
Chapter 2
Production Planning and Scheduling:
Interaction and Coordination

Yiwei Cai, Erhan Kutanoglu, and John Hasenbein

2.1 Introduction

In many organizations, production planning is part of a hierarchical planning,
capacity/resource allocation, scheduling and control framework. The production
plan considers resource capacities, time periods, supply and demand over a rea-
sonably long planning horizon at a high level. Its decision then forms the input
to the more detailed, shorter-term functions such as scheduling and control at the
lower level, which usually have more accurate estimates of supply, demand, and
capacity levels. Hence, interaction between production planning and production
scheduling/control is inevitable, not only because the scheduling/control decisions
are constrained by the planning decisions, but also because disruptions occurring
in the execution/control stage (usually after schedule generation) may affect the
optimality and/or feasibility of both the plan and the schedule. If the overall per-
formance of the production system is to be improved, disruptions must be managed
effectively, with careful consideration of both planning and scheduling decisions.
This chapter focuses on the interaction between production planning and schedul-
ing, emphasizing the coordination of decisions, with special emphasis on making
robust decisions at both levels in the face of unexpected disruptions. We provide
examples and realistic scenarios from semiconductor manufacturing.

To capture the interaction between production planning and scheduling, we
suggest an intermediate model between the two levels. One can view this as a lower-
level planning model or a higher-level scheduling model, but ultimately it provides
a middle ground between the two levels of the decision-making framework. In many
systems, the longer-term, aggregated production plan is used to facilitate scheduling.
This is usually achieved by creating specific work orders or jobs of different product
types that collectively resemble the output required by the production plan and gen-
erating a release schedule for the jobs. For example, semiconductor manufacturers
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rely on detailed simulation-based models to fine tune the release schedule (also
referred to as “wafer starts”), which ultimately determines the product mix in the
wafer fab. The scheduling function typically dispatches the jobs according to their
perceived or assigned priorities to align the processing sequence of the jobs with the
production plan while using the latest information on job and machine availabilities.
Dispatching inherently utilizes local information (typically one-job, one-machine at
a time) to make a decision. It is very hard, if not impossible, to calculate the effects
of an individual dispatching decision on the long-term system performance, or even
on the performance of the upstream and downstream machines on the shop floor.
The idea of an intermediate model between planning and scheduling is to provide
additional useful information to the scheduling system, whether it is dispatching
based or otherwise.

With the interaction and coordination between production planning and schedul-
ing being the main theme of this chapter, we first review the literature, focusing on
a selected set of production planning and scheduling-based papers. In Sect. 2.3, we
present two versions of our approach that attempt to fill the gap between the classical
planning and dispatching-based scheduling models using an intermediate decision
model. Section 2.4 describes our computational study with a simplified reentrant
system that represents a small wafer fabrication facility. Section 2.4 also discusses
the implementation issues that must be addressed to properly compare the proposed
approach with the conventional planning-to-scheduling approach, using this mini-
fab model. In Sect. 2.5, we present the experimental results focusing on insights that
can be obtained from our preliminary experiments. We conclude with a summary
and future research directions in Sect. 2.6.

2.2 Literature Review

We first review the production planning models that are representative of the existing
models in the literature. This review is not exhaustive by any means, and our main
focus is on the interaction between planning and scheduling, not necessarily on the
other aspects of the models, such as batching or setups, that may be potentially
critical. We also try to give examples and applications from the literature on semi-
conductor manufacturing to make the discussion more concrete, but the methods
discussed in this section also pertain to more discrete parts manufacturing systems.
Due to increasing competition and the rapid development of technology, manufac-
turing managers, especially those in semiconductor industry focus strongly on cycle
time, which is defined as the time between the release of an order to the shop floor
and its completion time of that order. Long cycle times imply a high work-in-process
(WIP) level, and thus high inventory costs. Therefore, we choose cycle time as the
main performance measure with which we evaluate the effectiveness of the coor-
dination between planning and scheduling. This choice further limits our literature
review to studies that emphasize cycle time as a potential issue to be addressed
between planning and scheduling.
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2.2.1 Production Planning Models

An extensive literature on production planning has been developed over almost five
decades. In this section, we focus on only a few of these optimization models.
Interested readers are referred to the chapter by Missbauer and Uzsoy (2010) in the
first volume of this handbook which reviews the basic formulations that are most
commonly used in academic research and industrial practice.

A capacitated Material Requirement Planning (MRP)-based model is proposed
by Horiguchi et al. (2001). The goal is to calculate a planned release date for each
order during each of its visits to a bottleneck station, and to estimate when the order
will be completed. The authors aggregate the times available across machines over
discrete time periods (time buckets) that are used to incorporate capacity factors.
The model explicitly considers capacity only for specified near-bottleneck stations,
and assumes that all other stations have infinite capacity, which is different from
the conventional MRP approach. They perform two experiments. One examines the
effect of the predictability of the capacity model. In their paper, predictability is de-
fined as the deviation of the realized completion time in the simulation model from
the predicted completion time in the planning model. The results show that finite
capacity planning gives better predictability than dispatching rules such as Critical
Ratio (Rose 2002). The lot with the lowest value has the highest priority. The sec-
ond experiment tests the effects of using a “safety capacity” in planning, that is, the
reduction of the planned capacity of a given station by some amount to keep process-
ing capacity in reserve to deal with unexpected events such as machine breakdowns.
Their results show that increasing the safety capacity reduces tardiness and improves
predictability, without adversely affecting other performance measures.

There are a wide variety of linear programming-based planning models for
production planning. Hackman and Leachman (1989) propose a general production
planning framework based on a linear programming model. They take into consid-
eration specific components such as processing and transfer time in order to provide
an accurate representation of the production process. However, the time delays in the
model do not capture the load-dependent nature of the lead times. Thus, the aspects
of production captured in the model are limited. In addition, the LP formulation
accommodates noninteger values for cycle times as well as planning time buckets
of unequal length. Expanding the model in Hackman and Leachman (1989), Hung
and Leachman (1996) incorporate time-dependent parameters representing partial
cycle times from job release up to each operation into the LP planning model. Fur-
thermore, they provide a framework that iteratively updates the plan through an LP
model that develops a plan for a given set of lead times and a simulation model
that evaluates the system performance for a given production plan. They estimate
the cycle times from the simulation results and show that they can achieve better
results by iterating between the LP and the simulation model. It is well known that
the relationship between cycle time and machine utilization is nonlinear. Therefore,
the iterative LP-simulation process provides a good way to approximate such a non-
linear relationship. The process stops when satisfactory agreement in cycle times
is achieved. Hung and Leachman’s experiments with deterministic and random
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machine breakdowns indicate that the difference between the LP and simulation
cycle times can be reduced to 5% or less within a few iterations. However, other
researchers have not been able to easily replicate such results, and our own research
indicates that similar results are difficult to achieve. In particular, the convergence
behavior appears to be unpredictable, and is certainly not well understood.

Some planning models that try to capture the relationship between cycle time and
utilization without resorting to simulation make use of so-called clearing functions
(Graves 1986). Clearing functions express the expected throughput of a machine in
a planning period as a function of the expected WIP inventory at the machine over
the period. (Our focus on load-dependent cycle times is mainly due to the obser-
vation that the load as a function of releases determined as part of the plan affects
cycle times that result in scheduling. There are recent studies that try to capture
the dependency between the load level and/or utilization and cycle times. In that
sense, the underlying approaches can also be viewed as “hybrid” models attempt-
ing to link planning and scheduling.) Missbauer (2002) considers clearing functions
for an M/G/1 system. He uses a piece-wise linear approximation for the clearing
function to model the effective capacity for bottleneck stations, and considers fixed,
load-independent time delays between bottleneck stages to represent the delays at
nonbottleneck machines. His planning model determines the release plan and uses a
short-term order release policy to select specific orders for release into the job shop.
The product mix is not considered in their clearing function, i.e., the clearing func-
tion only depends on the total planned production quantity, which means the total
output of a station can be allocated arbitrarily to different products.

Asmundsson et al. (2006) propose a clearing function-based planning model,
which explicitly considers the product mix. They approximate the clearing func-
tion using an empirical approach, together with two sets of constraints enforcing
flow conservation for WIP and finished goods inventory (FGI). There is no need
for explicit cycle time parameters in their model. Due to the product mix, different
products may have different capacity needs (capacity allocation), and a particular
difficulty is estimating the throughput as a function of the product mix currently
represented in the WIP. To overcome this, they assume that all products see the same
average cycle time, which allows them to use a convex combination of the capacity
allocation parameters to approximate the WIP levels of different products, which in
turn leads to approximated clearing functions. Exploiting the concavity of clearing
functions, they use outer linearization to approximate the functions, which results in
an LP model. The objective in their model is to minimize the total production cost,
the WIP cost, the FGI holding cost, and the raw material cost. The approximation
of the clearing function is also done by simulation with several randomly generated
realizations of the demand profile, which are evaluated using the release schedules
obtained from the fixed cycle time production planning model of Hackman and
Leachman (1989). They perform extensive experiments to evaluate the benefit of
the clearing function-based model. Different dispatching rules are used to compare
planned throughput and actual throughput. Based on these experiments, one of their
conclusions is that:
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“If planning is done properly, the role of a detailed schedule can be viewed as rescheduling
the jobs to adhere to the original production plan that has been distorted by equipment
failures and other unpredictable occurrences. Although it is unlikely that the scheduler can
restore the original plan in every instance, its ability to do so is highly dependent on the
planning algorithm’s ability to represent the shop floor dynamics correctly.”

Such a conclusion shows that we need to consider the coordination between
planning and scheduling to achieve better performance, which further motivates
our study.

Pahl et al. (2005) give an extensive survey of planning models, which consider
load-dependent cycle times. In addition to the use of clearing functions, there are
other approaches. Interested readers are referred to Sect. 3 and the corresponding
references in Pahl et al. (2005) for more details.

Model predictive control, or MPC (Qin and Badgwell 2003), is a method of
process control that has been used extensively in processing industries (Kleindorfer
et al. 1975). MPC encompasses a group of algorithms that optimize the predicted fu-
ture values of the plant output by computing a sequence of future control increments.
This optimization model is implemented through a rolling-horizon approach at each
sampling time. MPC attempts to model the dependence between the sequence of
predicted values of the system output, and the sequence of future control increments.
With knowledge of the system model, disturbance measurements, and historical
information of the process, the MPC model calculates a sequence of future con-
trol increments that must satisfy appropriate constraints. Vargas-Villami and Rivera
(2000) propose a two-layer production control method based on MPC. Extending
this work, Vargas-Villami et al. (2003) propose a three-layer version. The first layer,
called the adaptive layer, is used to develop a parameter estimation approach. The
second layer, the optimizer, solves an MILP model by branch and bound to gener-
ate a good-quality production plan. The third layer (direct control) uses dispatching
to control the detailed discrete-event reentrant manufacturing line in a simulation
model. The computational results show that the method is less sensitive to initial
conditions than “industrial-like” policies examined by Tsakalis et al. (2003). Fur-
thermore, the three-layer approach with the adaptive parameter estimation model
achieves reduced variation at high production loads as compared to the two-layer
approach. They did not perform any cycle time comparisons with existing methods,
but point out that an MPC-based model could be a promising tool for planning.

Jaikumar (1974) proposes a methodology, which decomposes the planning and
scheduling problem into two subproblems. The first problem is a long range plan-
ning problem, which maximizes the profit subject to resource constraints. The La-
grange multiplers obtained in the first problem are used in the objective function of
the second short range scheduling model. They propose a heuristic algorithm to re-
duce the second model to a sequential allocation of production facilities to products.

2.2.2 Scheduling Models

Apart from planning models, there are models and studies that focus on scheduling
only. Leachman et al. (2002) summarize their effort, dubbed Short Cycle Time
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and Low Inventory in Manufacturing (SLIM), to improve scheduling at Samsung
Electronics. They try to control the production line by managing the WIP level at
particular bottleneck stations. A dispatching-based method is used to achieve target
WIP levels at the bottleneck stations. An important task is to determine appropriate
target WIP levels. Based on an overall target cycle time for each product, the total
buffer time is calculated as the difference between the target cycle time and theoreti-
cal (or raw) cycle time. The total buffer time is then proportionally allocated to each
bottleneck step. The resulting buffer time allocation is in turn used to estimate the
target WIP levels using Little’s Law. By using different strategies according to the
characteristics of different production stages (bottleneck, batching, nonbottleneck
steps, etc.) and prioritizing the jobs in different stages to meet target WIP levels
(and hence bottleneck utilization) as closely as possible, they show that one can
reduce average cycle times.

In contrast to the fab-wide approach in Leachman et al. (2002), other authors
focus on bottleneck steps only, with explicit controls the WIP level. Lee and Kim
(2002) try to implement WIP control at bottleneck steps to balance a production
line in semiconductor manufacturing. Assuming a given target throughput rate, they
calculate the buffer time and the associated target WIP level. The work focuses on
short-term scheduling for the steppers, which are usually the bottleneck machines in
most wafer fabrication facilities. One of the two proposed MILP models minimizes
the total weighted deviation from the target WIP level, and the other maximizes
the total wafer production for all steppers in the hope that this will lead to high
utilization of bottleneck machines.

Kim et al. (2003) use a similar idea to determine a single-shift schedule for the
steppers for a given WIP status. Using an MILP formulation, they try to maintain
the WIP levels close to the “desired” levels so that the flow of material through the
factory is balanced. The objective is to meet the predetermined WIP targets. Three
proposed heuristics to solve the underlying MILP model can find schedules within
5% of the optimum values in a reasonable amount of time.

Queueing theory is useful in scheduling in several ways. One way is to analyze
the stability (that is, boundedness of average WIP) of scheduling policies. An-
other way is to model manufacturing systems with multiclass queueing networks
to develop scheduling policies. Generally speaking, queueing theory is based on
long-term steady-state analysis and may not be optimal in a finite period. However,
the following two papers implement queueing theory using fluid models that fo-
cus on transient analysis and are a reasonable approximation for short periods of
time. Dai and Weiss (2002) develop a fluid-relaxation-based heuristic to minimize
makespan in job shops. In a fluid model, discrete jobs are replaced with flow of a
continuous fluid and machines are replaced with valves that affect the flow rate of
the of fluid. The proposed online (dispatching-based) heuristic uses safety stocks for
WIP and tries to keep the bottleneck machine busy at almost all times, with the idea
that the nonbottleneck machines are paced accordingly. The heuristic is constructed
in three steps: (1) reduce the job shop problem to a reentrant line scheduling prob-
lem, which has the same lower bound; (2) define an infeasible backlog schedule
that keeps the bottleneck machine busy (here the schedule is infeasible because a
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machine is allowed to start work on a job step even if the previous step of the job
on a different machine has not been completed); (3) introduce safety stocks to make
the backlog schedule feasible.

Similarly, Bertsimas et al. (2003) use a fluid model to solve a job shop scheduling
problem with the objective of minimizing the holding cost. The proposed algorithm
uses the optimal fluid solution as a guide. Comparison with several other commonly
used heuristics shows that the proposed algorithm outperforms the other heuristic
methods.

This section provided a brief review of planning and scheduling models with a
focus on the interaction between the two models. We note that most of the plan-
ning models in the literature do not consider WIP allocation across stations, while
many scheduling models consider WIP level explicitly. Therefore, we propose an
approach in Sect. 2.3 to explicitly consider WIP allocation in an intermediate model
called high-level scheduling, and try to control WIP allocation in a way which fa-
cilitates the coordination between planning and scheduling.

2.3 Coordination of Planning and Scheduling

2.3.1 Overall Approach

In most manufacturing companies, the planning and scheduling functions belong to
two different departments, as planning is viewed as a tactical activity and scheduling
as more operational. Sometimes it is necessary to separate planning and scheduling
because it is almost impossible to obtain a comprehensive system-wide solution that
encompasses both planning and scheduling concerns. Such a model would have to
provide detailed decisions for each machine in each period. In general, it is im-
possible to solve such a model since it is inherently too complex with too many
constraints and variables. Hierarchical decomposition into planning and scheduling
provides an easy way not only to obtain reasonable solutions to both subproblems,
but also to generate decisions aligned with the current organizational structure be-
tween planning and scheduling functions.

However, the conventional hierarchical separation of these two functions may
cause several problems. One drawback is that a solution that is good at the planning
level might not be easy to implement as a detailed schedule; the plan may not be
even feasible when the scheduling issues are explicitly considered. One reason be-
hind this is that the dynamics of the production system are modeled at an aggregate
level, and detailed execution may be infeasible even if aggregate constraints are sat-
isfied. Another issue is that objectives are usually different between planning and
scheduling. The planning function focuses more on how to meet the demand, and
reduce inventory and backorders, while scheduling emphasizes more operational
measures such as minimizing cycle times and maximizing bottleneck utilization.
Ideally, if the hierarchical decomposition were done properly, the objectives of the
two levels would be aligned. However, due to the complexity of the overall problem,
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the computational effort involved in solving the two levels to optimality, and the
differences in preferences between the organizational areas representing the two
levels, this is not the case in the real world.

In this chapter, we test an idea that seeks to overcome the drawbacks of such
separation of planning and scheduling. The idea is to introduce an “intermediate”
module between planning and scheduling, which overall modifies the conventional
hierarchical approach. The goal is to solve the discrepancy in objectives between
production planning and detailed scheduling. In the following, we define “normal
planning” as a planning model that does not consider WIP levels explicitly, and a
“high level scheduling” model as one that does. In this approach, we have a normal
planning model (denoted by “P”) and a high level scheduling model (denoted by
“H”) that both feed into detailed scheduling (denoted by “D”) (See Fig. 2.1). To
provide a framework for our discussion, we represent each “stage” in the process
with an associated model: the planning model, the high-level scheduling model,
and the detailed scheduling model. In fact, in the following discussion, the first two
models are linear programming problems and the last one is a simulation model of
the system that represents the actual implementation of the plan and schedule.

First, we explain the proposed version of the P–H–D approach: The planning
model tries to meet the demand while minimizing inventory and backorder costs.
The output of the planning model specifies how much of each product should be
produced by the end of each period. Then, we use that output as a modified demand
profile, which is input to the high level scheduling model, which explicitly tries
to minimize the average WIP level, and thus the average cycle time. The high level
scheduling model determines the release policy and processing targets for each prod-
uct in each period, which form the input to detailed scheduling. Figure 2.1 compares
the proposed P–H–D approach with the P–D approach.

Fig. 2.1 Three approaches for planning and scheduling



2 Production Planning and Scheduling: Interaction and Coordination 23

Consideration of the three potential levels in the overall process gives rise to
another structure, in which the planning step is skipped: the original demand data
is fed directly to the high-level scheduling model whose output is input to the de-
tailed scheduling model. Intuitively, using a high level schedule without a planning
model consideration may achieve lower cycle times, but may result in higher costs
since it pays more direct attention to WIP levels than to costs. We now discuss our
mathematical formulations for the planning and high level scheduling models.

2.3.2 Planning Model

For the planning model, we use a fixed cycle time version of a well-known linear
programming model found in Hung and Leachman (1996). This model assumes
that the next planning horizon is divided into equal length time periods (or time
buckets, e.g., representing individual shifts). The planning horizon is assumed to be
long enough to capture varying demand levels (especially across product types) over
time. We assume that we have accurate forecasts for demand levels for each product
type, say, in every week, i.e., every 14 shifts. (To be consistent with the length of
the time bucket used in the model, the demand profile used in the experiments has
nonzero demand at the end of every 14 shifts). We finally assume that the production
process is divided into production stages or steps, each of which represents a unique
operation to be performed on a particular machine group (station). We first introduce
the notation that supports the model.

2.3.2.1 Sets

I : set of products, indexed by i
T : set of time periods (say, shifts), indexed by t
K: set of processing steps D f1; :::; �g, indexed by k, where � is the number of

steps, assumed to be the same for all products
M : set of stations, indexed by m

2.3.2.2 Input Parameters

pi;m;k: processing time of product i on station m at step k (say, in minutes)
cm: available running time of station m in one shift (cm D 12 h for all m in our

model)
di;t : demand for product i in shift t (in number of jobs), assumed to be nonzero

every 14 shifts with the availability of weekly forecasts and 2 shifts per day
fi;k: average partial cycle time for product i to finish step k (estimated from sim-

ulation results or historical data), i.e., the average difference between the time
when the job is released and the time it finishes step k(in shifts)

u: length of one shift (12 h)
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qi;k: smallest integer greater than fi;k , i.e. qi;k D ˙
fi;k

�

bi : unit backorder cost for product i , set to a large number to discourage backorders
hi : cost for holding one unit FGI of product i for one shift
ıi;k: coefficients used in constraints (2.4) for product i at step k (we explain this

term later in detail)

2.3.2.3 Decision Variables (All Variables Are Nonnegative)

Di;t;k: amount of product i that depart from step k in shift t (in number of jobs)
Ri;t : amount of product i released in shift t (in number of jobs)
Bi;t : backorder for product i in shift t (in number of jobs)
Ii;t : inventory of product i at the end of shift t at the end of production line (in

number of jobs).

2.3.2.4 Model Formulation

min
X

i2I

X

t2T

.e�tRi;t C hi Ii;t C biBi;t /

subject to

X

i2I

X

k2K

pi;m;kDi;t;k � cm8t 2 T; m 2 M (2.1)

Di;t;� � Ii;t C Ii;t�1 � Bi;t�1 C Bi;t D di;t 8i 2 I; 1 < t < jT j � 1 (2.2)

Di;t;� � Bi;t�1 C Bi;t D di;t8i 2 I; t � jT j � 1 (2.3)

ıi;kRi;t�qi;k
C .1 � ıi;k/Ri;t�qi;kC1 D Di;t;k8i 2 I; k 2 K: (2.4)

In this model, the objective is to minimize the total costs of releases, inventory,
and backorders, across all products and shifts. The discounted raw material release
costs are used to release raw material into the factory as late as possible so as to
indirectly manage the WIP in the factory. Constraints (2.1) limit the capacity of
each station with the given amount of time. Constraints (2.2) and (2.3) ensure that
the end product demand in each period is either met by finished product inventory
or backlogged.

Constraints (2.4) capture the dynamic properties of the cycle time. From simula-
tion results or historical data, we can estimate fi;k , which is the average partial cycle
time for product i to finish step k (from the beginning of first step of the product un-
til and including step k). Thus, we consider the production process as a fluid model,
and estimate the relation between the released quantity and the departing quantity
by backtracking the production flow along the time horizon. Figure 2.2 shows the
details of the relationship between Ri;t and Di;t;k.
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Fig. 2.2 Partial cycle times, and the relationship between Ri;t and Di;t;k

All products of type i finished at step k in shift t , denoted by Di;t;k should
have been released fi;k time units ago. Thus, by backtracking we can determine the
time when these products are released. In Hung and Leachman (1996), a formula is
provided to address all the cases where the cycle time is either longer or shorter than
the length of the time bucket. Since we use a constant length for each time bucket,
and in our mini-fab model (see Sect. 2.4.1) the partial cycle times are less than the
length of the time bucket (shift), Di;t;k is composed of two parts. Thus, the relation
between the products released, Ri;t , and Di;t;k is as follows:

Di;t;k D ıi;kRi; t�qi;k
C .1 � ıi;k/Ri; t�qi;kC1 8i 2 I; 1 � t � jT j � 1; k 2 K;

where the portions of releases to be completed by step k are estimated by ıi;k and
(1 � ıi;k). Here, we use ıi;k’s proportional to time: ıi;k D .fi;k mod u/=u, 8i 2 I

and 8k 2 K .

2.3.3 High Level Scheduling Model

As mentioned before, the purpose of the high level scheduling model is to find a bal-
ance between the cycle times and the inventory/backorder costs. Thus, its objective
function and constraints should take both factors into consideration. Although it is
hard to model cycle times directly, we know from Little’s Law that they are propor-
tional to WIP levels for a fixed throughput. Thus, we consider the WIP level instead
and try to represent minimization of cycle times by minimizing the WIP levels at
the end of each shift.
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In this model, the relationship between releases and departures is captured in the
same manner as in the planning model. The main difference is that we explicitly
capture WIP levels and their distribution across stations and stages of production in
detail. In this model, we manage to keep a certain level of WIP at bottleneck station
to prevent its starvation, which may lead to reductions in the throughput rate. These
levels are formulated using a WIP control constraint that allows the WIP to be within
a tolerance around the target value. To enable the model to build up WIP to meet the
target level, the LP model enforces the WIP control constraints only after a certain
number of periods elapsed. With this in mind, we introduce additional notation.

2.3.3.1 Sets

KB : set of steps in the bottleneck station

2.3.3.2 Input Parameters

�C; ��: upper and lower tolerance of WIP control (currently set at �C D 1:1 and
�� D 0:9)

vi : target cycle time for product i (in minutes)
�i : total raw processing time for product i (in minutes)
yi : total buffer time for product i , i.e. the difference between the vi and �i (in

minutes)
zi;k: target WIP level of product i at station k (in number of jobs)
�i;k: the average cycle time for product i to travel to the kth bottleneck step from

its previous bottleneck step (in minutes)
�i : average demand rate for product i (in jobs per minute)
ts : the last shift in which the WIP control constaints are not enforced; the high level

scheduling model is assumed to be in steady state after shift ts

2.3.3.3 Decision Variables

Wi;t;k: WIP level of product i at step k at the end of shift t (in number of jobs).

2.3.3.4 Model Formulation

The calculation of the target WIP level is adapted from the method proposed by
Leachman et al. (2002), which uses Little’s Law (as will be explained in detail
later). They use target WIP levels as criteria for dispatching. Here, we incorpo-
rate the target WIP levels into the high level scheduling model. The target WIP
calculation allocates the buffer time to bottleneck steps in proportion to the par-
tial cycle time between two consecutive bottleneck steps. Cycle times are estimated
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from a simulation model of the mini-fab in our experiments, but practice they can be
obtained from historical data. One can calibrate the estimated cycle times through
multiple simulation runs, but here we obtain cycle times in a single run. We first
compute the buffer time as the difference between the target cycle time and the
theoretical (or raw) cycle time (which consists of only processing times) for each
product:

yi D vi � �i 8i 2 I:

To allocate this overall buffer time (slack) into bottleneck steps, we compute the
time between two consecutive bottleneck steps of each product:

�i;k D fi;k � fi;k0 8i 2 I; k; k0 2 KB;

where k and k0 are two consecutive bottleneck steps.
Finally, we set the target throughputs equal to the average demand rates, allocate

the overall buffer time and convert the allocations to target WIP levels as follows:

zi;k D �i � yi � �i;kX

k02KB

�i;k0

8i 2 I; k 2 KB :

The final mathematical model is as follows:

min
X

i2I

X

t2T

 
X

k2K

Wi;t;k C hi Ii;t C bi Bi;t

!

subject to
X

t2T

X

k2K

pi;m;kDi;t;k � cm; 8t 2 T; m 2 M (2.5)
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The main difference between this model and the previous planning-based one is
that we now have WIP control constraints for the bottleneck steps. Here, we first
calculate the target WIP level for each step in the bottleneck station, and then use
the target WIP level in the LP model. Leachman et al. (2002) use a dispatching rule
to execute WIP control for individual buffers (product and step), while in our LP
model we control the total WIP level across all products at the same step in the
bottleneck station. The reason is that we think the purpose of setting target WIP
levels is to keep feeding the bottleneck station, so we only need to track the total
WIP level across all products at the same step in the bottleneck station instead of
controlling WIP levels for individual buffers.

2.4 Experimental Study

To test the idea of high level scheduling, we perform several experiments on a three-
station six-step hypothetical production system, which represents a small wafer
fabrication facility (mini-fab). Below, we first describe the mini-fab system, and then
present the experimental results. These experiments focus on (1) evaluating the over-
all merit of the P–H–D approach, (2) testing the impact of different cost settings, and
(3) testing the impact of machine breakdowns at nonbottleneck stations on the cycle
times and cost. For testing, we run the mathematical models that represent the plan-
ning and/or high-level scheduling problems with the same inputs, and then evaluate
the system performance (cycle time, WIP levels, costs) with a simulation model
that imitates the implementation of decisions made by the mathematical models.
For this, the simulation model relies on a dispatching-based methodology that tries
to follow the release and production targets set by the outputs of the mathemati-
cal models. Thus, the dispatching logic in the simulation model acts as a detailed
scheduling system.

2.4.1 Mini-Fab Model

The three-station six-step mini-fab model is depicted in Fig. 2.3. There are two dif-
ferent products, each of which must complete six operational steps. Each step is
to be performed by a machine at one of the stations. The process flows (routings),
which are the same for both products, are also shown in Fig. 2.3.

Table 2.1 shows the basic settings of the raw processing times for each product at
each step (in minutes). The last column shows the total raw processing time (RPT)
for both products. We consider a time horizon of 150 days, each day with 2 shifts
of 12 h, leading to a 300-shift long horizon. All the processing times are assumed to
be deterministic.

In the experiments with machine breakdowns, the first station’s machines may
fail. Times between failures follow an exponential distribution with a mean of 42 h.
The repair times follow an exponential distribution with a mean of 45 min. The base
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Fig. 2.3 Six-step three-station mini-fab model

Table 2.1 Raw processing time for the mini-fab model

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Total RPT

Product 1 47.5 30 75 40 52.5 30 275
Product 2 38 24 60 32 42 24 220

Table 2.2 Traffic intensity
(expected utilization)
for all stations

Traffic intensity Station 1 Station 2 Station 3

No machine breakdowns 0.78 0.74 0.94
With machine breakdowns 0.80 0.74 0.94

demand rates are 55 jobs per week for product 1 and 44 jobs per week for product 2.
The backorder cost is $50 per unit per shift, and the inventory cost is $1 per unit
per shift. We vary these values in the next section to evaluate impacts from different
factors.

Table 2.2 gives the traffic intensities (or utilizations) with and without machine
breakdowns for all stations. We observe that station 3 is an overall bottleneck, and
even when breakdowns are considered, the bottleneck station does not change.

2.4.2 Simulation Settings

To evaluate the performances of the different approaches in combining planning
and scheduling, we use a simulation model that imitates the execution of the
planning/scheduling decisions using a dispatching-based methodology. Here, the
simulation model represents the actual system, where the planning/scheduling deci-
sions are executed at the detailed scheduling level, during which the actual costs and
performances are incurred and measured. The simulation model first creates pro-
duction jobs according to the release schedule obtained in the mathematical model
being used. It then dispatches the jobs at the machines with some level of adher-
ence to the planning and scheduling decisions. Although there are several ways to
carry out dispatching for a given plan/schedule, we apply two different dispatching
rules: First-in-first-out (FIFO) and “target following.” FIFO dispatches the job that
arrives at the station earliest, when a machine at the station becomes free, and is
used primarily as a benchmark. The target following rule tries to follow the plan-
ning or high level scheduling production targets (captured by the optimal values of



30 Y. Cai et al.

departure variables in both models) as closely as possible. Since the solution to the
high-level scheduling LP model provides the processing targets for each product at
each step by the end of each shift, the target following rule gives the highest priority
to the buffer (product/step combination), which is the most behind (or least ahead)
of its cumulative processing target.

The simulation run length is determined by the completion of all jobs that are
released during the time horizon, 300 shifts. To obtain stable statistics on cost and
other performance measures such as cycle times, the first and last 100 jobs are dis-
carded. For the experiments with machine breakdowns (i.e. the scenarios in which
the first station may break down), we run 50 replications with stochastic machine
failure times and repair times to obtain the statistics.

2.4.3 Implementation

There are several issues to be addressed regarding the simulation experiments,
especially in terms of how the planning and scheduling decisions from the math-
ematical models are converted to inputs for simulation testing. One issue is how
to convert the release policy to a usable input for simulation. The LP model solu-
tion produces a noninteger numbers of jobs to be released during each shift, which
should be converted to integer values before they are used in simulation. We first
round the noninteger release values in the LP solution to integer values. However,
due to the run length of 300 shifts, the difference (denoted by �) between the
sum of the rounded values and the sum of the originally fractional releases can
sometimes be significant. As a result, if we use the rounded value for the release
policy in the simulation, we may incur unnecessary backorders or extra inventory.
To overcome this problem, we first calculate �, and then try to evenly distribute
this difference over the 300 shifts. For example, suppose � D 30 (i.e., the rounded
values lead to an accumulated release of 30 more jobs over 300 shifts than the frac-
tional values do). Then we would ideally release one additional job every 10 shifts
for an even distribution over 300 shifts. We follow this ideal distribution whenever
we can, for example when there is already a scheduled release in a shift and the even
distribution causes an additional job release in that shift. However, for shifts with
no scheduled releases, this may cause a release of one job by itself. Hence, if the
even distribution of � suggests releasing a job by itself in a shift with no originally
scheduled release, we release the extra job in the next shift with a nonzero release
in the original LP solution. This way, we can minimize the discrepancy between
the rounded release values and the original ones, and follow the original release
schedule as closely as possible.

A similar issue must be resolved while coordinating the planning and the high
level schedule. However, we do not address the noninteger issue here, because the
output result from the planning model is not a “real” demand profile, but rather a
guideline that will allow the high level schedule to meet the actual demand. Thus,
the fractional solution from the planning model should be adequate for this purpose.
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Therefore, when the planning model provides its decisions, i.e. how many jobs need
to be produced at the end of each shift, to the high level schedule as the demand
profile, it retains the original fractional values.

Finally, we discuss the criteria used to evaluate the simulation results. A common
performance measure in practice is cycle time, which measures how much time a
product spends in the system. Average cycle time is a typical aggregated measure of
the cycle time performance for each product category. In simulation, we collect the
cycle times for finished jobs of each product and divide the average cycle time for
each product by its raw processing time to obtain the so-called X-factors. A product-
based X-factor in a way measures how many multiples of the raw processing time
a product spends in the system, on average, before completion. For the one prod-
uct experiments, it is obvious that a lower X-factor indicates a better performance.
When we compare different approaches or parameters in the two-product experi-
ments, it is possible that one product’s X-factor is smaller and the other’s is larger
across different approaches and models. To facilitate a reasonable overall compari-
son, we compute the weighted average of the individual X-factors, with the weights
being set equal to the product demand rates, thus producing a demand-weighted
X-factor as a common measure across both products.

2.5 Experimental Results

Before we present the experimental results, we describe our terminology in this
part of the chapter. In the charts that present the simulation results in the following
discussion, we use the notation in Fig. 2.1. “P–D” means the traditional planning ap-
proach feeding detailed scheduling simulation; “P–H–D” means planning followed
by high-level scheduling which feeds detailed scheduling; “H–D” means high-level
scheduling feeding detailed scheduling without prior planning. In detailed schedul-
ing, “F” means using FIFO as a dispatching rule, and “T” means using the target
following dispatching rule. Aggregate performance measures obtained from simula-
tion are shown as a function of the two arguments – the approach that feeds detailed
scheduling (whether it is P–D, P–H–D, or H–D), and the dispatching rule used in
detailed scheduling (whether it is F or T). The two major performance measures are
the weighted average X-factors and total costs. “X” shows the product 1 X-factor
in the one-product setting, and the demand-weighted average X-factor in the two
product setting. “C” denotes the total inventory and backorder costs.

To understand how the system performance changes, we vary certain param-
eters and observe their effects on the relative performances of the tested plan-
ning/scheduling approaches. In particular, we vary the unit inventory costs and
demand variation across time periods, and examine different scenarios for machine
breakdowns. The mini-fab setting explained in Sect. 2.4 is our base case, and in all
the following experiments, we only change one parameter at a time and keep other
parameters unchanged.
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2.5.1 One Product Results

First, we test the approaches with one-product experiments. In these experiments,
we only have demand for product 1. In order to keep the traffic intensity (or utiliza-
tion) consistent with the two-product settings, we change the demand profile in the
base case setting for product 1 to 90 jobs every 14 shifts, which results in a traffic
intensity of 93%.

In these experiments, we keep the backorder cost fixed at $50 per unit per shift
and modify the inventory cost per unit per shift according to Table 2.3.

Figure 2.4 shows the impact of varying the unit inventory cost on X-factor and to-
tal costs. We see that the proposed P–H–D approach and the H–D approach always
produce lower X-factors than the planning model alone (with either dispatching
rule). We also find that the changes in inventory cost affect the overall X-factors level
very little. The total costs generally increase as the unit inventory costs increase, re-
gardless of the approach, with small differences across alternative approaches. To
see whether there is any interaction between the approaches and the components of
the total costs (inventory and backorder), we plot their levels separately in Fig. 2.5.
We see that as the unit inventory cost increases, we keep less inventory and incur
more backorders for a given approach, as expected. Since the P–H–D and H–D ap-
proaches try to control the WIP levels, they have a little more inventory and much
fewer backorders than the traditional P–D approach. We also observe that an in-
crease in the unit inventory cost (and a decrease in the relative cost of backorders)
causes significantly sharper increases in the conventional P–D approach, regard-
less of the dispatching rule used for detailed scheduling. The experiments using the
FIFO dispatching rule with the P–H–D and H–D approaches also show that FIFO
is in general worse than the target following dispatching rule. We only report the
performance of P–D and FIFO as a benchmark to make the graphs more legible.

Table 2.3 Change in inventory cost per unit per shift

Experiment index 1 2 3 4

Unit inventory cost for product 1 1 2 4 6

Fig. 2.4 Impact of varying unit inventory costs on X-factor and total costs for single product
experiments
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Fig. 2.5 Impact on inventory and backorder quantity of inventory cost change for single product

Table 2.4 Demand distributions for the single product experiments

Experiment index 1 2 3 4

Demand (Uniform) 90 (88, 93) (85, 95) (83, 98)

Fig. 2.6 Impact on X-factor and cost of demand variance

2.5.1.1 Demand Variation

In actual manufacturing systems, demand may vary over time. This is especially true
in the semiconductor industry, where the technology evolves so fast that it affects
the demand levels for different categories of products differently. In the experiments
in this section, we modify the variability of the demand. Hence, for each week,
we generate a random demand value drawn from a discrete uniform distribution.
We change variability of demand over time by extending the underlying range of
the distribution as shown in Table 2.4.

Again, as seen in Fig. 2.6, the X-factors obtained by P–H–D and H–D are much
lower than those obtained by P–D, regardless of the dispatching rule used with P–D.
The H–D approach achieves the lowest total costs among the approaches tested.
From these results, we see that increase in demand variation does not cause a signif-
icant increase in the X-factor levels for a given planning/scheduling approach, while
the increase in total costs can be high, especially for P–D and P–H–D.
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Fig. 2.7 Impact of demand variation on inventory and backorder quantities

Figure 2.7 shows the average inventory and backorder level. We find that the
backorder level of the P–D approach increases much more sharply than in the other
approaches as the demand variation increases, regardless of the dispatching rule
used in conjunction with it. Since the P–H–D approach obtains the implied demand
profile from planning and does not directly consider the original demand profile, it
cannot perform well in controlling backorders as the demand variation increases.
Although the P–H–D approach has higher backorder levels than the H–D approach,
it has lower backorders than the P–D approach in three out of four experiments, and
a comparable backorder level for the other one. However, the demand variation al-
most has no impact on the H–D approach; the inventory and backorder levels do not
climb significantly while the demand variation increases. The reason could be that
the H–D approach takes the original demand (and its variation) into account directly
and, to some extent, anticipates the variations in demand. Thus, it performs better
than the alternatives in the case where the demand variation is a dominating factor.

2.5.2 Two Product Results

We now present the results of the two-product experiments. Since the two products
compete for capacity in this setting, the analysis is not straightforward. However,
we still find some useful insights here.

2.5.2.1 Unit Inventory Cost

In this set of experiments, we evaluate the impact of varying unit inventory cost,
which takes a value of $1, $2, $4, or $6 per job per shift. When we change the
inventory cost for one product, we fix the inventory cost for the other to the base
level, $1 per job per shift. The changes are displayed in Table 2.5.

Figures 2.8 and 2.9 show the simulation results of these experiments varying unit
inventory cost for product 1 and for that of product 2, respectively.
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Table 2.5 Inventory cost per unit per shift

Experiment 1 2 3 4 5 6 7

Inventory cost for product 1 1 2 4 6 1 1 1
Inventory cost for product 2 1 1 1 1 2 4 6

Fig. 2.8 Impact of unit inventory cost of product 1

Fig. 2.9 Impact of unit inventory cost of product 2

As before, increasing unit inventory costs results in increasing total costs and
relatively stable X-factor values for the tested approach. Comparing the differ-
ent planning/scheduling approaches, the P–D approach with FIFO has the largest
weighted average X-factor, and the P–D approach with target following the second
largest. In general, the P–D approach with either dispatching rule has lower total
costs, and the approaches with high level scheduling (P–H–D and H–D) have larger
total costs. For all the experiments in which we modified the unit inventory cost
for product 1, the weighted average X-factors are similar for the P–H–D and H–D
approach. Overall, P–H–D and H–D are the best in terms of the X-factor and they
are comparable to P–D with FIFO or target following dispatching.

2.5.2.2 Demand Variation

In the previous 2-product experiments, we have demand levels constant over time,
at 55 units and 44 units per 14 shifts for products 1 and 2, respectively. To make it



36 Y. Cai et al.

more realistic, we change shift demands over time, setting the means to the levels in
the constant demand case. The distributions used to create individual shift demand
levels are discrete uniform as in the one product experiment. We change the demand
variation by extending the range of the uniform distribution, taking range values of
0 (no variation, fixed demand scenario), 5, 10, or 15. For example, when we set
the variation range to 5, the demand distribution is discrete uniform between 53
and 58 (both inclusive, represented by Uniform(53, 58)) for product 1, and Uniform
(42, 47) for product 2. These levels are described in Table 2.6.

Figures 2.10 and 2.11 show the impact of demand variation of product 1 and 2,
respectively. Again, we have lower weighted X-factors in the P–H–D approach and
the H–D approach. For the planning model, the cost increases when the demand
variation increases for the first product. As in the one product case, it seems that the
high level scheduling approach is robust with respect to the demand variation.

Table 2.6 Demand profiles with different distributions

Experiment 1 2 3 4 5 6 7

Product 1 demand (Uniform) 55 (53, 58) (50, 60) (45, 61) 55 55 55
Product 2 demand (Uniform) 44 44 44 44 (41, 47) (38, 50) (34, 53)

Fig. 2.10 Impact from demand variation of product 1

Fig. 2.11 Impact from demand variation of product 2



2 Production Planning and Scheduling: Interaction and Coordination 37

2.5.2.3 Machine Breakdowns

In the base experimental setting, described in Sect. 2.4.1, the time between machine
failures and the time to repair follow exponential distributions. The mean time be-
tween failures (MTBF) at station 1 is 42 h, and the mean time to repair (MTTR)
is 45 min, which produces an availability of 98.2% (long-term percentage of “up”
time out of total time, i.e., MTBF/(MTBF+MTTR)). In this section, we evaluate the
impact of varying levels of machine breakdowns. However, to keep the evaluation
simple, we keep the traffic intensity of station 1 less than that of station 3, so that
the bottleneck station does not change when we vary the downtime parameters. As
before, when we modify one of the factors we keep the others at the base levels.

We first vary the mean time between failures at station 1, and keep the mean
repair time at 45 min. The MTBF changes according to Table 2.7.

Figure 2.12 shows the impact of different mean times between failures at station 1
on the weighted average X-factors for the tested planning/scheduling approaches. In
these experiments, the P–H–D approach produces the lowest weighted X-factor, and
its cost is comparable to the cost of the planning model. Although the H–D approach
has a slightly higher weighted X-factor than P–H–D (still lower than P–D with FIFO
or target following), it has lower total costs than the other three approaches when
breakdowns are more frequent. As the mean time between failures increases (i.e.,
as the availability increases), the differences among the total cost of the various
approaches decrease. Also, the weighted X-factor decreases as the disruptions are
less frequent for all four approaches. Again, the FIFO dispatching rule with the
planning model gives the worst performance.

As part of the experiments in this section, we also vary the MTTR at station
1 according to the values in Table 2.8. By keeping the MTBF at 42 h, we gener-
ate availability levels comparable to those in the MTTR experiments. Figure 2.13

Table 2.7 Mean times between failures at station 1

MTBF (h) 7.5 9 12.5 25 42

Station 1 availability 90% 91.6% 94% 97% 98.2%
Station 1 traffic intensity 0.87 0.85 0.83 0.81 0.8

Fig. 2.12 Effect of mean time between failures at station 1
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Table 2.8 Mean times to repair at station 1

MTTR(min) 252 210 150 75 45

Station 1 availability 90% 91.6% 94% 97% 98.2%
Station 1 traffic intensity 0.87 0.85 0.83 0.81 0.8

Fig. 2.13 Impact to weighted average X-factor and cost from mean repair time at station 1

shows the effect of different mean repair times on X-factor and total costs. In these
experiments, the approaches with high-level scheduling (P–H–D and H–D, both
with target following dispatching) produce lower weighted X-factors than P–D
with FIFO and target following. Again, P–H–D and H–D have similar weighted
X-factors. In total costs, these approaches yield lower values than the planning-only-
based approaches (P–D), especially when the repair times are long and availability
is low. Comparing this with the previous set of experiments, we find that the impact
from the breakdown duration (MTTR experiments) is more pronounced than the
impact from the frequency of breakdowns (MTBF experiments).

2.5.3 Gantt Chart Analysis

To analyze why P–H–D or H–D works better than P–D, we examine the Gantt charts
representing the processing of jobs in some of the above experiments. As mentioned
before, we choose the same random seed for all three approaches so that they see
the same realization of machine breakdowns. Figures 2.14 and 2.15 are two typical
time periods in one replication of the same setting, which corresponds to the second
column in Table 2.7.

As we can see from Fig. 2.14, in the P–D approach, during the 1.05–1.08 (�104)
min time interval, there are no new releases. Therefore, when the machine breaks
down at station 1 around 1:12 � 104 min, there is not enough WIP at the bottleneck
station 3, and the station becomes idle at around 1:13 � 104 min. However, for
the P–H–D and H–D approach, the same disruption does not affect the bottleneck
station at all.

In Fig. 2.15, although the machine break down in station 1 affects the bottleneck
station in all three approaches, we can see clearly that the idle time of the bottleneck
station in the P–H–D and H–D approaches is significantly smaller than the one
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Fig. 2.14 Gantt chart for three approaches between 0.9 and 1.3 (�104) min

in the P–D approach. If we look at the Gantt chart along the whole time horizon,
we find that situations such as those seen in Figs. 2.14 and 2.15 are very common.
In the P–H–D and H–D approaches, jobs are “pushed” to the bottleneck station,
thus some jobs can avoid the machine-break-down situation without being held at
station 1. On the contrary, the total number of jobs released is almost the same for
all three approaches since the demand profiles are the same. Therefore, the weighted
average cycle times in the P–H–D and H–D approach are smaller than the cycle time
achieved by the P–D approach.
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Fig. 2.15 Gantt chart for three approaches between 2 and 2.3 (�104)min

2.6 Summary

Production planning is a critical process for every manufacturing company since it
directly affects the performance of detailed scheduling, which ultimately determines
the overall performance of the manufacturing system. Despite this interdependency,
in many manufacturing companies planning and detailed scheduling activities are
separated, with a limited coordination between them. Usually, planning decisions
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obtained from a long-term model are fed into a scheduling model as restrictions,
jobs to be released, and due dates. Detailed scheduling is typically handled through
dispatching.

In this paper, we suggest incorporating an intermediate stage into the usual
planning-scheduling hierarchy to seek coordination between planning and detailed
scheduling. This approach consists of the usual planning model and a high level
scheduling model, both of which feed dispatching-based detailed scheduling. The
high level scheduling model explicitly controls the WIP over time at each stage
in the system, thus providing a more specific guide to detailed scheduling. Our
numerical results indicate that the proposed approach results in shorter cycle times
(realized as a lower weighted X-factor) than the conventional two-stage approach of
feeding planning results into a detailed scheduling algorithm. In most cases, the use
of the high level scheduling model, either as an intermediate step between planning
and detailed scheduling or as an initial step before detailed scheduling, results in
lower inventory and backorder costs. This approach without a major planning step
turns out to be especially suitable for situations with high demand variability. All
these results indicate that if we consider more scheduling details in the planning
level and/or at an intermediate level before detailed scheduling, we would have
better performance on the shop-floor in terms of both cycle times and system costs
including inventory and backorders.

In actual manufacturing systems, all planning and scheduling systems are
implemented in a rolling horizon fashion. This is also true for the three-level
planning=high-level scheduling=detailed scheduling approach. For example, the
planning model would generate a plan for one quarter every month, and produce
the first several months’ demand profile, release schedule, and production targets,
for the upcoming weeks. This information would then be released to the high level
scheduling model. Then the high level scheduling model would generate a more
granular (say by day or shift) release policy and processing targets, for each major
processing step pertaining to the upcoming week or month. The detailed scheduling
step would try to implement the high-level scheduling decisions made for the next
few days on the shop floor. High level scheduling and planning steps can be rerun
with some regular frequency (say every week and month, respectively). During
the execution of detailed scheduling, the current system status, such as WIP level,
machine availability, may provide feedback that would initiate more frequent runs
of the high level scheduling and planning models. We believe the rolling horizon
approach would improve the performance of the proposed approach that incorpo-
rates a high-level scheduling model. Simulation of such a rolling horizon approach
requires significant effort and we leave this as a topic for future research.
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