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1.  Introduction 

When presenting and publishing data, it is common to provide a trend or time series analysis. A time 

series is simply a sequence of data points plotted over time (frequently using column or line charts). 

Time series analysis is used for a number of reasons: 

 To summarise a trend and show if a measure is increasing or decreasing. By summarising data 

across a range of years, it may be possible to remove the ‘noise’ of a single-year analysis and 

expose an underlying trend.  

 To project future trends, or estimate uncertain past events.  

 To identify a change in trend resulting from policy change or a significant event.  

In many cases, a description of the observations and the magnitude of any observed change over time 

may be sufficient. However, when change occurs (and in some cases, when it does not) we may be 

required to explain why this has happened.  

This document provides individuals producing analytical outputs with guidance on time trend analysis 

methods and examples of their appropriate use. It first examines methods of describing trend data in 

order to aid interpretation and then discusses methods for exploring associations within data over 

time, observing the key principle that the best method to use is the simplest one for the task. 

Examples of current practices within PHI publications are included in Appendix 1. 

Worked SPSS/Excel examples of methods described in this paper are presented in Appendix 2. Please 

note that other statistical packages may produce different results from those stated in this guidance. 

2.  Understanding trend data for descriptive analysis 

Before performing any analysis, it is essential to understand your data. Familiarise yourself with the 

data collection, submission and validation processes: 

 How complete are the data?  

 Who assesses completion and how?  

 Are there any known data collection/submission issues?  

 How are the data validated and quality checked?  

 Who carries out validation/data quality checks?  

 What is the scope and frequency of validation/data quality checks?  

 Are there any known data quality issues? 

Issues identified at this stage (e.g. changes in personnel, coding changes, non-submission) may help 

explain observed changes in indicators. However, in the absence of any issues associated with the 

collection and management of the data, observed patterns may merit further investigation. 

Basic methods of examining your data include performing frequencies to describe the observations 

and crosstabulations to identify potential associations between variables (essentially, trend analyses 

are crosstabulations by time). Using these analyses, you may notice trends such as seasonality effects, 

where data shows a recurring change at a specific point each year or periods in which changes appear 

to have occurred. In those instances, your knowledge of the dataset may adequately explain such 

changes, or it may be appropriate to investigate further. 
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3. Descriptive analysis of time trends 

Having investigated the structure of your data, it will often be necessary to describe the observed 

trend. The techniques discussed below are methods of presenting the data to identify or highlight the 

key messages. They can help to answer important questions about outlying data points and inter-year 

variation (smoothing), changes over time (population proportion testing) or help provide an 

alternative perspective on trend data (logarithmic scaling). 

Most routine PHI publications include trend analyses. However, many are descriptive and do not use 

sophisticated methods to identify trends in data. Examples of descriptive analysis discussed further in 

Appendix 1 are: 

 ScotPHO Profiles – many of the Profiles available on ScotPHO include simple smoothing in the 

form of 2-year, 3-year or 5-year rolling averages. 

 Drug Related Deaths (DRD) Report – this publication uses population proportions to determine 

if differences between years are significant. 

3.1 Smoothing 

Smoothing is a method used in descriptive statistics to help overcome inter-year variation across a 

time series. This analysis can be performed in Excel or SPSS using simple arithmetic functions (see 

Appendix 2 for examples of SPSS syntax). 

By reducing the impact of inter-year variation, the methods described below may help to produce 

more robust figures than a simple trend. However, the resulting analysis may not be strictly accurate 

or reliable. The main reason for this is that data are unweighted (each data point included in the 

calculation of the rolling average has equal importance in the equation). Therefore, before deciding 

which of the following methods to use, consider the standard deviation1 of the data. If the standard 

deviation is large, median smoothing may be the most appropriate method; otherwise simple 

smoothing should be sufficient. 

3.1.1 Simple smoothing 

Simple smoothing is commonly used with time series data to smooth out short term irregularities 

(peaks and troughs), allowing identification of longer term trends. The simplest example of this is a 

simple moving average (or rolling average), where the mean average of the data from successive 

years, often three or five, is plotted instead of, or in addition to, the data points.  

For an example of simple smoothing in a PHI publication, please see Appendix 1. Example SPSS syntax 

and a comparison of single year and smoothed trends can be found in Appendix 2. 

3.1.2 Median smoothing  

Median smoothing is considered more robust than simple smoothing where there is considerable 

variation from the mean. This process identifies the median in a list of values (instead of the mean) 

over a specified time period. As with simple smoothing, data of a specified time series (e.g. three or 

five successive years) is used to calculate a median value. It is a more appropriate method to use 

median smoothing where the underlying data contains outliers which may influence the mean. 

                                                                 
1
 Standard deviation is a measure of variation in a set of data values. A low standard deviation implies that there 

is little deviation from the mean of the set of values, while a high standard deviation indicates that the values 
encompass a wider range (Wikipedia: accessed December 19th 2016).  

https://scotpho.nhsnss.scot.nhs.uk/scotpho/homeAction.do
https://en.wikipedia.org/wiki/Standard_deviation


3 

 

3.2 Measuring change 

3.2.1 Confidence Intervals 

A Confidence Interval is a range of values that is normally used to describe the uncertainty around a 

point estimate of a quantity (for example, a mortality rate). For indicators based on a sample of a 

population, uncertainty arises from differences between the sample and the population itself. The 

values of the confidence intervals are therefore considered to be an estimate of the range of true or 

‘underlying’ values. Confidence intervals quantify the uncertainty in this estimate and, generally 

speaking, describe how different the point estimate could have been if the underlying conditions 

stayed the same, but chance had led to a different set of data. The wider the confidence interval is, 

the greater the uncertainty in the estimate. Confidence intervals of 95% are used most often. This 

means that there is a 19 in 20 chance that the confidence interval holds the ‘true’ value. The use of 

95% is somewhat arbitrary, but is conventional practice in medical and public health statistics. As with 

standard deviations, large confidence intervals may mean that your data aren’t representative of the 

population.  

An example of confidence intervals in a publication can be seen in the ScotPHO profiles in Appendix 1. 

Confidence Intervals are normally represented on charts by the use of vertical lines extending above 

and below each data point to represent their upper and lower limits. There are different ways of 

calculating confidence intervals, depending on whether the indicator used is a proportion or an 

average2.  

In terms of trend analysis, if the range of values between the upper and lower confidence interval 

limits of a data point does not overlap with the confidence interval range of a comparison data point, 

it can be regarded as different.  

3.2.2 Population Proportion Tests 

When a change is observed in trend data, it is often important to determine if the change was 

significant. One method for doing this is by evaluating the change in population proportion across 

years (e.g. from first year in series to most recent year, or from previous year to most recent year).  

Population proportion tests estimate the size of the difference in an indicator between two 

populations. For example, if you wanted to determine if an observed reduction in the number of 

stillbirths was significant, this method could provide an answer using data on the number of events 

(stillbirths) and the size of the population (total number of term pregnancies). This test can be 

conducted within Excel or in SPSS. A full explanation of this method can be found in Appendix 2. 

3.2.3  Comparing standardised rates 

It may also be beneficial to explore changes in standardised rates, in order to determine if observed 

differences are significant. While there is no specific test for doing so, a standard incidence ratio can 

help to determine the significance of the difference between two points in time. Public Health England 

has released a useful Excel spreadsheet 3 for this purpose, where you input the values from your data 

and significance calculations are automatically performed.  

                                                                 
2
 For an example of how to calculate confidence intervals using each method, see Khan Academy’s tutorial 

(accessed December 19th 2016) 
3
 Found at http://www.apho.org.uk/resource/view.aspx?RID=48617 [opens Excel spreadsheet] 

https://www.khanacademy.org/math/statistics-probability/confidence-intervals-one-sample
http://www.apho.org.uk/resource/view.aspx?RID=48617
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However, this method is only useful if you’re looking just at a start point and an end point, instead of 

many points within a trend. If you wish to determine if the overall trend is changing significantly, a 

Poisson regression (described in further detail below) may be the most appropriate method. 

3.2.4  Statistical Process Control 

Statistical Process Control (SPC)4 techniques can also be used to highlight areas for further 

investigation. SPC outputs were developed in industry using measurements from routine processes to 

establish the number and extent of deviations from an average or to quantify nonconformities over 

time. SPC techniques have been utilised within healthcare settings to monitor and address numbers of 

adverse events etc. It is not within scope for this guidance to provide a comprehensive account of SPC, 

but the main characteristics of ‘Control’ and ‘Run’ charts are summarised below. 

‘Control’ charts can be used to detect deviations from the mean over time using control limits (usually 

±3 standard deviations (equivalent to 99.8% confidence intervals)). This allows us to clearly see where 

a data point falls outside that range (i.e. is an outlier) and investigate further. Control charts require 

large numbers of observations, so that a robust average can be established for comparison.  

‘Run’ charts require fewer observations than ‘Control’ charts and (while they may incorporate a 

median) do not include an established mean value nor control limits to define deviation. While they 

can be used to measure time between events (often adverse events), run charts are primarily used to 

measure the number of events over time (in this case, they would feature a series of regular time 

intervals within the chart). Run charts have specific rules for defining non-random variation over time:  

1. A shift: six or more consecutive data points either all above or below the median.  Points on 

the median do not count towards or break a shift. 

2. A trend: five or more consecutive data points that are either all increasing or decreasing in 

value. If two points are the same value ignore one when counting. 

3. Too many or too few runs: a run is a consecutive series of data points above or below the 

median. As for shifts, do not count points on the median: a shift is a sort of run.  If there are 

too many or too few runs (i.e. the median is crossed too many or too few times) that's a sign 

of non-random variation. You may need to use other resources to establish what an 

appropriate number of runs would be.  An easy way to count the number of runs is to count 

the number of times the line connecting all the data points crosses the median and add one. 

4. An astronomical data point: a data point that is clearly different from all others. This relies on 

judgement. Every data set has a highest and lowest. They won't necessarily be an astronomical 

data point.  Different people looking at the same graph would be expected to recognise the 

same data point as astronomical (or not). 

For further information, see PHI’s guidance on Statistical Process Control. 

3.3 Charting data to highlight trends 

3.3.1 Logarithmic scales 

A logarithmic scale is non-linear and is based on orders of magnitude; this means that each mark on 

the scale is the previous mark multiplied by a set value. Logarithmic scales are useful in instances 

                                                                 
4
 More information may be found at: http://www.apho.org.uk/resource/view.aspx?RID=39445 [opens Excel 

spreadsheet], or http://isdscotland.org/Health-Topics/Quality-Indicators/Statistical-Process-Control/   

http://www.apho.org.uk/resource/view.aspx?RID=39445
http://isdscotland.org/Health-Topics/Quality-Indicators/Statistical-Process-Control/
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where trends may be difficult to spot, especially where one or more groups is much larger than any of 

the others (e.g. gender, age group). By using the log of values rather than the values themselves, the 

data becomes more manageable and easier to interpret. Examples of the use of a logarithmic scale 

can be seen in Appendix 2.  

3.3.2 Changing axis ratios 

Another consideration when charting data is the length of the axes. When you create a chart or graph 

in Excel, it automatically sets the ratio off the axes as 1:1; however this may not be appropriate for 

your data. An unnecessarily long X-axis can influence interpretation of the data and as a result, an 

analyst may miss important trends, or the magnitude of those trends. By altering the length of the X-

axis (e.g. to half the size of the Y-axis), you may be able to see the scale of a trend more clearly. For an 

example of this, see Appendix 2. 

4.  Understanding trend data for exploratory analysis 

The analyses described above should be taken into account when deciding whether to further explore 

data. However, the main consideration is often the customer’s requirement. In many cases, a simple 

description of the trend will suffice. However, if further explanation is required, it may be necessary to 

investigate the outcome (or dependent) variable in greater detail and to form a hypothesis about what 

other variables/factors may have influenced observations.  

This section describes methods of further exploring data in order to inform decisions about which type 

of exploratory analysis may be appropriate. The tests described in this section are used to determine 

which independent variables have a significant correlation with the dependent variable and with the 

other independent variables. Once these have been identified, it will be perform an analysis to 

estimate the extent to which the independent variables, individually and collectively, impact the 

dependent variable. 

4.1 Univariate analysis 

Charting the frequency distribution of your variables using a histogram (see Appendix 2) may be 

helpful. The distribution of your data may help to determine what analysis you use; a number of 

regression analyses (e.g. linear regression), assume that the data is normally distributed and issues 

may arise where this isn’t the case. When analysing a single variable, the most common distribution of 

data is called a normal distribution. A normal distribution is one where the mean (average), median 

(middle) and mode (most common) of the data are similar, and the rest of the data are dispersed in a 

predictable way. When the frequency of values within a variable are plotted as a histogram, if 

normally distributed, a bell curve should be seen. However, there are many types of distribution other 

than a ‘normal’ one, many of which are perfectly valid.  

Examining the standard deviation (see Appendix 2) of your data may also be a factor in deciding what 

analysis to run. The Standard deviation (SD) is a measure that calculates the amount of variation in an 

indicator. A high or large SD indicates a high degree of variation from the mean. What is considered a 

high or low SD depends on the data. However, one method for determining if the SD is large is by 

dividing the SD by the mean – if the result is greater than or equal to 1 it may be considered a large 

SD. Assuming that data points from an entire population would be normally distributed, a high SD 

value may indicate that the data points are overly dispersed and that the sample is not representative 
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of the population. If this is the case, you may wish to consider the impact of data quality issues or 

consider modifying the dataset. 

Frequencies, standard deviations and comparison of mean and median values are useful for 

identifying outliers. Outliers are values that are markedly different from the range of most observed 

values and may affect subsequent analyses. Outliers may be genuine measurements, but may also be 

an artefact of data collection or quality issues. If possible, determine if these are valid data points or 

the result of such issues and then make a decision on whether to remove these data points. This 

decision should always be documented in syntax and possibly also in statistical outputs. The 

parameters used to identify and exclude outliers may vary on the basis of the number and distribution 

of values, and can be quite subjective. There are many tests that may be used to identify outliers, such 

as Tukey’s test.5 If you decide not to exclude outliers, be aware that they may skew analysis, although 

some of the methods described in the guidance (e.g. smoothing) may help avoid this. 

4.2 Multivariate analysis 

Having investigated the characteristics of the outcome (dependent) variable, it is appropriate to start 

to form hypotheses about what other variables (predictors or independent variables) may be 

influencing observations. Start with the most plausible explanations based on your knowledge of the 

subject area. For instance, the most plausible explanations for an increase in long A&E waits would be 

an increase in patients presenting at the A&E or a decrease in staff numbers. In many cases, you will 

be in possession of the relevant data to compare with the outcome variable. But in other cases, it may 

be necessary to source this from elsewhere. 

Crosstabulating or charting two variables together (for instance, using a scatterplot) is a useful way of 

assessing the nature and strength of the relationship between them. If there is no relationship, we 

would often reject the hypothesis that there had been a simple interaction between these variables. 

However, if we observe a potential association, then it may be appropriate to investigate further and 

attempt to quantify the strength and nature of the relationship and to ascertain how this interaction 

occurs.  

Some of the methods for doing this are described in detail below. When choosing which method to 

use, try to adhere to the following rules. 

 Keep it simple: choose a technique that does the job but isn’t more complicated than necessary. 

This will cause less confusion among users of the data.  

 Test the method: compare the various methods and use one that is consistent with the time series 

data and the desired output, as described below.  

 Review: each time a method is to be chosen, review it and if appropriate, change it. 

5. Analytical methods for exploratory trend analysis 

Having explored the descriptive analyses described above and decided that a more comprehensive 

analysis is appropriate; you may decide to use regression analysis to describe the relationship between 

your outcome (dependent) variable and predictor (independent) variables. There are many types of 

regression that may be used, depending on your data and the preferred output. 

                                                                 
5
 Other tests are described on the Wikipedia page on ‘outliers’ 

https://en.wikipedia.org/wiki/Outlier#Detection
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It is important to adhere to the principle of parsimony - the best method to use is the simplest one 

for the task. If a chi-square test explains the data adequately and provides the required output, it’s 

unnecessary and unproductive to run a complex regression model. 

An example of a PHI publication which uses exploratory trend analysis is: 

 Hospital Standardised Mortality Ratios (HSMR) – this publication uses linear regression to 

present a visual impression of trends in HSMRs over time. Linear regression is used to help 

overcome the seasonal variations observed in the data; this is a good example of keeping the 

analysis as simple as possible while producing outputs that are relevant and informative. 

Regression analyses are used to learn about the relationship between a set of indicators and an 

outcome. More specifically, regression analysis is used to aid understanding of how the mean6 of the 

dependent (outcome) variable changes when any of the independent (predictor) variables is varied. 

It is more powerful than a simple correlational analysis7 since it allows us to estimate the extent to 

which the outcome variable will change when the predictor variable does. For example, when we look 

at the likelihood of mortality due to smoking over a number of years, regression analysis will allow us 

to estimate the actual impact of age, gender or deprivation. Correlational analyses only allow us to 

measure whether a statistically significant correlation between variables exists. 

The choice of regression method depends primarily on three things: the nature of the relationship, the 

number of predictor variables and the desired outcome.  

1. The relationship between variables can be examined by plotting the data points on a 

scatterplot (see Appendix 2). Attaching a line of best fit to the scatterplot also aids in 

determining the nature of the relationship; most statistical packages (including SPSS and R) 

perform this function.  

2. The number of predictor variables to be used in the model is important; one independent 

variable requires the use of univariate regression (e.g. simple linear regression) while multiple 

or multivariate regression (e.g. multiple linear regression) is used when two or more 

independent variables are to be included. 

3. Regression analysis may be used to determine if there is a significant difference across years in 

a time series or it may be used to predict events in the future. It may also be used to identify 

the impact of a change, for example in policy. The type of regression used depends very much 

on which of these outcomes is desired. 

5.1  Using Regression 

In regression, the ideal model is one which is comprehensive enough to fit the data well but also 

straightforward enough that it interprets and smoothes the data in a useful way instead of ‘overfitting’ 

it. Once the model has been created, there are a number of ways to check the model’s efficacy: 

 Goodness of fit: these tests describe how well the constructed model fits the observations that 

have been included. It does this by examining the difference between the observed values and 

those expected under the model. The most common way of doing this with regression analyses is 

by using the coefficient of determination, or R(r)-squared. 

                                                                 
6
 Mean is used most often. However, in some cases other location parameters (e.g. quantile) may be used. 

7
 A correlational analysis is an analysis performed to find the strength of the relationship between two or more 

variables, e.g. the relationship between height and weight. 
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 Analysis of patterns of residuals: residuals are the differences between the predicted and 

observed values in a dataset. The sum of the residuals within a random sample must be close to or 

equal to zero. A suitable test of residuals is the White test. 

 Statistical significance of model: 

 The overall fit can be checked by an F-test. This test compares the ratio of two variances 

to test if they are equal. It uses the assumption that the null hypothesis is true (that 

interactions between dependent and independent variables are a result of sampling or 

experimental error and not due to the effect of one on the other). The F test statistic is 

produced in the output of regression analyses in SPSS, and is described in Appendix 2. A 

large F-value8, especially paired with a very small p-value9, indicates that variation is 

unlikely to be due to chance. A large F-value indicates that a model is likely to be robust 

and will produce meaningful results. 

 The statistical significance of the combination of predictor variables is examined using t-

tests. This test is used to determine if two groups (e.g. individuals aged under 40 and 

individuals aged over 40) are significantly different from each other in relation to an 

observation (e.g. alcohol consumption). It assumes that the data are normally distributed. 

If the t-test shows that alcohol consumption is statistically significantly different for 

younger and older individuals, it may be assumed that the variables alcohol use and age 

will be of use in the regression model. 

Caution should be taken when interpreting the results of regression, as it is still a correlational 

method and, as such, causality cannot be inferred from the outcomes.  

5.2  Methods 

5.2.1 Linear regression  

This is recommended for use where the dependent data are normally distributed (e.g. blood pressure) 

and the independent variables must also have a linear relationship with each other (e.g. weight and 

height).  Linear regression can be done with only one independent variable (i.e. simple linear 

regression) or with multiple independent variables (i.e. multiple linear regression). 

Before performing linear regression, it is important to understand the assumptions that must be met 

for it to be a robust method of analysis10. 

 The dependent variable should be measured on a continuous scale (e.g. years). The 

independent variables may be continuous or categorical (e.g. age groups), though adjustments 

may be necessary in the case of categorical variables.  

 The independent variables may not be a combination of any of the other independent 

variables, e.g. an age/sex grouping must not be used alongside age or sex.  

 Independent variables must be uncorrelated with each other. This is considered true if the 

presence of one does not affect the probability distribution of the other (e.g. height is 

uncorrelated to blood pressure; height is correlated to weight).  

                                                                 
8
 The further away from 1 the F-value is, the less likely that the differences are due to chance. More information 

on calculating it can be found at Statistics How To (2013). 
9
 The p-value is a measure of the significance of observed differences between two groups in a statistical model.  

10
 More information on linear regression assumptions can be found at Statistics Solutions. 

http://www.statisticshowto.com/f-statistic/
http://www.statisticssolutions.com/assumptions-of-linear-regression/
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 The data must show homoscedasticity, or homogeneity of variance. This means that the 

variation within each of the populations must be the same. 

 The variance between observed and predicted values must be approximately normally 

distributed.  

Linear regression can be a powerful analysis if the relationship between the variables is close to 

perfectly linear11. The less linear it is, the less robust the output will be. Additionally, since linear 

regression compares the mean of the dependent variable to the independent variables, it may be of 

limited value when examining atypical outcomes (for example, if the aim is to measure low birth 

weight against other factors, linear regression may not be useful). It is important to remember that it 

is not an absolute description of the relationship between the outcome variable and the predictor 

variables. An example of linear regression performed in SPSS is shown in Appendix 2. The linearity of a 

relationship may be tested using restricted cubic splines, as explained below. 

5.2.2 Logistic regression  

Of the methods described, linear and logistic regressions are the most frequently used. The key 

difference between the two is that linear regression determines the relationship between the 

dependent and independent variables where the dependent variables is measured on a continuous 

scale (e.g. years), while logistic regression uses a dependent variable with a limited number of 

potential outcomes (e.g. yes/no/maybe; 1/2/3/4; died/survived).  

Logistic regression is most often used when the outcome is binary (e.g. dead or alive after a certain 

time period). Logistic regression calculates the probability of the binary outcome (i.e. dependent 

variable) given various values of the independent variable. It can be used for dependent variables with 

more than 2 outcomes, but the values assigned will be arbitrary (e.g. age groups) and have no 

relationship to the count of observations.  

Logistic regression assumes that the observations are independent, e.g. one person dying after a 

specific diagnosis does not affect the probability of death of another person with the same diagnosis. 

It is also assumed that the natural logarithm of the odds ratio12 has a linear relationship13 with the 

independent variables.  

The dependent variables and residuals don’t have to be normally distributed for logistic regression to 

be of use. A linear relationship between the dependent and independent variables is not assumed. 

However, a very large sample size is needed for robust results. 

See Appendix 2 for an example of how to perform logistic regression in SPSS. 

5.2.3 Polynomial regression 

This method may be appropriate if a scatterplot of the data shows one or more curves. The most 

common way of interpreting this type of data in regression is to fit curves to the data using polynomial 

                                                                 
11

 A linear relationship can be seen clearly on a graph; when plotted with one variable on each axis the points will 
join to form a line. This relationship can be positive (both variables increase at a steady rate) or negative (one 
variable increases while the other decreases at a constant rate). 
12

 Odds ratio is the ratio of the likelihood of an event being observed in one group to the likelihood of it being 
observed in another group. An odds ratio of 1 means that the event is equally likely to be observed in both 
groups; greater than 1 suggests the event is more likely in the first group; less than 1 suggests the event is more 
likely in the second group. 
13

 This can be checked with a Box-Tidwell test. A demonstration of how to do this in SPSS is shown on page 10 of 
http://core.ecu.edu/psyc/wuenschk/MV/Multreg/Logistic-SPSS.pdf [accessed 3 March 2017] 

http://core.ecu.edu/psyc/wuenschk/MV/Multreg/Logistic-SPSS.pdf
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terms (e.g. squared or cubed independent variables). The polynomial term chosen is usually 

determined by how many curves are needed14 to fit the data, but rarely exceeds a cubed term. 

Statistically this is considered linear regression because the parameters are linear (e.g. years).  

In polynomial regression, as in linear regression, a number of assumptions about the data are made.  

 The dependent and any or all independent variables have a linear or curvilinear relationship.  

 The independent variables are also independent of each other.  

 The errors are independent (i.e. no correlation between consecutive errors) and normally 

distributed. 

It is a more complicated method than simple linear regression, and lines of best fit curve oddly and 

implausibly at their extremes. It can also be more difficult to interpret the output. See Appendix 2 for 

an example of how this method is done. 

5.2.4 Restricted cubic splines15  

This is a method of testing the linearity of relationships between variables (determined by plotting the 

data on a scatterplot, and interpreting the R-squared16 values) and summarising non-linear 

relationships. It may also be used if the non-linearity is of specific interest.  

This method splits up the range of values of the independent variable using ‘knots’ to define the start 

and end of each section. Each section has a separate curve applied to it. The number of knots is the 

most important aspect of this model. In general, for small sample sizes (i.e. under 100 cases) three 

knots should be used. This ensures that there are enough data points between the knots to fit each 

polynomial. Where there is a large sample size (i.e. greater than or equal to 100 cases), more than five 

knots may be used if the relationship looks like it changes quickly and often. Studies (e.g. Harrell et al., 

2001; Stone, 1986) have suggested that 4 or 5 knots may be sufficient for the majority of instances 

where the restricted cubic splines method is employed.  

The location of the knots may be determined by the analyst but it is more common for the knots to be 

pre-specified based on the quantiles of the continuous dependent variable. A table with suggested 

locations expressed in quantiles of the continuous variable is found in Appendix 2.  

Appendix 2 also contains a step by step guide to producing a restricted cubic splines model. Once the 

model has been run, the variables created can then be used in any regression model as the 

independent variables (including the original variable). 

This method is unusual in that you don’t necessarily need to consider the desired outcome when 

choosing this method, as it transforms the data to suit the model you would like to use. It is also a 

useful tool to formally investigate the linearity of the relationship between variables. In addition, it is 

less prone to odd curves at the extremes than polynomial regression. However, it’s relatively 

complicated to perform and interpret, especially when compared to simple linear regression.  

                                                                 
14

 Quadratic models are used for one curve; cubed models for two curves – see Appendix 2. 
15

 This method is called restricted cubic splines because a. the spline (a regression model whose function/slope 
changes) is restricted to be linear before the first knot and after the last knot; and b. cubic is the smallest degree 
of polynomial that provides suitable flexibility for fitting data, so is most often used. 
16

 The R-squared (R
2
) value is a measure of how well the data are to the line of best fit. Usually, the closer to 1 

that R
2
 is, the better the data fits the line. However it should be used in conjunction with other test statistics and 

residual plots (see Appendix 2) when determining if the model is suitable.   
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5.2.5 Segmented regression  

Segmented regression is useful for interpreting trends before and after a point or points of interest. 

For instance, it may be used when we want to see the effects of a significant event or change in policy 

(e.g. smoking prevalence after the smoking ban was introduced). It may also be used in instances 

where there are missing data for certain time periods. It fits separate lines showing different 

relationships between variables before and after the point of interest.  

Assumptions made about the data when segmented regression is performed are: 

 Linearity between the variables is assumed, which may not always be true. It may also be that 

the nature of the relationship may be linear in one section but not in another.  

 A minimum of 8 data points are also recommended before and after the point of interest. 

If the breakpoint (the point at which the relationship between the data changes) is unknown, the 

sections may be determined in a number of ways.  

 The simplest method is to plot the data on a scatterplot and identify where there are 

differences between one section and another.  

 If the breakpoints are not obvious from the scatterplot, regression splines may be used (see 

Appendix 2).  

 Another method for determining where knots should be is Joinpoint Regression. This is usually 

done in a specific programme called Joinpoint. This programme will calculate where 

differences between years are significant, up to a maximum defined by the user. Obviously the 

specificity of the programme makes it slightly restrictive as a possible method. 

Once the breakpoints are known, a regression model is fitted to each section, and interpreted as in 

Appendix 2. The strengths of segmented regression lie in its ability to assess the immediate impact of 

what changed the relationship between the variables as well as the impact over time. It also controls 

for changes that would have happened without the intervention (e.g. smoking ban). Interpreting the 

results can be quite straightforward when the data are graphed; visually demonstrating the effects of 

policy change and the strength of those effects. It is also more robust than simple pre-post analysis as 

it highlights trends that may have been in place before the change in policy.  

5.2.6 Poisson regression  

This method is used when the outcome is a count of observations (e.g. hospital admissions) and a 

Poisson distribution is assumed. A Poisson distribution is the probability distribution that results from 

a Poisson experiment. A Poisson experiment is one where: 

1. outcomes are events occurring or not occurring;  

2. the average number of events is known;  

3. the probability of the event happening is proportional to the amount of time measured; and 

4. the probability of the event in a small amount of time is almost 0. 

An example of this may be determining the probability of having 200 people at A&E on Tuesday, if we 

know the average number of people who are seen at A&E on a Tuesday is 180.  

A Poisson random variable is the number of events seen in a Poisson experiment. The probability 

distribution of a Poisson random variable is called a Poisson distribution. This has specific properties: 

1. the mean of the distribution is the mean of the number of observations. 

2. the variance is also equal to the mean of the number of observations.  

https://surveillance.cancer.gov/joinpoint/
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As with all types of regression, several assumptions are made about the data.  

 The events must be independent of each other, i.e. the occurrence of one observation will not 

make another more or less likely.  

 The number of events should follow a Poisson distribution. 

 Independent variables must be continuous, dichotomous or ordinal. 

 Events must be counted in positive whole numbers.  

Poisson regression is especially useful for estimating rare events, such as calculating the probability of 

a patient being diagnosed with a rare (non-infectious) illness. It is similar to logistic regression but a 

robust model can be obtained with Poisson regression using much lower sample sizes.  

As mentioned previously, Poisson regression may also be used to determine if changes occurring 

across a time series are significant, while adjusting for an independent variable, such as age. Before 

proceeding with this analysis, it must be decided if the trend is reasonably linear or if another type of 

relationship should be explored. Similarly, seasonal patterns should be considered, as this may 

account for much of the change seen. 

An example of a Poisson regression analysis in SPSS can be found in Appendix 2, with guidance on how 

to interpret the outputs. 

5.2.7 ARIMA 

ARIMA (AutoRegressive Integrated Moving Average) models take account of the correlation between 

successive data points. It requires the data points to be relatively stable over time and with a 

minimum of outliers. It is also recommended to have at least 40 data points when using ARIMA 

models. ARIMA modelling is mainly used for short term forecasting. 

Before using an ARIMA model, the data should be checked for ‘stationarity’ - a measure of the 

predictability of changes over time. Decreases in mortality every June is not stationary (it may be 

predicted), while random variations observed within a year may be stationary (not predictable). 

Stationarity is required for ARIMA modelling. However, if it is not present within the data, it is possible 

to ‘difference’ the data to transform it to stationary data. This is done by subtracting the observation 

in the current time period, e.g. month, from the observation in the previous time period (‘first 

differencing’). If this is not sufficient to make the data stationary, this process may be carried out again 

– referred to as ‘second differencing’. The purpose of differencing is to stabilise the mean.  

Other assumptions of ARIMA are: 

 all observed time series’ are random 

 there are no other predictors 

 the relations are exclusively linear 

ARIMA models can be autoregressive, or have a moving average, or a combination of the two. 

Autoregressive models forecast the dependent variable based on a weighted sum of past values. The 

independent variables in this instance are lagged values of the dependent variable.  

Moving average models use past forecast errors in a regression-like model. These models use a value 

that is not observable, which means that calculating it presents some issues, and iterative non-linear 

fitting procedures need to be used.  

SPSS has a function that can decide which ARIMA model is best for your data (see Appendix 2). It may 

include independent variables (specified by you) but only ones that have a significant relationship with 
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the dependent variable. It also differences or uses other methods to make the data stationary. There 

is another function that allows you to build the model yourself but this should obviously only be used 

once you have a lot of experience using ARIMA models. 

5.2.8 Age Period Cohort Analysis 

This method is used to form projections of incidence and mortality (e.g. in relation to medical 

conditions), based on three effects within a population: age (e.g. varying rates of disease), time period 

(e.g. social or economic factors) and cohort (e.g. difference in health outcomes based on year of birth). 

This method will be described in further detail in forthcoming PHI guidance on predictive analysis.  

See Appendix 1 for an example of age period cohort analysis from PHI’s Cancer Incidence Projections. 

6. Discussion 

There are a wide variety of methods for producing meaningful trend analyses, many of which are 

described in this guidance.  

While it is valuable to learn about options for analysing trend data and it may be tempting to apply 

these techniques within data analysis, it is more important that analysts:  

 understand their data;  

 analyse descriptively first; and 

 if undertaking more complex analysis, select an appropriate method that explains data in the 

simplest manner possible.  

Understanding the ways in which data are collected, submitted, validated and coded will also help 

with your analysis. For instance, you may have missing values that will need to be considered in the 

context of any analysis. Issues found in the process of understanding the data may explain observable 

differences; if they don’t, further investigation may be required. 

Once you have determined that your data is of sufficient quality to be analysed, first analyse 

descriptively. In many cases the customer will not require anything more detailed. For example, 

running a complex analysis on data that can be explained by seasonal effects is inefficient and is 

unlikely to add more value than a simple crosstabulation.  

While extremely valuable in some circumstances, complex analyses such as regression are time-

consuming and require statistical/technical knowledge. Where a customer does wish to explore the 

data further, ensure all stakeholders (internal and external) are aware of the impact of that decision 

on timescale and resource. Ensure the specification/timescale allows the analysts to proceed through 

the steps outlined above (descriptive analysis, hypothesis building, regression analysis, testing) 

without undue pressure from stakeholders. Communicate findings to internal and external 

stakeholders on a regular basis in order to validate decisions and test assumptions. 

  

http://www.isdscotland.org/Health-Topics/Cancer/Cancer-Statistics/Incidence-Projections/
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Appendix 1: Examples from PHI outputs 

1.1: Simple Smoothing and Confidence Intervals  

ScotPHO Health and Wellbeing Profiles: Breast Screening Uptake (NHS Greater 

Glasgow and Clyde)17 

The ScotPHO Health and Wellbeing Profiles provide a snapshot overview of health for each area using 

spine charts which allow comparison to the Scotland average. Rank charts and trend charts (as below) 

are also included in the Profiles to allow further understanding of the results.  

Many of the indicators reported in the Health and Wellbeing Profiles on ScotPHO are reported by local 

authority, and several report very small numbers of observations. In order to improve the reliability of 

the data, and to maintain confidentiality, the numbers and rates for each geography level are 

presented as three-year averages.  

Figure 1.1 below shows the three-year rolling averages with 95% confidence intervals for breast 

screening uptake in NHS Greater Glasgow and Clyde, compared to the three-year rolling averages 

across Scotland. 

Figure 1.1 

 
 

  

                                                                 
17

 https://scotpho.nhsnss.scot.nhs.uk/scotpho/homeAction.do 

https://scotpho.nhsnss.scot.nhs.uk/scotpho/homeAction.do
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1.2: Linear Regression 

 Hospital Standardised Mortality Ratios (HSMR)18 

Hospital Standardised Mortality Rates (HSMRs) are produced PHI and reviewed jointly between PHI 

and Health Improvement Scotland to identify potential patterns in the data. The Scottish Government 

uses these statistics to monitor change in hospital mortality over and inform policy decision making. 

NHS Boards use the data to monitor local hospital mortality, and to facilitate improvements in patient 

care. 

HSMRs adjust mortality data to take account of some of the factors known to affect the underlying risk 

of death. The HSMR calculation is based on patients who died within 30 days of a hospital admission.  

A regression line is fitted to the HSMR trend from the first quarter after the baseline period through to 

the latest HSMR. The percentage change in SMR is calculated by subtracting the regression line value 

for the baseline from the regression line value for the most recent quarter. The rationale behind this 

approach is that seasonal variations in HSMR will be smoothed out, and monitoring long term change 

will be based on a more stable foundation.  

Figure 1.2 below shows the standardised mortality ratio for each quarter since October-December 

2006, with a regression line based on quarters since October-December 2007. 

Figure 1.2 

 

  

                                                                 
18

 http://isdscotland.org/Health-Topics/Quality-Indicators/HSMR/ 

http://isdscotland.org/Health-Topics/Quality-Indicators/HSMR/
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1.3:  Population Proportion Tests 

National Drug-Related Deaths Dataset report19 

PHI Scotland report on the characteristics of individuals whose death was related to the misuse of 

controlled drugs and the circumstances of those deaths. The rationale for this analysis is to identify 

behaviours/risks associated with drug-related death and to assess the efficacy of initiatives aimed at 

addressing behaviours/mitigating risks associated with drug-related deaths.  

Within this report, population proportion tests are carried out across the times series to assess the 

likelihood that observed variations over time are real or the product of differences between annual 

cohorts of deaths. Wherever a figure has been described as ‘higher’ or ‘lower’ than a previous year, 

the calculated p-value is less than or equal to 0.05. 

Figure 1.4 below shows the number of drug related deaths per age group in Scotland for years 2009-

2014. Significant differences in the number of deaths among each age group were observed across the 

time series. These changes are likely to be associated with an increase in the number of older problem 

drug users.  

Figure 1.4 

 
 

  

                                                                 
19

 http://www.isdscotland.org/Health-Topics/Drugs-and-Alcohol-Misuse/Publications/2016-03-22/2016-03-22-
NDRDD-Report.pdf? 

http://www.isdscotland.org/Health-Topics/Drugs-and-Alcohol-Misuse/Publications/2016-03-22/2016-03-22-NDRDD-Report.pdf?
http://www.isdscotland.org/Health-Topics/Drugs-and-Alcohol-Misuse/Publications/2016-03-22/2016-03-22-NDRDD-Report.pdf?


17 

 

1.4: Age-Period-Cohort Analysis 

Cancer Incidence Projections for Scotland: 2013-202720 

Every five years, ISD publishes projections for the number of new cancer diagnoses for the 

following 15 years. The last publication, produced in 2015, predicted the incidence of cancer 

until 2027, in 5 year increments. These projections were based on Age-Period-Cohort analysis 

developed by Møller et al (2003)21. The analysis assumes that the recent trends in cancer 

incidence will continue, and that projected populations are accurate. 

 

Figure 1.3 below shows the projected incidence of cancer for years 2013-2017, 2018-2022 

and 2023-2027 (with projected European Age/Sex Standardised Rates [EASRs]) alongside past 

recorded cases and EASRs. 

 

Figure 1.5 

 
 

  

                                                                 
20

 http://isdscotland.org/Health-Topics/Cancer/Cancer-Statistics/Incidence-Projections/  
21

 https://www.kreftregisteret.no/en/Research/Projects/Nordpred/Nordpred-software/  

http://isdscotland.org/Health-Topics/Cancer/Cancer-Statistics/Incidence-Projections/
https://www.kreftregisteret.no/en/Research/Projects/Nordpred/Nordpred-software/
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Appendix 2 Worked examples 

2.1:  Simple Smoothing 

Example of syntax used to calculate rolling averages: 

 

Generate the rolling three year averages figures for the numerator (e.g. N of observations). 

Compute AVG_0911 = (n2009 + n2010 + n2011)/3. 

Compute AVG_1012 = (n2010 + n2011 + n2012)/3. 

Compute AVG_1113 = (n2011 + n2012 + n2013)/3. 

Compute AVG_1214 = (n2012 + n2013 + n2014)/3. 

 

The difference between a single-year trend line and the output from smoothing can be seen in the 

graph below. The example shows Scottish Drug Misuse Database (SDMD) data on the annual number 

of completed initial assessments for specialist drug treatment for NHS Ayrshire and Arran along with a 

rolling three-year average. The first point of the smoothed line shows the mean of the total number of 

initial assessments from 2006-2008; the last point shows the mean of the data from 2012-2014. 

Figure 2.1 
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2.2:  Population Proportion Tests 

The first step in calculating the significance of the population proportion is to calculate the proportion 

of events to population (divide the number of events by the population). Next, the Standard Error (SE) 

must be calculated. Before this can be calculated, p  and q  must be determined. These are estimates of 

probable events; p  represents the likelihood of it happening and q  is the likelihood of it not happening.  

To calculate p  and q : 

   
     

     
 

Where: 

 D1 = denominator 1 (i.e. for first year used);  

 N1 = numerator 1 (i.e. for first year);  

 D2 = denominator 2 (i.e. for second year); and, 

 N1 = numerator 1 (i.e. for second year). 

If we use the drug related deaths example, D1 will be total number of drug-related deaths in the first 

year of interest while N1 could be a count of cases with a given characteristic of interest (e.g. number 

of people in the most deprived areas of Scotland who died a drug related death in that year). 

        

Standard error22 can now be calculated using the following equation: 

            
 

  
 

 

  
  

The z statistic is calculated using the formula below: 

  
     

  
 

Where:  

 P1 = proportion 1 (i.e. for first year); 

 P2 = proportion 2 (i.e. for second year); and, 

 SE = standard error.  

Next the p-value is calculated. First, it must be decided if a one-23 or two-tailed24 significance test is 

appropriate. A standard normal cumulative distribution is then calculated (it is not necessary to show 

this equation as the function “NORMSDIST” in Excel will calculate it for you). If you have decided on a 

one-tailed test, subtract the standard normal cumulative distribution of z from 1 (i.e. 1-NORMSDIST(z)) 

and then subtract that figure from 1, (i.e. 1-(1-NORMSDIST(z)). To calculate the two-tailed p-value, 

multiply the value for a one-tailed test by 2.   

                                                                 
22

 Standard error estimates the variability between the means of the sample. 
23

 A one-tailed hypothesis test examines only one side of the data. You can only determine if data are significant 
in a positive OR negative direction. The other direction is unexamined and no conclusions about it may be made. 
24

 If it is assumed that significance is achieved when the p-value is 0.05 or below, a two-tailed test will only be 
significant if the p-value is 0.025 in either a positive or negative direction. This means that two-tailed tests are 
more robust than one-tailed tests, but it is harder to achieve a significant result. 
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2.3:  Logarithmic Scales 

Logarithmic scales can easily be produced when creating charts in Excel. The following chart shows 

drug-related deaths by sex (2009-2014). The values are plotted on an arithmetic scale. 

 

To change the above to a logarithmic scale, right click the Y-axis, and select “Format axis” from the 

menu. The following dialogue box will appear: 

 



21 

 

When the option for ‘logarithmic scale’ is selected, choose the base for the log (the default is 10). This 

produces the following chart, which provides a different perspective on differences in the numbers of 

male and female deaths.  

 

The first chart shows a large increase in male deaths and only a small increase in female deaths. 

However, the second (logarithmic scale) chart shows that female deaths have increased at a rate 

comparable to males; this trend was hidden in the original graph because of the large relative size of 

the male cohort. 
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2.4:  Modifying axes 

Resizing a chart in Excel is a simple matter of clicking the three dots at the extreme left or right, centre 

top and bottom, or any of the corners of the chart area and dragging in whichever direction you 

choose. It is possible to resize charts via the menus (Chart tools>Format>Size), but this method resizes 

the entire chart (including legends etc.) rather than the plot area. For simplicity, resizing the chart by 

dragging the dots is recommended (the following example resizes the X-axis using the left or right 

dots).  

Below is a graph of number of deaths as a result of chronic liver disease for males and females in 

Scotland for calendar years 1982-2014, using Excel’s generic formatting: 

 

You can clearly see that more males die from chronic liver disease than females and that this is a 

historic trend. However, when we reduce the width of the X-axis, we see that what looked like a 

relatively steady change in females is actually more dramatic than the above chart suggests: 
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2.5:  Histograms 

A histogram shows the distribution of a variable (e.g. age group). It differs from a bar chart as bar 

charts are used to compare categories (e.g. median length of stay in each NHS Board). 

Histograms can be created in SPSS using the following commands: 

Graphs  Legacy Dialogs  Histogram 

The following menu will be opened:  

 

The following output will be displayed: 
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The graph above shows the distribution of age in a cohort of problem drug users. We can see that the 

numbers of people in the extremes of the data (i.e. 20-24 years, and 50-54 years and 60-64 years) are 

lowest while people from 30-34 years to 40-44 years represent the largest part of the population.  

 

The graph above shows a perfect normal distribution. We can see that the number 3 has occurred 

most times (3), while numbers 1 and 5 have only occurred once each. This graph was created using 

dummy data; it is unlikely a true dataset will produce so perfect a normal distribution. However, an 

approximate normal distribution, as the first graph shows, is sufficient where a method requires it. 
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2.6:  Standard deviation 

Standard deviation (SD) can be calculated in SPSS using the menus:  

Analyze  Descriptive Statistics  Descriptives. 

The following dialog box will be displayed: 

 

Once you have selected the variable you would like to examine, click ‘Options’. From the following 

menu, the important options are ‘Std. Deviation’ and ‘mean’ (which will help to determine if the 

standard deviation is considered large).  

 

The resulting table shows us that 1,362 people have a value for ‘benzodose’, the mean ‘benzodose’ is 

25.89 and the standard deviation is 27.247. Since the SD is larger than the mean, it can be considered 

a large standard deviation. 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

benzodose 1362 0 800 25.89 27.247 

Valid N (listwise) 1362     
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2.7:  Scatterplots 

Scatterplots can be useful for determining the direction of the relationship between two variables 

(one dependent and one independent, or two independent). They are also useful for identifying 

outliers in the data that can then either be controlled for or removed. 

Scatterplots can be created in SPSS using the menus:  

Graphs  Legacy Dialogs  Histogram. 

The following dialogue box will then be displayed: 

 

Select ‘Simple Scatter’ and then ‘Define’. Another dialogue box will be displayed (below). 
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Once you have selected your variables and clicked ‘OK’, a graph similar to the one below should be 

displayed. 

 
 

As can be seen, this scatterplot shows a curved relationship between the variables. There are also 

some outliers which should be investigated before proceeding with analysis. 

I have attached a line of best fit to this graph, which draws a line through the data points. The line 

should be placed at the point where the most data points will be close to it. The equation for the slope 

of the line is also shown. To fit this line to your scatterplot, double click the graph. Once in the 

dialogue box, select:  

 

Elements  Fit Line at Total  Linear 
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2.8:  Residual plots 

A residual plot is one where the independent variable is graphed on the Y-axis while the residuals, or 

variations between the predicted and observed values, are plotted on the X-axis. Residual plots are 

important for determining which form of regression is most suitable (e.g. linear or non-linear (e.g.)).  

Residuals plots can be created in SPSS through the menus. Two steps are required: 

1. When in the dialogue box for Curve Estimation, press “Save”. Another dialogue box will open, 

asking which figures you would like to save (see below): 

 

For each variable saved, a new variable in your dataset will be generated with the relevant 

data. This is then used in the next step. 

2. Create histogram using the newly generated variable(s), as described above 

 

Once in the dialogue box, ensure that “Display normal curve” is checked. A random dispersion 

around the horizontal axis indicates that linear regression would be suitable; any other 

dispersion indicates that a non-linear model may be more appropriate. 
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2.9:  Linear Regression 

Performing linear regression may be done manually but as mentioned above, it is possible to do this in 

SPSS through the menus and R. In SPSS this is done by using: 

 

Analyze  Regression  Linear 

 

The following dialogue box will appear: 

 

 
 

Once you have entered at least the dependent and one independent variable, you may press ‘OK’ and 

SPSS will run the regression model. The output is a series of tables, which must be interpreted. This 

example looks at number of deaths from COPD by age group. The first table is ‘Model Summary’: 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .740
a
 .548 .546 145.853 

a. Predictors: (Constant), Age Group 

 
The strength of the correlation is represented by R, which is Pearson’s r. In this example, it is 0.74 

which is moderately strong in a positive direction. Pearson’s r will always be between -1 and 1. R 

squared (R2; 0.55) represents the amount of variance that can be explained by the independent 

variable (age). R2 will always be between 0 and 1 (i.e. 0% and 100%). The standard error is an estimate 
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of the variance of the dependent variable for each age group. This example shows a relatively high 

standard error25 which means that predictions made using this model must be treated with caution. 

The next table looks at the analysis of variance, or ANOVA. 

ANOVA
a
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 6001506.090 1 6001506.090 282.118 .000
b
 

Residual 4956620.693 233 21273.050   

Total 10958126.783 234    

a. Dependent Variable: deaths 

b. Predictors: (Constant), Age Group 

 
This table looks at whether the line of best fit is significantly different from 0. The F-value is 282.1, and 

the p-value is less than 0.001, indicating that variations are highly unlikely to be due to sampling error. 

If the null hypothesis is true, the F-value will be close to 1. The further away from one the F-value is, 

the less likely that variations are due to chance. 

The last table gives the degree to which the independent variable affects the dependent variable. In 

this example, each age group is estimated to have 42.1 more deaths from COPD than the one before 

it. The confidence intervals tell us that, when graphed, there is 95% confidence that the population 

regression line will be between 37.2 and 47.1.  

Coefficients
a
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence Interval for B 

B Std. Error Beta Lower Bound Upper Bound 

1 (Constant) -329.009 34.455  -9.549 .000 -396.892 -261.126 

Age Group 42.124 2.508 .740 16.796 .000 37.183 47.065 

a. Dependent Variable: deaths 

 

The constant estimates the likelihood of having a death from COPD when age group (i.e. predictor 

variable) is 0. In most examples, this figure does not need to be used or reported. 

  

                                                                 
25

 One way of calculating the relationship of the standard error to the mean is to divide the standard deviation 
by the mean. This is called the “coefficient of variation” (CV); a rule of thumb is that if CV > 1 the standard 
deviation is large. 
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2.10:  Logistic regression 

Logistic regression is possible to do in SPSS, through the menus: 

Analyze  Regression  Binary Logistic (for a dichotomous variable – two outcomes) 

Analyze  Regression  Multinomial Logistic (for more than two outcomes) 

This example will look at binary logistic regression. The following dialogue box is displayed: 

 

Select your dependent variable and place it in the ‘Dependent’ box. Your independent variables go 

into the ‘Covariates’ box. If any of the independent variables are categorical, choose ‘Categorical’ for 

the dialogue box below: 
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In this example, gender is categorical and must be placed in the ‘Categorical Covariates’ box as SPSS 

does not identify these automatically. The reference category is chosen based on what you would like 

to compare against. If male were coded as 1 and females coded as 2, and you wanted to compare 

against males (i.e. males is the reference category), choose ‘first’. If females were to be the reference 

category, ‘last’ would be chosen. Click ‘Continue’ to return to the Logistic Regression box.  

Once back in the Logistic Regression box, select ‘Options’. I have not included any of these in this 

example, but some analyses may call for one or more of these statistics to be included. 

 

Once you have clicked ‘OK’ in the ‘Logistic Regression’ box, the analysis will be run, and a number of 

tables will be generated. However, only a small number of them are crucial in interpreting the data. 

The first is the model summary, which gives two statistics explaining the variation. 

Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell R 

Square 

Nagelkerke R 

Square 

1 1234558.685
a
 .018 .028 

a. Estimation terminated at iteration number 6 because 

parameter estimates changed by less than .001. 

 
Of Cox & Snell R Square and Nagelkerke R Square, the latter is considered the more accurate as it is an 

adjusted version of the former so that 1 may be included. A value equal to or close to 1 suggests that 

the model is a good fit for explaining variances. As this model produces a figure of 0.28, only 3% of the 

variance is explained by the model. 
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The next table to be considered is the Classification Table. The note at the bottom tells us that if the 

probability of a person being diagnosed with COPD is greater than 0.5, it will be classified as a positive 

result. This table tells us that the model accurately predicts the outcome 79% of the time. 

Classification Table
a
 

Observed 

Predicted 

COPD Percentage 

Correct .00 1.00 

Step 1 COPD .00 975867 0 100.0 

1.00 255266 0 .0 

Overall Percentage   79.3 

a. The cut value is .500 

 

The final important table is the Variables in the Equation table. This shows the contribution of each 

variable within the model, and its statistical significance. The age_grp and year rows indicate that each 

has a significant effect (Sig [p] is less than 0.05) on the dependent variable (COPD diagnoses). The 

Exp(B) figures tell us how much more likely patients in each age group are to be diagnosed with COPD 

than the reference group (in this example, the youngest age group). The highest age group is 1.53 (i.e. 

53%) times more likely to be diagnosed with COPD than the lowest.  

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 age_grp   18550.401 15 .000  

age_grp(1) -1.072 .103 107.539 1 .000 .342 

age_grp(2) -1.245 .088 201.644 1 .000 .288 

age_grp(3) -1.494 .078 371.278 1 .000 .224 

age_grp(4) -1.379 .058 568.661 1 .000 .252 

age_grp(5) -.874 .037 544.702 1 .000 .417 

age_grp(6) -.538 .024 497.191 1 .000 .584 

age_grp(7) -.338 .019 319.920 1 .000 .713 

age_grp(8) -.151 .017 82.320 1 .000 .860 

age_grp(9) .076 .015 24.547 1 .000 1.079 

age_grp(10) .260 .015 321.200 1 .000 1.297 

age_grp(11) .457 .014 1050.923 1 .000 1.579 

age_grp(12) .601 .014 1859.960 1 .000 1.824 

age_grp(13) .630 .014 2046.507 1 .000 1.878 

age_grp(14) .618 .014 1901.025 1 .000 1.856 

age_grp(15) .426 .015 793.427 1 .000 1.531 

year .020 .002 157.391 1 .000 1.020 

Constant -41.635 3.183 171.058 1 .000 .000 

a. Variable(s) entered on step 1: age_grp, year. 
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2.11:  Polynomial regression 

Polynomial regression can be performed in SPSS. This can be done through the menus or using syntax. 

Both methods are described below. 

Using the menus: 

Analyze  Regression  Curve Estimation 

The following dialogue box will appear:  

 

The corresponding syntax for this is: 

* Curve Estimation.  

TSET MXNEWVAR=1.  

PREDICT THRU END.  

CURVEFIT  

  /VARIABLES=rate  

  /CONSTANT  

  /MODEL=CUBIC  

  /PRINT ANOVA  

  /PLOT FIT  

  /SAVE=RESID. 

 

In this example I have included linear, quadratic and cubic models. This is so that I can check which line 

fits my data best. Once this is identified, the statistics relating to that model are the ones that will be 

reported. With my data, these selections produce the scatterplot below: 
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The cubic model seems to fit the data quite well, although there is an unexpected curve at the right 

extreme.  

This analysis produced the following table:  

Model Summary and Parameter Estimates 

Dependent Variable:   rate   

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 b2 b3 

Linear .672 34.855 1 17 .000 158.072 -1.734   

Quadratic .760 25.372 2 16 .000 149.062 .840 -.129  

Cubic .858 30.295 3 15 .000 135.875 7.867 -.985 .029 

 
As previously mentioned, the higher the R-squared value, the better the line fits the data. Since the 

cubic model produces the highest R-squared figure (0.858), it is likely that this model will be the most 

accurate. As an extra check, however, the residuals should be plotted. See below for details on how to 

calculate residuals, and create residual plots. 

The desired output from these steps is normally distributed residuals (as above). Using both the R2 

figure and the residuals plot from the cubic model, we can be relatively sure that the cubic model is 
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the most appropriate in this instance. When the analysis is re-run, selecting only the cubic model, the 

following table is produced: 

 

Model Summary and Parameter Estimates 

Dependent Variable:   rate   

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 b2 b3 

Cubic .858 30.295 3 15 .000 135.875 7.867 -.985 .029 

 
The p-value (i.e. “Sig”) shows that there is a strongly significant relationship, indicated by a value 

below 0.05, between years for age/sex standardised mortality as a result of COPD (chronic obstructive 

pulmonary disorder). A similar output is achieved by checking the “Display ANOVA table” box, as 

below: 

Model Summary 

R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

.926 .858 .830 4.908 

 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 2189.212 3 729.737 30.295 .000 

Residual 361.312 15 24.087   
Total 2550.524 18    

 

Coefficients 

 
Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

Case Sequence 7.867 2.347 3.719 3.352 .004 

Case Sequence ** 2 -.985 .269 -9.586 -3.661 .002 

Case Sequence ** 3 .029 .009 5.176 3.222 .006 

(Constant) 135.875 5.563  24.427 .000 

 

More information is included in the ANOVA tables, but for the purposes of this analysis either may be 

used. The important figures from either set of tables are b/B and the p-value.  

Each B figure tells us how much mortality rate from COPD is estimated to change depending on which 

slope is being read. In this example, the first slope peaks at year 5 (i.e. 1999). Mortality from COPD up 

to 1999 is estimated to increase by 7.9. The next slope begins at the peak at 1999 and continues to the 

trough at around 2011. The B figure for this slope suggests that the mortality rate decreases each year 

by 1. From 2011 to 2014 the mortality rate is estimated to increase by 0.03 each year.  

The F value is a measure of the linear regression relationship between the dependent and 

independent variables. The p-value in the middle table relates directly to the F value, and indicates the 

strength of the relationship between all variables. The p-values in the bottom table are below 0.05 for 

each interaction, suggesting that the difference between all years is significant.  
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2.12:  Restricted cubic splines 

Harrell (2001)26; 27 suggests the following locations (assuming the maximum is 1) for the knots, 

depending on how many knots the analyst would like to have.  

N of knots Quartile 1 Quartile 2 Quartile 3 Quartile 4 Quartile 5 Quartile 6 Quartile 7 

3  0.1  0.5  0.9      
4  0.05  0.35  0.65  0.95     
5  0.05  0.275  0.5  0.725  0.95    
6  0.05  0.23  0.41  0.59  0.77  0.95   
7  0.025  0.1833  0.3417  0.5  0.6583  0.8167  0.975 

 

SPSS has restricted functionality when it comes to applying restricted cubic splines to data. As such, 

the two options available are quite complex and restrictive. It is possible to perform this method using 

the menus, but this requires the analyst to manually insert the equation into the dialogue box that 

opens through: 

Analyze  Regression  Non-linear 

 

Choose your dependent variable and use the arrow to insert it into the ‘dependent’ box. The next step 

is defining parameters. Click the ‘Parameters’ button, for the dialogue box below: 

                                                                 
26

 Harrell, F.E. (2001) Regression modeling strategies: With applications to linear models, logistic regression, and 
survival analysis. New York: Springer-Verlag New York.  
27

 Table accessed at: Croxford, R. (2016) Restricted Cubic Spline Regression: A Brief Introduction. Available at: 
http://support.sas.com/resources/papers/proceedings16/5621-2016.pdf (Opens PDF; Accessed: 4 August 2016). 

http://support.sas.com/resources/papers/proceedings16/5621-2016.pdf


38 

 

 

 For each parameter (e.g. coefficients and knots), the following steps must be taken: 

1. Type the name of the parameter into the box. This must not be the same as any variables in 

the data set. 

2. Type the starting value of that parameter. 

3. Click ‘Add’ to ensure that it’s defined (see below): 

 

Once all parameters have been defined click ‘Continue’ to return to the first dialogue box. You can add 

new parameters at any time before running the model. In the ‘Model Expression’ box, enter the 

regression equation. In this example, it is: 
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Where:  

 ba0 is the intercept, or where the slope crosses the Y-axis;  

o this is calculated first by calculating the slope: 

    
  

  
  

 m denotes the slope 

 r is Pearson’s r, the correlation between x and y 

    is the standard deviation of x 

    is the standard deviation of y 

o then by using the following equation to find the intercept: 

         

 b is the intercept value 

    is the mean of the values of x 

    is the mean of the values of y 

 m is the slope that was calculated in the previous step 

 ba1 is the linear coefficient of the dependent variable (i.e. Pearson’s r) 

 xa is the predictor, or independent, variable 

 bb1 is the second adjustment to the slope; bc1 is the third adjustment to the slope; bd1 is the 

fourth adjustment to the slope 

The addition of the logical expression xa GE KnotOne (etc) means that the influence of bb1 is limited 

to the value of the independent variable at or after the first knot. The same is true for each successive 

adjustment. 

If it’s important that KnotTwo is greater than KnotOne, click the ‘Constraints’ button in the first 

dialogue box. In the dialogue box that appears, enter an arithmetic function that meets your 

requirements. In this example, the constraint will be that KnotTwo minus KnotOne must be greater 

than or equal to 0, and KnotThree minus KnotTwo is greater than or equal to 0. This can obviously be 

amended to include any calculation in any group of variables.  
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Once you have defined all the constraints you would like the model to have, press ‘Continue’. To save 

the residuals for plotting later, click the ‘Save’ button in the original dialogue box and you will be asked 

which values you would like to keep of ‘Predicted values’, ‘Residuals’ and ‘Derivatives’. When you have 

built the model you would like to use, click ‘OK’.  

If there are any changes you would like to make (for instance, changing the constraints equations to 

be ‘less than’), select ‘Paste’, which will paste the syntax into the syntax editor. It can then be 

amended in whatever way you wish. 

Regression analysis using restricted cubic splines 

Once the knots have been defined and all data (e.g. residuals) has been included in your dataset, the 

derived variables may be used in regression models as the independent variables. 
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2.13:  Poisson regression 

As with other types of regression, this can be carried out in SPSS through the menus. 

Analyze  Generalized Linear Models  Generalized Linear Models 

 

Choose ‘Poisson loglinear’, and then click the ‘Response’ tab at the top. In the box below, place your 

dependent variable in the ‘Dependent Variable’ box.  
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Once that has been done, choose the ‘Predictors’ tab. Categorical independent variables go into the 

‘Factors’ box, while continuous independent variables are to be placed in the ‘Covariates’ box. A 

decision must be made about where to put them if you are analysing ordinal variables. There is no 

convention in SPSS to place ordinal variables in Poisson regression models. 

 

 

Once you have defined your independent variables, choose the ‘Model’ tab. This is where your 

Poisson regression model is built. The independent variables will appear in the box on the left; to add 

them to the model, select them and click the right arrow. The ‘Build Term: Type’ in this example is 

‘Main effects’ which for Poisson regression is correct.  
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Once you have entered your independent variables, click ‘Statistics’. Ensure that ‘Include exponential 

parameter estimates’ is selected. Click ‘OK’ to run the model.  

 

A number of tables will be produced, the most important of which are described here. This table 

mainly tells us if there is overdispersion between the categorical variables. In this example, we can see 

that there is very little difference between the number of males and females in the sample. Large 



44 

 

differences between groups may cause issues with the fit of the model so small variations are 

preferable. 

Categorical Variable Information 

 N Percent 

Factor Gender Male 616707 50.1% 

Female 614419 49.9% 

Total 1231126 100.0% 

 
The next table tells us if overdispersion may be an issue in this model. It is important that this is not 

the case, as the mean and variance should be similar to each other (see section on Poisson regression). 

Continuous Variable Information 

 N Minimum Maximum Mean Std. Deviation 

Dependent Variable COPD 1231126 .00 1.00 .2073 .40540 

Covariate Calendar Year of Discharge 1231126 2010 2014 2012.04 1.418 

 
As we can see, the mean is 0.21. Variance is calculated by squaring the standard deviation (i.e. 

0.405402). In this case, variance is 0.16. The ratio of mean to variance is 1.3. This means there is a 

small amount of overdispersion in this model. The next table provides further investigation into the 

difference between the mean and variance.  

Goodness of Fit
a
 

 Value df Value/df 

Deviance 801797.757 1231123 .651 

Scaled Deviance 801797.757 1231123  

Pearson Chi-Square 975870.915 1231123 .793 

Scaled Pearson Chi-Square 975870.915 1231123  

Log Likelihood
b
 -656161.878   

Akaike's Information 

Criterion (AIC) 
1312329.757 

  

Finite Sample Corrected 

AIC (AICC) 
1312329.757 

  

Bayesian Information 

Criterion (BIC) 
1312365.827 

  

Consistent AIC (CAIC) 1312368.827   

Dependent Variable: COPD 

Model: (Intercept), sex, year 

a. Information criteria are in small-is-better form. 

b. The full log likelihood function is displayed and used in computing 

information criteria. 

Many tests are performed to determine goodness of fit. However, for the purposes of this analysis, 

we’ll look at the ‘Value/df’ values of the Pearson Chi-Square test. This is 0.8; a perfectly dispersed 

dataset will have a value of 1. This indicates that the data is slightly underdispersed. In smaller sample 
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sizes, this would not be an issue. In this example, our sample size is very large so it may mean that this 

model isn’t the right one for this analysis.  

The following table gives the effect on the model of the independent variables. We can see that both 

gender and year had a strongly significant effect on the dependent variable. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 134.011 1 .000 

sex 1330.206 1 .000 

year 121.347 1 .000 

Dependent Variable: COPD 

Model: (Intercept), sex, year 

 

The final table gives more information about the effect of each value of the categorical independent 

value (gender) on the dependent variable (hospital admissions for COPD). The most informative 

column in this table is the ‘Exp(B)’ column. From this, we can say that men are less likely to be 

admitted to hospital for COPD than women; for every 100 women admitted to hospital with a 

diagnosis of COPD, almost 87 men admitted to hospital will be diagnosed with COPD. However, we can 

also see that there for each successive year, it is 1.016 times more likely (i.e. 1.6%) that a person will 

be diagnosed with COPD. These relationships are statistically significant, since ‘Sig’ is less than 0.05. 

Parameter Estimates 

Parameter B Std. Error 

95% Wald 

Confidence Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 

Interval for Exp(B) 

Lower Upper Wald Chi-Square df Sig. Lower Upper 

(Intercept) -32.468 2.8109 -37.977 -26.958 133.415 1 .000 7.933E-015 3.212E-017 1.959E-012 

[sex=1] -.145 .0040 -.153 -.137 1330.206 1 .000 .865 .859 .872 

[sex=2] 0
a
 . . . . . . 1 . . 

year .015 .0014 .013 .018 121.347 1 .000 1.016 1.013 1.018 

(Scale) 1
b
          

Dependent Variable: COPD 

Model: (Intercept), sex, year 

a. Set to zero because this parameter is redundant. 

b. Fixed at the displayed value. 
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2.14:  ARIMA 

The process for this is slightly different than that of other types of regression. However, it can still be 

accessed through the SPSS menus. 

Analyze  Forecasting  Create Models 

You will be presented with an information box: 

 

 

If you wish to define the start and end dates of your time series, click ‘Define Dates’, and define the 

parameters.  
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Once you have decided (or not) on the dates you would like to perform the analysis on, click ‘OK’. You 

will be taken to a dialogue box as below: 

 

The default method is ‘Expert Modeler’, but that includes Exponential Smoothing in the analysis. To 

include only ARIMA, select it from the dropdown menu. The inclusion of independent variables is 

optional in this model. If independent variables are included in the model they will be treated similar 

to how they would be treated in a regression model. In this example I will be forecasting number of 

COPD admissions (dependent variable) per month and year (independent variables). Once you have 

placed the variables in the correct boxes go into the ‘Statistics’ tab. 
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Ensure that under ‘Statistics for Comparing Models’, the boxes checked above are selected before you 

run your analysis. Once you have done so press ‘OK’ to run the model.  
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The following table is produced when the analysis is run: 

Model Fit 

Fit Statistic Mean SE Minimum Maximum 

Percentile 

5 10 25 50 75 90 95 

Stationary R-squared .336 . .336 .336 .336 .336 .336 .336 .336 .336 .336 

R-squared .336 . .336 .336 .336 .336 .336 .336 .336 .336 .336 

RMSE 315.945 . 315.945 315.945 315.945 315.945 315.945 315.945 315.945 315.945 315.945 

MAPE 5.050 . 5.050 5.050 5.050 5.050 5.050 5.050 5.050 5.050 5.050 

MaxAPE 23.504 . 23.504 23.504 23.504 23.504 23.504 23.504 23.504 23.504 23.504 

MAE 219.458 . 219.458 219.458 219.458 219.458 219.458 219.458 219.458 219.458 219.458 

MaxAE 1401.515 . 1401.515 1401.515 1401.515 1401.515 1401.515 1401.515 1401.515 1401.515 1401.515 

Normalized BIC 11.716 . 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 

 

The R-Squared tells us how well the model fits our data, as mentioned above. This analysis accounts 

for 33.6% of the variance seen in the data.  

Most of the information you need is in the below table: 

Model Statistics 

Model 

Number of 

Predictors 

Model Fit statistics Ljung-Box Q(18) 

Number of 

Outliers 

Stationary R-

squared R-squared Statistics DF Sig. 

COPD-Model_1 2 .336 .336 34.973 18 .010 0 

 
This table includes the R-squared figure, and also the significance of the relationship between the 

values of COPD admissions. In this case it is significant, meaning that the difference in values between 

each month over 5 years is significantly different from the one next to it, when autocorrelation is 

controlled for. 
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