
Formalizing Distributed Ledger Objects

Antonio Fernández Anta ∗ Chryssis Georgiou † Nicolas Nicolaou ‡

In his PODC’2017 keynote address, Maurice Herlihy pointed out that despite the hype about blockchains
and distributed ledgers, no formal abstraction of these objects has been proposed. To face this issue, in this
paper we provide a proper formulation of a distributed ledger object. In brief, we define a ledger object as a
sequence of records, and we provide the operations and the properties that such an object should support. We
then provide a variation of the ledger – the validated ledger – which requires that each record in the ledger
satisfies a particular validation rule. A (validated) ledger is distributed if it is implemented on top of multiple
(possibly geographically dispersed) computing devices.

Concurrent Objects. An object type T specifies (i) the set of values (or states) that any object O of type T
can take, and (ii) the set of operations that a process can use to modify or access the value of O. An object
O of type T is a concurrent object if it is a shared object accessed by multiple processes [3]. Each operation
on an object O consists of invocation and response events. A history of operations on O, denoted by HO , is a
sequence of invocation and response events, starting with an invocation event. An operation π is complete in a
history HO , if HO contains both the invocation and the matching response of π, in this order. An operation π1
precedes an operation π2 (or π2 succeeds π1), denoted by π1 → π2, in HO , if the response event of π1 appears
before the invocation event of π2 in HO . Two operations are concurrent if none precedes the other.

A history HO is sequential if all operations in HO are complete and it contains no concurrent operations
(i.e., it is an alternative sequence of matching invocation and response events, starting with an invocation and
ending with a response event). A sequential specification of an object O, defines the behavior of O in every
sequential history HO (i.e., when accessed sequentially) [3].

Code 1 External Interface of a Ledger Object Executed by
a Process p

1: function GET
2: send request (GET) to the ledger
3: wait response (GETRES, L) from the ledger
4: return L

5: function APPEND(r)
6: send request (APPEND, r) to the ledger
7: wait response (APPENDRES, res) from the ledger
8: return res

(Validated) Ledger Object. A ledger L is a concur-
rent object that stores a totally ordered sequence1 of
records and supports two operations (available to any
process p): (i) get()p, and (ii) append(r)p. A record is a
triple r = 〈τ, p, v〉, where τ is a unique record identifier
from a set T , p ∈ P is the identifier of the process that
created record r, and v is the data of the record drawn
from an alphabet V . A process p invokes a get()p opera-
tion2 to obtain the ledger L, and p invokes an append(r)p
operation to extend L with a new record r. Initially, the
ledger L is empty.

A process p interacts with a ledger by invoking an operation (a get()p or an append(r)p), which causes a
request to be sent to the ledger, and waiting for a response, which marks the end of the operation3. The response
carries the result of the operation. The result for a get operation is a sequence of records, while the result for an
append operation is a confirmation (ACK ). This interaction from the point of view of the process p is depicted
in Code 1. A possible centralized implementation of the ledger that processes requests sequentially is presented
in Code 2 (each block Upon is assumed to be executed in mutual exclusion).
∗IMDEA Networks Institute, Madrid, Spain, antonio.fernandez@imdea.org
†Dept. of Computer Science, University of Cyprus, Nicosia, Cyprus, chryssis@cs.ucy.ac.cy
‡KIOS Research CoE, University of Cyprus, Cyprus, nicolasn@ucy.ac.cy
1For simplicity we will treat the ledger and the sequence it stores interchangeably, unless otherwise stated.
2We define only one operation to access the value of the ledger for simplicity. In practice, other operations, like those to access

individual records in the sequence, will also be available.
3We make explicit the exchange of request and responses between the process and the ledger to reveal the fact that the ledger is

concurrent, i.e., accessed by several processes.

1



Code 2 Ledger (centralized and sequential)

1: Init: L ← ∅

2: Upon receiving request (GET) from process p do
3: send response (GETRES, L) to p

4: Upon receiving request (APPEND, r) from process p do
5: L ← L‖r
6: send response (APPENDRES, ACK) to p

Code 3 Validated Ledger (Valid())

1: Init: L ← ∅

2: Upon receiving request (GET) from process p do
3: send response (GETRES, L) to p

4: Upon receiving request (APPEND, r) from process p do
5: if Valid(L‖r) then
6: L ← L‖r
7: send response (APPENDRES, ACK) to p
8: else
9: send response (APPENDRES, NACK) to p

A validated ledger is a ledger in which specific semantics are imposed over the sequence of the records
stored in the ledger. For instance, if the records are (bitcoin-like) financial transactions, the semantics should,
for example, prevent double spending. The ledger preserves the semantics with a validity check in the form
of a Boolean function Valid() that takes as an input a sequence of records S and returns true if and only if
the semantics are preserved. In a validated ledger the result of an append(r)p operation may be NACK if the
validity check fails, as depicted in Code 3.

Code 4 Duplication of Record IDs Validation

1: function Valid (S)
2: if ∃r, r′ ∈ S, such that r.τ = r′.τ then
3: return false
4: else
5: return true

For instance, one possible semantic we may want to impose
is that the same record identifier does not appear twice in the se-
quence. This can be achieved with the validated ledger and the
Valid() function in Code 4. More complex validation rules can be
defined in a similar manner, e.g., the transaction validation used
as part of the Bitcoin protocol [2].

Observe that the ledger implementation presented in Code 2
processes operations sequentially. Hence, it is possible to define a sequential history H of any execution in
which operations appear in the order they are processed by the ledger. The sequential specification of a ledger
over the sequential history H is defined as follows. If L is the value of the ledger after the invocation event in
H of an operation π then: (a) if π is a getp operation, then the response event of π returns L, (b) if π is an
append(r)p operation that returns ACK, then at the response event of π the value of the ledger is L‖r, and (c)
if π is an append(r)p operation that returns NACK, then at the response event of π the value of the ledger is L.

Distributed (Validated) Ledger. A distributed (validated) ledger is a concurrent (validated) ledger object
that is implemented in a distributed manner. In particular, the ledger object is implemented by (and possibly
replicated among) a set of (possibly distinct and geographically dispersed) computing devices, that we refer
as hosts. Distribution and replication intend to ensure availability and survivability of the ledger, in case a
subset of hosts fail. At the same time, they raise the challenge of maintaining consistency among the different
views that different processes get of the distributed ledger: what is the latest value of the ledger when multiple
processes may send operation requests at different hosts concurrently? Consistency semantics needs to be in
place to precisely describe the allowed values that a get operation may return when it is executed concurrently
with other get or append operations. Here, as an example, we provide the properties that operations must satisfy
in order to guarantee atomic consistency semantics. In a similar way, weaker consistency guarantees, such as
sequential, causal, or eventual consistency can be defined (which we omit due to lack of space).

Atomicity (linearizability) [1] provides the illusion that the distributed ledger is accessed sequentially, even
when operations are invoked concurrently. I.e., the distributed ledger seems to be a centralized sequential
ledger like the one implemented by Code 2. Formally, a distributed ledger La is atomic if, given a set of
complete operations Π, any two operations π1, π2 ∈ Π satisfy the following properties: (a) if π1 = append(r1),
π2 = append(r2), and π1 → π2, then no get operation returns a ledger La in which record r2 appears before
r1; (b) if π1 = append(r), π2 = get(), and π1 → π2, then r is in the ledger La returned by π2; (c) if π1 and
π2 are get operations that return L1 and L2 respectively, then L1 is a prefix of L2 or vice versa; moreover, if
π1 → π2 then L1 is a prefix of L2.4

Within our framework, we can devise implementations of atomic distributed ledgers by using atomic broad-
cast or consensus primitives (not presented due to lack of space).

4Observe that our definitions are independent of a specific communication medium; i.e., they apply, for example, in both message-
passing and shared memory settings.

2



Acknowledgements. We would like to thank Kishori Konwar, Paul Rimba and Neha Narula for helpful dis-
cussions.

References

[1] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[2] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[3] Michel Raynal. Concurrent Programming: Algorithms, Principles, and Foundations. Springer, 2013.

3


