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Risk Management for Private Equity Funds

Abstract

Although risk management has been a well-ploughed field in financial modeling for

over three decades, the understanding how to correctly quantify and manage the

risks of investing in private equity remains limited and continues to considerably

lag that of other traditional asset classes. The objective of this paper is to fill this

gap by developing the first comprehensive risk management framework for private

equity fund investments. The framework captures the three main sources of risks

that private equity investors face when investing in the asset class: market risk,

liquidity risk, and cash flow risk. Underlying the framework is a stochastic model

for the value and cash flow dynamics of private equity funds, which allows to derive

three dynamic risk measures for private equity fund investments: Value-at-Risk

(VaR), Liquidity-Adjusted Value-at-Risk (LVaR), and Cash-Flow-at-Risk (CFaR).

The model is calibrated to historical data of buyout funds and the dynamics of the

developed risk measures are illustrated using Monte-Carlo simulations. A sensi-

tivity analysis shows the impact of changes in the main model parameters on risk

measures.

Keywords: Private equity, risk management, Value-at-Risk, Cash-Flow-at-Risk,

Liquidity-Adjusted Value-at-Risk.
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Private equity continues to grow in importance as an asset class as investors seek di-

versification benefits relative to traditional stock and bond holdings. Especially large

institutional investors like insurance companies, endowment and pension funds allocate

increasing portions of their overall investment portfolios to private equity. The vast

majority of these investments is intermediated through funds, because entering, manag-

ing, and exiting direct private equity investments requires high levels of expertise and

experience. Despite the increasing importance of private equity as an asset class, our

understanding how investors can adequately measure and manage the risks of these in-

vestments remains limited and continues to considerably lag that of other traditional

asset classes. The aim of this paper is to fill this gap by developing the first comprehen-

sive risk management framework for private equity fund investments.

Private equity funds have at least two key institutional features that differentiate

them from traditional investments into traded stocks or bonds and make risk manage-

ment a challenging task. First, private equity fund investments are illiquid and long-

term. Private equity funds typically have maturities of ten to 14 years and secondary

markets for private equity fund positions are still highly inefficient, making it costly for

investors to sell their positions. Second, private equity fund investments involve specific

dynamics of capital drawdowns and distributions. The private equity fund investor first

makes an initial capital commitment and, at a later time, transmits specific amounts of

capital to the general partner in response to capital calls (or capital drawdowns). The

timing and size of capital calls are not known until they are announced, and usually there

is a substantial lag between the time at which capital is committed to a fund and the

time at which that capital is actually drawn for investment. In addition, cash payouts

(or capital distributions) of a private equity fund are also uncertain, while these payouts

are significant, because of the bounded lifecycle of the funds. Thus, the invested capital

changes dynamically over the lifetime of a fund and private equity fund investments

require active cash flow management of capital calls and distributions.

Taking into account these special features, a risk management framework for private
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equity fund investments has to capture three main sources of risk: (i) Market Risk : The

risk of losses in the market prices of the portfolio companies held by a fund exposes

investors to market risk; (ii) Liquidity Risk : The illiquidity of private equity partnership

interests exposes investors to asset liquidity risk associated with selling positions in the

secondary markets at potentially large and ex-ante uncertain discounts on a fund’s net-

asset-value; (iii) Funding (or Cash Flow) Risk : The unpredictable timing and magnitude

of fund cash flows poses funding and cash flow risks to investors. In particular, capital

commitments are contractually binding and defaulting on these payments can result in

the loss of the entire private equity partnership interest.

The framework developed in this paper allows addressing these three main sources of

risk using distinct risk measures. Underlying the risk management framework is a model

of the dynamics of private equity funds that consists of three main components, which

correspond to the essential phases of the private equity fund lifecycle:1 the drawdowns

from the committed capital paid into the fund; the performance of the investments

effected by the fund; and the distributions of dividends and proceeds taken out of the

fund. Effectively, a standard lognormal process that is correlated with aggregate stock

market returns is used for the dynamics of the investment value. Capital drawdowns

and distributions are modeled by two stochastic processes for the dynamics of the rates

of drawdowns and repayments. Taking into account that the speed of capital drawdowns

and distributions may be affected by the overall state of the economy (or stock market),

the model also incorporates the important possibility that the drawdown and repayment

rates are correlated with aggregate stock market returns. Given this stochastic model,

the paper proposes three risk measures for private equity fund investments.

Market risk is captured by using a Value-at-Risk (VaR) approach, which has become

the standard measure that financial analysts use to quantify this risk (see Jorion (2001)).2

1The model used is a continuous-time stochastic version of the deterministic model developed by
Takahashi and Alexander (2002).

2Besides its risk management applications, VaR measures are also important for regulatory capital
requirements. In particular, the Basel Committee on Banking Supervision at the Bank for Interna-
tional Settlements imposes to financial institutions such as banks and investment firms to meet capital
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Generally, VaR is defined as the maximum potential loss in value of a portfolio of

financial instruments with a given probability over a certain horizon. In simpler words,

it is a number that indicates how much a financial institution can lose with a given

probability over a given time horizon. Standard VaR implementations assume a static

setting in which the mix of a position is unchanged over time, i.e., no cash inflows or

outflows occur over the VaR horizon. In contrast, the VaR approach presented here is

dynamic in the sense that it also takes into account that the investor’s risk exposure

varies over the lifecycle of the fund with stepwise capital drawdowns and distributions.

The VaR measure developed is based on the implicit assumption that an investor can

sell his position in the fund at any time at the fund’s current net-asset-value. In reality,

stakes in private equity funds are highly illiquid and can typically only be sold at some

discount on the secondary private equity markets. In order to account for this form of

liquidity risk, the VaR calculation is also extended to a Liquidity-Adjusted Value-at-

Risk (LVaR). The main idea of this LVaR is to include secondary markets discounts

as an exogenous liquidity cost in the VaR calculation. Capturing the unpredictable

nature of secondary market discount dynamics, discounts are thereby modeled using a

mean-reverting Ornstein-Uhlenbeck process, which is also assumed to be correlated with

aggregate stock market returns.

Finally, to capture funding (or cash flow) risk, the paper introduces a Cash-Flow-

at-Risk (CFaR) measure. This measure is defined as the change (loss) in the investor’s

cash position, which is only exceeded with some given probability, over a given time

horizon. This measure is also dynamic and its interpretation changes with the stage in

the lifecycle of a fund, as discussed in more detail below.

After calibrating the model such that parameters correspond to an investment in a

typical buyout fund, the developed risk measures are illustrated by using Monte-Carlo

simulations. The results underline that there exists private equity specific patterns in

VaR dynamics that a sensible risk management framework for fund investors must take

requirements based on VaR estimates.
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into account. In particular, the VaR for some fixed time horizon initially rises sharply

but then peaks and decreases to zero over the fund lifetime. This behavior is consistent

with the typical lifecycle of private equity funds. As the fund gradually draws down

capital and builds up the investment portfolio, the investor’s risk exposure and conse-

quently also the maximum possible loss that can occur with some given probability both

increase markedly. After the maximum level has been reached, the fixed horizon VaR

decays rapidly towards zero as capital distributions of the fund stepwise decrease the

investor’s risk exposure. The simulation results also show that the maximum value of

the fixed horizon VaR is large but well below the investor’s initial capital commitment

for all confidence levels considered. A main reason for this is that stepwise capital draw-

downs and distributions of private equity funds lead to a situation where the investor’s

committed capital is typically never fully invested in a fund.

The comparison between the simulated VaR and LVaR measures highlights that

the effects of illiquidity on the investor’s risk exposure can be substantial over the life

of a fund. However, the numerical results also add that illiquidity only increases the

investor’s risk exposure if the time horizon under consideration is smaller than the fund’s

total remaining lifetime, as liquidity risk is fully resolved with the final liquidation of a

fund. The effects of liquidity risk are thus investor specific. For investors that face the

risk of being forced to sell their private equity positions on the secondary markets due

to a surprise liquidity shock during the fund lifetime, ignoring liquidity risk can lead to

substantially underestimated risk figures. In contrast, for ’deep-pocket’ investors with

sufficient cash reserves and a low probability of facing surprise liquidity shocks, liquidity

risk is only of minor importance.

The dynamics of the simulated CFaR measure further illustrate how cash flow risk

changes with the development stage of the fund. In the early stages of a fund’s life, when

the fund starts to call capital from the investors, CFaR is large and gives a measure of

funding risk, i.e., the maximum amount of cash that an investor must hold in reserve in

order to being able to meet capital calls with a given probability. In the later times of
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a fund’s life, when the funds starts to gradually exit its portfolio companies and returns

the proceeds to the investors, CFaR decreases and gives a measure of distribution risk,

i.e., the negative value of CFaR gives an indication of the minimum amount of cash

distributed by the private equity fund over some given time horizon with some given

probability.

This paper is related to studies that evaluate the risk and return characteristics

or cash flow dynamics of private equity investments. Important research in this area

includes, among others, Cochrane (2005), Kaplan and Schoar (2005), Ljungqvist et al.

(2008), Phalippou and Gottschalg (2009), Korteweg and Sorensen (2010), Robinson and

Sensoy (2011), Driessen et al. (2012), Ang et al. (2013), Harris et al. (2013), Higson and

Stucke (2013), Ewens et al. (2013), Buchner and Stucke (2014), and Hochberg et al.

(2014). None of these studies, however, develops an integrated risk model for private

equity investments. The only scientific paper in the area of risk management for private

equity investments is a study by Bongaerts and Charlier (2009), who apply existing

credit risk models to individual private equity investments.3 However, their model is

difficult to calibrate and lacks to address liquidity and cash flow risks of private equity

fund investments. I am unaware of any other existing study that develops a risk model

for private equity investments that captures market, liquidity, and cash flow risk using

standard VaR measures. Developing a model that is sufficiently tractable to accurately

quantify these risks is the main contribution of this paper.

The remainder of this paper is organized as follows. Section 1 presents the model

of the cash flow and value dynamics of private equity funds. Section 2 develops the

three risk measures. Section 3 shows how these risk measures can be estimated using

Monte-Carlo simulations. Section 4 presents the results of the model calibration and of

the numerical model analysis. Section 5 concludes.

3In addition, there are several papers by industry analysts on the issue of risk management, like
Weidig (2002) or Diller and Herger (2008). Most of these papers simply perform ad-hoc bootstrap
simulations of fund IRRs or multiples using historical cash flow data.
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1 The Model

This section develops the model used to derive the risk measures of private equity funds.

The model is formulated in a continuous-time framework. It is assumed that all random

variables introduced in the following are defined on a probability space (Ω,F ,P), and

that all random variables indexed by t are measurable with respect to the filtration {Ft},
representing the information commonly available to all investors.

1.1 Private Equity Fund Dynamics

Following the typical construction of private equity funds, modeling the dynamics of

private equity funds requires three main components: the modeling of the investment

value, of the capital drawdowns, and of the return repayments.

A. Investment Value

The first step in modeling private equity funds is characterizing value dynamics. Con-

sider a fund with a total legal lifetime given by Tl. Let Vt denote the value of the fund’s

investment portfolio at time t, cumulated capital drawdowns from the LPs up to time

t are represented by Dt, and cumulated capital distributions to the LPs up to time t

are represented by Rt. To keep things simple, it is assumed that the return on any cash

flow invested in the fund can be described by a normal distribution with constant mean,

constant volatility, and a constant correlation with aggregate stock market returns.

Assumption 1.1 The dynamics of the fund value, Vt, under the objective probability

measure P can be described by the stochastic process {Vt, 0 ≤ t ≤ Tl}:

dVt = Vt(µV dt+ βV σMdBM,t + σǫdBǫ,t) + dDt − dRt, (1.1)

where µV > 0 is the mean rate of return, σM > 0 is the return volatility of the aggregate

stock market, βV is the market beta of the fund, and σǫ > 0 is idiosyncratic volatility;
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BM,t is a standard Brownian motion driving aggregate stock market returns4 and Bǫ,t is

a second Brownian motion, representing idiosyncratic shocks, i.e., dBM,tdBǫ,t = 0.

This specification of the value dynamics is straightforward. The first term on the right

hand side of the equation, Vt(µV dt+βV σMdBM,t+σǫdBǫ,t), states that the instantaneous

change in value of a private equity fund is made of the performance of the investment

already in place at time t. Investments in place are assumed to have normally distributed

returns with constant mean (after management fees and carry payments) given by µV and

a total variance given by σ2
V = β2

V σ
2
M + σ2

ǫ , where β2
V σ

2
M represents systematic variance

and σ2
ǫ is idiosyncratic variance. This specification allows for the important possibility

that private equity fund investment returns and aggregate stock market returns are

(potentially highly) correlated with a coefficient of correlation given by ρV = βV σM/σV .

The second and third term on the right hand side of (1.1) show that fund values are

augmented by instantaneous capital drawdowns, dDt, and decreased by instantaneous

capital distributions, dRt. Including dDt and dRt into equation (1.1) takes into account

that private equity fund investments typically involve stepwise capital drawdowns and

generate substantial intermediate capital distributions during the bounded fund lifecycle.

Note that capital distribution (whether in form of cash or marketable securities) are

directly distributed to the investors as a fund gradually exits its investments. Therefore,

capital distributions simply decrease the fund value Vt, and there is no need to impose

any assumption on the reinvestment of intermediate cash flows.

An important additional feature of the model is that it allows a fund to earn a

risk-adjusted excess return, called alpha. Formally, this excess return is defined as:

αV = µV − rf − βV (µM − rf), (1.2)

where µM > 0 is the mean rate of return of the aggregate stock market and rf is the

4It is implicitly assumed here that aggregate stock market dynamics, Mt, can be described by a
standard geometric Brownian motion given by: dMt = µMMtdt+ σMMtdBM,t, with µM > 0 being the
mean rate of return, and σM > 0 being the return volatility.
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constant riskless rate. Intuitively, this alpha is the risk-adjusted (net) excess return of

the portfolio companies owned and managed by the private equity fund. This excess

return may arise from improved governance or from the GP being a skillful manager

(see, e.g. Sorensen et al. (2013)).

B. Capital Drawdowns

To model capital drawdowns, it is assumed that the fund has an initial committed

capital given by C0 and a total commitment period (i.e., the period over which capital

drawdowns can occur) given by Tc (with Tc ≤ Tl). I assume that capital is drawn at

time t at some stochastic rate δt from the remaining undrawn committed capital, i.e.,

C0 −Dt.

Assumption 1.2 The dynamics of the cumulated capital drawdowns, Dt, can be de-

scribed by the ordinary differential equation

dDt = δt(C0 −Dt)1{0≤t≤Tc}dt, (1.3)

where 1{·} is an indicator function. The fund’s drawdown rate δt is assumed to follow a

stochastic process {δt, 0 ≤ t ≤ Tc} with specification given by

δt = δ + σδBδ,t, (1.4)

where δ > 0 is the mean of the drawdown rate and σδ > 0 reflects the volatility of the

drawdown rate; Bδ,t is a third standard Brownian motion for which it is assumed that

dBδ,tdBM,t = ρδdt and dBδ,tdBǫ,t = 0.

Equation (1.3) is essentially a continuous-time version of the deterministic discrete-

time dynamics introduced by Takahashi and Alexander (2002) for the capital drawdowns

of private equity funds. Malherbe (2004) uses a similar continuous-time specification,

but employs a different stochastic process for the drawdown rate dynamics.

In most cases, capital drawdowns of private equity funds are concentrated in the
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first few years (or even quarters) of a fund’s life. After high initial investment activity,

drawdowns of private equity funds are carried out at a declining rate, as fewer new

investments are made, and follow-on investments are spread out over a number of years.

This typical time-pattern is well reflected in the structure of equation (1.3), which implies

that initially high capital drawdowns at the start of a fund decrease exponentially over

the commitment period Tc. In addition, capital drawdowns are ... Under this modeling

framework, cumulated drawdowns Dt can also never exceed the total committed capital

C. At the same time the model allows for a certain fraction of the committed capital

C not to be drawn, as the commitment period Tc acts as a cut-off point for capital

drawdowns. Finally, the model also incorporates the important possibility that the

drawdown speed has a non-zero correlation ρδ with aggregate stock market returns.

C. Capital Distributions

The final step in modeling private equity funds is characterizing the dynamics of the

capital distributions. Recognizing that the size and timing of repayments depend on the

performance of the fund’s investment portfolio, it is assumed that capital distributions

at time t occur at a stochastic rate νt from the total investment portfolio value Vt of the

fund.

Assumption 1.3 The dynamics of the cumulated capital distributions, Rt, can be de-

scribed by

dRt = νtVtdt, for t < Tl, and Rt =

∫ t

0

νuVudu+ Vt1{t=Tl}, for t ≤ Tl. (1.5)

The fund’s distribution rate νt is assumed to follow a stochastic process {νt, 0 ≤ t ≤ Tl}
with specification:

νt = νt+ σνBν,t, (1.6)

with constants ν, σν > 0; Bν,t is a fourth standard Brownian motion for which it is

assumed that dBν,tdBM,t = ρνdt and dBν,tdBǫ,t = 0.
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The ordinary differential equation for t < Tl in (1.5) illustrates that capital repay-

ments occur at some rate νt from the investment value. This essentially means assuming

a dividend process for private equity funds during their lifetimes, similar to the speci-

fication used by Takahashi and Alexander (2002) and Malherbe (2004). Moreover, the

assumption that the distribution rate dynamics can be described by the Lévy process

given in (3.5) is plausible because this specification reflects well the typical lifecycle

of private equity fund investments where (average) capital distributions are low at the

beginning and increase over the bounded life of a fund, as more and more investments

of the fund are being gradually exited. This behavior can easily be inferred from the

unconditional expectation of (3.5), E[νt] = νt, which increases linearly over time.

In addition, by allowing for a non-zero correlation |ρν | ≤ 1 between changes in

the distribution rate and aggregate stock market returns, I incorporate the important

possibility that the overall state of the economy (or stock market) affects the speed of

capital distributions. For instance, if 1 ≥ ρν > 0, then fast capital distributions will

become more likely during stock market booms.

Finally, the integral specification for Rt in (1.5) takes into account that a private

equity fund is fully liquidated at the end of its legal lifetime Tl. Therefore, cumulated

capital distributions over the entire life of a fund must also include the final liquidation

proceeds of the assets of the fund at maturity Tl, i.e., RTl
=

∫ Tl

0
νuVudu+ VTl

.

1.2 Investor’s Position

To define the dynamics of an investor’s position when investing in a private equity

fund, assume that undrawn capital commitments, C0 − Dt, remain invested at some

constant (riskless) rate rc until they are actually drawn by the fund management, and

that intermediate capital distributions are reinvested at the rate rc for the remaining

lifetime of the fund. As defined above, let Vt be the net-asset-value of a private equity

fund investment at time t for a given initial commitment C0. Additionally, denote by
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Ct the investor’s cash position at time t. Then, the value Pt of the investor’s position at

time t is given by:

Pt ≡ Vt + Ct, (1.7)

which reflects that the investor’s position is made of the net-asset-value of the private

equity fund investment and of his cash holdings. The dynamics of Vt and Ct are given

by:

dVt = Vt(µV dt+ βV σMdBM,t + σǫdBǫ,t) + dDt − dRt, (1.8)

dCt = Ctrcdt− dDt + dRt, (1.9)

with V0 = 0 and C0 > 0.

Equations (1.8) and (1.9) show that capital drawdowns (dDt) decrease the value

Ct, as the investor has to reduce his cash holdings to meet capital calls, whereas they

increase the net-asset-value Vt of the fund. In contrast, capital distributions (dRt) of a

private equity fund decrease the net-asset-value Vt and increase the value of Ct, as they

are assumed to be reinvested at the constant rate rc.

From Itô’s Lemma and equations (1.7-1.9), it follows that value dynamics of the

investor’s position are given by

dPt = dVt + dCt

= Vt(µV dt + βV σMdBM,t + σǫdBǫ,t) + Ctrcdt, (1.10)

which can also be restated in term of the instantaneous returns dPt/Pt. This yields

dPt

Pt

= wV,t(µV dt+ βV σMdBM,t + σǫdBǫ,t) + (1− wV,t)rcdt, (1.11)

with wV,t = Vt/Pt being the fraction of the investor’s position invested in the private

equity fund at time t and (1−wV,t) = Ct/Pt being the fraction invested riskless at time t.
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Note that equation (1.11) implies that the distribution of returns is non-stationary

and cannot be described by a normal distribution because the fraction wV,t follows a

(non-stationary) stochastic process over time. Thus, standard techniques to calculate

the VaR that are based on the assumption of normally distributed and stationary returns

cannot be applied in the model.

2 Risk Measures

Given the special features of private equity fund investments, a risk management frame-

work has to capture several sources of risk. This section reviews the main sources of risk

and develops adequate measures to capture them.

2.1 Sources of Risk

Private equity fund investors are exposed to three main sources of risk:5

• Market Risk : The risk of losses in the market prices of the portfolio companies

held by a fund exposes investors to market risk.

• Liquidity Risk : The illiquidity of private equity partnership interests exposes in-

vestors to asset liquidity risk associated with selling in the secondary markets at

a discount on the fund’s net-asset-value.

• Funding (or Cash Flow) Risk : The unpredictable timing of cash flows poses fund-

ing and cash flow risks to investors. In particular, capital commitments are con-

tractually binding and defaulting on these payments can result in the loss of the

entire private equity partnership interest.

5Besides, private equity fund investors are also exposed to several other sources of risk, which are
not considered in more detail here. These include (but not limited to) the risk of selecting a low quality
fund manager, interest rate risk, and foreign exchange rate risk.

12



Accounting for these main risk sources, this section develops three risk measures for

private equity fund investments: Value-at-Risk (VaR), Cash-Flow-at-Risk (CFaR), and

Liquidity-Adjusted Value-at-Risk (LVaR).

2.2 Value-at-Risk (VaR)

Currently the most widely used measure of exposure to market risk is Value-at-Risk,

usually abbreviated to VaR. VaR was developed and adopted in response to financial

disasters, such as those at Baring’s Bank, Orange County, and Metallgesellschaft. After

JP Morgan has developed the measure in the early 1990s, the concept eventually became

accepted by the general finance community when the Basel Committee on Banking

Supervision allowed financial institutions to quantify their market risks with internal

VaR models. A standard treatment of VaR can be found in Jorion (2001). Today, the

financial industry has standardized on the following definition of VaR:

V aR(α): It is the loss of a financial position or portfolio, which is exceeded

with some given probability α, over a given time horizon. (see, for example,

Jorion (2001))

Assuming a time horizon that equals h, this definition translates into the VaR of the

investor’s position under the developed model setting as

Prob(Pt − Pt+h ≤ V aRt,h(α)) = 1− α, α ∈ [0, 1], (2.1)

where Pt is the value of the investor’s position with dynamics given by (1.10). Intuitively,

this VaR can be interpreted as the worst loss that occurs for the private equity fund

investor over a given time interval h, under “normal market conditions”.

Note that the time index t in V aRt,h(α) accounts for the fact that stepwise capital

drawdowns and intermediate capital distributions lead to a situation where the model

VaR is not time-invariant. Because the fractions of the investor’s position invested into
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the private equity fund and into the riskless asset change stochastically, V aRt,h(α) also

changes over the lifetime of the fund. In contrast, standard VaR calculations typically

assume a static setting where the relative weights of all positions are not changed over

time.

2.3 Liquidity-Adjusted Value-at-Risk (LVaR)

The VaR measure defined in (2.1) is based on the implicit assumption that an investor

can sell his position in the fund at any time t ∈ [0, Tl] at the fund’s current net-asset-

value Vt. In reality, stakes in private equity funds are highly illiquid in the sense there is

no organized and liquid market where funds can be traded at low costs. Investors that

have private equity exposure and need immediate liquidity must sell their interests in a

private equity fund on the secondary private equity markets. However, these secondary

markets are still relatively immature and pricing is highly inefficient. Consequently,

selling fund positions is typically only possible at some discount to the current net-asset-

value (see Kleymenova et al. (2012)). Figure 1 illustrates quarterly median secondary

market discounts for the buyout and venture capital segment that can be obtained from

the Preqin Secondary Market Monitor for the period ranging from March 2003 to March

2013. The figure shows that the range of discounts is large and depends on the specific

type of asset and market environment. Thus, investors can be exposed to a large liquidity

risk when they have to sell a private equity fund prior to its liquidation. Ignoring this

form of liquidity risk can substantially understate the investor’s true risk exposure.

In order to account for this effect, the VaR calculation presented above can be ex-

tended to a Liquidity-Adjusted Value-at-Risk, abbreviated to LVaR in the following.

The main idea of this LVaR is to include secondary markets discounts as an exogenous

liquidity risk in the VaR calculation. This is done by taking into account that the liqui-

dation value of a private equity fund is typically not equal to its current net-asset-value,

but has to be adjusted for secondary market discounts. Stated differently, while the

standard VaR measure presented above considers the worst net-asset-value of a fund for

14



some confidence level α, the LVaR considers the worst transaction price that could be

obtained for a fund on the secondary private equity markets for some confidence level

α. This idea translates into the following formal definition of LV aR(α):

Prob(Pt − [(1− πt+h)Vt+h + Ct+h] ≤ LV aRt,h(α)) = 1− α, α ∈ [0, 1], (2.2)

where πt+h is the secondary market discount for the fund at time t + h. Because the

investor’s cash position Ct+h is not affected by secondary market discounts, the term

[(1− πt+h)Vt+h +Ct+h] equals the value of the investor’s total position after liquidation

of the fund on the secondary markets.

The LVaR defined in (2.5) requires an assumption on the dynamics of the secondary

market discounts. As secondary market discounts typically vary over time with the pre-

vailing market conditions (see Figure 1), an exogenous stochastic process is introduced

for the discount rate πt. To incorporate that discounts can also become negative, an

Ornstein-Uhlenbeck process is employed.

Assumption 2.1 The secondary market discount rate πt is assumed to follow a stochas-

tic process {πt, 0 ≤ t ≤ Tl}, with specification given by

dπt = κπ(θπ − πt)dt+ σπdBπ,t, (2.3)

where θπ > 0 is the long-run mean of the discount rate, κπ > 0 is the rate of reversion to

this mean, and σπ > 0 reflects the volatility of the discount rate; Bπ,t is a fifth standard

Brownian motion for which it is assumed that dBπ,tdBM,t = ρπdt and dBπ,tdBǫ,t = 0.

This process displays mean-reversion property, i.e., the discount rate randomly fluc-

tuates around the (long-run) mean level θπ. Additionally, the specification also allows

for a non-zero correlation ρπ between changes in secondary market discounts and aggre-

gate stock market returns. This is done here to take into account that the overall state

of the economy (or stock market) may also affect discounts on the secondary markets.
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2.4 Cash-Flow-at-Risk (CFaR)

Since private equity fund investors are in general also concerned with the size and timing

of the fund cash flows (i.e., capital drawdowns and distributions), a third adequate

risk measure that can be defined for private equity fund investments is Cash-Flow-at-

Risk, abbreviated to CFaR in the following. The measure CFaR(α) is defined here

as the change (loss) in the investor’s cash position, which is exceeded with some given

probability α, over a given time horizon.

Formally, assuming a time horizon that equals h, this definition of CFaR translates

into

Prob(Ct − Ct+h ≤ CFaRt,h(α)) = 1− α, α ∈ [0, 1], (2.4)

where Ct is the investor’s cash position with dynamics given by (1.9).

The interpretation of this measure changes with the stage in the lifecycle of the fund.

In the early times of a fund’s life, when the funds starts to stepwise draw down capital

from the investors and builds up the investment portfolio, CFaRt,h(α) is positive and

gives the maximum amount of cash that the investor must hold in reserve over the time

horizon h in order to being able to meet capital calls of the fund management. In the

later times of a fund’s life, when the funds starts to gradually exit its investments and

distributes the proceeds to the investors, CFaRt,h(α) will eventually turn negative and

its absolute value gives an indication of the minimum amount of cash distributed by the

private equity fund over the time horizon h.

Note that the VaR defined in (2.1) and CFaR defined in (2.4) are equal when calcu-

lated over the total lifetime Tl of the fund, i.e.,

V aR0,Tl
(α) = CFaR0,Tl

(α). (2.5)

This relationship follows because the change in value of the investor’s position over the

total fund lifetime, P0 − PTl
, equals the change in his cash position, C0 − CTl

, as funds
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are fully liquidated at the end of their lifetime Tl, and consequently V0 − VTl
= 0 holds

per definition.

3 Monte-Carlo Simulation

The model developed in the previous sections is path dependent: The net-asset-value

Vt of a fund as well as the investor’s cash position Ct at any time t depend on the full

history of past capital drawdowns and distributions. These path dependencies can easily

be taken into account by using Monte Carlo simulations to calculate the developed risk

measures of a private equity fund investment. This section develops a discrete-time

version of the model and shows how risk measures can be estimated using Monte-Carlo

simulations.

3.1 Discrete-Time Version of the Model

In order to implement the Monte Carlo simulation, the time interval [0, Tl] is divided

into K discrete intervals, each of length ∆t. Then, all relevant quantities are considered

at equidistant time points, tk = k∆t, where k = 1, . . . , K and K = Tl/∆t.

An appropriate scheme for discretizing the value dynamics of a private equity fund

is the Euler scheme.6 Applying this scheme to SDE (1.1) gives

Vk+1 =Vk[1 + µV∆t+ βMσMǫM,k+1

√
∆t+ σǫǫǫ,k+1

√
∆t]

−∆Rk+1 +∆Dk+1, (3.1)

where ǫM,1, ǫM,2, . . . , ǫM,K and ǫǫ,1, ǫǫ,2, . . . , ǫǫ,K are i.i.d. sequences of standard normal

6For an arbitrary SDE, dXt = µ(Xt)dt+ σ(Xt)dBt, the Euler scheme takes the form

Xk+1 = Xk + µ(Xk)∆t+ σ(Xk)
√
∆t ǫk+1,

where ǫk+1 is a standard normal variable. For more details on the approximation of SDEs in discrete-
time, see Glasserman (2003) or Kloeden and Platen (1999).
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variables that are uncorrelated to each other.

The dynamics of the capital drawdowns, equation (1.3), can be represented in discrete-

time as7

∆Dk+1 = δk+1(C0 −Dk)∆t, (3.2)

with the drawdown rate dynamics given by

δk+1 = δ + σδ ǫδ,k+1

√

(k + 1)∆t. (3.3)

where ǫδ,1, ǫδ,2, . . . , ǫδ,K is a third i.i.d. sequence of standard normal variables.

Similarly, an appropriate discrete-time version of the dynamics of the capital distri-

butions, specification (1.5), is

∆Rk+1 = νk+1Vk∆t, if k + 1 < K, and ∆RK = VK , (3.4)

with distribution rate dynamics given by

νk+1 = ν(k + 1)∆t+ σνǫν,k+1

√

(k + 1)∆t, (3.5)

where ǫν,1, ǫν,2, . . . , ǫν,K is a fourth i.i.d. sequence of standard normal variables.

The constant correlation ρδ of the drawdown rate with the market returns and the

constant correlation ρν of the distribution rate with the market returns can be achieved

by setting

ǫδ,k = ρδǫM,k +
√

1− ρ2δ ǫ1,k, (3.6)

ǫν,k = ρνǫM,k +
√

1− ρ2ν ǫ2,k, (3.7)

where ǫ1,k and ǫ2,k are standard normal variables that are uncorrelated with each other

7For simplicity, it is assumed here that the commitment period Tc equals the legal lifetime of the
fund Tl, i.e., Tc = Tl.
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(and with all other random variables introduced here).

Using the Euler scheme to approximate the discount rate process, SDE (2.3), discrete-

time dynamics are given by

πk+1 = πk + κπ(θπ − πk)∆t + σπ ǫπ,k+1

√
∆t, (3.8)

where ǫν,1, ǫν,2, . . . , ǫν,K is i.i.d. is another sequence of standard normal variables that

has a constant correlation ρπ with the sequence ǫM,1, ǫM,2, . . . , ǫM,K , i.e.,

ǫν,k = ρνǫM,k +
√

1− ρ2ν ǫ3,k, (3.9)

where ǫ3,k is a standard normal variable that is uncorrelated with all other random

variables introduced before.

Using these specifications, the discrete-time dynamics of the investor’s position and

of his cash holdings can be represented as

Pk+1 = Pk + Vk(µV∆t + βMσMǫM,k+1

√
∆t + σǫǫǫ,k+1

√
∆t) + Ckrf∆t, (3.10)

Ck+1 = Ck(1 + rc)∆t−∆Dt +∆Rt. (3.11)

3.2 Estimating Risk Measures by Simulation

To numerically evaluate the risk measures developed in Section 2, consider a Monte

Carlo sampling experiment composed of M independent replications of the discrete-

time approximations of the model given above. To derive an estimate of the standard

VaR defined in (2.1), denote by Lk,i the kth observation of the investor’s loss over the

time horizon h in the ith replication,

Lk,i = Pk,i − Pk+h,i. (3.12)
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Let F̂L,k(x) denote the approximated distribution of losses L based on the M simu-

lated replications,

F̂L,k(x) =
1

M

M
∑

i=1

1{Lk,i≤x}. (3.13)

Using the approximated distribution F̂L,k(x), a simple estimate of VaR at the confi-

dence level α is given by the empirical quantile, i.e.,

V̂ aRk,h(α) = F̂−1

L,k(1− α), (3.14)

with the inverse of the piecewise constant function F̂L,k defined by F̂−1

L,k(u) = inf{x :

F̂L,k(x) ≥ u}. Under minimal conditions (see, for example, Serfling (1980)), the esti-

mated V̂ aRk,h(α) converges to the true model V aRk,h(α) with probability 1, as M → ∞.

Similarly, the measures LVaR and CFaR defined in (2.4) and (2.5) can be estimated

by

L̂V aRk,h(α) = F̂−1

Lad,k
(1− α), (3.15)

ĈFaRk,h(α) = F̂−1

Lc,k(1− α), (3.16)

where F̂Lad,k(x) denotes the approximated distribution of liquidity adjusted losses Lad

in the investor’s position, with Lad
k,i = Pk,i − [(1 − πk+h,i)Vk+h,i + Ck+h,i], and F̂Lc,k(x)

denotes the approximated distribution of losses Lc in the investor’s cash position, with

Lc
k,i = Ck,i − Ck+h,i.

4 Numerical Analysis

This section illustrates the developed model and risk measures through a numerical

example and discusses its implications. The model analysis illustrates how the risk

measures evolve over the lifecycle of a fund and performs a sensitivity analysis that
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highlights the effects of shocks in the main model parameters.

4.1 Calibrated Model Parameters

The analysis starts with the question of what are reasonable parameter values for the

model. Where possible, baseline parameters are chosen in the following such that they

correspond to an investment in an average buyout fund.

A. Risk and Return Characteristics

To calibrate the risk and return characteristics of buyout funds, I mainly rely on es-

timated parameters from Metrick and Yasuda (2010) and Ang et al. (2013). I use a

market beta of a private equity fund of βV = 1.3 and an alpha of αV = 0.04, which

is consistent with recent estimation evidence from Ang et al. (2013), who find average

CAPM betas of buyout funds that equal 1.31 and average CAPM alphas that equal 4%

per annum.

Metrick and Yasuda (2010) find an annual volatility of σi = 60% per individual

buyout investment and an average pairwise correlation of ρii = 0.2 between any two

investments. They report that the average buyout fund invests in around 15 companies

(with a median of 12). The average holding period of a buyout investment is around four

years (see Franzoni et al. (2012)). With a typical fund lifetime of 12 years, the average

number of investments running at any time during a fund’s lifetime is N = (15×4)/12 =

5. Using these values, the total variance of fund returns, σ2
V , can be approximated by

σ2

V =
1

N
σ2

i (1− ρii) + σ2

i ρii, (4.1)

which yields an annual volatility of 0.36, which is rounded to σV = 40%.

Like Metrick and Yasuda (2010), an annual risk-free rate of rf = 5% is used. For the

stock market, an annual volatility of σM = 15% with an expected return of µM = 11% is

assumed, which implies a risk premium of µM−rf = 6%. Given this level of stock market
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volatility, the annual idiosyncratic volatility of a buyout fund is σǫ =
√

σ2
V − β2

V σ
2
M =

35%, and the correlation between private equity fund returns and aggregate stock market

returns yields a reasonable ρV = βV σM/σV = 0.49.

B. Drawdown and Distribution Dynamics

To calibrate the drawdown and distribution rate dynamics, I use cash flow data at the

individual fund level, which is net of management fees and carried interest payments.

The data has been provided by the Center of Private Equity Research (Cepres), which

maintains one of the largest databases of precisely timed deal and fund level cash flows.8

To minimize a possible impact by estimated net asset values of unrealized investments,

only funds with vintage years from prior to 2001 are being used. This gives a compre-

hensive sample of monthly cash flows of 200 buyout funds.

To estimate the model parameters, I employ the concept of conditional least squares

(CLS). Appendix A shows that this method leads to the following least squares estima-

tors for the drawdown rate parameters δ and σ2
δ :

δ̂ =
1

∆t

K
∑

k=1

(D̄k − D̄k−1)(1− D̄k−1)

K
∑

k=1

(1− D̄k−1)2
, (4.2)

σ̂2

δ =
1

K

K
∑

k=1

[D̄k − D̄k−1 − δ̂(1− D̄k−1)∆t]2

(1− D̄k−1)2(∆t)3k
, (4.3)

where D̄k denotes average cumulated capital drawdowns of the N sample funds at time k.

The corresponding least squares estimators for the distribution rate parameters ν

8Earlier versions of this dataset have, for example, been used by Krohmer et al. (2009), Cumming
et al. (2010), Franzoni et al. (2012), and Buchner and Stucke (2014).
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and σ2
ν are given by:

ν̂ =
1

∆t

K
∑

k=1

(R̄k − R̄k−1)kV̄k−1

K
∑

k=1

k2V̄ 2
k−1

, (4.4)

σ̂2

ν =
1

K

K
∑

k=1

[R̄k − R̄k−1 − ν̂kV̄k−1(∆t)2]2

(V̄k−1)2(∆t)3k
, (4.5)

where R̄k denotes average cumulated capital distributions of the N sample funds at time

k and V̄k denotes average net-asset-values of the N sample funds at time k. The average

net-asset-values of the funds, V̄k, cannot directly be observed from the underlying cash

flow data. I approximate them by the following relationship

V̄k =

k
∑

i=1

(∆Di −∆Ri)(1 + IRR)k−i, (4.6)

where IRR is the mean internal rate of return of the sample funds, ∆Di = (R̄i − R̄i−1)

and ∆Ri = (R̄i − R̄i−1).

Applying this estimation methodology yields the following set of parameters: δ̂ =

0.41, σ̂δ = 0.21, ν̂ = 0.08, and σ̂ν = 0.11.

Simulating the fund cash flows also requires assumptions on the correlations of the

drawdown and distribution rate with aggregate market returns. Empirical evidence by

Robinson and Sensoy (2011) shows that capital calls and distributions have a system-

atic component that is pro-cyclical and that distributions are more sensitive to market

conditions than calls. In line with these observation, I assume that both correlations are

positive and that ρν > ρδ. The specific correlations used in the baseline specification are

ρδ = 0.5 and ρν = 0.8.

C. Secondary Market Discount Dynamics

To calibrate the secondary market discount rate process, SDE (2.3), I use the quarterly
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data on median secondary market discounts for the buyout segment from the Preqin

Secondary Market Monitor. The data is illustrated in Figure 1.

Using this data, model parameters κπ, θπ, and σπ are estimated by applying a maxi-

mum likelihood (ML) method on a discrete-time counterpart of the Ornstein-Uhlenbeck

process (2.3).9 This approach yields the following parameters for the buyout segment:

κπ = 0.42, θπ = 0.16, and σπ = 0.16. This set of parameters suggests that the long-run

mean of the discount rate equals 16% and that the half-life of the mean-reversion, i.e.,

the average time it takes the process to get pulled half way back to its long-run mean,

equals ln 2/κπ = 1.65 years. In addition, in the baseline case, the initial discount rate

π0 is set to the long-run mean θπ.

Coefficient ρπ is estimated by the correlation between quarterly changes in median

secondary market discounts and the corresponding quarterly S&P 500 returns. This

yields ρπ = −0.60, implying that the overall market conditions affect the pricing in the

secondary markets and that discounts increase during stock market downturns.

Table 1 provides a summary of the baseline parameter values used for the subsequent

numerical analysis.

4.2 Fund Dynamics and Risk Measures

The analysis now turns to the numerical results. All subsequent results are generated

by using Monte-Carlo simulations with 500.000 iterations.

A. Fund Dynamics

To illustrate the model fund dynamics, in addition to the baseline parameters given

above, assume that the fund has a typical legal lifetime of 12 years and that the investor’s

initial capital commitment equals C0 = 100. Using this set of parameters, Figure 2

illustrates the dynamics of the cumulated capital drawdowns, capital distributions, net

fund cash flows, and of the fund value.

9See Gourieroux and Jasiak (2001), p. 290, for the resulting closed-form estimators.
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It is important to acknowledge that the basic patterns of the model graphs shown in

Figure 2 conform to reasonable expectations of private equity fund behavior. In partic-

ular, the cash flow streams that the model generates naturally exhibit a lag between the

capital drawdowns and distributions, thus reproducing the typical development cycle of

a fund and leading to the private equity characteristic J-shaped curve for the cumulated

net fund cash flows that can be observed on the left of Figure 2 (b). In addition, note

that the value dynamics of the fund shown on the right of Figure 2 (b) are also in line

with expectations. Specifically, the value of the fund increases over time as the invest-

ment portfolio is build up and decreases towards the end as fewer and fewer investments

are left to be harvested. The model also captures the erratic nature of real world private

equity fund cash flows and value dynamics, which is indicated in Figure 2 by the 80%

confidence intervals shown. Furthermore, it is important to stress that the model is

flexible enough to generate the potentially many different patterns of capital drawdowns

and distributions. By altering the main model parameters, both timing and magnitude

of the fund cash flows can be controlled.

B. Value-at-Risk Dynamics

Figure 3 illustrates the simulated VaR dynamics. Figure 3 (a) shows how the VaR

at fund initiation (i.e., at t = 0), V aR0,h(α), changes with the time horizon h. The

confidence levels used are 10%, 5%, and 1%. Figure 3 (a) reveals interesting patterns.

For any given confidence level, as the time horizon h increases, V aR0,h(α) initially

rises sharply but then peaks and turns slightly down. The initial sharp increase is in

line with expectations. As the fund gradually draws down capital and builds up the

investment portfolio, the investor’s risk exposure and consequently also his maximum

possible loss that can occur at some given confidence level both increase markedly. The

slight decrease in VaR for long horizons h is due to compounding effects in fund returns,

which reduce the probability of large losses over long time horizons. The reduction

in VaR is small however, because intermediate capital distributions limit compounding

effects in fund returns. The behavior of the VaR also depends on the chosen confidence
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level: for high confidence levels, V aR0,h(α) peaks more quickly and then falls more

pronounced; for low confidence levels, V aR0,h(α) peaks more slowly and stays near its

maximum level afterwards. Note that the maximum value of V aR0,h(α) is well below the

investor’s initial capital commitment of 100 for all confidence levels considered. Thus,

the maximum possible loss of a private equity fund investment is typically much lower

than the investor’s total capital commitment.

Figure 3 (b) further illustrates the VaR dynamics over the fund lifetime for a fixed

time horizon of three months, i.e., h = 0.25. As expected, the fixed horizon VaR of

the fund investment, V aRt,0.25(α), increases as the fund draws down capital and peaks

around the maximum average fund value (see also Figure 2). After the maximum level

has been reached, V aRt,0.25(α) decays rapidly towards zero as capital distributions of the

fund stepwise decrease the investor’s risk exposure. This basic pattern can be observed

for all confidence levels considered. However, the results also show here that V aRt,0.25(α)

peaks more quickly for lower confidence levels α.

Overall, the dynamics illustrated in Figure 3 underline that there exists private equity

specific patterns in VaR dynamics that a sensible risk management framework must

take into account. These specific patterns are a direct result of the complex cash flow

structures of private equity fund investments, which lead to a situation where the mix

of capital invested in the fund and cash holdings changes dynamically over the fund

lifetime. In contrast, standard VaR implementations typically assume a static setting

where the mix in a position is unchanged over the time horizon of the VaR. Thus, when

applied to private equity fund investments, standard VaR calculations can lead to biased

conclusions about the investor’s true risk exposure.

C. Liquidity-Adjusted Value-at-Risk Dynamics

Figure 4 compares the standard VaR to the liquidity-adjusted LVaR that is obtained

by correcting fund values for potential secondary market discounts. The confidence

level used for this comparison is 1%. As expected, the results highlight that illiquidity

increases the investor’s risk exposure. In this sense, Figure 4 (a) shows that the LV aR at
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fund initiation, LV aR0,h(α), is typically higher than the standard V aR0,h(α). However,

the figure also adds that illiquidity only increases the investor’s risk exposure if the

time horizon h under consideration is smaller than the funds’s total legal lifetime Tl, as

LV aR0,Tl
(α) = V aR0,Tl

(α). The economic rationale behind this result is straightforward.

Because a private equity fund is fully liquidated at the end of its legal lifetime Tl, liquidity

risk is fully resolved at Tl. Thus, liquidity risk is only of importance if there is a mismatch

between the investor’s expected holding horizon h and a fund’s legal lifetime Tl. For

long-term investor’s with sufficient cash reserves, liquidity risk is consequently only of

minor importance.

The dynamics of the three months LVaR, LV aRt,0.25(α), displayed in Figure 4 (b)

further highlight that the effects of illiquidity on the investor’s risk exposure can be

substantial over the life of the fund. For the given confidence level of 1%, the investor’s

maximum loss that can occur over a period of three months increases from around 41

to 66. Thus, for investors who face the risk of surprise liquidity shocks and need to sell

their private equity positions on the secondary markets, ignoring liquidity risk can lead

to substantially underestimated risk exposures.

D. Cash-Flow-at-Risk Dynamics

The dynamics of the developed CFaR measure are illustrated in Figure 5. The results

highlight that an investor is exposed to substantial funding (or cash flow) risk when

investing into private equity funds. Similar to above, Figure 5 (a) shows how the CFaR at

fund initiation, CFaR0,h(α), changes with the time horizon h. In line with expectations,

CFaR0,h(α) increases quickly during the commitment period when the fund starts to

draw down capital and reaches a maximum after around 12 to 15 quarters, depending

on the chosen confidence level α. It is important to note that the maximum level is

below the investor’s initial capital commitment, C0 = 100, for all confidence levels

considered. The reason for this is that private equity funds typically start to distribute

capital before the committed capital has actually been fully drawn. Thus, investors

typically do not need to reserve all committed capital in cash as distributions from
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existing investments can be used to partially finance open commitments. After the

maximum level is attained, CFaR0,h(α) decreases because capital distributions of the

fund gradually increase the investor’s cash position. Besides, it is also interesting to

see how the behavior of CFaR0,h(α) changes with the chosen confidence level α. For

short time horizons h, differences between the curves for different levels of α are small

but increase as h tends towards the fund lifetime Tl. The rationale behind this result

is that capital distributions involve higher levels of uncertainty than capital drawdowns

(see also Figure 1 (a)).

The fixed horizon CFaR for h = 0.25 shown in Figure 5 (b) further illustrates how

cash flow risk changes with the development stage of the fund. In the early stages of

a fund’s life, when the fund starts to call capital from the investors, CFaRt,0.25(α) is

large and gives a measure of funding risk, i.e., the maximum amount of cash that the

investor must hold in reserve over next quarter in order to being able to meet capital

calls. In the later times of a fund’s life, when the funds starts to gradually exit its

portfolio companies and returns the proceeds to the investors, CFaRt,h(α) decreases

and gives a measure of distribution risk, i.e., the negative value of CFaRt,h(α) gives an

indication of the minimum amount of cash distributed by the private equity fund over

the next quarter.

E. Sensitivity Analysis

In the environment of high uncertainty that characterizes private equity, there are limits

to the predictive value of model parameters that are calibrated from historical data. It

is therefore meaningful to evaluate and quantify the impact of parameter shocks that

could materially change risk projections. Figures 6 to 8 illustrate a number of such

shocks that should be applied for stress testing.

Figure 6 identifies the main drivers of VaR. The key risk parameters in the model

are the market beta of a fund, βV , and its idiosyncratic volatility, σǫ. In line with expec-

tations, the figure shows that a increase in these two risk parameters, proxied here by

multiplying both parameters by 1.5, leads to a substantial increase in the fixed horizon
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VaR. Moreover, the VaR dynamics also depend on the drawdown and distribution rate

parameters. The figure shows that a higher mean drawdown rate δ results in a faster

investment pace and therefore leads to a faster increase in VaR in the early stages of

a fund’s life and higher maximum VaR levels. The effect of a decrease in the mean

distribution rate ν, which may occur during an economic downturn when exit opportu-

nities for private equity funds deteriorate, is to increase VaR, particularly in the later

phases of a fund’s life. This holds because a lower parameter ν leads to a higher average

investment duration, which increases the investor’s risk exposure.

In addition to these model parameters, the LVaR measure is also driven by dynamics

of the secondary market discounts. Figure 7 shows that a higher long-run mean discount

rate θπ and a higher volatility σπ increase the fixed horizon LVaR. The effect of a higher

mean reversion rate κπ is to slightly decrease LVaR, which holds because a high mean

reversion rate partly dampens volatility. Additionally, increasing the correlation ρπ of

the discount rate with stock market returns increases LVaR, because this leads to a

situation where high fund values coincide with high discount rates.

Finally, Figure 8 highlights the main drivers of the developed CFaR measure. The

results indicate that a higher volatility σδ of the drawdown rate increases funding risk

at the start of a fund, whereas a higher volatility of the distribution rate increases the

uncertainty about cash flows in the later stages of a fund’s life.

5 Conclusion

Although risk management has been a well-ploughed field in financial modeling for over

three decades, the understanding how to correctly quantify and manage the risks of

investing in private equity remains limited. Because of institutional features that com-

plicate the use of standard risk management tools, the majority of investors today still

employ relatively simplistic approaches to measuring and reporting the risks of investing

in private equity. However, with growing exposure to private equity, it has become more

29



important to fully understand and correctly quantify the risks of investing in this asset

class. Moreover, more sophisticated risk management will also be an essential catalyst

for further growth of the asset class. Surprisingly, the academic literature has largely

overlooked this fact; at present, we lack an adequate risk model for private equity that

allows accurately addressing all relevant risks.

The objective of this paper is to fill this gap by developing the first comprehensive risk

management framework for private equity fund investments. The framework addresses

the three main sources of risks that private equity investors face when investing in this

asset class: market risk, liquidity risk, and cash flow risk. Underlying the framework

is a stochastic model for the value and cash flow dynamics of private equity funds,

which allows to derive three dynamic risk measures for private equity fund investments:

Value-at-Risk (VaR), Liquidity-Adjusted Value-at-Risk (LVaR), and Cash-Flow-at-Risk

(CFaR). The paper calibrates the model to data of buyout funds and illustrates the

dynamics of the developed risk measures using Monte-Carlo simulations. The results

highlight that there exists private equity specific patterns in risk dynamics that a sensible

risk management framework for private equity investments must take into account.
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A Appendix: Drawdown and Distribution Rate Cal-

ibration

This appendix presents the estimation methodology for the parameters of the drawdown

and the distribution rate dynamics.

A. Definitions and Methodology

The objective is to estimate model parameters from the observable cash flows of the

sample funds at equidistant time points tk = k∆t, where k = 1, . . . , K, and K =

T/∆t. To make funds of different sizes comparable, the capital drawdowns and capital

distributions of all j = 1, . . . , N sample funds are first standardized on the basis of

each fund’s total invested capital. In the following, let Dk,j denote the standardized

cumulated capital drawdowns of fund j up to time tk. Standardized cumulated capital

distributions of fund j up to time tk are denoted by Rk,j. Finally, Vk,j represents the

standardized value of fund j at time tk.

To estimate the model parameters, I use the concept of conditional least squares

(CLS). The concept of conditional least squares, which is a general approach for esti-

mation of the parameters involved in the conditional mean function E[Xk|Fk−1] of a

stochastic process, was given a thorough treatment by Klimko and Nelson (1978). The

idea behind the method is to estimate parameters from discrete-time observations {Xk}
of a stochastic process, such that the sum of squares

K
∑

k=1

(Xk − E[Xk|Fk−1])
2 (A.1)

is minimized, where Fk−1 is the σ-field generated by X1, . . . , Xk−1. This basic idea can

be slightly adapted to the particular estimation problem given here. As time-series as

well as cross-sectional data of the cash flows of the sample funds is available, a natural

idea is to replace Xk in relation (A.1) by the sample average X̄k.
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B. Drawdown Rate

To derive an estimator for the drawdown rate δ, let D̄k denote the sample average of the

cumulated capital drawdowns at time tk, i.e., D̄k = 1

N

∑N

j=1
Dk,j. An appropriate goal

function to estimate parameter δ is then given by

K
∑

k=1

(D̄k −E[D̄k|Fk−1])
2, (A.2)

where Fk−1 is the σ-field (the available information set) generated by the sequence

D̄1, . . . , D̄k−1. The conditional expectation in (A.2) can, in discrete-time, be states as:

E[D̄k|Fk−1] = D̄k−1 + δ(1− D̄k−1)∆t. (A.3)

Substituting (A.3) into (A.2), the goal function to be minimized turns out to be

K
∑

k=1

{D̄k − D̄k−1 − δ(1− D̄k−1)∆t}2. (A.4)

The least-squares estimator is then the solution to the equation
∑K

k=1
(∂/∂δ){D̄k −

D̄k−1 − δ(1− D̄k−1)∆t}2 = 0. The resulting expression for the estimator is:

δ̂ =
1

∆t

K
∑

k=1

(D̄k − D̄k−1)(1− D̄k−1)

K
∑

k=1

(1− D̄k−1)2
. (A.5)

To estimate the volatility σδ, note that the conditional variance of the average capital

drawdowns in the interval (tk−1, tk] can be stated as

E[D̄k −E[D̄k|Fk−1]|Fk−1]
2 = V ar[δ̄k(1− D̄k−1)∆t|Fk−1]

= [(1− D̄k−1)∆t]2V ar[δ̄k|Fk−1]. (A.6)
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Using the discrete-time specification of the drawdown rate given in (3.3), the condi-

tional variance V ar[δ̄k|Fk−1] of the average drawdown rate δ̄k is given by:

V ar[δ̄k|Fk−1] = σ̄2

δk∆t. (A.7)

Substituting equation (A.3) and (A.7) into (A.6), an appropriate estimator of the

variance σ̄2
δ turns out to be

ˆ̄σ2

δ =
1

K

K
∑

k=1

[D̄k − D̄k−1 − δ̂(1− D̄k−1)∆t]2

(1− D̄k−1)2(∆t)3k
, (A.8)

where δ̂ is evaluated using (A.5). This idea is what Carroll and Ruppert (1988) call the

pseudo-likelihood method.

Specification (A.8) gives an estimator for the variance of the sample average draw-

down rate. Assuming, for simplicity, that the drawdown rates of the sample deals are

perfectly positively correlated, it holds that σ̂2
δ = ˆ̄σ2

δ .

C. Distributions Rate

Following a similar approach to above, an appropriate goal function to estimate the

distribution rate ν is given by

K
∑

k=1

(R̄k −E[R̄k|Fk−1])
2, (A.9)

where R̄k denotes the sample average of the cumulated capital distributions at time tk,

i.e., R̄k = 1

N

∑N

j=1
Rk,j, and Fk−1 is the σ-field generated by R̄1, . . . , R̄k−1.

The conditional expectation in (A.9) can be represented in discrete-time by:

E[R̄k|Fk−1] = R̄k−1 + νkV̄k−1(∆t)2. (A.10)

Substituting equation (A.10) into (A.9), the goal function to be minimized is given
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by
K
∑

k=1

{R̄k − R̄k−1 − νkV̄k−1(∆t)2}2. (A.11)

Similar to above, the least-squares estimator for ν is the solution to the equation
∑K

k=1
(∂/∂ν){R̄k − R̄k−1 − νkV̄k−1(∆t)2}2 = 0. It turns out:

ν̂ =
1

(∆t)2

K
∑

k=1

(R̄k − R̄k−1)kV̄k−1

K
∑

k=1

k2V̄ 2
k−1

. (A.12)

The volatility σν can be estimated by first noting that the conditional variance of

the average capital distributions in the interval (tk−1, tk] is given by

E[R̄k −E[R̄k|Fk−1]|Fk−1]
2 = V ar[ν̄kV̄k−1∆t|Fk−1]

= (V̄k−1∆t)2V ar[ν̄k|Fk−1]. (A.13)

Using specification (3.5), the conditional variance V ar[ν̄k|Fk−1] is given by:

V ar[ν̄k|Fk−1] = σ̄2

νk∆t. (A.14)

Substituting equation (A.10) and (A.14) into (A.13), an appropriate estimator of the

variance σ̄2
ν is

ˆ̄σ2

ν =
1

K

K
∑

k=1

[R̄k − R̄k−1 − ν̂kV̄k−1(∆t)2]2

(V̄k−1)2(∆t)3k
, (A.15)

where ν̂ is evaluated using (A.12).

Similar to above, specification (A.15) only gives an estimator for the variance of the

sample average distribution rate. Assuming that the distribution rates of the sample

deals are perfectly positively correlated, it also holds here that σ̂2
ν = ˆ̄σ2

ν .
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Tables and Figures

Table 1: Summary of Key Variables and Baseline Parameters

This table summarizes the symbols for the key variables in the model and baseline parameter values
used for the numerical analysis. All model parameters are stated annualized.

Parameter Notation Value

Riskless rate rf 0.05
Expected return of stock market µM 0.11
Total volatility of stock market returns σM 0.15
Total volatility of PE fund returns σV 0.40
Market beta of PE funds βV 1.30
Alpha of PE funds α 0.04
Idiosyncratic volatility of PE fund returns σǫ 0.35
Return correlation between stock market and PE fund returns ρV 0.49
Drawdown rate of PE funds δ 0.41
Volatility of the drawdown rate σδ 0.21
Correlation of the drawdown rate with stock market returns ρδ 0.50
Average distribution rate ν 0.08
Volatility of the distribution rate σν 0.11
Correlation of the distribution rate with stock market returns ρν 0.80
Long-run mean of secondary market discounts θπ 0.16
Mean-reversion speed of secondary market discounts κπ 0.42
Volatility of secondary market discounts σπ 0.16
Initial secondary market discount π0 0.28
Correlation between stock market returns and ρc -0.60
changes in secondary market discounts
Life of PE fund investment (in years) Tl 12
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Figure 1: Median Discount (+)/Premium (-) to NAVs by Fund Type, 2004 -
2013; Data is obtained from the Preqin Secondary Market Monitor
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(a) Cumulated Capital Drawdowns (Left) and Cumulated Capital Distributions (Right)

0 10 20 30 40 50
−100

−50

0

50

100

150

200

Lifetime of the fund (in quarters)

C
um

ul
at

ed
 n

et
 c

as
h 

flo
w

s

0 10 20 30 40 50
0

20

40

60

80

100

120

140

Lifetime of the fund (in quarters)

F
un

d 
va

lu
es

(b) Cumulated Net Fund Cash Flows (Left) and Fund Values (Right)

Figure 2: Cumulated Drawdowns, Repayments, Net Fund Cash Flows, and
Fund Value Dynamics; Solid lines represent average values and
dotted lines indicate 80% confidence intervals; Model parameters
used are as given in Table 1
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(a) VaR at fund initiation, V aR0,h(α), plotted as a function of the time horizon h
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Figure 3: Value-at-Risk Dynamics over the Fund Lifecycle; Model parame-
ters used are as given in Table 1
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Figure 4: Liquidity-Adjusted Value-at-Risk Compared to the Value-at-Risk
for α = 1%; Model parameters used are as given in Table 1
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(a) CFaR at fund initiation, CFaR0,h(α), plotted as a function of the time horizon h
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Figure 5: Cash-Flow-at-Risk Dynamics over the Fund Lifecycle; Model pa-
rameters used are as given in Table 1
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Figure 6: Sensitivity Analysis Value-at-Risk; Dotted lines show the baseline
case and solid lines highlight the effect of parameter changes; The
confidence level used is α = 1%; Other model parameters used are
as given in Table 1
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Figure 7: Sensitivity Analysis Liquidity-Adjusted Value-at-Risk; Dotted
lines show the baseline case and solid lines highlight the effect
of parameter changes; The confidence level used is α = 1%; Other
model parameters used are as given in Table 1
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Figure 8: Sensitivity Analysis Cash-Flow-at-Risk; Dotted lines show the
baseline case and solid lines highlight the effect of parameter
changes; The confidence level used is α = 1%; Other model pa-
rameters used are as given in Table 1
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