<Company Name>

<Process Name>
Requirements Management Plan
21-Jun-10
Revision History

	Date
	Description
	Author

	
	Initial Draft
	Anthony R. Crain

	
	
	

	
	
	

Table of Contents

41.
Introduction

41.1
Purpose

41.2
Scope

41.3
Definitions, Acronyms, and Abbreviations

51.4
References

51.5
Overview

52.
Roles and Tools

52.1
Roles

62.2
Tools

63.
Requirements Management

63.1
Requirement Types

93.2
Traceability

93.2.1
Objectives of requirements traceability

93.3
Document Types

113.4
Attributes

113.4.1
Attribute Matrix

123.4.2
Attribute Definitions

193.5
Reports and Measures

193.5.1
Size Metrics

193.5.2
Volatility

193.6
Requirements Change Management

193.6.1
Change Request Processing and Approval

193.6.2
Project Baselines

203.7
Security

Requirements Management Plan
1. Introduction
This section introduces the reader to what a Requirements Management Plan document is. People who are already familiar with this style of Requirements Management Plan can skip to section 2. Those new to this document type should read the rest of this section to familiarize themselves with the purpose and contents of a Requirements Management Plan before reading the details for the <Process Name> (<Process Acronym>) project.
1.1 Purpose

The purpose of a Requirements Management Plan is to capture and describe the environment (the tools and processes) for requirements management that has been chosen for the <Process Acronym> project. Environment means the process, tools and resources needed to guide the project.

1.2 Scope

This Requirements Management Plan document applies to the <Process Acronym> project.
1.3 Definitions, Acronyms, and Abbreviations

Baseline: A baseline is a 'snapshot' in time of one version of each artifact. It provides an official standard on which subsequent work is to be based, and to which only authorized changes can be made.

Requirement: A requirement describes a condition or capability to which a system must conform; either derived directly from user needs, or stated in a contract, standard, specification, or other formal agreement.

Requirement attribute: Information associated with a particular requirement providing a link between the requirement and other project elements—for example, priorities, schedules, status, design elements, resources, costs, hazards.

Requirement type: Requirement types are defined in Requisite Pro. Requirement types are used to classify similar requirements so they can be efficiently managed. When you define a requirement type, you define a common set of attributes, and acceptable values.

Requirement document: A document created in Microsoft Word or that captures requirements and is used to communicate requirements of a project.

Requirements management: A systematic approach to eliciting, organizing and documenting the requirements of the system, and establishing and maintaining agreement between the customer and the project team on the changing of requirements of the system.

Requisite Pro: RequisitePro is a software package that helps teams organize, prioritize, track, and control changing requirements of a system or application.

Suspect state: A state applied to a traceability relationship when a change occurs to one or both of the requirements in the relationship. A suspect relationship state indicates that, because of the modification to the requirement(s), the relationship may require modification as well.
Traceability: The ability to trace a project element to other related project elements, especially those related to requirements. Project elements involved in traceability are called traceability items.

Traceability item: Any project element that needs to be explicitly traced to another project element in order to keep track of the dependencies between them.

1.4 References

The following artifacts are necessary to understand this artifact.
[GLOS] <Process Name> Development Case, <Company Name>, <Process Acronym>-GLOS

1.5 Overview
This section provides an overview of the sections of this document, enabling the reader to jump to the section that is most important to them.
Roles and Tools describes the RUP roles and current company roles needed for requirements management, as well as the responsibilities of those roles. It also describes the tools to be used for requirements management and the purpose of those tools as well.
Requirements Management describes the requirement types, requirement attributes and the document types the project will maintain. It also describes the most common metrics and queries that will be available. Requisite Pro will allow for additional queries and metrics beyond the ones listed in the plan. The listed queries and metrics are simply the ones that we will start out with as saved views. Finally the plan will also discuss the access groups and their privileges.
2. Roles and Tools
2.1 Roles
The following table shows the roles needed to fulfill this RM Plan
	RUP Role
	<Company Name> Equivalent
	Responsibility

	Customer (C)
	Customer (C)
	· review requirements and commit to a set
· focus on the value of the solution rather than on the number of features in the release

	Project Manager (PM)
	Program Manager (PM) or Release Manager (RM)
	· set scope expectations with customer at the feature level

· ensure metrics are captured
· make project management decisions based on metrics

	Requirement Analyst (RA)
	System Engineer (SE)
	· create breadth view of requirements
· Vision

· Use Case Model Diagram

· Use Case Outlines

· select features to eliminate to manage timelines

· tailor or create an RM Plan

· tailor or create the requirements discipline portion of the development case

· participate in the Change Control Board (CCB) meeting

	Requirement Specifier (RS)
	System Engineer (SE)
	· high quality depth view of requirements

· Software Requirement Specification

· Detailed Use Cases

	Software Architect (A)
	Architect (A)
	· assign complexity, risk and effort to features
· assign use case flows to elaboration or construction

	Designer
	Software Designer
	· set the use case flow to designed once it is designed and when the technology used in meeting the design is chosen.

	User Interface Designer (UID)
	Software Engineer
	· review use cases to ensure they don’t constrain user interface design

	Test Manager (TM)
	To be determined (TBD)
	· set the status of use case flow to “quality tested” when they agree it is so

	Test Analyst (TA)
	To be determined (TBD)
	· trace flows and supplemental requirements to test cases

	Integrator (breadth view of Implementers/Coders)
	N/A
	· sets the status of a use case flow to implemented once all of the classes have been integrated for that flow

	Implementer/Coder (I)
	Software Engineer or Developer
	· use requirements only as a secondary source of information, relying on the design model for to drive their work

	Deployment Manager (DM)
	N/A
	· set the status of a use case flow to accepted on behalf of the customer

	Configuration Manager (CM)
	Software Configuration management (SCM)
	· Ensure that baseline documents are put under configuration management and also help build the necessary executables

2.2 Tools

The following tools will be used in the Requirements discipline:

	Tool
	Purpose

	Rational Requisite Pro (ReqPro)
	· Automates most of this plan.
· Captures and maintain traceability between the various requirement types listed here.

· Creates a common repository for all requirement artifacts.

· Enables scope setting, impact analysis, and all aspects of requirements management.

· Provides the central repository of all requirement artifacts

	Rational Software Modeler (RSM)
	· Creates visual models of the requirements (actor and use case model diagrams)

	Rational Software Documentation Automation (SoDA)
	· Autogenerate the Software Requirement Specification as an MS Word document from the requirements in the Req Pro database

	Rational ClearCase
	· Maintains version control of the requirement documents and of the database of requirements at various times when requirements are baselined

	Lotus Notes
	· PIRs

3. Requirements Management

This section describes the various requirement types. It describes the traceability between these requirement types, the attributes of the requirement types and the accepted default values for the attributes.

3.1 Requirement Types
Each project will identify and manage the following requirement types.

	Requirement Type
	Artifact Location
	Description
	Responsibility

	Stakeholder Request (STRQ)
	ReqPro Database Only
	Requests submitted by any stakeholder including customers, users or the development team. They are never reworded, but can be split up for better traceability, as long as they still stand alone.
	The RA will be responsible for getting the STRQs from the various submission avenues into Requisite Pro.

Various avenues might be MRD or stakeholder meeting or e-mails or defects resulting in product change etc.

	Feature (FEAT)
	ReqPro Database Only
	High quality statements of what the system shall do. Unlike STRQs, FEATs are written by the RA and need to be of high quality, testable, unambiguous, etc.
Non functional quality requirements, interface requirements and DC are attributes of features (see the FEAT attribute “Type” in the attribute section below).

	The RA will typically create features, but this effort can be delegated to the RS as needed.

	Use Case (UC)
	ReqPro Database and word document, SoDA will generate the SRS document
Word doc will have the use case details. But name and some URPS requirements may be in ReqPro database
	The UC requirement type actually represents the main scenario or an alternate flow of a use case. There will be one parent UC with the name and brief description, then children UC types for all the other parts of the use case.
	The UC type will be entered into Req Pro by the RA. The children of the UC, in other words, all of the parts of the use case will be created by the RS.

	Terms (TERM)
	ReqPro Database Only, SoDA will add this type to the UCSRS
	The glossary terms enable the RA and the RS to write more concise requirements. The glossary terms can capture not only definitions, but range requirements, default values, and even formatting requirements

	The RA and the RS will create terms as needed, but the bulk of the terms are typically created when the detailed UC is written.

	Mechanism (MECH)
	ReqPro Database Only, also will be in RSM
	Mechanisms are the names of the highest risk technical areas of a project. Mechanisms are the vocabulary that allows all team members to talk with the architects about risk.
	The A will identify the systems mechanisms and name them to enable ease of communication.

	Analysis Model
	RSM
	The Analysis Model describes the classes and subsystems of the solution, but in a technology independent manner. This is called the ideal model
	The software designers are responsible for creating the analysis model. Traceability from the use case to the analysis model will be done in RSM, not Req Pro

	Design
	RSM
	The design model is similar to the analysis model but ties the analysis model to the specific technologies chosen for the project. It is often tied to the code automatically.
	The software designers are responsible for creating the design model. Traceability from the use case to the analysis model will be done in RSM, not Req Pro

	Test Case (TC)
	HP Test Director
	The test cases are kept in Mercury tool. A reference to the test case will be maintained in Req Pro to enable traceability.
	The test analysts are responsible for putting the test case reference into Req Pro

Master version will be ReqPro database as stated in ECI configuration management plan. There will be SRS that will have a subset of what will be in ReqPro database. The ReqPro database may not have use case details.
3.2 Traceability

The table below has been updated based on the most recent best practices, but section 3.1 has not been yet so there are a few mismatches between the above and the below. Action: Update 3.1 to match the diagram below.

[image: image1.png]
Note: Non-functional quality requirements such as usability, reliability, performance, supportability, interface requirements and design constraints (DC) are captured as attributes of features
3.2.1 Objectives of requirements traceability

Understand the source of requirements

Manage the scope of the project

Verify that all requirements of the system are fulfilled by the implementation.

Verify that the application does only what it was intended to do

Manage changes to requirements

Assess the project impact of a change in a requirement

Assess the impact of a failure of a test on requirements (i.e. if test fails the requirement may not be satisfied)

3.3 Document Types

	Document Type
	Artifact Location
	Description
	Responsibility

	Vision
	Created using MS Word, then put under CM using SharePoint
	The vision is the breadth view of the system. The vision is a quick cut at the system, but is not complete enough to be able to drive design, test, etc. It ensures we understand the breadth of the system before picking what to do in each iteration The vision includes:

· Positioning for the project
· Stakeholder and user descriptions

· An overview of the Product (Use Case Model Survey)

· Use Case Outlines

· Project Constraints
	The RA is responsible for creating the Vision for the system, and for updating it as the Vision grows and changes during Inception and Elaboration.

	Software Requirements Specification (SRS)
	Word document generated by SoDA, then put under CM using SharePoint
	The SRS is the document that drives all project activities. There is a single SRS for a project that we update in each iteration for use case flows chosen for that iteration. It is the contract that we develop software against. The SRS can be generated for a single UC, or a set of UCs, such as for a team, iteration, or for the whole system. The SRS includes:

· Detailed Use Cases
· Rule Sets

· Terms

· Design Constraints

· Interface Requirements

· Supplemental Requirements
	The RS is responsible for creating the SRS.

	The Delta SRS (ΔSRS)
	Generated by SoDA, then put under CM using SharePoint
	The ΔSRS is generated exactly like the SRS, however only requirements modified after a certain date are included. Thus it is a skeleton of the current use case, with only the items that have to be changed going forward.
	The RS is responsible for creating the ΔSRS and should provide the SRS with the ΔSRS for context and testing purposes.

3.4 Attributes

Attributes assigned to each requirement will be used to manage the software development process and to prioritize the features for each release.

3.4.1 Attribute Matrix

The following table is a listing of requirement types created in Requisite Pro for ECI project and the attributes associated with each requirement type. It is recommended the indicated attributes be used to manage project requirements.

X – Attribute is mandatory. This attribute will be visible in Requisite Pro for a requirement type

O – Attribute is optional. This attribute will be visible in Requisite Pro for a requirement type and will be given default value if the user does not select the attribute.
Blank cell means that attribute does not apply to the requirement type and hence will not be visible to the user.

	Attribute
	STRQ
	FEAT
	UC
	TERM
	MECH

	Description*
	X
	X
	X
	X
	X

	Target*
Release
	
	X
	X
	
	

	Actual Release
	
	X
	X
	
	

	Status
	X
	X
	X
	
	

	Priority*
	X
	X
	
	
	

	Assigned To
	
	X
	
	
	

	Rationale
	
	X
	
	
	

	Assumptions*
	O
	X
	
	
	

	Risk
	X
	X
	
	
	

	Source
	X
	X
	
	
	

	Complexity
	
	X
	
	
	X

	Volatility
	
	X
	
	
	

	Part
	
	
	X
	
	

	Effort
	
	
	
	
	X

	Analyst
	X
	
	X
	
	

	Architect
	
	X
	X
	
	X

	Planned Iteration
	
	
	X
	
	

	Actual Iteration
	
	
	X
	
	

	Valid Range
	
	
	
	X
	

	Default Value
	
	
	
	X
	

	Type
	
	X
	X
	
	

	Notes
	X
	X
	X
	X
	X

· Denotes attributes that will impact the suspect state for traceability when changes occur.

3.4.2 Attribute Definitions
Setting the default value to <blank> allows us have a query for attributes that have not been set. This will allow us to process our requirements more easily, with the “unset” view getting smaller and smaller as they are set.
	Attribute
	Description
	Acceptable Values
	Default

	Actual Iteration
	The actual iteration is set once the flow is set to Quality Tested. This allows us to see how well our plan is being met.
	I1

I2

E1

etc.
	<blank>

	Actual Release
	Release in which a particular STRQ or FEAT or UC is actually implemented.

This helps tester determine what was implemented. PM can use it to determine how many requirements were not implemented.
	Name of release
	<blank>

	Analyst
	Identifies the Analyst who must convert the STRQ to a FEAT or who must create the UCSRS for the UC.
	Name of Analyst
	<blank>

	Architect
	Identifies the Architect who must set the attributes on the FEAT, UC, SUPL or MECH that are assigned to an architect to fill in.
	Name of Architect
	<blank>

	Assigned To
	Functional team or teams this requirement is assigned to
	Name(s) of the team(s)
	<blank>

	Assumptions
	Any assumptions that stakeholder made while creating the stakeholder request or that the RA made while creating features
	Text
	<blank>

	Complexity
	Set by the development team. Relative ranking on how difficult the feature or supplementary requirement will be to implement. Used in managing scope and determining development priority.
	High

Average

Low
	Average

	Default Value
	Some glossary terms have a default value to be used if one is not supplied by an actor. For example, the term Supported Languages could have a default value of English
	Text
	<blank>

	Description
	This is really default attribute when a particular requirement type is created. This includes the name and text box for description
	Text
	<blank>

	Effort
	Set by the development team. Because some supplementary requirements require more time and resources than others, estimating the number of team or person-weeks, lines of code required or function points, for example, is the best way to gauge effort and set expectations of what can and cannot be accomplished in a given time frame. Used in managing scope and determining development priority.

High: Above average level of effort to complete

Average: Average level of effort to complete

Low: Below average level of effort to complete
	High

Average

Low
	Average

	Notes
	Free-form Notes or Comments or Additional Info field to cover things that don't fall into any of the other attributes described above
	Text
	<blank>

	Part
	The UC requirement will have a parent and many children UC requirements. The parent is added to Req Pro once the use cases have been Identified. When the use case is detailed, children will be added to represent each major part of a use case:

Name and Description: The parent UC requirement.

Main Scenario: The one and only scenario for this use case.

Pre Conditions: The state the system must be in for this use case to flow as described.

Post Conditions: The state the system will be in once the use case has finished.

Anchored Alternate Flow: A set of steps that happen at a specific step in the parent use case.

Unanchored Alternate Flow: A set of steps that can happen either at anytime during the use case, or over a range of steps in the main scenario.
	Name and Description

Main Scenario

Pre Conditions

Post Conditions

Anchored Alt Flow

Unanchored Alt Flow
	<Name and Description>

	Planned Iteration
	Identifies the development iteration in which the flow will be implemented. It is anticipated that the development for each release will be performed over several development iterations during the project.

The iteration number assigned to each use case is used by the Project Manager to plan the activities of the project team.

The value is the numeric iteration for the project
	I1

I2

E1

etc.
	<blank>

	Priority
	Describes the relative importance of STRQ or FEAT in the Target Release.

Must: Indicates that the requirement is of the highest importance.
Need: Indicates that the requirement is critical to the long-term success of the product. However, meeting this requirement can be planned for in a later release if cost and schedule considerations indicate this to be the most prudent course of action. The architecture will enable this as a firm future requirement and cannot prohibit its eventual implementation.
Want: Indicates that this requirement will add significant utility to the product offering. However, if meeting the requirements adds significant cost or duration to the program, it can be disregarded.

	Must

Need

Want

	Must

	Rationale
	For FEATs whose type attribute is NF:DC (design constraint) rationale is why this constraint is necessary. For all other FEAT types rationale is not used.
	Text
	<blank>

	Risk
	Set by development team based on the probability that this requirement will cause undesirable events to the project, such as cost overruns, schedule delays or even cancellation. Remember that in the RUP we want to target the high risk requirements in the first iterations to enable our clients to walk away if things aren’t going to work.

High: The impact of the risk combined with the probability of the risk occurring is high. >75%

Medium: The impact of the risk is less severe and/or the probability of the

risk occurring is less.

Low: The impact of the risk is minimal and the probability of the risk occurring is low. <25%
	High

Medium

Low
	Medium

	Source STRQ
	Tracks the source of the stakeholder request. If unknown, use the analysts name who entered it into Req Pro. Examples include a person, a document, a constraining organization (e.g., FDA), a regulation, etc.
	Name(s) of source(s)
	<blank>

	Source FEAT
	For FEATs whose type attribute is NF:DC (design constraint) source is who or what is causing this to be a constraint. If the value is STKHLDR the source is the stakeholder who made the request that this FEAT traces back to.
	Name of source or STKHLDR
	<blank>

	Status STRQ
	Tracks progress during definition of the project baseline and subsequent development.

Proposed: Used to describe requirements that are under discussion but have not yet been reviewed and accepted by the “official channel,” such as a working group consisting of representative for the project team, product management and user or customer community.
Approved: Capabilities that are deemed useful and feasible and have been approved for implementation by the official channel.

Only PM can change the state from Proposed to Approved

Rejected: Capabilities that are not deemed to be useful and or feasible and have been rejected by the official channel or the requirement is not a valid stakeholder request

Only PM can change the state to Rejected

Postponed: Capabilities that are deemed useful and feasible and have been approved for implementation by the official channel for some future release
Only PM can change the state Postponed
Duplicate: Capabilities that are duplicate of some other capability decided by the official channel

Only RA can change the state to Duplicate

	Proposed

Approved

Rejected

Postponed

Duplicate
	Proposed

	Status FEAT
	Tracks progress during definition of the project baseline and subsequent development.

Proposed: Used to describe requirements that are under discussion but have not yet been reviewed and accepted by the “official channel,” such as a working group consisting of representative for the project team, product management and user or customer community.
“Official channel” could be formal peer review and inspection process. So all requirement artifacts are expected to be peer reviewed following formal review process.

Approved: Capabilities that are deemed useful and feasible and have been approved for implementation by the official channel.

Only Architect or designer can change the state to designed
Designed: Capabilities that are deemed useful and feasible and have been designed.

Only Architect or designer can change the state to designed
Implemented: Capabilities that are deemed useful and feasible and have been implemented.

Only implementer or coder can change the state to implemented
Validated: Capabilities that are deemed to be useful and or feasible and have been validated by a stakeholder or stakeholder representative

Only PM and TE can change the state to Validated

Rejected: Capabilities that are not deemed to be useful and or feasible and have been rejected by the official channel or the requirement is not a valid feature

Only PM can change the state to Rejected
Duplicate: Capabilities that are duplicate of some other capability decided by the official channel

Only RA can change the state to Duplicate
	Proposed

Approved Designed Implemented

Rejected

Validated Postponed

Duplicate
	Proposed

	Status UC
	Tracks progress of a use case flow or scenario.

Identified: The flow has been named and recognized as a flow for the system. Set by the RA.
Outlined: The use case has been roughly written in fifteen to twenty minutes total. Set by the RA.

Detailed: The flow has a high quality detailed set of steps complete with rules, terms, etc. It is ready to be designed and to drive test case writing. Set by the RS.

PID: Platform Independent Designed. A technology free UML collaboration has been created in the analysis model for this flow. Set by the Designer.

PSD: Platform Specific Designed. A UML collaboration has been created in the design mode for this flow, including the technology decisions and architectural constraints. Set by the Designer.

Implemented: The methods of the classes needed to support this flow have been implemented using the project technologies.

Func Tested: Functionality Tested. The flow has proven to grant the behavior described in the UCSRS.

Qual Tested: Quality Tested. The targeted SUPPs for testing this iteration that trace to this flow have passed test, showing the use case is of the planned quality level.

Accepted: The customer has signed off on Formal Qualification Test (FQT) accepting that the flow is of sufficient quality and behavior to grant value at the development site.

Deployed: The customer has signed off on FQT accepting that the flow sufficiently matches the results of the on site FQT. Issues discovered at this stage become change requests for future generations.

	Identified

Outlined

Detailed

PID
PSD
Implemented

Func Tested

Qual Tested

Accepted
Deployed

	Identified

	Target Release
	Release for which a particular STRQ or FEAT or UC is targeted.
	Name of release
	<blank>

	Type UC
	The following attribute values apply to UCs only

Identifies if a use case is concrete or supporting, useful for checking for vision stability in Construction
Concrete: Use Case is Concrete (has a primary actor)

Supporting: Use Case is a shared flow that supports other use cases.

	Concrete

Supporting

	<blank>

	Type FEAT
	The following attribute values apply to FEATS only

F: F: Feature is a functional requirement

F: R: Feature is a rule or rule set

NF:Q:U: Feature is a non-functional usability requirement

NF:Q:S: Feature is a non-functional supportability requirement

NF:Q:R: Feature is a non-functional reliability requirement

NF:Q:P: Feature is a non-functional performance requirement

NF:Q:SEC: Feature is a non-functional security requirement

NF:DC: Feature is a non-functional design constraint requirement

NF:IF: Feature is a non-functional interface requirement

	F: F

F: R

NF:Q:U

NF:Q:S

NF:Q:R

NF:Q:P

NF:Q:SEC

NF:DC

NF:IF
	<blank>

	Valid Range
	Some glossary terms have a valid range that is acceptable for this term. It can be a number, but it can also be a list. For example, the term Supported Languages could have a valid range of English, Spanish, German, Japanese.
	Text
	<blank>

	Volatility
	Set by analyst and development team based on the probability the feature will change or the team’s understanding of the feature will change. Used to help establish development priorities and determine those items for which additional elicitation is the appropriate next action.

High: The feature has a high probability of changing and/or the team is not confident of their understanding of the requirement.

Medium: The feature has a medium probability of changing and/or the team is only somewhat confident in their understanding of the requirement.

Low: The feature has a low probability of changing and/or the team is confident in their understanding of the requirement.
	High

Medium

Low
	Medium

3.5 Reports and Measures

3.5.1 Size Metrics
The following items will be analyzed and compared per iteration, per project and per month:

UCs, FEATs (that are functional requirement, non-functional quality requirements URPS, Interface requirements and DCs), STRQs, MECHs, Actors.

They will also be plotted versus total time to complete the iteration/project to look for any correlations. Separate Elaboration and Construction metrics will also be compared.

3.5.2 Volatility

Will show which requirements are changing the most as well as which have a high volatility attribute. We will also check for volatility after a specified time period and by iteration.
3.6 Requirements Change Management

3.6.1 Change Request Processing and Approval

The change request and approval will follow the standard change control procedures. The standard change control procedure in ECI case would be usage of project change control process. In this database, any ECI team member shall be able to submit change requests against ECI project requirement, defect against ECI project or any process improvement against RUP pilot or RUP adoption project.

3.6.2 Project Baselines

The baselining of requirements documents should be established at the end of Inception, Elaboration, Construction and Transition.

3.7 Security

The following table shows the access groups and permissions by group type
	Security Group
	Description
	RUP Role
	Permissions

	Creators
	People who can create new requirement types, attributes and make changes to the Requisite Pro database
	RA, RS, Designer
	Create, Read, Update, Delete (CRUD)

	Attribute Setters
	These are the people who can change the specific attributes. More likely these are people who have to change the state of requirement type
	PM, A, RA, TM, TA, DM, Developer
	R, U (Specific Attributes)

	Consumers
	Internal and external users of the system who need to look at features for implementing, testing and program managing the system
	UID
	R

	Administrators
	Administrator of the requisite Pro database, who also assigns user accounts
	System Administrator
	CRUD

Examples:

1. Developer can change the feature attribute from APPROVED to IMPLEMENTED

2. The project manager can change the stakeholder request from PROPOSED state to APPROVED state.

3. The RA can add stakeholder request

