environmental 

conditions as part of CI and testing. In the end, an embedded 

system is integrated into the world, and that integration needs 

to be tested—not for ”faults” exactly, but rather for behavior that 

is expected from an uncooperative physical world. Testing how a 

system responds to various environmental conditions is an impor-

tant use case for simulation, and one where simulation is being 

used extensively for physical systems already. For example, for a 

wireless network system such as the one shown in Figure 8, the 

integrated software behavior should be tested in the presence 

Figure 7. Workflow with Simics checkpoints 
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of weak signals and asymmetric reachability. Such testing is easy 

to perform using a model of the network, but difficult to perform 

in the real world. Each network link is available for change in the 

simulation, while trying to jam a real-world radio signal in a con-

trolled way is very difficult. 

Simulation is often the only practical way to systematically and 

continuously perform testing of system scaling. For example, in 

sensor systems in the Internet of Things, you often need to have 

hundreds or even thousands of nodes in a single system to test 

the software and system behavior. In a simulated setting, it is pos-

sible to automatically create very large setups without having to 

spend the incredible amount of time it would take to set up, main-

tain, and reconfigure such a system in hardware form. Even when 

hardware is very cheap, configuring and deploying hundreds of 

separate hardware units is expensive. 

As shown in Figure 8, a simulation can be scaled from a small unit 

test network (1) to a small system test (2), and finally to a complete 

system including multiple types of nodes and a very large number 

of small sensor nodes (3). In Simics, each such configuration can 

be programmatically created by selecting the number of nodes of 

each type and their connectivity. 

Another example would be testing software for hardware that is 

in development or in prototype state; such hardware is usually 

very limited in quantity, and getting tens or hundreds of nodes 

for testing networked systems and distributed systems is just not 

possible. 

SIMULATION-BASED CI AND THE PRODUCT LIFECYCLE

The use of simulation to support CI means that it will be used dur-

ing most of the product lifecycle. Figure 9 shows that CI (and thus 

CI using simulation) is applicable from platform development all 

the way to deployment and maintenance. 

In platform development, hardware is integrated with the OS 

driver stack and firmware, and middleware is integrated on top of 

the operating system. Once the platform is sufficiently stable to 

allow application development to begin, integration testing also 

includes applications. Applications integrate with the target OS 

and middleware, as well as with each other. The platform tests are 

also part of the integration testing even as applications are added; 

there might be several different sets of CI loops that start at vari-

ous points in the system integration. 

CI means that integration testing is being pulled into earlier devel-

opment phases—the whole point is to avoid waiting until the stan-

dard test phase to do integration. Indeed, as shown in Figure 10, 

test and integration morphs from a separate phase to a parallel 

track of development, where tests are designed and executed 

from very early on in the software lifecycle. Testing and test devel-

opment become part of the development effort, supporting the 

evolution of the system and its software over time. 

When using simulation for integration testing, the simulation 

setup is useful even after the first release of the integrated system 

has shipped. As the software is maintained with bug fixes, and new 

software is developed and software functionality expanded, CI is 

a key part of development practices. As the software continuously 

evolves, it has to be continuously integrated and tested so that 

existing functionality keeps working, and new functionality inte-

grates correctly into the system.Figure 8. Example of scaling up the simulated target system
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In addition to development, simulation can also be used to sup-

port other organizations within the company dealing with deploy-

ment of the system, such as support and training departments. A 

simulation setup can be used to reproduce issues from the field, 

and once an issue is reproduced, the bug reporting workflow 

illustrated in Figure 7 and discussed above can be applied. The 

simulation can also be used to support training of operators on 

a system.

CONCLUSION

CI is an important part of modern software engineering prac-

tice. By using CI, companies achieve higher quality and enable 

further enhancements, such as continuous delivery or continu-

ous deployment, among other benefits. However, implementing 

CI for embedded systems can be a real challenge due to the 

dependency on particular processors, particular hardware, and 

particular environments. Using simulation for both the computer 

hardware and the environment surrounding an embedded system 

can enable CI for systems that seem “impossible” to automati-

cally test. Simulation can also bring other benefits, such as faster 

feedback loops with better information to developers for issues 

discovered in testing, and expansion of testing to handle faults 

and difficult-to-set-up configurations. 

Using Simics, many companies have successfully turned to simula-

tion to augment their testing hardware setups and realize unprec-

edented development efficiencies. 

Figure 10. Continuous testing and integration 
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