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Essays on Social Media and Digital Marketing

Abstract
Digital technology is rapidly reshaping the way how brands interact with consumers. More and more
marketers are shifting their focus from traditional marketing channels (e.g., TV) to digital channels (e.g., social
media platforms). Effective targeting is key to successful social media and digital marketing campaigns. This
dissertation seeks to shed light on who and how to target on social media platforms.

The first chapter aims to provide insights on how to target customers who are connected to each other on
social media platforms. We investigate how the network embeddedness (i.e., number of common followees,
common followers, and common mutual followers) between two users impacts information diffusion from
one (sender) to another (receiver). By analyzing the sharing of sponsored ads on Digg and brand-authored
tweets on Twitter, we find that the effect of embeddedness in directed networks varies across different types of
“neighbors”. A receiver is more likely to share content from a sender if they share more common followees. A
receiver is also more likely to share content if she shares more common followers and common mutual
followers with the sender. However, this effect is moderated by the novelty of information.

The second chapter strives to understand what affects paid endorsers’ participation and effectiveness in social
advertising campaigns. We conduct a field experiment with an invitation design in which we manipulate both
incentives and a soft eligibility requirement to participate in the campaign. There are three main findings from
our analysis. (1) Payments higher than the average reward a potential endorser received in the past (gains) do
not increase participation, whereas lower payments (losses) decrease participation. Neither gains nor losses
compared to past reward affect performance. (2) Potential endorsers who are more likely to participate tend
to be less effective. (3) Which characteristics are associated with effectiveness depends on whether success is
measured in likes, comments, or retweets.

For marketing managers, our findings provide insights on how to target customers in a directed network at a
micro level and how to improve social advertising campaigns by better targeting and incenting potential
endorsers.
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ABSTRACT 
 

ESSAYS ON SOCIAL MEDIA AND DIGITAL MARKETING 

Jing Peng 

Kartik Hosanagar  

Christophe Van den Bulte 

 

Digital technology is rapidly reshaping the way how brands interact with consumers. More and more 

marketers are shifting their focus from traditional marketing channels (e.g., TV) to digital channels 

(e.g., social media platforms). Effective targeting is key to successful social media and digital 

marketing campaigns. This dissertation seeks to shed light on who and how to target on social 

media platforms. 

The first chapter aims to provide insights on how to target customers who are connected to each 

other on social media platforms. We investigate how the network embeddedness (i.e., number of 

common followees, common followers, and common mutual followers) between two users impacts 

information diffusion from one (sender) to another (receiver). By analyzing the sharing of sponsored 

ads on Digg and brand-authored tweets on Twitter, we find that the effect of embeddedness in 

directed networks varies across different types of “neighbors”. A receiver is more likely to share 

content from a sender if they share more common followees. A receiver is also more likely to share 

content if she shares more common followers and common mutual followers with the sender. 

However, this effect is moderated by the novelty of information.  

The second chapter strives to understand what affects paid endorsers’ participation and 

effectiveness in social advertising campaigns. We conduct a field experiment with an invitation 

design in which we manipulate both incentives and a soft eligibility requirement to participate in the 

campaign. There are three main findings from our analysis. (1) Payments higher than the average 

reward a potential endorser received in the past (gains) do not increase participation, whereas 

lower payments (losses) decrease participation. Neither gains nor losses compared to past reward 
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affect performance. (2) Potential endorsers who are more likely to participate tend to be less 

effective. (3) Which characteristics are associated with effectiveness depends on whether success 

is measured in likes, comments, or retweets.  

For marketing managers, our findings provide insights on how to target customers in a directed 

network at a micro level and how to improve social advertising campaigns by better targeting and 

incenting potential endorsers. 
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1. Network Embeddedness and Content Sharing on Social Media 

Platforms 

1.1 Introduction 

Social media platforms are a popular medium for firms to reach out to customers (Schweidel and 

Moe 2014; Stephen and Toubia 2010). A recent survey suggests that three quarters of advertisers 

had used social media for advertising, and 64% of them planned to increase their social advertising 

budgets (Nielsen 2013). One likely reason for the growing emphasis on social advertising is the 

promise that users who engage with the ad content might spread information about new products 

to their social network connections (Aral and Walker 2011; Aral and Walker 2012; Aral and Walker 

2014; De Bruyn and Lilien 2008; Leskovec et al. 2007; Trusov et al. 2010).   

A primary requirement for the propagation of content in a social network is that receivers in turn 

share the information that they obtain from their sender/s. However, empirical evidence for such 

information cascades is limited (Goel et al. 2012). For instance, the average number of retweets 

per tweet is often less than 20.1 Thus, it is important to understand the underlying drivers for the 

propensity of a receiver to share information. Such insights will also be useful for marketers to 

improve their targeting of customers within social networks (Kempe et al. 2003; Richardson and 

Domingos 2002; Watts and Dodds 2007).  

Extant work indicates that one important driver of the propensity of a receiver to share information 

is the embeddedness or network overlap between a dyad, i.e., a sender-receiver pair (Aral and 

Walker 2014). Network embeddedness or network overlap2 is a shared characteristic between 

users in a network and has been associated with effective knowledge transfer between individuals 

(Reagans and McEvily 2003), extent of information sharing among users (Aral and Van Alstyne 

                                                           
1  Social engagement benchmark report (salesfore 2015): https://www.marketingcloud.com/resource-center/digital-
marketing/benchmark-2014/social-engagement-tw/ 
2 We use embeddedness and network overlap interchangeably in this paper 
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2011) and adoption of applications by users (Aral and Walker 2014). In the context of firms, network 

embeddedness has been associated with trust between firms (Uzzi 1997) and their economic 

actions (Granovetter 1985).   

Table 1.1 Glossary 

Glossary Description 

Connections  

Friend A user mutually connected with the focal user (undirected networks) 

Followee A user followed by the focal user (directed networks) 

Follower A user following the focal user (directed networks) 

Mutual follower A user following and followed by the focal user (directed networks) 

Embeddedness  

Common friend A user mutually connected to both the sender and the receiver (undirected networks) 

Common followee A user followed by both the sender and the receiver (directed networks) 

Common follower A user following both the sender and the receiver (directed networks) 

Common mutual follower A user following and followed by both the sender and the receiver (directed networks) 

Others  

Share Digg an ad or retweet a tweet 

Feed information notifying a user about the sharing activity of one’s followees 

Co-senders The set of followees of the focal user who have already shared the ad/tweet 

 

Network embeddedness is broadly defined as the number of common neighbors between two users 

(Easley and Kleinberg 2010). Its operationalization depends on whether the network is directed or 

not. In undirected networks (e.g., Facebook), embeddedness or network overlap simply means the 

number of common friends between two users. In directed networks (e.g., Twitter and Digg3), by 

interpreting a neighbor as a followee (outgoing link), follower (incoming link) or mutual follower 

(bidirectional link), embeddedness can be characterized by three different metrics: the numbers of 

common followees, common followers, and common mutual followers. Table 1.1 summarizes the 

definitions of these terms. The distinction between followers and followees is important. In directed 

networks like Twitter and Weibo, one can follow a user without consent from the user. Followees 

of a focal user thereby represent the set of users whose activities are of interest to the focal user, 

                                                           
3 Digg maintained an internal directed network before August 2012, but now it uses the external social networks of users 
on Twitter and Facebook instead. 
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whereas the followers represent the set of users who are interested in the focal user’s activity.  

Mutual follower (a bidirectional link) cannot be established unless users have mutual interest. 

The nature of overlap in the network connections between two users can reveal the motivation to 

share content. For example, followees of a user can have a high persuasive influence on the user 

(Haenlein 2013; Hall and Valente 2007) and can represent user’s interests and expertise. 

Furthermore, people tend to share content that signals their expertise (Packard & Wooten, 2013). 

Thus, more common followees between a sender-receiver pair may suggest similar expertise and 

higher propensity for a receiver to share the content obtained from the sender. Likewise, more 

common followers between the sender and the receiver may suggest that their followers share a 

similar taste. In this case, a receiver may consider content to be more suitable for her audience 

and may have a higher propensity to share content. Additionally, a higher number of common 

mutual followers may represent higher trust (Burt 2001; Granovetter 1973) and social bonding 

(Alexandrov et al. 2013; Ho and Dempsey 2010; Travis 2002; Wiatrowski et al. 1981) and may also 

increase the propensity of a receiver to share information. Finally, as the activities of users on social 

media platform are visible to others, factors such as uniqueness of content can play a role. It is well 

documented that users (consumers) have a strong desire for uniqueness and sharing novel content 

can satisfy such a need (Alexandrov et al. 2013; Cheema and Kaikati 2010; Ho and Dempsey 2010; 

Lovett et al. 2013). Thus, if the information to be communicated is not novel, a receiver will be less 

likely to do so.  

The purpose of this article is to assess the impact of embeddedness on the level of content sharing 

in directed networks. We do so using a micro-level model for content sharing within sender-receiver 

dyads. Our work complements extant work on the role of influential users on product adoption 

(Iyengar et al. 2011; Trusov et al. 2010) and information diffusion (Susarla et al. 2012; 

Yoganarasimhan 2012). Other studies have described a user’s propensity to adopt a product and 

share related information based on unitary attributes of adopters such as their demographic and 

behavioral characteristics (Bapna and Umyarov 2015; Haenlein 2013; Iyengar et al. 2011; Katona 
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et al. 2011; Nitzan and Libai 2011; Rand and Rust 2011). Some other  studies have considered 

shared characteristics of a sender and a receiver but largely in undirected networks (Aral and 

Walker 2014) where there is a single metric for the overlap among users, i.e., the number of 

common friends. Finally, in the case of directed networks, to the best of our knowledge, only the 

effect of reciprocity in the connections between a sender and a receiver has been considered (Shi 

et al. 2014).  

A dyadic level study of content sharing imposes stringent requirements on the data: the availability 

of users’ profile information, social graph information, and time-stamped, highly granular, individual-

level information about sharing activities. In order to meet these requirements, we constructed a 

dataset, which represents sharing of sponsored ads on Digg in a month long period in 2012. We 

corroborate our results using a second dataset that captures sharing of tweets posted by Fortune 

500 companies on Twitter in a month long period in 2015. At the time the data were collected, both 

websites maintained a directed social network, allowing users to follow others to keep themselves 

informed about their activities.  

A dyadic level study introduces a methodological challenge as well: multiple senders may share 

the same content with a focal user and the lack of information regarding the contribution of each 

sender makes it difficult to identify the impact of dyadic characteristics on receiver’s sharing 

propensity. For example, in the dataset from Digg, 32% of receivers who decided to share had 

multiple co-senders. In response to this problem, we propose a novel proportional hazards model 

that allows an event to have more than one cause. The proposed model can identify the contribution 

of each co-sender based on her characteristics and has broader application in studies of diffusion 

in networks.  

We emerge from the analysis with three key findings. First, we establish that embeddedness plays 

a role in information sharing in directed networks. That is, the propensity of receiver to share 

information depends on all three measures of embeddedness (i.e. common followees, common 

followers and common mutual followers). Second, the effect of embeddedness on content sharing 



5 
 

varies across the three metrics suggesting that they may have differing underlying drivers. Third, 

the effects of common followers and common mutual followers are moderated by the novelty of 

content. Their effects are positive only when the information is relatively novel (i.e., not shared by 

many others). When many others have shared the content, the positive effects may decrease and 

may even become negative, likely due to users’ need for uniqueness. This finding suggests a 

boundary condition for the positive impact of embeddedness found in previous work.  

The rest of the paper is organized as follows. We begin with a discussion of related literature and 

propose specific hypotheses about the impact of the three embeddedness metrics on content 

sharing. Then, we describe the proposed model and the dataset from Digg that we use in the 

application. Next, we discuss the results of model estimation and several robustness checks 

including validation of our results with the dataset from Twitter. Finally, we conclude with theoretical 

and managerial implications. 

1.2 Related Literature 

Our work relates to the broad literature on the role of network characteristics on user actions and 

outcomes in a social network. These include studies of information sharing (Shi et al. 2014; Susarla 

et al. 2012; Yoganarasimhan 2012), product adoption (Aral and Walker 2014; Bapna and Umyarov 

2015; Iyengar et al. 2011; Katona et al. 2011), and customer churn (Haenlein 2013; Nitzan and 

Libai 2011).   

Some studies have investigated the role of unitary network characteristics of the sender on the 

overall extent of adoption in the network. For example, Yoganarasimhan (2012) studies how the 

size and structure of the local network of a user affect product diffusion in undirected networks. The 

specific network characteristics investigated include the numbers of first- and second-degree 

friends, the clustering coefficient and the centrality of the user. Susarla et al. (2012) conduct a 

similar analysis but include both undirected (friendship) and directed (subscription) networks on 

Youtube. Bakshy et al. (2011) determine the user influence based on the cascade size associated 
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with a user’s extended network. While these studies consider the effect of sender’s local and 

extended network on their effectiveness in spreading product adoption behavior, they do not 

consider an individual receiver’s propensity to adopt these products. 

Others have investigated the role of unitary network characteristics of the receiver on her individual 

adoption behavior. For instance, Iyengar et al. (2011) consider the impact of user characteristics 

such as opinion leadership (captured by the number of ties and self-reported measures) on the 

adoption of prescription drugs. Katona et al. (2011) investigate the effect of a receiver’s network 

characteristics on their adoption or registration at a site. Similarly, Bapna and Umyarov (2015) 

consider the effect of the receiver’s  network size on her propensity to subscribe to a music site. 

Hu and Van den Bulte (2014) focus on status characteristics and network centrality. Rand and Rust 

(2011) evaluate the role of local network on the adoption behavior using an agent based model. 

Nitzan and Libai (2011) and Heinlein (2013) investigate the role of the network neighbors’ churn 

behavior on the retention behavior of an individual. However, none of the above studies considers 

the impact of shared network characteristics between the receiver and the sender on the former’s 

adoption behavior. 

Some recent studies do focus on the role of shared characteristics on a focal user’s actions albeit 

in undirected networks. For example, Centola (2010) shows that users are more likely to adopt 

when they receive social reinforcement from multiple neighbors and, as a result, the behavior 

spreads more in a clustered network than a random network. While a clustered network can 

represent higher network overlap with neighbors, this overlap is artificially created in the experiment 

and does not directly capture the shared characteristics between two users. Aral and Van Alstyne 

(2011) investigate the role of embeddedness on the sender’s incentive to share information with a 

particular receiver but not the receiver’s propensity to, in turn, share the content with all her 

followers. Aral and Walker (2014) examine the effect of network embeddedness more directly and 

find that it has a positive effect on the adoption of an application on Facebook (an undirected 
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network). Finally, while Shi et al. (2014) study information sharing in a directed network, they 

primarily focus on the role of reciprocity between senders and receivers. 

Table 1.2 Literature on the Role of Network Characteristics on User Actions  

Study Network Characteristics Network Type Context and User Actions 

  Dyadic network characteristics     

Present study 
Three network embeddedness metrics 
between dyads 

Directed Online content sharing 

Aral and Walker 
(2014) 

Network embeddedness and interaction 
intensity between dyads 

Undirected Facebook app adoption 

Aral and Van Alstyne 
(2011) 

Network embeddedness between dyads Undirected 
Information sharing by sender with 
individual receiver 

Shi et al (2014) Reciprocity between dyads Directed Online content sharing 

  Unitary network characteristics   

Yoganarasimhan 
(2012) 

Network characteristics of sender Undirected 
Diffusion of Youtube videos and 
related information 

Susarla et al. (2012) Network characteristics of sender 
Directed and 
Undirected 

Diffusion of Youtube videos and 
related information 

Katona et al. (2011) Network characteristics of receiver Undirected 
Registration (Adoption) of social 
networking site 

Bapna and Umyarov 
(2015) 

Network  size of receivers Undirected Subscription (Adoption) of Last.fm 

Iyengar et al. (2011) Opinion leadership of receiver Directed Adoption of prescription drug 

Hu and Van den 
Bulte (2014) 

Social status of receiver 
Directed and 
Undirected 

Adoption of site-directed mutagenesis 
kits 

Bakshy et al. (2011) Network characteristics of sender Directed Information diffusion  

Rand and Rust 
(2011) 

Network characteristics of receiver Undirected 
Adoption behavior using an agent 
based model 

Irit and Libai (2011) Churn of behavior of neighbors Undirected Churn behavior of receiver 

Hanlein (2013) 
Churn behavior of ingoing and outgoing 
connections of receiver 

Directed Churn behavior of receiver 

  Overall network structure     

Centola (2010) 
Overall structure of network (clustered vs. 
random) 

Undirected 
Registration (Adoption) of online 
health forum 

 

In summary, there is clearly much interest in understanding how users’ network characteristics 

affect product diffusion and information sharing in networks. While previous work has focused on 

either aggregate network measures or unitary characteristics of senders and receivers, an 

emerging stream of work has started to highlight the role of such dyadic attributes as network 

embeddedness. This literature, to the best of our knowledge, has considered undirected networks. 

In this paper, we fill the gap and evaluate how network embeddedness affects information sharing 

in directed networks. Table 1.2 provides a summary of existing literature. 
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1.3 Theoretical Background and Hypotheses 

Consumers typically share content to satisfy multiple goals. Users may share content with others 

in a social network for the purpose of impression management (Berger 2014; Toubia and Stephen 

2013). Further, factors such as trustworthiness of a sender (Burt 2001; Granovetter 1973) may play 

a role in a user’s propensity to share any content received from a sender. Users may have 

additional motives as well to share content such as social bonding (Alexandrov et al. 2013; Ho and 

Dempsey 2010; Travis 2002; Wiatrowski et al. 1981) and  the need for uniqueness (Cheema and 

Kaikati 2010; Grier and Deshpandé 2001; Ho and Dempsey 2010; Lovett et al. 2013; Snyder and 

Fromkin 1980). Next, we outline these motivations in more detail and how they relate to our main 

construct of network embeddedness.   

Impression Management. Users share content to shape others’ impression about them.  On social 

media platforms, users’ activities are publicly visible to others. Such visibility of individual activities 

makes social media platforms an ideal place to create an impression and enhance their social 

status (Alexandrov et al. 2013; Grier and Deshpandé 2001; Lovett et al. 2013; Toubia and Stephen 

2013).  

Users may try to impress others by communicating specific identities (Berger 2014). For instance, 

people share topics or ideas that signal that they have certain characteristics, knowledge base or 

expertise (Packard & Wooten, 2013). Further, content sharing is a social exchange process (Aral 

and Van Alstyne 2011). To increase social acceptance or social recognition, users may selectively 

share information of interest to their audience  (Aral and Van Alstyne 2011; Wu et al. 2004), as 

sharing information perceived to be unsound or irrelevant can hurt their reputation (Barasch and 

Berger 2014; Bock et al. 2005).  

Trust. Trust is a key determinant of social information exchange process (Burt 2001; Granovetter 

1973). The trust of users on the source (i.e., senders) can alleviate the receivers’ concern on the 

quality of the content and hence increase the probability of sharing (Camarero and San José 2011). 
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The trust between two users often increases with common mutual connections (bandwidth) 

between them (Aral and Van Alstyne 2011; Burt 2001). 

Social bonding. Social control theory suggests that people have a need to bond with others and 

maintain relationships (Travis 2002; Wiatrowski et al. 1981). Social bonding is also referred to as 

“need to belong” (Alexandrov et al. 2013; Ho and Dempsey 2010). The formation of a bond between 

individual and a group requires frequent interactions with others in the group (Alexandrov et al. 

2013). On social media platforms, as the user actions are visible, one way to interact with others is 

to further share the content shared by others. The closer two users are, the stronger obligation they 

may have in sharing content shared by each other.  

Need for uniqueness. The theory on self-presentation suggests that users are intrinsically 

motivated to achieve uniqueness (Tajfel and Turner 1979; Turner and Oakes 1986) and being 

overly similar to others induces negative emotions (Snyder and Fromkin 1980). This desire to 

express uniqueness is stronger for publicly consumed products than privately consumed products 

(Cheema and Kaikati 2010). Moreover, the need for uniqueness is stronger in online interactions 

than offline interactions and leads to higher word of mouth for differentiated brands (Lovett et al. 

2013). Need for uniqueness has also been observed for other user generated content such as 

reviews (Ludford et al. 2004) and photographs (Zeng and Wei 2013). Thus, in order to establish a 

unique identity on social media platforms, a user may resist sharing content that have already been 

shared by many others.  

In the case of content received from a sender, we posit that the characteristics shared between the 

user and the sender are an important contextual feature that can moderate how likely a user will 

satisfy one or more of the above mentioned goals and, thereby, influence their propensity to share 

content.  We use network overlap or embeddedness between users in a social network to 

operationalize the shared characteristics. Next, we discuss our hypotheses on how the three 

metrics of embeddedness can impact content sharing.  
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1.3.1 Common Followees 

In a directed social network, people follow others to keep themselves informed about their activities. 

Followees of a user can have a high persuasive influence on the user (Haenlein 2013; Hall and 

Valente 2007). Thus, the composition of one’s followees largely reflects her topical interest or taste. 

In addition to taste, the composition of one’s followees may also reflect her expertise, as people 

may selectively follow others with similar expertise. In order to signal online identities and create 

an impression, users tend to share content falling into their area of expertise or interest (Berger 

2014; Packard & Wooten, 2013). This is likely irrespective of the type of content, including popular 

content. Therefore, the more common followees two users have, the more likely they have similar 

expertise and taste due to homophily, and the more likely they will share the content shared by 

each other. So we posit the following:  

H1: The propensity of a receiver to share a piece of content from a sender is positively associated 

with the number of common followees between the sender and the receiver. 

1.3.2 Common Followers 

The composition of one’s followers represents the taste of her audience. To establish a good 

impression, the taste of audience is an important factor that users are likely to consider while 

sharing content (Berger 2014). The more common followers two users have, the more similar 

audience they have, and the more likely they will make similar decisions on whether or not to share 

a piece of content to their followers to create an impression.  

On the other hand, an alternative driver that may lower the propensity of a receiver to share content 

obtained from a sender with whom the receiver has a lot of common followers is the need for 

uniqueness. Sharing redundant (i.e., duplicated) content that has already been seen by their 

followers from other sources can harm the perception of the receiver as a unique source of 

information. Thus, novelty of content can play a role in moderating the impact of common followers 

on the propensity of a receiver to share content. Less popular or novel information is more valuable 
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due to its scarcity (Aral and Van Alstyne 2011). When the content is not as popular yet, the novelty 

of the content will make it relatively easier for a receiver to distinguish herself from others. In such 

a case, the sharing decision of the receiver should be primarily driven by impression management 

rather than by her need for uniqueness (as it is being satisfied by sharing novel content). When the 

content is popular, the need for uniqueness may be strong enough to outweigh impression 

management. Following these arguments, we propose the following hypotheses. 

H2: The propensity of a receiver to share a piece of content from a sender is positively associated 

with the number of common followers between the sender and the receiver.  

H3: The positive effect of common followers on the receiver’s propensity to share content from 

sender decreases with the popularity of the information.     

1.3.3 Common Mutual Followers 

The number of common mutual followers characterizes the mutual accessibility of two users 

through third-parties, which may be the most appropriate counterpart to the embeddedness defined 

in undirected networks. According to the bandwidth hypothesis (Aral and Van Alstyne 2011; Burt 

2001), the existence of common mutual connections expands the bandwidth of communication 

among users and makes their evaluation of each other more accurate. Therefore, the level of trust 

between two users should increase with the number of common mutual followers. In addition, the 

more common mutual followers two users have, the more likely they belong to the same social 

group, and the more likely they feel obligated to propagate content shared by each other in order 

to maintain a strong social bond. Both drivers on trust and social bonding suggest that the number 

of common mutual followers should have positive effect on content sharing. More common mutual 

followers may also suggest a common taste for audience. Finally, more common mutual followers 

suggests higher similarity in taste and expertise due to homophily even after accounting for the 

effect of other embeddedness metrics. This would further increase the receiver’s propensity to 

share content. 
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However, a user’s need for uniqueness can lower her propensity to share content from a sender 

with whom she shares mutual common followers. Similar to our earlier reasoning for the effect of 

common followers on content sharing, when the content to be shared is popular, a receiver with a 

large number of common mutual followers with a sender may resist doing so to avoid excessive 

similarity with the sender, as well as with other members in the same social group. However, when 

the content is relatively novel, the need for uniqueness is already satisfied and the receiver would 

have a higher propensity to share content due to high number of common mutual followers. We 

summarize the expected effects of common mutual followers in H4 and H5. 

H4: The propensity of a receiver to share a piece of content from a sender is positively associated 

with the number of common mutual followers between the sender and the receiver. 

H5: The positive effect of common mutual followers on the receiver’s propensity to share content 

from sender decreases with the popularity of the information. 

Table 1.3 summarizes the drivers associated with the three embeddedness metrics in directed 

networks. Note that the need for uniqueness as a driver should only come into play when there is 

an audience. Thus, the need for uniqueness is unlikely to drive the effect of common followees, as 

followees represent sources rather than the audience of a focal user. That different drivers are 

associated with the three metrics illustrates the nuanced role of embeddedness on information 

sharing in directed networks. 

Table 1.3 Drivers Associated with the Three Embeddedness Metrics 

Embeddedness Metric Positive Driver Negative Driver 

Common followees Impression management  

Common followers Impression management Need for uniqueness 

Common mutual followers Trust, social bonding, impression management Need for uniqueness 
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1.4 Model 

Our objective is to evaluate the impact of network embeddedness on the propensity of a receiver 

to share content obtained from sender(s). We use a Cox proportional hazards model (Cox 1972) 

to estimate the hazard of sharing. In social networks, one challenge for a researcher is that a user 

may receive multiple feeds from different senders sharing the same content (or an aggregated feed 

from multiple senders) and the contribution of each co-sender on the decision to share is unclear.  

At the consumer (receiver) level, a number of models have been proposed to deal with the impact 

of multiple senders (Toubia et al. 2014; Trusov et al. 2010) or multiple ad exposures (Braun and 

Moe 2013). A key difference between the present study and these studies is that our unit of analysis 

is a dyad rather than an individual. Individual level analysis often comes with some sort of 

aggregation on the sender side. For example, Aral et al. (2009) consider the overall effect of the 

number of shared friends on a user’s likelihood to adopt a Facebook app, but the effect of individual 

friends’ characteristics are not studied. Katona et al. (2011) accommodate multiple senders by 

considering the average characteristics of senders, which compromises model precision. While 

Trusov et al. (2010) do consider the effect of each individual sender on a user (restricted to be 

either 0 or 1), their model does not allow statistical inference on the effects of dyadic characteristics 

such as embeddedness. Sharara et al. (2011) focus on an adaptive diffusion model with the 

objective of establishing the effect of network dynamics on content sharing. They learn the 

“confidence values” between sender-receiver pairs based on past sharing for the purpose of 

making predictions. However, they do not deal with the estimation of the effect of dyadic 

characteristics on the propensity to share content.   

Experimental studies (Aral and Walker 2012; Aral and Walker 2014) which conduct dyadic level 

analyses, avoid this problem by eliminating receivers getting notifications from multiple senders. 

While it eliminates the statistical challenge of dealing with multiple senders, it creates a controlled 

(and at times artificial) setting where the experiment inadvertently also controls for drivers of sharing 

that can be important in a natural setting of information sharing.  For example, the need for 
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uniqueness is more likely to be a concern if multiple individuals in a user’s social network have 

shared the content as compared to a single individual sharing the content. We address this 

challenge by proposing a novel proportional hazards model that allows us to estimate the 

contribution of individual senders when multiple co-senders collectively cause a decision to share 

content.  

1.4.1 Dyadic Hazard 

To ease model exposition, we present it in the context of sharing ad content over the social media 

platform, Digg.com (as it is the context of our primary dataset). On Digg, when a user (sender) 

diggs (shares) an ad (content), her followers (receivers) are immediately notified about her sharing 

activity in the form of a feed. A receiver can have multiple senders (co-senders) if more than one 

of her followees diggs the same ad. In addition to social feeds, users can also see the ad on the 

front page of Digg. Therefore, there are two types of shares on Digg: those driven by social sources 

(i.e., feeds from followees) and others driven by non-social sources (i.e., the front page). Other 

platforms such as Twitter have a similar process for information sharing between users connected 

in a social network. 

Let 𝑖, 𝑗, and 𝑘 index senders, receivers, and ads, respectively. Let 𝑡 be the time elapsed since the 

creation of an ad. Let 𝑋𝑖(𝑡) and 𝑋𝑗(𝑡) represent the unitary attributes of sender 𝑖 and receiver 𝑗, 

respectively (e.g., gender and activity level of a user on Digg). Let 𝑋𝑖𝑗  represent the dyadic 

attributes concerning sender 𝑖  and receiver 𝑗  (e.g., embeddedness measures), 𝑋𝑖𝑘  represent 

sender 𝑖 ’s attributes that are specific to ad 𝑘  (e.g., the time sender 𝑖  diggs the ad 𝑘), and 𝑋𝑗𝑘 

represent receiver 𝑗’s attributes that are specific to ad 𝑘 (e.g., number of receiver 𝑗’s followees that 

have shared ad 𝑘). Let 𝜆𝑖𝑗𝑘(𝑡) represents the dyadic level hazard of sender 𝑖 causing receiver 𝑗 to 

adopt ad 𝑘 at time 𝑡. Let 𝜆𝑘0(𝑡) represents the baseline hazard for ad 𝑘. The dyadic level hazard, 

stratified on ads, is given by 

𝜆𝑖𝑗𝑘(𝑡) = 𝜆𝑘0(𝑡) 𝑒𝑥𝑝 (𝛽1𝑋𝑖(𝑡) + 𝛽2𝑋𝑗(𝑡) + 𝛽3𝑋𝑖𝑗(𝑡) + 𝛽4𝑋𝑖𝑘(𝑡) + 𝛽5𝑋𝑗𝑘(𝑡)) ,         (1.1) 
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𝜆𝑘0(𝑡) captures the baseline hazard for each ad. Note that the above semi-parametric formulation 

allows 𝜆𝑘0(𝑡) to change arbitrarily over time and across ads and allows us to capture static ad-

specific effects such as the ad content and time-varying effects such as overall reduced tendency 

to share a specific ad with time.  For example, 𝜆𝑘0(𝑡) = 0 represents a case when an ad stops 

diffusing in the network. This formulation of dyadic hazard is similar to the formulations given in 

(Aral and Walker 2012; Aral and Walker 2014; Lu et al. 2013), but we allow one receiver to be 

exposed to the same ad from multiple senders.  

Note that 𝑋𝑖𝑘 and 𝑋𝑗𝑘 include variables representing when a sender shares (which accounts for 

decaying effect) and the number of co-senders of a receiver, respectively. Due to users’ need for 

uniqueness in online communities, we hypothesize that the effects of common followers and 

common mutual followers are negatively moderated by the popularity of information in H3 and H5. 

To test these effects, we consider interaction of the popularity of ads with common followers and 

common mutual followers and include these as dyadic attributes.  

1.4.2 Spontaneous Sharing 

The basic specification of dyadic hazard ignores the possibility of users to share spontaneously. 

For example, a user may share content received from another user in the social network, or after 

receiving it directly from the platform or an external source. The latter type of sharing is termed as 

a spontaneous sharing and occurs via a non-social source (e.g., platform or external site). In order 

to incorporate the impact of non-social sources (e.g., the front page of Digg) in our study, we treat 

them as a special sender and use a dummy variable to capture their effect on the hazard rate: 

𝜆𝑖𝑗𝑘(𝑡) = 𝜆𝑘0(𝑡) 𝑒𝑥𝑝(𝛽0𝑠𝑖 + 𝛽1𝑋𝑖(𝑡) + 𝛽2𝑋𝑗(𝑡) + 𝛽3𝑋𝑖𝑗(𝑡) + 𝛽4𝑋𝑖𝑘(𝑡) + 𝛽5𝑋𝑗𝑘(𝑡)),           (1.2) 

where the dummy variable 𝑠𝑖 is 1 if the sender is the special sender and 0 otherwise. For the special 

sender, all undefined unitary and dyadic attributes are coded as missing and set to zero (or any 

other default value as the selection of default only affects parameter 𝛽0 ). The parameter 𝛽0 

captures the combined effect of all non-social sources, as compared to a sender whose attributes 
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may be zero, on the sharing of the receiver. Since all users can adopt spontaneously, the special 

sender is a co-sender for every potential sharing user. Our dummy variable formulation enables us 

to seamlessly incorporate the effect of non-social sources.   

1.4.3 Model Estimation 

Let the parameter vector 𝜃 = {𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5} represent the entire set of parameters of our 

model. Let 𝑅𝑘(𝑡) represent the set of receivers who have not shared ad 𝑘 before time 𝑡 (excluding), 

which is often referred to as the risk set. Let 𝐶𝑗𝑘(𝑡) represent the set of co-senders that have sent 

a feed regarding ad 𝑘 to receiver 𝑗 before time 𝑡. Let 𝐸 represent the set of sharing events observed 

in the data and let 𝐸𝑗𝑘 represents the event of receiver 𝑗 sharing ad 𝑘.  

The key assumption of the proposed proportional hazard model is that the sharing of a receiver is 

collectively caused by all her co-senders, which is a standard assumption in previous non-dyadic 

models to deal with multiple senders (Toubia et al. 2014; Trusov et al. 2010) or multiple ad 

exposures (Braun and Moe 2013). In a hazard model, this means that the time it takes the receiver 

to share is determined by the overall hazard of the receiver. Assume that the hazards of the receiver 

to be influenced by each co-sender are independent conditional on the control variables, the overall 

hazard of receiver 𝑗 to share ad 𝑘 at time 𝑡 is given by 

𝜆𝑗𝑘(𝑡) = ∑ 𝜆𝑖𝑗𝑘(𝑡)𝑖∈𝐶𝑗𝑘(𝑡) , 

where 𝜆𝑖𝑗𝑘(𝑡) represents the dyadic level hazard of sender 𝑖 causing receiver 𝑗 to share ad 𝑘 at 

time 𝑡 . The additive form of the overall hazard results from the conditional independence 

assumption, which is a standard assumption for proportional hazards model.   

Suppose event 𝐸𝑗𝑘 occurred at time 𝜏𝑗𝑘, the partial log likelihood of this event can be written as  

𝑙(𝐸𝑗𝑘|𝜃) = 𝑙𝑛 𝑃(𝐸𝑗𝑘|𝜃) = 𝑙𝑛 (
𝜆𝑗𝑘(𝜏𝑗𝑘)

∑ 𝜆𝑗′𝑘(𝜏𝑗𝑘)
𝑗′∈𝑅𝑘(𝜏𝑗𝑘)

) = 𝑙𝑛 (
∑ 𝜆𝑖𝑗𝑘(𝜏𝑗𝑘)

𝑖∈𝐶𝑗𝑘(𝜏𝑗𝑘)

∑ ∑ 𝜆𝑖′𝑗′𝑘(𝜏𝑗𝑘)
𝑖′∈𝐶

𝑗′𝑘
(𝜏𝑗𝑘)𝑗′∈𝑅𝑘(𝜏𝑗𝑘)

)         (1.3) 
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Note that the baseline hazard cancels out. The overall partial log likelihood of the entire dataset 

can then be written as 

𝑙(𝐸|𝜃) = ∑ 𝑙(𝐸𝑗𝑘|𝜃)𝐸𝑗𝑘∈𝐸 = ∑ 𝑙𝑛 (
∑ 𝜆𝑖𝑗𝑘(𝜏𝑗𝑘)

𝑖∈𝐶𝑗𝑘(𝜏𝑗𝑘)

∑ ∑ 𝜆𝑖′𝑗′𝑘(𝜏𝑗𝑘)
𝑖′∈𝐶

𝑗′𝑘
(𝜏𝑗𝑘)𝑗′∈𝑅𝑘(𝜏𝑗𝑘)

)𝐸𝑗𝑘∈𝐸                          (1.4) 

The parameters in our model can be estimated by maximizing the partial log likelihood given in 

Equation (1.4) using the Newton-Raphson method or other numerical optimization methods. In this 

paper, we use an enhanced Newton-Raphson algorithm to search for the optimal parameters of 

the partial log likelihood. Specifically, when the parameters reaches a non-concave region, we add 

a small positive number to the diagonal elements of the information matrix (typically slightly larger 

than the smallest eigenvalue of the information matrix in absolute value), as suggested by Schnabel 

and Eskow (1999), to make the information matrix positive definite. The effectiveness of the 

enhanced Newton-Raphson algorithm has been validated through extensive simulations. The 

above model collapses to the standard proportional hazards model when there is only one sender 

for each receiver. 

Our proposed model has two advantages over prior specifications. First, it does not speculate on 

the contribution of each co-sender apriori, but allows the data to automatically determine the 

contribution of individual co-senders based on their characteristics. Second, it is applicable even if 

only some of the co-senders have a significant impact on the sharing, as the likelihood in Equation 

(1.3) essentially captures the probability of the true cause belonging to the set of co-senders. 

Lacking information on which subset of co-senders have real effects will increase the standard 

errors of the parameter estimates, but will not bias the point estimates. In Appendix 1.1, we show 

using simulations that the proposed model can recover the true parameters with negligible errors, 

regardless of whether the sharing events are caused by all co-senders collectively or only one of 

the senders. In contrast, we find that models that make assumptions on the contributions of co-

senders apriori can result in substantial bias (see Table A1.1 in Appendix 1.1). 
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1.4.4 Identification 

A primary challenge for determining the impact of the network characteristics on user actions is 

that the results could be biased due to unobservable characteristics. For example, a sender with 

high popularity offline might be more influential than other senders with similar online 

characteristics. While such offline information might be observable to the receiver, it is often 

unknown to the researcher. Similarly, a receiver with stronger interest in ad-related content might 

be more likely to share ads in general, and such topical interest of individual receivers is often not 

available to the researcher. Missing information on either senders or receivers can bias model 

estimates. To address this concern, we allow for random effects at the sender-level4 and the 

receiver-level, which allow each sender and receiver to have a random intercept that captures the 

main effect of unobserved characteristics. We also consider random effects at the dyadic level to 

account for dyad-specific unobservables, following previous studies in network contexts (Hoff 2005; 

Lu et al. 2013; Narayan and Yang 2007). Note that it is possible that the unobserved characteristics 

are correlated with observed characteristics. For example, a sender with high unobservable 

popularity may also have lot of connections and, as a result, a larger overlap with the receiver’s 

connections as compared to a less popular sender.  As random effects cannot accommodate such 

correlations, we estimate models with fixed effects at the sender level (fixed effects allow for 

unobserved characteristics to be correlated with observed characteristics). 

In addition to unobserved characteristics, two additional concerns for identification are spontaneous 

shares and endogenous communication patterns (Aral and Walker 2014). For the former, we 

explicitly control for the possibility of spontaneous shares, by treating all non-social sources as a 

special sender. Such a control not only teases out the effect of non-social sources, but also 

alleviates, to some extent, the concern that a receiver is sharing due to her inherent propensity to 

share. For the latter, in our application, the platform sends a notification to all followers of a sender. 

                                                           
4 Given that the special sender representing the effects of non-social sources is intrinsically different from other senders, 
we allow the variance of the frailty term for the special sender to be different from other senders. 
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Thus, there is no selection bias on who can see the content (i.e., no endogenous communication 

patterns).  

A fourth problem with identifying information sharing across a dyad is that a receiver often sees the 

same information from multiple senders before sharing, and the quantitative contribution of each 

co-sender may be unclear. We address this challenge statistically by proposing a novel proportional 

hazards model that determines the contribution of each co-sender based on their characteristics.  

1.5 Data 

We seek to understand how embeddedness between a sender and a receiver connected in a social 

network impacts the sharing behavior of the receiver. A dyadic level study imposes stringent 

requirements on the data. First, we need a sample of marketing-related messages or content 

generated on a social media platform by firms.5 Next, for each piece of content, we need complete 

information regarding how the content propagates through the network from activated users 

(senders) to their followers (receivers). Such information includes the profile and social graph 

information of all involved users (both senders and receivers), as well as time-stamped sharing 

information at the individual user level. The sample of involved users can be identified by traversing 

the audience of activated users progressively. Specifically, we can start from a set of seeds (e.g., 

the author or users who spontaneously share content) and then treat the followers of these seeds 

as receivers. This process iterates when a receiver become activated, i.e., she shares the content, 

until the end of the observation time window. This progressive user sampling approach based on 

ego’s network allows us to focus on users who are relevant to our analysis. A similar approach has 

been employed by other researchers interested in the effects of dyadic network characteristics (Aral 

and Walker, 2014; Shi et al. 2014). The set of users chosen by the progressive sampling approach 

are all the activated users (senders) and their followers (receivers). Finally, the profile and social 

graph information on these users can be collected retrospectively from historical data on social 

                                                           
5 This is important as we can establish the implications of our results for firms utilizing social media to reach out to consumers. 
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media platforms. Note that if there are users with regular exposures to non-social sources (e.g., 

portal pages), we can also consider them as receivers.  

We collected a dataset with the desired information from Digg.com, one of the largest online social 

news aggregation websites. On the website, users can highlight (“digg”) their favorite content and 

the activity is visible to all of their followers. Digg introduced a native advertising model, called 

diggable ads, in 2009, which remained on the website until Digg’s acquisition in August 2012. The 

feature allowed an advertiser to promote sponsored content in the feeds of Digg’s users. Diggable 

ads were seamlessly integrated with organic stories and displayed at three fixed positions of the 

eighteen slots available on the front page. At the time we collected the data, Digg maintained a 

Twitter like social network structure (see footnote 1), allowing users to follow each other.  

Initially ads are only shown on the front page. Users can digg up or down an ad after viewing it just 

like digging an organic story. In that case, the ad is also included in the news feed of all their 

followers including mutual followers. Other users can explore the ad on the front page or navigate 

through feeds of their followees’ activities in the “My News” page. All activities associated with an 

ad are automatically combined into a single feed for clarity. The identities of the involved followees 

are displayed side by side in the combined feed. Due to this feed combining feature, it is likely that 

each followee (co-sender) more or less has some effect on the activity of the focal user (receiver). 

Diggable ads were identical to organic stories except for an inconspicuous flag "sponsored by xx" 

below them. Diggable ads are removed from the front page when the associated advertiser runs 

out of budget, but users can still see them from social feeds.  

We investigate the sharing of diggable ads.6 For the purpose of this study, we focus on all ads (31) 

created during a randomly chosen month-long period (May 24th, 2012 to June 25th, 2012). As 

                                                           
6 Identification of the effect of network drivers is easier for diggable ads as opposed to that for organic content. Diggable 
ads are guaranteed to be displayed on the front page before running out of budget, whereas whether an organic story is 
displayed on the front page depends on many factors, including the diggs the story receives and the freshness of the story. 
Therefore, the spontaneous hazard of organic stories may change radically over time due to their unstable visibility on the 
front page, which makes it difficult to mod 
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mentioned earlier, we need the profile and social graph information of all involved users in the ad 

sharing process to study the effect of embeddedness associated with dyads on the sharing 

behavior. In the Digg setting, since all users can see the ads from the front page, they are all 

potential receivers. In order to control the size of our dataset, we only consider active users who 

can potentially digg or share these 31 ads.7 We define a user as active if she has dugg at least one 

ad in the past and still maintained some activity on Digg such as posting, digging and commenting 

other content in the focal time period.8 In robustness analysis, we also consider users who have 

dugg an ad in the past but have no activity during the focal period and find that our results are 

similar.  

For each potential receiver, we generate one dyadic observation for her if one of her followees 

shares the ad. Since everyone has access to the front page9, we generate one additional dyadic 

observation for each potential receiver, with the front page being the sender. The act of digging 

allows the user to share the ad with her followers. One converts from a receiver to a sender 

immediately after the sharing activity, implying that senders are a subset of receivers. A nuanced 

issue in our context is that ads stop showing up on the front page after a certain period and as a 

result, the spontaneous hazard becomes zero. To ensure that is not the case, we choose a 

censoring time for each ad as the last time when the ad was shared spontaneously by a user.  The 

censoring time of an ad ranges from 1.4 days to 7 days, after its creation. The average censoring 

time is approximately 5 days. This resulted in a sample of 8,164 users and 95,144 dyads. Table 

1.4 shows the summary information of the dataset. The table shows that 32% of shares have more 

than one co-sender (excluding the special sender “front page”), and the average number of co-

senders is 2.82, including the front page.  

                                                           
7 Focusing on active users allows us to remove inactive users who are not at risk of sharing anymore. In practice, marketers 
often focus on such high risk users in their targeting campaigns (e.g., sending coupons to customers who have purchased 
their products in the past or who have met some threshold on the amount spent). 
8 We have access to profile information of all users who ever dugg one of the diggable ads between October 2010 and July 
2012, including gender, location, number of diggs, number of comments, number of submissions, number of followers, and 
number of followees. 
9 On Digg, the front page is the primary non-social source for the sharing of ads. Another possibility, albeit rare in our 
context, is that users may discover the content through a search engine. For ease of exposition, we refer all non-social 
sources as the front page. 
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Table 1.4 Summary Statistics 

Number of ads/tweets 31 

Number of sharing user (senders) 1,058 

Number of potential sharing user (receivers) 8,164 

Number of <sender, receiver> dyads 95,144 

Number of <sender, receiver, ad> tuples 560,044 

      Number of spontaneous tuples 222,846 (40%) 

      Number of social tuples 337,198 (60%) 

Number of shares (diggs) 2,810 

      Number of spontaneous shares 1,438 (51.2%) 

      Number of potential influenced shares 1,372 (48.8%) 

      Percentage with more than one co-senders (excluding special sender) 32.1% 

 

We used the APIs provided by Digg to collect the social graph of all potential users who could share 

the sample ads. Due to the rate limit on API calls, it took 19 days (June/7/2012- June/26/2012) to 

collect a single snapshot of the complete set of followers and followees for these users. One 

concern with this data extraction process is that network of users may have changed even during 

the sample period. However, the extent of network changes is small in our setup. By comparing 

the profile information of users on June 7 and July 9, we found that the both the follower and 

followee numbers changed less than 5% on the log scale for 85% of users and the mean absolute 

relative change on the log scale is less than 2.5%. Thus, changing network is not likely to 

significantly impact our results. As a further check, we split our sample in two subsamples and 

repeat the analysis for each (see robustness checks). All our substantive findings are robust. 

We use several control variables pertaining to the sender, the receiver, and the sender-receiver 

dyad. These variables, summarized in Table 1.5, include the unitary network attributes of the 

sender/receiver, the engagement level of the sender/receiver, the demographics of the 

sender/receiver, the timing of the sender’s share, the number of co-senders in the receiver’s 

network, and so forth. Table 1.6 summarizes the summary statistics for the main unitary and dyadic 

network attributes and control variables. 
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Table 1.5 Descriptions of Independent Variables 

Independent Variable Description 

𝑿𝒊/𝑿𝒋 Attributes of sender 𝒊 / receiver 𝒋 

    Network attributes 

followees Number of followees (out-degree) 

followers Number of followers (in-degree) 

mutual Number of mutual followers 

    Engagement levels 

diggs Total number of diggs 

comments Total number of comments 

submissions Total number of submissions 

avgDiggs Average number of diggs per month 

avgComments Average number of comments per month 

avgSubmissions Average number of submissions per month 

    Others 

gender Male, female, or missing 

isSocial (𝒔𝒊)  1 if sender 𝒊 is a social source (i.e., followee), otherwise 0 

isSubmitter 1 if the sender is the submitter of the ad, otherwise 0  

𝑿𝒊𝒋  Attributes of a sender-receiver dyad 

Dyadic network attributes 

isMutual Does the sender and the receiver follow each other mutually 

commonFollowees Number of followees shared by the sender and the receiver 

commonFollowers Number of followers shared by the sender and the receiver 

commonMutuals Number of mutual followers shared by the sender and the receiver 

𝑿𝒊𝒌  Sender-specific attributes of an ad 

    Sharing timing 

wday Day of a week when sender i dugg ad 𝒌 

hour Hour of a day when sender i dugg ad 𝒌 

shareTime Hours taken for sender 𝒊 to adopt since the creation of ad 𝒌, 0 for the front page 

𝑿𝒋𝒌  
 

Receiver-specific attributes of an ad 

     co-senders Number of followees (co-senders) of the receiver who have already shared 

𝑿𝒌  Attributes of ads 𝒌 (only interaction with other variables can be identified) 

 popularity  Number of diggs on an ad at a given time point 

 

Table 1.6 Key Statistics of Main Variables 

  Zeros Mean SD Min Median Max 

Unitary Network Attributes of All Users             

Number of followees 141 268.0 423.7 0 118 10122 

Number of followers 146 386.3 1091.0 0 136 29331 

Number of mutual 424 114.4 203.8 0 36 4598 

Dyadic Network Attributes of Sender-Receiver Dyads        

isMutual (1– reciprocal, 0 – non-reciprocal) 63733 0.27 0.44 0 0 1 

Number of common followees 4736 41.1 52.5 0 23 814 

Number of common followers 2182 100.7 334.2 0 26 9812 

Number of common mutual followers 19805 17.1 35.3 0 4 594 

Popularity of Ads             

Number of diggs 0 93.4 86.2 4 95 295 
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Table 1.7 outlines the correlation among dyadic network characteristics. As discussed earlier, to 

clearly identify the effects of different overlapping connections, we exclude common mutual 

followers when counting the number of common followees and common followers. The correlations 

among the three embeddedness metrics are not very high and suggest that these metrics are 

capturing different drivers.  Further, the estimates of the correlated variables were stable with 

changes in model specifications and data samples, suggesting that multicollinearity is unlikely to 

be an issue. 

Table 1.7 Correlation among Dyadic Network Characteristics 

  isMutual logCommonFollowees logCommonFollowers logCommonMutuals 

isMutual 1.00 0.16 0.07 0.53 

logCommonFollowees  1.00 0.53 0.46 

logCommonFollowers   1.00 0.46 

logCommonMutuals       1.00 

 

In order to understand how ads were shared over time, we plot the Kaplan-Meier survival curve for 

some sample content (see Figure A1.1 in Appendix 1.3). Note that the sharing activities on most 

ads basically ceased at the censoring time. The sharing graphs for two sample ads with average 

popularity are shown in Figure A1.2 in Appendix 1.3. These graphs demonstrate that path length 

is short (around 2 on average) for content as they propagate through the user network. This is in 

agreement with the observation made by Goel et al. (2012) about short path lengths for diffusion 

in online social networks. Note that our model assumes that the effect of co-senders can either 

increase or decrease. This may not accurately capture the aggregate diffusion pattern especially 

when the network is saturated and the effect of co-senders is very likely to decrease.  However, 

path lengths for our data suggest that the network is not saturated and alleviates such concern. 

Next, we discuss our results on the role of embeddedness on the sharing propensity of the receiver. 
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1.6 Results 

1.6.1 Main Results 

Table 1.8 summarizes the results of four model specifications.10  Our main model of interest is 

model 4 that includes interaction terms representing the moderating effect of ad popularity on 

common followers and common mutual followers. We have also estimated models with no 

interaction terms or including only one of the two interaction terms (models 1-3, respectively). 

Likelihood ratio tests suggest that model 4 is preferred over models 2 and 3 (p<0.05). The following 

discussion is based on the estimates from model 4 unless otherwise specified. 

Table 1.8 Parameters Estimates of Different Model Specifications 

  Model1 Model2 Model3 Model4 

Embeddedness      

logCommonFollowees 0.23*** 0.174** 0.175** 0.175** 

logCommonFollowers 0.845*** 1.364*** 0.829*** 1.074*** 

logCommonMutuals -0.245*** -0.19*** 0.799*** 0.418** 

Interactions with Popularity      

logCommonFollowers:logPopularity  -0.153***  -0.071** 

logCommonMutuals:logPopularity   -0.258*** -0.16*** 

Fitness         

logLikelihood -22661 -22623 -22620 -22618 

AIC 45401 45326 45320 45317 

Significance levels: p<0.001 (***), p<0.01 (**), p<0.05 (*), and p<0.1 (.). The main effect of logPopularity cannot 
be identified as everyone sees the same digg number at a given time point, the effect of which is cancelled out 
in the likelihood. Model 2 is chosen as our main model based on fitness.  

 

Common followees. The number of common followees has a positive effect on the sharing 

propensity of the receiver. This validates H1. The number of common followees reflects the 

similarity between the sender and the receiver’s tastes and expertise. For the purpose of 

impression management, users tend to share content representing their taste or expertise (Berger 

2014; Packard & Wooten, 2013). Thus, the more common followees the receiver has with the 

sender, the more likely the receiver will also share the content from the sender. Note that we obtain 

                                                           
10 We omit the coefficients on control variables for clarity. Please see Appendix B for the complete set of parameter 
estimates. 
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this result after controlling for the effect of common mutual followers, which represent close friends. 

Thus, our result suggests that common followees can also be used to capture similarity or 

homophily between users (McPherson et al. 2001).  

Common followers. The simple effect of common followers (when the logarithm of the content 

popularity is zero) is positive, suggesting that the number of common followers has a positive effect 

on dyadic influence when the popularity of ads is low. This finding validates H2. As discussed 

earlier, the number of common followers reflects the similarity between the sender and receiver’s 

audiences. Users tend to share content of interest to their audience to impress them (Aral and Van 

Alstyne 2011; Wu et al. 2004). Therefore, if the receiver has a similar audience with the sender, 

the receiver is likely to make the same decision as the sender (i.e., to share), especially when the 

content is relatively novel and the concern around uniqueness is not strong. The negative 

interaction of common followers with content popularity confirms H3: the effect of common followers 

decreases with content popularity, validating users’ need for uniqueness in content sharing (Ho 

and Dempsey 2010). This is similar to extant findings that indicate that consumers with a high need 

for uniqueness may decrease the consumption of a product if it becomes commonplace, also 

known as the reverse-bandwagon effect (Cheema and Kaikati 2010; Granovetter and Soong 1986). 

Common mutual followers. The simple effect of common mutual followers (when the logarithm of 

content popularity is zero) is positive and demonstrates that, when the content is relatively novel, 

common mutual followers has a positive impact on sharing. This finding validates H4. The existence 

of neighbors mutually connected to two users expands the bandwidth of communication between 

them and increases their trust in each other (Aral and Van Alstyne 2011; Burt 2001). The negative 

interaction of common mutual followers with popularity confirms H5. This finding shows a boundary 

condition for the positive effect of embeddedness previously reported in undirected networks (Aral 

and Walker 2014; Bapna et al. 2015). Specifically, the effect of common friends might be positive 

only when the information to be communicated is relatively novel (or not as popular).  
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In sum, all our proposed hypotheses find support from data. Our results show that the effect of 

embeddedness in directed networks varies across different types of “neighbors”. Moreover, the 

impact of common followers and common mutual followers are negatively moderated by content 

novelty. The interaction effects suggest that users are eventually going to cease sharing due to 

concerns around uniqueness. As a result, the content is likely to diffuse for short distances within 

a network. This may explain the short information cascades reported in literature (Goel et al. 2012) 

and also observed in our dataset (Figures W1 and W2). 

In addition to the findings on the three embeddedness metrics, it is worthwhile highlighting the 

estimates on two additional variables (i.e., co-senders and shareTime), which help us understand 

how each co-sender contributes to a receiver’s propensity to share. First, the effect of co-senders 

is negative, showing that the marginal effect of a co-sender decreases with the number of co-

senders (though the overall effect of all senders may increase). Second, the effect of shareTime is 

positive11, suggesting that the later a co-sender shared, the stronger effect the co-sender has on 

the receiver. This documents a recency effect for co-senders consistent with previous findings that 

social effects decay over time (Bakshy et al. 2012; Haenlein 2013; Nitzan and Libai 2011; Trusov 

et al. 2009).  

1.6.2 Robustness Checks 

Unobserved Characteristics. A potential concern with our analysis is that sharing of content could 

be driven by unobserved characteristics at the sender, the receiver, and even the dyad level. The 

dyadic observations with the same sender, receiver or dyad may not be independent because of 

common unobserved characteristics. As a robustness check, we consider sender-specific, 

receiver-specific and dyad-specific random effects. We also account for the effects of unobserved 

characteristics with a fixed effects approach as it allows for unobserved characteristics to be 

                                                           
11 It can be easily proved that, in a proportional hazards model, using shareTime (i.e., how long did it take for a sender to 
adopt) is equivalent to using recency (i.e., how long ago did the sender adopt), because the sum of the two variables equals 
the time elapsed since the creation of the ad. The only difference is that the estimates on both variables will have opposite 
signs. We use shareTime as it does not vary over time, which facilitates the estimation. 
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correlated with observed characteristics. While the fixed effects approach appears to be more 

flexible than the random effects model in terms of its assumptions, it is more sensitive to the issue 

of insufficient reoccurrence. Specifically, in the proportional hazards modeling framework, a 

random effects approach tends to provide more reliable estimates than the fixed effects approach 

as the former penalizes large individual effects (Therneau 2000) and prevents the model from over-

fitting. With that being said, we still estimate fixed effects on the sender level but not on the receiver-

level as the low reoccurrence frequency of receivers in our data may result in substantial incidental 

parameter bias in the estimates (Allison 2002; Lancaster 2000). Fixed effects on the dyadic level 

are not a viable alternative as well, as then the effects of dyadic network characteristics are not 

identified. Note that the random/fixed effects allow us to account for unobserved factors such as 

the fact that some users might be bots on Digg.  

Table 1.9 presents the results from different models with random and fixed effects at sender, 

receiver and dyad levels. Overall, the estimates on the dyadic network characteristics are 

qualitatively similar across different model specifications.  

Table 1.9 Parameters Estimates from Different Random/Fixed/Mixed Effects Models 

  none rs fs rs-rr fs-rr rs-rr-rd fs-rr-rd 

Embeddedness               

logCommonFollowees 0.175** 0.146. 0.233*** 0.2* 0.165*** 0.118 0.152* 

logCommonFollowers 1.074*** 1.077*** 1.078*** 0.674*** 0.658*** 1.784*** 0.861*** 

logCommonMutuals 0.418** 0.364. 0.193 0.679** 0.361* 1.023*** 1.119*** 

Interactions with Popularity         

logCommonFollowers:logPopularity -0.071** -0.068* -0.07** -0.054. -0.082** -0.166*** -0.34*** 

logCommonMutuals:logPopularity -0.16*** -0.153*** -0.132*** -0.178*** -0.098* -0.226** -0.186** 

Fitness               

logLikelihood -22618 -22538 -22278 -19974 -19628 -20226 -19960 

AIC 45317 45163 46727 40038 40932 40544 41597 

In row 1, the first letter represents whether fixed (f) or random (r) effects is used. The second letter indicates the 
subject (“s” for sender, “r” for receiver, and “d” for dyad) on which the specified effect is applied. Therefore, “rs” 
represents a model with random effects on sender, and “fs-rr-rd” represents a model with fixed effects on sender, 
random effects on receiver, and random effects on dyad. “rs” is the main model used in this paper. The model “none” 
doesn’t include random or fixed effects on any subject. 
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The Growth of Network Structure. Another concern with our analysis is that the network structure 

among users may change over time but we used a static snapshot. Note that Digg users often 

establish new ties but rarely break old ties. The direct consequence of the inaccurate network 

structure information is that the number of observed co-senders for a receiver could be larger or 

smaller than the actual number of co-senders for the receiver, depending on whether the receiver 

dugg the ad before or after the time her network information was collected by us. In our dataset, 

almost all the ads were posted on three days: May 24, June 1, and June 25.  In order to test the 

sensitivity of our results to this issue, we split the dataset into two subsets: one focusing on ads 

created between May 24 and June 1, and another focusing on ads created on June 25. Recalling 

that the network structure is collected during June 7- June 26, the number of co-senders is likely to 

be overestimated on the first dataset as the network structure is collected afterwards. In the second 

dataset, the number of co-senders is likely to be underestimated as most of the digging activities 

take place after the network structure is collected. If overestimation or underestimation of the 

number of co-senders causes a substantial bias on our estimates, the results on these two subsets 

should be very different from that on the full dataset. Table 1.10 summarizes the results on the two 

subsets, respectively. The results show that the estimates on the two subsets are highly consistent 

with that on the full dataset.  

Table 1.10 Parameters Estimates on the Two Subsets 

  May24-June1 (1879 Events) June 25 (931 Events) 

Embeddedness            

logCommonFollowees 0.233*** 0.204* 

logCommonFollowers 0.858*** 1.147*** 

logCommonMutuals 0.654*** 0.643** 

Interactions with Popularity                 

logCommonFollowers:logPopularity  -0.055. -0.038 

logCommonMutuals:logPopularity  -0.186***  -0.274*** 

Fitness            

logLikelihood -15149 -7427 

AIC 30379 14935 
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Inactive Users. In our main analysis, we only consider active users as candidates for sharing. We 

also re-estimate our model by including data for users who have dugg an ad in the past but are not 

active during the panel period. Results are included in Table A1.3 in Appendix 1.4 and are 

qualitatively similar to our main analysis. 

1.6.3 Generalizability to Other Social Networks 

To test whether our findings generalize to other directed networks, we collected an additional 

dataset from Twitter. In the context of Twitter, the act of sharing is retweeting. Similar to Digg, the 

sharing is spontaneous if a user shares a tweet before any of her followees do. Otherwise, the 

sharing is considered as sharing influenced by others. To make sure that the content of the Twitter 

dataset is similar to that of the Digg dataset and also to improve the managerial relevance of our 

study, we focus on the sharing of brand-authored tweets.  

We focus on nine brands listed by Fortune magazine as the top fortune 500 companies using social 

media.12 We first collect the tweets authored (or retweeted in rare cases) by these brands in the 

past 10 days.13 Then for each tweet, we collect the social graph information needed for our analysis 

retrospectively in two steps. As the first step, we collected the social graph information of all 

retweeters (including the author) of the tweet. These users represent the set of senders for the 

focal tweet. Next, we collected the social graph information for the followers (receivers) of the 

senders. Since the density and network size of Twitter users is much higher than that of Digg 

users14, collecting data for all followers of every sender is not feasible due to API restrictions.15 In 

order to control the data size, for every sender, we consider all followers who retweet. However, 

we randomly sample other followers from the sender’s ego network using the risk set sampling 

approach (Langholz and BORGAN 1995; Langholz and Goldstein 1996).  Specifically, depending 

on popularity of each brand, we sample 5~20 followers from the ego network of each sender 

                                                           
12 http://fortune.com/2014/06/02/500-social-media/ 
13 We collected two sets of tweets for each brand in about six weeks. 
14 In our sample, a user on Digg, on an average, has around 400 followers whereas a user on Twitter has around 19000 
followers. 
15 https://dev.twitter.com/rest/public/rate-limits 
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(sample size is smaller for popular brands with more data to collect).16 We then collect the profile 

information for all the identified users. Similar to the Digg dataset, we focus on the receivers who 

are still active in the past three months. We focus on 4740 sharing activities on 74 tweets with more 

than 20 retweets in our analysis.17 Further description and statistics for the Twitter dataset are 

shown in Tables A1.4-1.7 in Appendix 1.4. Table W6 shows the complete set of results for the 

Twitter dataset.  

Table 1.11 Parameter Estimates on Twitter Dataset 

  
 

Model1 Model2 Model3 Model4 

Embeddedness         

logCommonFollowees 0.294*** 0.311*** 0.299*** 0.309*** 

logCommonFollowers -0.127*** 0.227*** -0.132*** 0.144*** 

logCommonMutuals -0.035 0.013 0.643*** 0.284*** 

Interactions with Popularity      

logCommonFollowers:logPopularity  -0.105***  -0.081*** 

logCommonMutuals:logPopularity   -0.174*** -0.075*** 

Fitness         

logLikelihood -29378 -29324 -29340 -29319 

AIC 58822 58717 58747 58708 

 

Table 1.11 summarizes the parameter estimates for the three embeddedness metrics for Twitter 

dataset. Our main model of interest is model 4 and has the best fit. The results show that the 

findings on the Twitter dataset are consistent with that on the Digg dataset. The coefficient of 

common followees is positive and significant. The coefficients of common followers and common 

mutual followers are also positive and significant. And, the coefficients of the terms capturing 

interaction of these variables with popularity are negative and significant. This pattern of results 

demonstrates the generalizability of our findings from Digg to other directed social media platforms 

like Twitter. Unlike in the Digg dataset, however, we cannot effectively estimate random/fixed 

                                                           
16 In order to ensure that the number of followers sampled does not affect our results, we tried to increase the sample size 
to as many as 50 followers for each retweeter on some brands and find the estimates are rather robust to the sample size.  
17 We also tried using tweet samples with other popularity thresholds, such as 5, 10, 30 and 40 and our results are 
qualitatively similar. 
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effects on the Twitter dataset as the reoccurrences of each sender, receiver, and dyad are 

substantially lower.  

It is important to highlight that there are a few differences in how we collect and analyze the Digg 

and Twitter datasets, mainly to incorporate the contextual differences between the two platforms. 

The first difference is that, in the Digg dataset, we treat all users as candidates for spontaneous 

sharing of an ad, as they all can see the ad on the front page of Digg. In the Twitter dataset, 

however, for each tweet, only the followers of the author (i.e., the brand) or retweeters are 

candidates for spontaneous sharing because there are no such non-social sources like front page 

that guaranteed substantial exposure for non-followers. Second, in contrast to Digg, Twitter often 

only shows the feed from the earliest co-sender to the receiver and does not provide any clue about 

the other co-senders’ activity on the same tweet. However, our model can effectively handle the 

case when only one of the co-senders has a significant impact. Therefore, this should not bias our 

estimates, especially given that only 7% of retweeters in our sample have more than one co-sender. 

What is noteworthy is that despite these differences between Digg and Twitter, we obtain highly 

similar results and it further demonstrates the generalizability of our findings. 

1.7 Discussion & Conclusion 

Social media platforms hold the potential to reshape the manner in which consumers generate, 

spread and consume content. Understanding what leads to effective information sharing at the 

dyadic level lies at the core of cost-effective content propagation on these platforms. While the 

effects of unitary network attributes have been well-studied in the literature, studies on the effects 

of dyadic network attributes on information sharing are nascent and predominantly focus on 

undirected networks.  

In this paper we study the effect of a dyad’s network embeddedness on information sharing in 

directed networks. More specifically, we quantify the effects of common followees, common 

followers, and common mutual followers between a sender and a receiver on the propensity of 
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sharing by the receiver. Substantively, our results show that the effect of embeddedness in directed 

networks varies across different types of “neighbors”. The number of common followees is 

positively associated with receiver’s propensity of sharing. Other embeddedness measures such 

as number of common followers and common mutual followers also have positive effect on this 

propensity. However, the latter positive effect decreases with the popularity of shared content. 

Thus, our study provides insight into consumer behavior in online information sharing and adds to 

the existing literature highlighting the role of uniqueness in social consumption (Cheema and 

Kaikati 2010; Zeng and Wei 2013). It is possible that uniqueness concerns may be preventing users 

from sharing the information received from others once the information becomes less novel. This 

in turn might be causing small cascades. Thus, our results provide a potential explanation for the 

relatively small size of information cascades that have been observed in online social networks 

(Goel et al. 2012) 

We make a methodological contribution as well by proposing a new hazard rate modeling approach 

to more accurately determine the contribution of individual senders on influencing a receiver when 

multiple senders are involved. Quite often, consumers may respond only after the content is seeded 

by multiple senders (Centola and Macy, 2007). Even if detailed tracking information is available for 

each user, it would be difficult to determine the exact contribution of each sender in the content 

sharing process.18 Previous work either makes strong assumptions about how the contribution 

should be attributed to different senders (Aral et al. 2009; Braun and Moe 2013; Katona et al. 2011; 

Toubia et al. 2014; Trusov et al. 2010) or does not focus on the identification of the effect of shared 

characteristics (Sharara et al. 2011; Trusov et al. 2010). Our approach makes no such assumptions 

and, as a consequence, can help to better tease apart the effect of the shared network attributes. 

For marketing managers, we provide insights on how to target customers in a directed network at 

a micro level. Many platforms support micro level targeting to improve the efficacy of targeting (e.g., 

                                                           
18 While a platform can track the actual time when a receiver sees content from one or more senders and the sequence in 
which the content is received, it cannot determine how consumer is weighing these different feeds in her decision to adopt 
the content and in turn send it to her followers.  
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display of promoted tweets on Twitter) and prevent information overload for their members (e.g., 

filtering of feeds on Weibo). Our results show that platforms such as Twitter or Weibo can improve 

their targeting or filtering by focusing on dyads embedded in different types of connections (i.e., 

followees, followers, mutual followers). As a concrete example, when deciding whether or not to 

show a promoted tweet to a given user 19, Twitter may want to consider how many common 

neighbors this user shares with the author, as well as the overall popularity of the tweet. Specifically, 

targeting users who have more common followees with the author can be more effective. Targeting 

users who have large numbers of common followers and common mutual followers can also be 

effective when the tweet is not that popular, but might be counterproductive when the tweet is 

already sufficiently popular. Finally, as compared to most previous studies that primarily focus on 

the sharing of organic content in social networks, the analysis of this paper is based on the sharing 

of sponsored ads and brand-authored tweets, which makes our findings of direct relevance to 

marketers. 

Our work can be extended in several ways. First, it is likely that characteristics of the content can 

influence how much it is shared within dyads (Berger and Milkman 2012). Our modeling framework 

allows us to account for the heterogeneity of content but it would be useful to understand if the 

magnitude or direction of our results is sensitive to type of content being shared. Further, we 

considered sponsored ads and brand-authored tweets. It is possible that the user behavior may be 

different for organic content. Future studies should investigate the role of content characteristics in 

moderating the effect of network attributes on information sharing. Second, from a modeling 

standpoint, we did not have information on whether or not a user actually saw the feed. Without the 

impression information, we are essentially modeling the overall hazard of a user to read and adopt 

an ad. This coarse modeling structure may increase the standard errors of our estimates. However, 

the impression information is typically only known to social media platforms. Future research should 

                                                           
19 Once a tweet is promoted, Twitter can display the tweet to any user on the platform, even though this user doesn’t follow 
the author of the tweet. However, in practice, to avoid spamming users, Twitter only displays promoted tweets to selective 
users deemed relevant. Note that an advertiser can promote a tweet authored by a random user.   
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explore alternative approaches to address the lack of impressions such as conducting experiments 

where such information can be obtained from users (De Bruyn and Lilien 2008) or developing a 

latent model to capture the effect of impressions (Kang et al. 2013).  Finally, the assumption that 

the existence of one co-sender does not cannibalize or reinforce the effects of other co-senders is 

restrictive. In our analysis, we address this problem by allowing the hazard of a co-sender to change 

with the number of co-senders (i.e., shared followees in Table A1.2 of Appendix 1.2). The negative 

coefficient on shared followees suggests that the marginal effect of a co-sender decreases with the 

number of co-senders (i.e., the cannibalization effect exists). However, this remedy strategy may 

not be satisfactory if the hazards of individual co-senders change by different multiplicative scales 

as the number of co-senders increase. Future studies should explore the non-linear effect of the 

number of co-senders on the outcome.  
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2. Participation vs. Effectiveness of Paid Endorsers in Social 

Advertising Campaigns: A Field Experiment 

 

2.1 Introduction 

Social advertising leverages social connections among consumers to reach and influence a target 

audience. This business practice is becoming increasingly popular. According to BI intelligence20, 

social advertising spending in the US will top $8.5 billion in 2015 and reach nearly $14 billion by 

2018. Globally, it is expected to reach $23.7 billion in 2015 and $36 billion by 2017, capturing 16% 

share of all digital ad spending.21 Two thirds of marketers believe that social media is core to their 

business, and 70% of them plan to increase the budget on social media marketing.22 

The prevalent social advertising mechanism is a centralized system in which advertisers submit 

ads to social media platforms (publishers) who then decide how to distribute the ads. Two 

drawbacks of this system are that advertisers have no direct control over the selection of endorsers 

(e.g., users who share/retweet an ad on Facebook/Twitter) and that endorsers are not incentivized 

to get engaged. Paid endorsement, in contrast, is a decentralized mechanism that allows 

advertisers to bypass publishers and recruit individual endorsers of their own choice at pre-

specified prices. Specifically, advertisers post tasks on a paid endorsement platform (a broker 

website similar to Amazon Mechanical Turk) and microbloggers registered on the platform can take 

on the tasks requiring them to post or retweet some ad for monetary rewards. Paid endorsement 

has gained particular popularity in China, with many websites acting as platforms for paid 

endorsement. Weibo.com, the largest Chinese microblog site with more than 500 million users, 

launched its official paid endorsement platform in 2012. 

                                                           
20 http://www.businessinsider.com/social-media-advertising-spending-growth-2014-9 
21 http://www.emarketer.com/Article/Social-Network-Ad-Spending-Hit-2368-Billion-Worldwide-2015/1012357 
22 http://www.adweek.com/socialtimes/social-marketing-2015/504357 
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Despite the growing interest in paid endorsement and social advertising in general, its effectiveness 

remains in question. Two thirds of advertisers are uncertain about the effectiveness of social 

advertising. 23 & 24  The effectiveness of a paid endorsement campaign depends on how many 

endorsers participate and on how well they expand reach (i.e., views), generate engagement (i.e., 

likes, comments, and retweets), increase traffic (i.e., clicks), and boost sales.  

A key question facing marketers is how to incent endorsers. One problem with paid endorsement 

is that the incentive of participants is contingent on participation rather than performance, as 

monitoring performance is often practically infeasible or too costly. So far, the incentive on most 

paid endorsement platforms (e.g., weituitui.com and sandaha.com) are simply determined by the 

number of followers an endorser has. Research on survey response behavior shows that incentives 

unrelated to performance typically increase participation, but rarely affect performance (Cantor et 

al. 2008; Singer and Ye 2013). The same may hold in paid endorsement campaigns. A second 

source of complexity is that the reaction to a particular level of financial incentive is likely to vary 

across potential endorsers with different award histories, as implied by prospect theory positing 

reference dependence and loss aversion, two phenomena well-documented to affect consumer 

behavior (Greenleaf 1995; Hardie et al. 1993; Kalyanaram and Winer 1995; Lattin and Bucklin 

1989). 

A second key question is which endorsers to target. Whether or not an endorser is worth targeting 

not only depends on the endorser’s effectiveness in generating desired outcomes (e.g., 

engagements and sales), but also the endorsers’ willingness to participate, as only participants can 

generate real outcomes. To design successful targeting strategies, it’s critical for marketers to 

understand which endorsers are responsive (in participation) and which endorsers are effective (in 

generating outcomes), and more importantly, whether responsive endorsers are also effective. 

Meanwhile, given that different marketers may have different objectives in their campaigns, whether 

                                                           
23 http://www.nielsen.com/content/dam/corporate/us/en/reports-downloads/2013%20Reports/Nielsen-Paid-Social-Media-
Adv-Report-2013.pdf 
24 http://www.socialmediaexaminer.com/SocialMediaMarketingIndustryReport2014.pdf 
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the effectiveness of endorsers varies across different types of outcomes might be also of interest 

to marketers. 

Customer engagement in the form of likes, comments, and retweets is a key objective to marketers 

and can easily be tracked at the endorser level. Several studies have already investigated how 

characteristics of online users are associated with their influence on others (Aral and Walker 2012; 

Katona et al. 2011; Trusov et al. 2010). However, these studies concentrate on organic word of 

mouth and voluntary endorsement without monetary incentive (Shi et al. 2014; Toubia and Stephen 

2013). Their findings need not generalize to paid endorsement campaigns with monetary 

incentives. For instance, self-presentation is often a key motive to post online content (Schau and 

Gilly 2003; Toubia and Stephen 2013), but it is not clear to what extent this holds in paid 

endorsement and other viral-for-hire campaigns.  

This paper aims at filling in this gap in the literature by providing answers to the following questions: 

(i) how incentive affect endorsers’ participation and effectiveness in paid endorsement campaigns, 

(ii) what types of endorsers are most effective in generating online engagements, and (iii) whether 

that varies across types of engagements that require different levels of effort from endorsers’ 

followers.  

To answer these questions, we collaborated with two vendors on the Chinese retailing site 

taobao.com, and ran a field experiment on the Chinese microblogging site weibo.com, using one 

of the largest Chinese paid endorsement platforms, weituitui.com. We exogenously manipulate the 

pay rate to endorsers and their eligibility to participate. Since the data collected from our experiment 

are panel count data with sample selection issues, we propose a Poisson lognormal model with 

sample selection and correlated random effects to analyze what affects endorsers’ participation 

and effectiveness.  

Our study produces several intriguing findings. (i) Endorsers are sensitive to losses but not gains, 

compared to the average reward per task they received in the past. (ii) Observed and unobserved 
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characteristics of endorsers often have opposite effects on participation and effectiveness. As a 

result, low potential endorsers may generate high actual engagements due to their high probability 

to participate, whereas high potential endorsers may generate low actual engagements due to their 

low probability to participate. (iii) The potential of the same endorser can be different in generating 

different types of engagement. 

This work, as the first attempt to study what affects endorsers’ participation and effectiveness in 

paid endorsement social advertising campaigns, makes the following contributions to the literature. 

First, it helps marketers understand the role of incentives in such campaigns. Second, it documents 

a tension between participation and effectiveness, and highlights the difference between potential 

and actual effectiveness. Third, it suggests that different mechanisms may be driving different types 

of engagements. Finally, it shows how to deal with sample selection in panel data with repeated 

observations by combining an exogenous soft eligibility constraint and econometric modeling. 

2.2 Theoretical Background 

This section discusses motives that may affect endorsers’ participation and effectiveness in paid 

endorsement campaigns, and how financial incentives and three endorsers’ characteristics (social 

media fan base, prior activity level, and community embeddedness) may affect endorsers’ 

participation and effectiveness. 

2.2.1 Participation 

The literature on survey participation broadly divides the reasons why people participate in surveys 

or questionnaires into three categories: altruistic reasons (e.g., willingness to help research and 

civil duty), egoistic reasons (e.g., monetary incentive, opportunity to learn something), and survey-

specific reasons (e.g., topical interest, trust in organization) (Singer and Ye 2013). Likewise, in paid 

endorsement campaigns, the motives of endorsers can be classified into three categories: altruistic 

(e.g., goodwill to share attractive deals), egoistic (e.g., monetary incentive and self-enhancement), 

and campaign-specific. In this paper, we only focus on drivers that are relevant to incentive and 
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endorsers’ characteristics. Two such drivers are monetary incentive and self-enhancement 

(perhaps also goodwill to share attractive deals, which is hard to disentangle with self-

enhancement). 

Incentives, reference dependence and loss aversion. Paid endorsement is predicated on the 

assumption that financial incentives motivate people to act as endorser. Prospect theory posits that 

financial rewards motivate people because they are gains or losses compared to some reference 

point, rather than merely because of the absolute size of the incentive (Kahneman and Tversky 

1979; Long and Nasiry). It also posits that people are often more sensitive to losses than gains. 

The former phenomenon is known as reference dependence and the latter as loss aversion. Both 

are well-documented in consumer behavior (Greenleaf 1995; Hardie et al. 1993; Kalyanaram and 

Winer 1995; Lattin and Bucklin 1989). Prior research suggests that the average reward per task 

that a potential endorser received in the past is a good candidate reference point in paid 

endorsement campaigns (e.g., Hardie et al. 1993). Both the theory and empirical findings, finally, 

indicate the presence of deceasing rather than constant returns in how gains and losses affect 

behavior. 

Self-enhancement. Theories of self-enhancement suggest that people are motivated to seek 

positive evaluations from others (Jones 1973). On social media platforms, users’ activities are 

publicly visible to others. This makes social media platforms an ideal place for people to signal their 

expertise and enhance their social status (Alexandrov et al. 2013; Lovett et al. 2013; Schau and 

Gilly 2003). In particular, Toubia and Stephen (2013) documented that self-image is the primary 

motive for most users to contribute content voluntarily to Twitter. Therefore, users with a positive 

reputation and self-image may be more selective than others in which paid endorsement 

campaigns to participate. The concern about self-enhancement likely varies with several 

characteristics of endorsers, as elaborated below. 

Social media fan base refers to the number of followers that endorsers on social media platforms 

have. Since the remuneration of endorsers often increases with their number of followers, 
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endorsers with a larger number of followers might be financially more motivated to participate. 

However, users with a larger number of followers may derive more self-image related utility (Toubia 

and Stephen 2013). As a result, they might be more selective about which campaigns to participate 

in, as broadcasting irrelevant content can hurt their reputation (Barasch and Berger 2014; Bock et 

al. 2005). Alternatively, it is possible that endorsers with a greater number of followers are more 

likely to participate regardless of incentive, as they derive more intrinsic and status-related benefits 

from relaying attractive deals and other interesting content (Toubia and Stephen 2013).  

Prior activity level refers to the endorsers’ past activity intensity on social media and paid 

endorsement platforms. The more posts a user made on social media, and the more paid 

endorsement campaigns a user participated in, the less selective the user may be in deciding what 

to post and what to participate in (Porter and Whitcomb 2003). Therefore, we expect endorsers 

who posted more and participated more in the past to be more likely to participate in a future 

campaign.  

Community embeddedness refers to how long the endorsers have been registered and how many 

friends they have in the paid endorsement community. Endorsers who are more deeply embedded 

into the community might be more selective in what campaigns to participate in (Minkler 2012), and 

more concerned about their status when sharing content in online communities (Schau and Gilly 

2003; Toubia and Stephen 2013). Thus, such endorsers may be more selective and less likely to 

participate in any given endorsement campaign. 

2.2.2 Effectiveness 

The effectiveness of endorsers in generating engagements depends on their level of effort, the trust 

of their followers in them, the sheer numbers of followers, and the strength of the ties with their 

followers (Aral and Walker 2014; Chu and Kim 2011; King et al. 2014; Moldoveanu and Baum 

2011). We discuss the potential effects of incentive size and the three types of endorser 

characteristics we study based on how they relate to these four traits. 
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Incentive. In paid endorsement platforms, the remuneration of endorsers is often based solely on 

their number of followers rather than being contingent on performance. Research on survey 

response behavior suggest two alternative hypotheses regarding the impact of incentive on 

response quality when incentives do not depend on performance (Cantor et al. 2008; Singer and 

Ye 2013). One hypothesis is that, by attracting people who would otherwise not participate, the 

quality of response declines. The alternative hypothesis is that, by rewarding participants, the 

quality of responses increases due to feelings of gratitude or obligation. A comprehensive review 

of studies evaluating the effects of incentive on response quality (e.g., number of questions 

answered and length of answers) concluded that incentive size almost never had an effect on 

quality (Singer and Ye 2013). This suggests that in paid endorsement campaigns, the size of 

incentive need not impact the effectiveness of endorsers. Therefore, we expect little to no effect of 

incentive on effectiveness.  

Social media fan base. While the tie strength between users and their contacts decreases with the 

number of contacts (Burke 2011; Katona et al. 2011; Roberts et al. 2009), a larger fan base implies 

a larger audience who can potentially engage (Goel et al. 2012). A number of studies have 

investigated the effect of network size on a user’s overall influence, but the results are mixed. 

Katona et al. (2011) find that the effectiveness of individuals in influencing friends to adopt (register 

on) a social network site decreases with the total number of their contacts, whereas 

Yoganarasimhan (2012) finds that a node’s overall effectiveness in spreading Youtube videos 

increases with its network size. One explanation to reconcile these two findings is that the effect of 

network size depends on the level of effort needed to make a decision. When the required effort is 

small (e.g., information diffusion), weak ties suffice (Granovetter 1973; Weimann 1983) and the 

effect of network size is dominated by volume per se, leading to a positive overall effect. On the 

other hand, when the required effort is large (e.g., product adoption), the need for strong ties 

(Weenig and Midden 1991; Weimann 1983) make users with larger number of followers connected 

by weak ties not as persuasive, resulting in a negative overall effect. This implies that the effect of 
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the number of weak tie followers on comments and retweets might be smaller than that on likes, 

as comments and retweets require more effort than likes.  

Priority activity level. Endorsers who posted and participated a lot in the past are less likely to be 

selective and more likely to be spammers. Numerous posts or endorsements can hurt their 

reputation, rendering them less trustworthy than those who do not post/endorse as much (Barasch 

and Berger 2014; Bock et al. 2005). Therefore, endorsers who posted and participated more in the 

past should be less effective. Note, this implies that endorser characteristics associated with prior 

activity may have opposite effects on participation and effectiveness. 

Community embeddedness. Following the argument that endorsers who are embedded into the 

paid endorsement community tend to be more selective in what to participate, it is likely that their 

follower will trust their endorsements more. Consequently, endorsers with stronger community 

embeddedness are expected to be more effective in generating online engagements from their 

followers. Note, this implies that endorser characteristics associated with community 

embeddedness may have opposite effects in participation and effectiveness.  

2.3 Field Experiment 

2.3.1 Research Setting 

We conducted a field experiment on weituitui.com, a social advertising platform with more than 

40,000 registered endorsers who own accounts on weibo.com. Weituitui.com is a broker website 

that allows advertisers to recruit endorsers at pre-specified prices for their social media marketing 

campaigns. An advertiser can initiate a paid endorsement campaign by posting a task describing 

her needs on weituitui.com. In the task, the advertiser also specifies how much an endorser will be 

paid, as a linear or step-wise linear function of the endorser’s number of followers on weibo.com. 

To penalize robot followers and inactive followers, weituitui.com uses the number of verified 

followers to calculate the reward for an endorser. Weituitui.com has an internal algorithm to 

compute the percentage of verified followers based on how actively an endorser’s followers engage 
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on her past tweets. Similar to other paid endorsement platforms like sandaha.com, weituitui.com 

has several policies in place to make sure that the rewards are not too small to be meaningful and 

also to encourage endorsers with small numbers of followers to participate. The rewards for 

endorsers with less than 1000 verified followers are fixed on weituitui.com (10-49: 0.1RMB, 50-99: 

0.2RMB, 100-499: 0.3RMB, 500-999: 0.5RMB), regardless of the reward structure. Endorsers with 

less than 10 verified followers are not allowed to participate. The reward for endorsers with more 

than 1000 verified followers are no less than 0.5RMB.   

In a task, the advertiser provides the URL of the target tweet containing the product information. 

The advertiser can impose some written requirements for the task, such as how long the endorser 

should keep (i.e., not delete) the retweet on their timeline, and the minimal length of the comment 

in the retweet. Furthermore, the advertiser can specify who is eligible for the task. Some eligibility 

restrictions are hard restrictions automated by the platform, such as the allowable day part of 

participation (e.g., 9am-9pm), while other are soft restrictions attached in the written requirements 

that need to be manually verified afterwards. If an endorser decides to participate, she needs to 

retweet the given tweet, fulfill the requirements, and then submit the URL of her retweet. The 

duration of a task ranges from 3 to 5 days. Once the task ends, the advertiser has 3 days to 

manually approve or disapprove the submissions, depending on whether the endorser has truly 

retweeted the given tweet and fulfilled the requirements. All remaining submissions are approved 

automatically by the platform after the 3-day window. Because of this auto-approval policy, 

opportunistic endorsers or spammers may submit a random URL even if they haven’t retweeted 

the tweet. For approved tasks, the endorsers are paid and weituitui charges a 30% commission 

fee. That fee is reduced to 15% for an extremely small proportion (0.3%) of VIP endorsers who 

have spent (rather than earned) more than 1000RMB on weituitui.com.   

2.3.2 Experiment Design 

To investigate the effect of incentive on endorsers’ willingness to participate and their effectiveness 

in generating engagements (i.e., likes, comments, and retweets), we exogenously manipulate the 
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incentive by posting two identical tasks at two different pay rates. We use the linear pricing scheme 

as it is easier to implement and understand. The two pay rates are 0.0002 RMB (1RMB ≈ 

0.16USD) and 0.0004 RMB per follower, respectively. The former is the lowest possible and most 

common rate for linear pricing (i.e., 87% of tasks)25, whereas the latter is higher than or equal to 

96% of linear rates used on weituitui.com. Figure 2.1 plots the incentive curves for the two pay 

rates, showing how the number of verified followers maps into the financial rewards at the low and 

high pay rates. The percentile of endorsers is given on the top of the figure (e.g., 59% endorsers 

have less than 500 verified followers). Note how rewards at different pay rates differ for only about 

23% of endorsers with the most verified followers.  

 

Figure 2.1 The Incentive Curves at Low and High Pay Rates. 

 
To make sure that the two tasks are indeed identical and yet independent with each other, we 

register a new account on weibo.com and post two identical tweets on the same product at roughly 

the same time (more precisely, one is posted just seconds ahead of the other). The URLs of the 

two tweets are then used in the two tasks, respectively. Since the new account has no followers, 

all the observed engagements on the two tweets come from the paid endorsers and their followers. 

                                                           
25 Historically, 1% of linearly priced tasks were posted at the rate of 0.00015 RMB per follower, but the minimum rate had 
been changed to 0.0002 RMB per follower more than two years before we ran the experiment. 
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To eliminate the potential effects resulting from the order of the two tweets, the pay rates associated 

with the tasks posted first and second are swapped from time to time. 

Since there might be unobserved variables that affect both participation and effectiveness of 

endorsers, the identification of the effects of endorser characteristics in both stages typically 

requires an exclusion restriction (Puhani 2000). To that end, we add a soft eligibility restriction in 

our tasks, such that every endorser on weituitui.com is only eligible for one of the two identical 

tasks. “Soft” means that ineligible endorsers can still participate, but will not be paid. This is known 

as an invitation or encouragement design (Brewer 1976; Duflo and Saez 2003; Powers and Swinton 

1984). Specifically, endorsers whose last two digits of their weituitui IDs (six-digit numbers) are 

among a certain range are eligible to participate in one task, and those among another range are 

eligible for the other task. The eligibility restriction is a valid instrument as the last two digits of an 

endorser’s ID are random and unrelated to her effectiveness.  

Table 2.1 Experimental Design 

 Pair A Pair B 

Price: 0.0002 RMB/follower 00~24 50~74 

Price: 0.0004 RMB/follower 25~49 75~99 

Eligible IDs shown in cells were rotated across pay rates and products across weeks. 

 

Our experiment was conducted in 8 different weeks between 2/1/2014 and 4/26/2014. Each week, 

we posted two groups (pairs) of identical tasks on two products from the same vendor. Accordingly, 

we divided endorsers into 4 different groups based on their ID (i.e., 00~24, 25~49, 50~74, 75~99), 

such that any endorser was eligible for only one of the four tasks in that week. The four tasks were 

posted simultaneously so that they showed up right next to each other. The tasks were rotated over 

6 products from 2 vendors on taobao.com. Each task was open for participation for 72 hours. For 

our experiment, we did not impose any particular effort-related task requirements except for 

retweeting and liking the tweet. The eligible pay rates for the same endorsers were rotated across 

weeks. Table 2.1 visualizes the key conditions of our experimental design by showing the four tasks 
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posted in a given week. Each task pertains to one of two products for which endorsers are promised 

either a high or low pay rate, and a potential endorser qualifies for only one of the four tasks.  

2.4 Data 

2.4.1 Descriptive Statistics 

The data is collected and analyzed at the endorser level. We focus on the 8,283 active endorsers 

who participated in at least one paid endorsement task in the 6 months prior to our experiment. In 

every task, we record whether each of these active endorsers participates and how many 

engagements she generates. The number of engagements is collected for each retweeter/endorser 

using the API provided by weibo.com. Herein, participation means that an endorser has actually 

retweeted the message. The participation and engagement statistics are summarized in Table 2.2. 

Excluding one task for which we failed to track the engagement due to a technical issue, the 31 

tasks we posted attracted 2,241 participations from 1,016 endorsers.  

Table 2.2 Experiment Statistics 

Number of weeks 8 

Number of products 6 

Number of tasks 31 

Number of endorsers 8,283 

Number of participating endorsers 1,016 

Number of participations 2,241 

Number of participations from ineligible endorsers 91 

Number of <task, endorser> observations 227,608 

Some endorsers registered on weituitui.com in the middle of our experiment 

 

Detailed task-by-task participation and engagement statistics are shown in Table 2.3. There is a 

clear decline in the number of comments and retweets generated per task over time. The number 

of likes is also decreasing but not as fast. We stopped the experiment after week 8 due to this 

saturation effect. To make sure that the tasks did not run out of budget before they were closed for 

participation, we tried different budgets (100, 200, and 300RMB) in the first four weeks and found 

that 200RMB was more than enough. Therefore, the budgets for all the tasks in the subsequent 
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weeks are 200RMB. The distribution of engagement generated by participating endorsers is shown 

in Table 2.4. Most endorsements do not generate any engagement. 

Table 2.3 Participation and Engagement Statistics of Tasks  

Week Pair Task Budget Pay Rate Product # Participants # Followers 
Total Engagements 

likes comments retweets 

1 

1 1 100 4 FT 32 0.6 M 9 13 21 

1 2 100 2 FT 3 1.3 M 8 67 67 

2 3 100 4 HRM 34 0.6 M 17 5 5 

2 4 100 2 HRM 65 0.8 M 11 120 121 

2 

3 5 200 2 ST 113 1.4 M 8 40 46 

3 6 200 4 ST 109 2.0 M 12 24 26 

4 7 200 2 BL 91 3.6 M 9 14 18 

4 8 200 4 BL 119 2.1 M 15 26 33 

3 

5 9 300 4 BL 71 2.0 M 8 10 10 

5 10 300 2 BL 84 2.8 M 4 20 34 

6 11 300 4 ST 80 1.1 M 4 49 50 

6 12 300 2 ST 78 2.2 M 6 14 7 

4 

7 13 300 4 ST 56 0.8 M 3 2 5 

7 14 300 2 ST 66 2.5 M 6 5 3 

8 15 300 4 BL 81 1.4 M 6 25 32 

8 16 300 2 BL 74 1.2 M 4 8 1 

5 

9 17 200 2 LP 63 1.0 M 13 1 5 

9 18 200 4 LP 77 0.7 M 8 3 0 

10 19 200 2 ER 76 1.8 M 8 1 4 

10 20 200 4 ER 70 1.3 M 0 1 2 

6 

11 21 200 4 HRM 67 1.3 M 6 4 0 

11 22 200 2 HRM 63 0.5 M 11 5 1 

12 24 200 2 FT 70 1.2 M 2 1 1 

7 

13 25 200 2 ER 72 1.1 M 8 3 1 

13 26 200 4 ER 70 0.7 M 4 3 1 

14 27 200 2 LP 80 1.5 M 9 8 2 

14 28 200 4 LP 75 1.7 M 2 4 3 

8 

15 29 200 4 FT 72 1.1 M 6 1 0 

15 30 200 2 FT 79 0.9 M 3 3 2 

16 31 200 4 HRM 81 1.6 M 9 5 6 

16 32 200 2 HRM 70 1.4 M 5 9 0 

For pay rate, “2” and “4” represent 0.0002 and 0.0004 RMB/follower, respectively. The number of participants 
represents the number of endorsers who have retweeted the tweets in the given tasks. The number of followers 
represents the total follower number of all participated endorsers. The total engagements represent the total 
number of likes, comments and retweets generated by the participants. The six products used in our experiment 
are: Heart Rate Meter (HRM), Fitness Tracker (FT), Buddha Statue (ST), Bracelet (BL), Ear Ring (ER), and 
Lapis Lazuli (LP). HRM and FT were sold by one vendor, and the other four products by another vendor. 

 

Table 2.4 Distribution of Engagements Generated by Individual Endorsers 

                       Distribution 
Type 

0 1 2 3 4 5~10 >10 Mean SD Max 

likes 2072 145 14 4 4 1 1 0.10 0.50 15 

comments 2104 69 21 15 5 16 11 0.22 1.59 34 

retweets 2130 50 9 15 7 15 15 0.23 1.71 36 
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Table 2.5 Description of Independent Variables 

Variables Description 

Exclusion Variable  

    isEligible Whether a endorser is eligible for a given task (for selection equation only) 

Incentive  

    payRate Pay rate per follower (either 0.0002 or 0.0004 RMB/follower) 

    actRwd Actual reward upon approval, net of commission fee 

    avgRwd Average reward per task of an endorser in the past 

    gain Max(0, actRwd -avgRwd)  

    loss Max(0, avgRwd- actRwd) 

Social Media Fan Base  

    followers Number of followers on weibo.com 

    verifiedRatio Percentage of verified followers in all followers 

Prior Activity Level  

    tweetNum Number of tweets posted on weibo.com 

    taskNum Total number of tasks participated in the past 

    approvalRate Percentage of approved tasks in the past 

Community Embeddedness  

    regDays Number of days an endorser has registered on weituitui.com (rescaled to [0,1]) 

    friends Number of friends an endorser has on weituitui.com’s internal social network 

Other  

    group A dummy accounting for the fixed effects for each of the 16 tasks groups (pairs) 

    referralRwd Total reward received through referring others to register on weituitui.com 

    times Number of times an endorser has participated in tasks on the same product  

 

We collect data on the characteristics of endorsers by scraping their profiles on weituitui.com, which 

include their information on both weituitui.com and weibo.com. The information on weituitui.com 

includes the number of verified followers, the number of tasks participated in, the total amount of 

reward earned, the total referral income, the number of friends on weituitui’s internal social network, 

and how long ago one registered on weituitui.com. The information on weibo.com includes the 

number of followers and the number of tweets (including retweets). In Table 2.5, we summarize the 

independent variables used for our analysis in six different categories. We focus on those variables 

that advertisers can set or observe and hence use for targeting. These variables fall into four 

categories: incentive, social media fan base, prior activity level, and community embeddedness. 

For incentive, in addition to pay rate, we also compute the actual reward an endorser will receive 

upon approval, which allows us to better account for the special pricing scheme showing in Figure 

1. Note that the actual reward for ineligible participants will be zero regardless of their number of 
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verified followers.26 As we discussed earlier, the effect of incentive may depend on some reference 

level. We choose the average reward per task in the past as the reference point and then derive 

the gain and loss for each endorser. The variables in the “Other” category, such as “referralRwd” 

and “times”, are specific to the platform and our experimental design, and are used merely as 

controls. They are not of substantive interest. 

Table 2.6 Key Statistics on Independent Variables 

Variables 
Entire Dataset Subset of Participants 

Mean Median Min Max SD Mean Median Min Max SD 

isEligible 0.25 0.00 0.00 1.00 0.43 0.96 1.00 0.00 1.00 0.20 

payRate 2.97 2.00 2.00 4.00 1.00 2.98 2.00 2.00 4.00 1.00 

log(actRwd) -5.53 -6.91 -6.91 5.37 2.44 -1.14 -1.05 -6.91 4.29 1.54 

log(gain) -6.51 -6.91 -6.91 5.27 1.30 -4.68 -6.91 -6.91 3.69 2.71 

log(loss) -6.18 -6.91 -6.91 3.27 1.94 -4.44 -6.91 -6.91 2.74 2.71 

log(avgRwd) -0.92 -0.92 -6.91 3.48 0.97 -0.72 -0.84 -2.80 3.48 0.72 

log(followers) 6.93 6.84 2.48 15.42 2.02 7.88 7.76 2.83 14.51 1.97 

verifiedRatio 0.44 0.46 0.00 1.00 0.24 0.45 0.46 0.00 1.00 0.25 

log(tweetNum) 5.90 5.99 0.00 11.26 1.75 6.57 6.66 0.00 11.26 1.61 

log(taskNum) 2.48 2.30 0.00 8.70 1.87 4.54 4.76 0.00 8.70 1.81 

approvalRate 0.74 0.82 0.00 1.00 0.28 0.83 0.87 0.00 1.00 0.16 

regDays 0.21 0.18 0.00 1.00 0.15 0.21 0.17 0.00 1.00 0.19 

log(friends) 0.38 0.00 0.00 2.77 0.71 0.60 0.00 0.00 2.77 0.90 

log(referralRwd) -5.54 -6.91 -6.91 7.17 2.94 -4.69 -6.91 -6.91 5.45 3.55 

times 0.02 0.00 0.00 4.00 0.15 0.09 0.00 0.00 4.00 0.32 

 

Table 2.7 Correlation between Independent Variables 

isEligible 1.00               

payRate 0.00 1.00              

log(actRwd) 0.98 0.01 1.00             

log(gain) 0.53 0.05 0.60 1.00            

log(loss) 0.65 -0.02 0.60 -0.11 1.00           

log(avgRwd) 0.00 0.00 0.04 -0.10 0.21 1.00          

log(followers) 0.00 0.00 0.08 0.16 -0.07 0.36 1.00         

verifiedRatio 0.00 0.00 0.01 0.04 -0.04 -0.08 -0.34 1.00        

log(tweetNum) 0.00 0.00 0.04 0.07 -0.03 0.17 0.49 -0.28 1.00       

log(taskNum) 0.00 0.00 0.02 -0.04 0.13 0.29 0.21 -0.04 0.22 1.00      

approvalRate 0.00 0.00 0.01 0.07 0.06 0.00 0.11 -0.02 0.10 0.21 1.00     

regDays 0.00 0.00 0.02 0.01 0.01 0.07 0.23 -0.10 0.27 0.44 0.09 1.00    

log(friends) 0.00 0.00 0.00 -0.04 0.07 0.10 0.00 -0.02 0.07 0.40 0.02 0.22 1.00   

log(referralRwd) 0.00 0.00 0.00 -0.03 0.07 0.14 0.07 -0.04 0.10 0.42 0.09 0.29 0.36 1.00  

times -0.04 0.00 -0.04 -0.02 -0.03 0.03 0.07 0.00 0.06 0.15 0.05 0.00 0.04 0.04 1.00 

 

                                                           
26 We have also tried an alternative version of reward which does not distinguish between eligible and ineligible endorsers 
in computing expected rewards. That is, even ineligible endorsers can have non-zero rewards. In our later analyses, we 
find that this alternative coding produces very similar findings but worse model fit. 
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The summary statistics of the independent variables are shown in Table 2.6. The characteristics of 

participating endorsers are clearly different from those of the whole population, which is evidence 

of self-selection. The correlations among the independent variables are shown in Table 2.7. Except 

for the expected correlations with variables representing incentive, the two manipulated variables 

“isEligible” and “payRate” have zero correlation with other variables, indicating effective 

randomization. isEligible is correlated with incentive because only eligible endorsers can have 

positive actual reward. 

2.4.2 Model-Free Analysis of Manipulation Effects 

To provide some intuition regarding how the manipulations affect the participation and effectiveness 

of endorsers, we compare the participation rates and generated engagements between eligible vs. 

ineligible and between high-pay rate vs. low-pay rate endorsers. In addition, given that eligibility 

and pay rate may affect the effort level of endorsers, we also compare the effort levels of endorsers 

in different treatment groups. In paid retweeting campaigns similar to ours, the only place where 

endorsers can show differentiated efforts lies in the composition of the comment included in the 

retweet, if any. Two metrics that reflect the effort level of an endorser in composing a comment is 

the length of comment (namely the number of words27) and the use of emoji (yes or no). The former 

metric is commonly used to measure the effort level of respondents (Singer and Ye 2013). 

Table 2.8 contrasts the average participation rates, effort levels, and engagements of eligible vs. 

ineligible (high-payed vs. low-payed) endorsers. The p-values from ANOVA test are provided. As 

expected, eligibility has a strong effect on participation but no effect on effort or engagement level. 

Therefore, eligibility is indeed a valid instrument, as expected. However, the effects of pay rate may 

be a bit surprising, as there are no significant differences between high and low pay rate except for 

the usage of emoji. The most likely explanation is that the payment for 77% of endorsers is not 

affected by high vs. low pay rates, due to weituitui’s constraint on the reward structure, and that the 

                                                           
27 In Chinese, one word is represented by one character, so the number of characters is the same as the number of words. 
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effect of high vs. low pay rate on incentives received varies as a function of the number of verified 

followers for the remaining 23% (Figure 2.1). 

Table 2.8 Effects of Manipulated Variables 

Manipulated Variables Participation rate 
Effort Levels in Retweets Engagements 

# words attached emoji Likes Comments Retweets 

Eligibility 

Eligible endorsers 3.78% 16.54 (11.28) 9.77% 0.10 (0.51) 0.22 (1.57) 0.22 (1.70) 

Ineligible endorsers 0.05% 15.34 (12.09) 5.49% 0.09 (0.28) 0.33 (1.89) 0.42 (1.96) 

ANOVA (p-value) <0.001 0.32 0.18 0.82 0.50 0.28 

Pay Rate 

Low-payed endorsers 0.97% 16.59 (11.01) 8.11% 0.10 (0.44) 0.28 (2.02) 0.27 (2.12) 

High-payed endorsers 1.00% 16.39 (11.63) 11.15% 0.10 (0.56) 0.16 (0.93) 0.18 (1.12) 

ANOVA (p-value) 0.61 0.68 0.01 0.98 0.08 0.19 

Reported values are means, with standard deviation in brackets. Both effort levels and engagements are conditional on 
participation. 

 

2.5 Model 

The data analysis presents two challenges. First, engagement is observed only for those endorsers 

who participate in the task, and the effectiveness of participants may not be representative of the 

whole population. This is commonly known as the sample selection problem (Heckman 1979). 

Second, an endorser can participate in more than one task and the resulting observations on the 

same endorser may not be independent. While both the sample selection and repeated observation 

problems are common in the literature and can be addressed effectively when they appear 

separately, little has been done to address both problems jointly, especially when the dependent 

variable is counts. We propose a model to deal with both problems. We first present our approach 

to model participation and potential effectiveness of endorsers jointly in Section 2.5.1, and then 

discuss its connection to existing models in Section 2.5.2. We elaborate on how to compute some 

effects of substantive interest in Section 2.5.3. 

2.5.1 Sample Selection Model with Correlated Random Effects 

We model likes, comments, and retweets separately. For each of these outcomes, there are two 

equations in our model: the selection or participation equation captures what affects an endorser’s 
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participation, and the outcome equation captures what affects an endorser’s potential effectiveness 

in generating engagement. The potential effectiveness is not conditional on participation, which 

allows us to gain insights on the entire population of endorsers, not only on those who participated. 

We use boldface letters to represent vectors and matrices. For notational compactness, we use 

row vectors throughout this chapter. 

Following the standard sample selection model (Greene 2009; Heckman 1979), we use a probit 

model for the selection equation. Letting the variable 𝑧𝑖𝑡 indicate whether endorser 𝑖 participates in 

task 𝑡, the participation decision is given by 

𝑧𝑖𝑡 = 𝟏(𝜶𝒘𝑖𝑡
′ + 𝛿𝑢𝑖 + 𝜉𝑖𝑡 > 0)                                                     (2.1) 

where 𝒘𝑖𝑡 includes an intercept and the sets of variables that affects the participation decision of 

endorser 𝑖 in task 𝑡. The variables in 𝒘𝑖𝑡  include characteristics of endorser 𝑖, characteristics of 

task 𝑡, the characteristics specific to the endorser-task dyad, and the exclusion variable (see Table 

2.5). They also include 15 dummy variables for each pair of identical tasks posted that vary only 

on pay rate (the intercept captures the sixteenth pair). These dummies absorb any task-specific 

effect apart from pay rate, including characteristics of the product featured, characteristics of our 

post on weituitui, and temporal shocks. Note that the two paired tasks share the same fixed effect 

as they are identical except for pay rate which is controlled separately. The random terms 

𝑢𝑖~𝑁(0,1) and 𝜉𝑖𝑡~𝑁(0,1) capture endorser and endorser-task level unobserved characteristics 

that affect the participation decision, respectively. The selection equation given above is a probit 

model with random effects (Butler and Moffitt 1982). 

Since the engagements (including likes, comments, and retweets) are all counts, and since the 

data feature both overdispersion (see Table 2.4) and repeated observations, we use a Poisson 

lognormal model with random effects for the outcome equation. Let 𝑦𝑖𝑡
∗  be the potential outcome 

(i.e., the number of likes, comments, or retweets) of endorser 𝑖 on task 𝑡. The outcome equation is 

given by 
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𝐸[𝑦𝑖𝑡
∗ |𝒙𝑖𝑡 , 𝜀𝑖 , 𝜖𝑖𝑡] = 𝜆𝑖𝑡 = exp(𝜷𝒙𝑖𝑡

′ + 𝜎𝜀𝑖 + 𝛾𝜖𝑖𝑡)                                        (2.2) 

where 𝒙𝑖𝑡  includes an intercept and the set of variables that affects the potential engagement 

generated by endorser 𝑖  for task 𝑡 . The only difference between 𝒙𝑖𝑡  and 𝒘𝑖𝑡  is that only 𝒘𝑖𝑡 

includes the exclusion variable. Our outcome equation accounts for two levels of heterogeneity: 

𝜀𝑖~𝑁(0,1)  and 𝜖𝑖𝑡~𝑁(0,1)  capture the effect of endorser and endorser-task level unobserved 

characteristics, respectively. When 𝜎 = 0, the above model simplifies to the Poisson lognormal 

model (Greene 2009), which often yields similar estimates to the Negative Binomial model. In our 

data, we find that the above model with two levels of heterogeneity fit the data substantially better 

than the zero-inflated Poisson and the Negative Binomial models. 

The error terms in the selection and outcome equations need not be independent. Specifically, the 

endorser-level unobserved characteristics that affect selection or participation may also affect 

outcomes, and so may endorser-task level unobserved characteristics. As a result, we further 

assume that the endorser and endorser-task level error terms are bivariate normally distributed, 

with a correlation of 𝜌 and 𝜏, respectively. 

(
𝑢𝑖

𝜀𝑖
) ~𝑁 ((

0
0

) , (
1 𝜌
𝜌 1

)) , (
𝜉𝑖𝑡

𝜖𝑖𝑡
) ~𝑁 ((

0
0

) , (
1 𝜏
𝜏 1

)). 

Compared to the existing sample selection models (Greene 2009; Heckman 1979; Winkelmann 

1998), our model not only takes into account random effects, but also allows the random effects to 

be correlated. Letting 𝑇𝑖 be the number of tasks endorser 𝑖 can potentially participate, the likelihood 

of all observations on endorser 𝑖 can be written as 

𝐿𝑖 = 𝑃(𝑦𝑖1
∗ , … , 𝑦𝑖𝑇𝑖

∗ ; 𝑧𝑖1, … , 𝑧𝑖𝑇𝑖
|𝒙𝑖1, … , 𝒙𝑖𝑇𝑖

, 𝒘𝑖1, … , 𝒘𝑖𝑇𝑖
) 

= ∫ 𝜙(𝜀𝑖)𝑑𝜀𝑖 ∫ 𝑓(𝑢𝑖|𝜀𝑖)𝑑𝑢𝑖 ∏ ∫ 𝑃(𝑦𝑖𝑡
∗ |𝒙𝑖𝑡 , 𝜀𝑖 , 𝜖𝑖𝑡)𝑧𝑖𝑡𝑃(𝑧𝑖𝑡|𝒘𝑖𝑡 , 𝑢𝑖, 𝜖𝑖𝑡)𝜙(𝜖𝑖𝑡)𝑑𝜖𝑖𝑡

∞

−∞

𝑇𝑖
𝑡=1

∞

−∞

∞

−∞
  (2.3) 
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where 𝑃(𝑦𝑖𝑡
∗ |𝒙𝑖𝑡 , 𝜀𝑖 , 𝜖𝑖𝑡) =

𝜆𝑖𝑡
𝑦𝑖𝑡𝑒−𝜆𝑖𝑡

𝑦𝑖𝑡!
, as given by the conditional Poisson distribution. In the likelihood 

function, 𝑃(𝑦𝑖𝑡
∗ |𝒙𝑖𝑡 , 𝜀𝑖 , 𝜖𝑖𝑡)  only factors in when 𝑧𝑖𝑡 = 1 , as 𝑦𝑖𝑡

∗  is only observed for participating 

endorsers. The conditional density 𝑓(𝑢𝑖|𝜀𝑖) is derived from the bivariate normal distribution. The 

likelihood of our model does not have a closed-form representation. However, it can be numerically 

approximated by the Gauss-Hermite quadrature method (Abramowitz and Stegun 1972; Greene 

2009). Appendix 2.1 provides more details on the likelihood derivation and parameter estimation. 

Our model can deal with outcomes following other distributions by changing the distributional 

assumption on 𝑃(𝑦𝑖𝑡
∗ |𝒙𝑖𝑡 , 𝜀𝑖 , 𝜖𝑖𝑡). 

The random terms for different types of engagement may be correlated. However, since the three 

types of engagements have exactly the same set of regressors in our analysis, estimating the 

equations for different types of engagements independently, as if there are no correlation across 

engagements, will give identical estimates (Kruskal 1968). 

2.5.2 Connections with Existing Models 

To convey the connection of the proposed model with existing models, Table 2.9 summarizes 

potential nested models based on the specification of endorser and endorser-task level random 

terms. For both endorser and endorser-task random terms, Table 2.9 considers three possibilities: 

the random term is not specified in either the selection or outcome equation, it is specified in both 

equations but not correlated, and it is specified in both equations and correlated. For simplicity, 

Table 2.9 ignores cases in which the random term is specified in one equation but not the other. 

To allow for unrestricted correlation between the random terms across equations, all the terms are 

assumed to be normally distributed. In count models, normal error (as in the Poisson Lognormal 

model) often yields very similar results with Exponential-Gamma error (as in the Negative Binomial 

model). The models in Table 2.9 are named based on the outcome equation and the correlation(s). 

The selection equation is probit or probit with random effects by default. Existing models for panel 

count data with sample selection are rather restricted. The proposed model nests them. 
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Table 2.9 Models for Panel Count Data with Sample Selection 

                               Endorder-task level (𝜖𝑖𝑡) 
Endorser level (𝜀𝑖) 

No Uncorrelated Correlated 

No Poisson PLN (Greene 2009) PLN with SS (Greene 2009) 

Uncorrelated Poisson RE (Hall 2000)   

Correlated   PLN with SS and CRE (Proposed) 

PLN: Poisson Lognormal model; RE: random effects; SS: sample selection, namely with correlation on endorser-task 

level random terms; CRE: correlated random effects, namely with correlation on endorser level random terms. Empty 

cells represent models that are missing in the literature. 

 

2.5.3 Relative Partial Effects on Potential and Actual Outcome 

One question of interest to marketers is how much the mean potential outcome 𝐸[𝒚𝑖𝑡
∗ |𝒙𝑖𝑡] varies 

with respect to the changes in endorsers’ characteristics 𝒙𝑖𝑡. Integrating out 𝜀𝑖 and 𝜖𝑖𝑡 in Equation 

(2.2) yields 

𝐸[𝒚𝑖𝑡
∗ |𝒙𝑖𝑡] = 𝐸𝜀𝑖

𝐸𝜖𝑖𝑡
[𝐸[𝒚𝑖𝑡

∗ |𝒙𝑖𝑡 , 𝜀𝑖 , 𝜖𝑖𝑡]] = exp (𝜷𝒙𝑖𝑡
′ +

𝜎2+𝛾2

2
)                                  (2.4) 

Therefore, the relative partial effects of 𝒙𝑖𝑡 on the mean potential outcome is simply 
𝜕 log 𝐸[𝒚𝑖𝑡

∗
|𝒙𝑖𝑡]

𝜕𝒙𝑖𝑡
=

𝜷. The absolute partial effects of 𝒙𝑖𝑡 on 𝐸[𝒚𝑖𝑡
∗ |𝒙𝑖𝑡] is exp (𝜷𝒙𝑖𝑡

′ +
𝜎2+𝛾2

2
) 𝜷. We focus on the relative 

partial effects as the absolute partial effects are quite sensitive to outliers in the data due to the 

exponential term. 

Advertisers are interested in how the characteristics of endorsers impact not only the potential 

outcome but also the actual or observable outcome. If an endorser chooses not to participate, the 

engagements generated would be zero. Therefore, the relationship between the actual outcome 

𝑦𝑖𝑡 and the potential outcome 𝑦𝑖𝑡
∗  can be written as 

𝑦𝑖𝑡 = 𝑧𝑖𝑡𝑦𝑖𝑡
∗                                                                          (2.5) 

Given that 𝑧𝑖𝑡  and 𝑦𝑖𝑡
∗  are independent conditional on 𝒙𝑖𝑡 , 𝒘𝑖𝑡 , 𝑢𝑖 , 𝜀𝑖, 𝜖𝑖𝑡 , the conditional mean 

outcome can be written as 
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𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡 , 𝒘𝑖𝑡 , 𝑢𝑖 , 𝜀𝑖, 𝜖𝑖𝑡] = 𝑃(𝑧𝑖𝑡 = 1|𝒘𝑖𝑡 , 𝑢𝑖 , 𝜖𝑖𝑡)𝐸[𝑦𝑖𝑡
∗ |𝒙𝑖𝑡 , 𝜀𝑖, 𝜖𝑖𝑡]                        (2.6) 

The unconditional (i.e., not conditional on any unobserved variable) mean outcome can be obtained 

by integrating out 𝑢𝑖, 𝜀𝑖 and 𝜖𝑖𝑡 in Equation (2.6) (see Appendix 2.2 for details). 

 𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡 , 𝒘𝑖𝑡] = 𝐸𝑢𝑖
𝐸𝜀𝑖|𝑢𝑖

𝐸𝜖𝑖𝑡
[𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡 , 𝒘𝑖𝑡 , 𝑢𝑖 , 𝜀𝑖, 𝜖𝑖𝑡]]                            (2.7) 

The relative partial effect of a variable 𝑠𝑖𝑡 on the mean outcome can be written as  

𝑔𝑠𝑖𝑡
=

𝜕 log 𝐸[𝒚𝑖𝑡|𝒙𝑖𝑡 , 𝒘𝑖𝑡 ]

𝜕𝑠𝑖𝑡
= 𝑐𝑖𝑡𝛼𝑠 + 𝛽𝑠                                                   (2.8) 

where 𝛼𝑠 represents the corresponding coefficient in 𝜶 if 𝑠𝑖𝑡 belongs to 𝒘𝑖𝑡, otherwise 0. Similarly, 

𝛽𝑠 represents the corresponding coefficient in 𝜷 if 𝑠𝑖𝑡 belongs to 𝒙𝑖𝑡, otherwise 0. The functional 

form of coefficient 𝑐𝑖𝑡, which is always positive, is given in Appendix 2.3. The standard errors of the 

relative partial effects can be estimated using the delta method (see Appendix 2.3). It can be seen 

from Equation (2.8) that, if a variable only affects the participation equation, then its directional 

effect on actual outcome is consistent with its directional effect on participation. If a variable only 

affects the outcome equation, then its impact on potential and actual outcomes are in the same 

direction. However, for variables appearing in both participation and outcome equations, their 

effects on potential and actual outcomes might have opposite signs.   

2.6 Results 

2.6.1 Selection of Incentive Variables 

The incentive of endorsers can be represented in three different ways. The first is to use the pay 

rate which are exogenously manipulated. However, due to the policies of weituitui.com, 77% of 

endorsers are indifferent between the two pay rates. The second way is to use the actual reward 

upon approval, which can account for institutional details. The third is to separate rewards into 

gains and losses, as posited by prospect theory. An additional consideration is that rewards, gains 
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and losses may have constant or decreasing returns to scale, the latter of which can be accounted 

for by a log transformation (Hardie et al 1993). 

Rather than assuming a priori one of these representations, we choose the one that best fits the 

data. Since the incentive of endorsers is not contingent on performance, we expect little impact of 

incentive on outcome. Therefore, we base our choice of representation on how well each fits the 

participation data. Table 2.10 reports the model fit of different incentive representations. The logged 

gain-loss representation fits the data best on all three model fitness metrics, as expected from 

prospect theory. Therefore, in our following analysis, we represent incentive in a gain-loss 

framework with log transformation. Note, the logged gain-loss representation fits the data best also 

if we take outcomes into consideration.  

Table 2.10 Selection of Incentive Variables 

  Linear Log 

  PayRate Reward GainLoss Reward GainLoss 

-2*LL 13315.9 13313.0 13289.0 13269.3 13239.4 

AIC 13371.9 13369.0 13349.0 13325.3 13299.4 

BIC 13661.3 13658.4 13659.0 13614.7 13609.5 

 

2.6.2 Main Results 

Table 2.11 reports the parameter estimates using our main model in Section 2.5. To ease 

comparison, the estimates for the participation equations for each of the three outcomes are 

presented side by side, followed by the estimates for the three outcome equations. All the 

heterogeneity and correlation parameters, as well as model fitness metrics, are shown in the 

outcome column. We discuss our findings on the independent variables category by category. 

Incentive. The effect of losses is greater than that of gains, which is consistent with previous 

evidence of loss aversion (Hardie et al. 1993; Kalyanaram and Winer 1995). Gains have no 

significant effect on participation, which is consistent with previous evidence that additional 

incentives do not impact performance when workers already feel adequately remunerated (Cohn 
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et al. 2015). Our findings suggest that improving participation rates through increasing incentive 

can be inefficient. To improve participation rates of paid endorsement campaigns, it may be better 

to provide an incentive just comparable to endorsers’ past rewards and then focus on providing 

non-monetary incentives. The finding that neither gains nor losses have an effect on outcome is 

consistent with previous findings that incentives need not affect performance unless they are 

contingent on performance (Singer and Ye 2013).  

Table 2.11 Parameter Estimates for Different Types of Engagements (Log GainLoss) 

  Selection Outcome 

  likes comments retweets likes comments retweets 

Exclusion Variable          

isEligible 2.724*** 2.723*** 2.720***     

Incentive             

log(gain) 0.007 0.008 0.009 -0.039 -0.011 -0.061 

log(loss) -0.073*** -0.074*** -0.073*** 0.022 0.146 0.095 

log(avgRwd) 0.034 0.036 0.037 -0.092 0.174 0.333 

Social Media Fanbase          

log(followers) 0.083*** 0.077*** 0.079*** 0.221. -0.039 -0.195 

verifiedRatio 0.256* 0.297** 0.283** 0.652 1.105 0.989 

Prior Activity Level             

log(tweetNum) 0.035. 0.045* 0.039. 0.001 -0.478*** -0.252* 

log(taskNum) 0.555*** 0.564*** 0.561*** -0.379*** -0.483*** -0.570*** 

approvalRate 0.063 0.051 0.063 0.704 1.708. -0.300 

Community Embeddedness          

regDays -4.375*** -4.410*** -4.358*** 0.102 2.826* 3.258** 

log(friends) -0.088* -0.084* -0.086* 0.420** 0.131 0.368 

Others             

log(referralRwd) -0.015. -0.017. -0.017. 0.023 0.003 -0.095 

times -0.142** -0.142** -0.147** -0.285 -0.102 0.017 

Heterogeneity          

𝛿 (selection)      1.310*** 1.315*** 1.314*** 

𝜎 (outcome)      1.609*** 2.190*** 2.693*** 

𝛾 (outcome)      0.097 1.131*** 1.371** 

Correlation             

𝜌 (endorser)      -0.216*** -0.253*** -0.247*** 

𝜏 (endorser-task)       0.008 0.199 0.312. 

Fitness       

Log Likelihood    -7229.7 -7304.5 -7216.5 

AIC    14583.4 14733.0 14557.0 

BIC    15224.2 15373.8 15197.8 

Significance codes: “.” for p<10%,  “*” for p<0.05, “**” for p<0.01, and “***” for p<0.001. For compactness, the 
intercept and the coefficients on the dummy variable “taskDummy” are omitted. The level of efforts required for 
an engagement: like<comment<retweet. 

 

We also estimate a set of models using the exogenously manipulated pay rate to represent 

incentive (Table A2.1 in Appendix 2.5). We find that pay rate has no effect on participation, even 

though the higher pay rate used in our experiment exceeds or equals to 96% of linear prices ever 
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used on weituitui. This is consistent with the model-free evidence reported in Section 2.4.2.28 Using 

pay rate instead of gains and losses does not affect the coefficients of other variables much. Using 

other types of incentive representations listed in Table 2.10 yields similar findings (Tables A2.1-2.4 

in Appendix 2.5). In the rest of our discussion, we focus on the results reported in Table 2.11 which 

give the best model fits.  

Social media fan base. Endorsers with more followers and a higher verified ratio are more likely to 

participate. One very plausible explanation is that endorsers with a greater number of verified 

followers derive greater status enhancement from relaying attractive deals than endorsers with 

fewer verified followers (Toubia and Stephen 2013). An alternative explanation is that, since 

followers and verified ratio determine the number of verified followers and hence affect the reward 

of endorsers, this finding indicates that those who are paid more are more likely to participate. This 

alternative explanation, however, is at odds with the finding that gains have no effect on 

participation.  

Turning our attention to the outcome equation, we see that the number of followers has a marginally 

significant effect on likes, but not on comments or retweets. This finding, though a bit weak (but 

rather robust in our analyses), is consistent with our conjecture that the effect of followers may be 

smaller for forms of engagement that are more effortful. The reason is that higher levels of 

engagement are facilitated by strong ties, whereas the tie strength between endorsers and their 

fans decreases with the number of followers (Burke 2011; Katona et al. 2011; Roberts et al. 2009). 

This finding is consistent with previous findings that network size has a positive effect on overall 

influence in low-effort behaviors (e.g., (Yoganarasimhan 2012)).  

Prior activity level. Endorsers who tweeted more on microblogs and who participated in more tasks 

in the past are more likely to participate in our tasks, yet are less effective in generating 

                                                           
28 Additional analysis shows that pay rate has no effect on participation even for endorsers whose incentives are sensitive 
to pay rate. We conducted this analysis by interacting the pay rate with a dummy variable indicating whether an endorser 
is sensitive to pay rate, i.e., whether the endorser has more than 1250 verified followers. Neither the pay rate nor the 
interaction term have a significant effect. 
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engagements. This finding confirms our earlier conjecture that endorsers who are less selective 

tend to be less effective. Specifically, posting irrelevant or unsound content (e.g., ads) too often 

can hurt users’ reputation in online communities (Barasch and Berger 2014; Bock et al. 2005), and 

hence their effectiveness.  

The variable “approvalRate”, defined as the percentage of approved tasks in the past, is a metric 

of endorsers’ diligence. To our surprise, we find no significant effect of approval rate in the outcome 

equation, except for a marginally significant effect on comments. This suggests that approval rate 

might not be an ideal indicator of quality. Endorsers with higher approval rate might just be more 

skillful in fulfilling the requirements of advertisers. Given that approval rate has been widely used 

as a metric to judge the quality of workers in crowdsourcing services such as Amazon Mechanical 

Turk (Ipeirotis et al. 2010; Paolacci et al. 2010), this finding suggests that the construct validity of 

approval rate as a metric of quality may need more thorough investigation, at least in the context 

of paid endorsement campaigns. 

Community embeddedness. Endorsers who have registered for a longer time and who have more 

friends on weituitui’s internal social network are less likely to participate in a task, but more likely to 

generate certain types of engagements (comments and retweets for the number of days since 

registration, and likes for the number of friends). The opposite effects of these two variables on 

participation vs. effectiveness suggests that endorsers who are more embedded and respected 

within the community tend to be more selective, rendering them more effective in generating 

engagements.  

Unobserved endorser traits. The negative correlation 𝜌 is of particular note. It indicates that the 

opposite effects on participation vs. effectiveness extend to unobserved endorser characteristics. 

Engagement types. Among the three types of engagements, “likes” require the least effort as they 

do not involve any typing, and “retweet” require the most effort as they involve both commenting 

and sharing. The same is true for the three types of engagements on Facebook: likes, comments 
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and shares (similar to retweets). Facebook assigns the largest weight to shares and the least 

weight to likes in their EdgeRank algorithm.29 

The effects of variables in the outcome equations are often different for relatively high-effort 

engagement through comments and retweets versus low-effort engagement through likes. For 

example, it’s harder for endorsers who tweet and endorse a lot to generate high-effort engagement 

(i.e., comments and retweets) than low-effort engagement (i.e., likes). The reverse is true for having 

been registered for a long time. These findings suggest that having been selective in the past and 

being a long-time endorser are associated with being more effective, not just in general but 

especially so for high-quality engagement.  

2.6.3 Robustness 

Identification. The validity of the exclusion restriction is critical to our analysis. One conceivable 

concern might be that, though the eligibility constraint was assigned randomly and independently 

of any endorser trait, the imposed (in)eligibility changed the endorsement behavior (e.g., effort 

level) of the endorser and hence affected her effectiveness indirectly. For example, ineligible 

endorsers may exert stronger effort than eligible endorsers in order to be approved, or exert lower 

effort given that they have lower faith in actually getting paid. If that is true, eligibility might not be 

truly exclusive. However, simple ANOVA analyses reported in Table 2.8 shows that eligibility has 

no effect on effort. More sophisticated multivariate analyses show that this conclusion is robust to 

controlling for the independent variables entering the outcome equation (Table A2.5 in the 

Appendix 2.6). The concern that eligibility might have affected the effort level and hence the 

effectiveness is not supported by the data. 

Another concern about the validity of our analysis and findings is that the tasks may have interfered 

with each other, even though we used a unique tweet for each task. A first cause for concern is 

that there might be overlap between two endorsers’ set of followers. If a follower is exposed to more 

                                                           
29 http://www.socialbakers.com/blog/1304-understanding-increasing-facebook-edgerank 
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than one endorser’s retweets, there might be an attribution problem on the engagement by that 

follower. This type of interference is unlikely in our data since, unlike Twitter, Weibo allows users 

to engage (like, comment, retweet) on different retweets of the same tweet separately. If needed, 

the follower can like/comment/retweet all the retweets from different endorsers. Moreover, even if 

the follower decided to interact with only one of the retweets on the same product, the retweet the 

follower actually engages on is likely to be from the endorser who has the primary effect on the 

follower’s decision.  

A second cause of concern about interference is that, as we posted multiple tasks on the same 

product over time, there may have been a saturation effect if a follower saw the same product 

endorsed multiple times. While such interference may indeed have depressed the average 

effectiveness, there is no compelling reason to believe it would bias our estimates in the selection 

and outcome equations in opposite directions in a systematic manner. In other words, our main 

findings that participation and effectiveness are often at odds is not likely to be driven by the 

saturation effect. Moreover, the task level dummy variable and the control variable “times” already 

accounted for any main effect of task-level and endorser-level saturation on effectiveness.  

A final concern is that, among all participating endorsers, 16 participated in two tasks in a same 

group (i.e., two identical tasks on the same product at different pay rates), leading to a potential 

attribution problem between the two retweets on the same product retweeted by the same 

endorser. However, in the corresponding 16 (endorsers) * 2 (tasks) * 3 (types of engagements) 

observations, only 6 have non-zero engagements (max is 3 and median is 1). The attribution issues 

on such a small number of observations with such low engagements are unlikely to bias our 

estimates substantially.    

Robustness to model complexity. In Table 2.11, 𝛾 is insignificant for likes and 𝜏 is insignificant for 

likes and comments (the significance for retweets is also only marginal), which might be a signal 

for over-specification. To examine whether our findings are an artifact of over-specification, we 

force 𝜏 (and 𝛾) to zero and re-estimate the parameters. The results in these simplified models are 
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very similar to the full model (see Table A2.6 in Appendix 2.6). Since we are ignorant a priori about 

which of the parameters are significant, for the sake of full information disclosure, we report the 

results from the full model as main results. We further tried some additional simplified models, 

including removing random effects, removing dyadic heterogeneity, and removing all correlations 

(i.e., estimating selection and outcome equation models separately), and find that the findings of 

substantive interest are highly robust.  

Robustness to outliers. Among the 31 tasks, task 2 seems to be an outlier, with only 3 valid 

participations. This is because an endorser with half a million verified followers participated in this 

task soon after the task was posted and exhausted the budget of the task, which prevented other 

endorsers from participating. In fact, the other three tasks in the first week may also suffer somehow 

from this problem, due to the relatively lower budget. However, for tasks after the first week, this 

should not be an issue, as the budget was either double or triple that in week 1. To assess whether 

our findings are driven by the potential outlier task(s) in week 1, we repeated our analysis first after 

removing task 2 and then after removing tasks 1-4 (all tasks in week 1). The estimates and findings 

of substantive interest are robust, except that the confidence bounds widen somewhat due to the 

smaller number of observations (Table A2.7 in Appendix 2.6). 

2.7 Implications for Program Design 

2.7.1 Influencing Endorsers by Redesigning Tasks 

The results in Table 2.11 show that endorsers who are responsive to the campaigns are often less 

effective, whereas effective endorsers are often less responsive. To better understand the tension 

between responsiveness and effectiveness, we grouped endorsers into four cells in Table 2.12 

based on their predicted responsiveness and effectiveness (Appendix 2.4 presents expressions for 

predicted values). Table 2.12 labels an endorser effective (responsive) if her predicted potential to 

generate engagements (predicted probability to participate) is above the mean of the data set. The 

percentages are first computed for individual tasks and then averaged over all tasks. While making 



65 
 

predictions, we assume that every endorser is eligible for every task and the incentive for an 

endorser is her average reward per task in the past. This rules out the effects of the manipulated 

eligibility and incentive, allowing us to focus on the effects of endorsers’ characteristics. The results 

are very similar if we assume that every endorser is paid at either the lower or higher rate. 

Table 2.12 Distribution of Endorsers 

  Likes Comments Retweets 

  Effective Ineffective Effective Ineffective Effective Ineffective 

Responsive 3.5% 26.7% 1.1% 29.0% 0.5% 29.7% 

Unresponsive 32.6% 37.2% 25.6% 44.3% 30.2% 39.6% 

 

Only a very small percentage of endorsers are both effective and responsive. This is especially so 

for higher-effort engagements, i.e., comments and retweets. To improve the effectiveness of paid 

endorsement campaigns, advertisers may want to find ways to attract endorsers who are effective 

but unresponsive (e.g., endorsers who have registered for a long time and have many friends on 

weituitui.com). For example, to attract selective and effective endorsers, advertisers may want to 

experiment with designing ads that are less likely to hurt an endorser’s reputation (e.g., native ads 

that look like organic tweets). They may also want to experiment with lowering the task 

requirements and offering tasks exclusively to endorsers who have registered for a long time and 

who have many friends on weituitui. This can be implemented by the written eligibility restrictions 

in the tasks.  

In addition, advertisers may want to seek ways to improve the impact of responsive but ineffective 

endorsers (e.g., endorsers who tweet and endorse a lot). For example, if the expected participants 

are mostly those who are responsive but not effective, advertisers can increase the effort-related 

requirements in the tasks such as the minimal number of words and emojis in retweets, and the 

minimal number of people to be mentioned while retweeting.  

In practice, it’s possible to “attract” effective but unresponsive endorsers and “enforce” responsive 

but ineffective endorsers at the same time by offering them different versions of tasks exclusively. 
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For instance, if the objective of advertisers is to generate comments or retweets, advertisers can 

offer an “attract” task to endorsers who post few tweets and participate in few tasks, and an 

“enforce” task to endorsers who post a lot and participate a lot.  

2.7.2 Boosting Potential vs. Actual Engagements by Targeting  

The tension between responsiveness and effectiveness further invites analysis of the relative partial 

effects of the independent variables on the actual vs. potential engagements. For simplicity, we call 

effects on the actual outcomes the “total effects” through both participation and potential outcomes. 

To generate a large number of engagements, an endorser needs to not only have high a potential 

to generate engagements, but also to actually participate in the campaign. The total effect of a 

variable on actual engagement can be computed using Equation (2.8), which represents the 

percentage change of the engagements w.r.t. a unit change in the independent variable. Table 2.13 

summarizes the total effects of the independent variables on actual engagements, which is first 

computed for each endorser-task dyad and then averaged over the entire population. The relative 

partial effects of independent variables on potential outcome are taken directly from Table 2.11, as 

we have shown in Section 2.4.2 that 
𝜕 log 𝐸[𝒚𝑖𝑡

∗
|𝒙𝑖𝑡]

𝜕𝒙𝑖𝑡
= 𝜷. The partial effects of independent variables 

on participation in Table 2.11 are also included in Table 2.13 to ease comparison. 

For the majority of predictors, the direction of the total effects is consistent with that in the 

participation equation. Hence, participation is oftentimes the primary driver of actual engagements. 

Variables for which this holds include the number of followers, the verified ratio, the task number, 

and the number of days since registration. As a concrete example, though having participated in 

many campaigns is associated with low potential in generating engagements, such endorsers tend 

to generate an above-average number of actual engagements, due to their high tendency to 

participate.  
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Table 2.13  (Relative) Partial Effects on Participation, Potential and Actual Effectiveness  

  Participation (Selection) Potential Engagements (Outcome) Actual Engagements (Overall) 

  likes comments retweets likes comments retweets likes comments retweets 

Exclusion Variable               

isEligible 2.724*** 2.723*** 2.720***     6.229*** 6.247*** 6.198*** 

Incentive                   

log(gain) 0.007 0.008 0.009 -0.039 -0.011 -0.061 -0.022 0.008 -0.041 

log(loss) -0.073*** -0.074*** -0.073*** 0.022 0.146 0.095 -0.145 -0.024 -0.071 

log(avgRwd) 0.034 0.036 0.037 -0.092 0.174 0.333 -0.014 0.256 0.417. 

Social Media Fanbase               

log(followers) 0.083*** 0.077*** 0.079*** 0.221. -0.039 -0.195 0.411** 0.139 -0.015 

verifiedRatio 0.256* 0.297** 0.283** 0.652 1.105 0.989 1.237. 1.788* 1.634* 

Prior Activity Level                   

log(tweetNum) 0.035. 0.045* 0.039. 0.001 -0.478*** -0.252* 0.082 -0.376** -0.164 

log(taskNum) 0.555*** 0.564*** 0.561*** -0.379*** -0.483*** -0.57*** 0.889*** 0.812*** 0.708*** 

approvalRate 0.063 0.051 0.063 0.704 1.708. -0.300 0.848 1.826. -0.158 

Community Embeddedness               

regDays -4.375*** -4.41*** -4.358*** 0.102 2.826* 3.258** -9.902*** -7.293*** -6.673*** 

log(friends) -0.088* -0.084* -0.086* 0.42** 0.131 0.368 0.219 -0.063 0.172 

Others                   

log(referralRwd) -0.015. -0.017. -0.017. 0.023 0.003 -0.095 -0.013 -0.035 -0.134. 

times -0.142** -0.142** -0.147** -0.285 -0.102 0.017 -0.611 -0.428 -0.317 

 

However, participation doesn’t always dominate potential. For example, the direction of the total 

effect of the number of tweets is more consistent with its direction in the outcome equation, rather 

than the selection equation. The effect size of tweet number in the selection equation is small 

compared to that in the outcome equation. This finding is not surprising once one realizes that the 

mean value of 𝑐𝑖𝑡 in Equation (2.8) is 2.3 in our dataset. In some cases, the opposite effects in the 

participation and outcome equations may cancel out in the total effects, such as the total effect of 

the number of weituitui friends. These findings suggest that neglecting either participation or 

potential effectiveness in marketing campaigns can result in wrong decisions to target particular 

kinds of endorsers.  

Advertisers unable to increase the participation or effectiveness of given endorsers may want to 

target endorsers who are likely to generate actual engagements, such as those who have 

participated in many tasks previously, have large fan bases, or a high verified ratio. 
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2.8 Conclusions 

Paid endorsement, as an affordable approach to social advertising, has gained popularity among 

small firms in recent years. However, little is known on how to effectively target and incent paid 

endorsers. This paper provides new insights on how incentives and endorser characteristics affect 

participation and effectiveness. We conduct a field experiment on one of the largest paid 

endorsement platforms in China. For identification purpose, we exogenously manipulated the 

incentive and eligibility for participation. In order to analyze the collected panel count data on 

customer engagements while accounting for self-selection and repeated observations, we propose 

an approach that can address both challenges simultaneously.  

Four findings have important implications for paid endorsement campaigns. First, endorsers are 

sensitive to losses but not gains as compared to their average reward in the past. This means that 

providing financial incentives in excess to an endorser’s average reward per task in the past is very 

likely a waste of money. Advertisers should give attention to other aspects of the campaigns, such 

as non-monetary motives and the content of the ad message.  

Second, the propensity to participate and effectiveness in generating engagements are often at 

odds with each other. This is so for both observed and unobserved characteristics. Consequently, 

it is difficult to find endorsers who are both responsive and effective. Advertisers should explore 

ways identify eligibility requirements that attract endorsers who are effective or find ways to boost 

the effort and effectiveness of endorsers who are responsive but otherwise ineffective. This may 

involve offering tasks with different requirements, eligibility restrictions or ad messages to different 

types of endorsers. 

Third, it is misleading to assess the quality of endorsers solely based on the observed (actual) 

engagements. Endorsers observed to generate high engagements are not necessarily the most 

effective, but may simply be the most likely to participate. Conversely, the most effective endorsers 

tend not to participate in campaigns very often. This type of “latent gold” endorsers may easily be 
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overlooked by marketers who do not distinguish between participation and effectiveness, or 

between actual and potential effectiveness. 

Finally, which endorsers to target depends on the objectives of marketers. Some endorser 

characteristics are associated with generating higher-effort engagements such as comments and 

retweets, whereas other are associated with lower-effort engagements such as likes. 

Our work opens up several interesting directions for future research. First, it would be useful to 

study the effectiveness of endorsers in generating sales. Unfortunately, sales are hard to track at 

the individual level. Currently, the standard way to track clicks and sales is to use different short 

URLs in different tweets (even if they are for the same product), such that the source of clicks and 

sales can be tracked back to the short URLs. This means that clicks and sales can only be 

monitored at the level of task rather than endorser. More fine-grained tracking techniques are 

needed to study the effectiveness of individual endorsers in generating clicks and sales.  

Secondly, our findings suggest that it would be useful to investigate the cost-effectiveness of 

different types of endorsers. This may require varying incentives or pay rates over a broad range 

to get robust insights. It may also be interesting to study how the effectiveness of various incentive 

and targeting approaches vary across product categories that vary in the status enhancement they 

provide to endorsers, such as mass vs. niche products or utilitarian vs. hedonic products. 

Finally, the composition of the original message posted by the advertiser may also be worth 

investigating, as effective copy needs to appeal both to endorsers and to their followers. Here 

again, the distinction between participation and effectiveness may be essential to generating new 

fine-grained insights. 
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APPENDIX 

Appendix 1.1: Simulation Studies 

Our proposed model is called a collective cause model because it rests on the assumption that the 

event is caused by all co-senders collectively. We test the performance of the model in recovering 

the true parameters when the data are generated under the collective cause assumption. In 

practice, it is also possible that only part of the co-senders contributes to the event. To demonstrate 

the effectiveness of the collective cause model in dealing with such data, we focus on an extreme 

case in which the event is caused by one of the co-senders independently (called single-cause 

data). For simplicity, we assume that all the co-senders of a receiver adopt simultaneously at the 

beginning. This assumption has no effect on identification but greatly simplifies the data generation 

process. To test the robustness of the collective cause model to the distribution of independent 

variables, we assume that every user has three attributes drawn from three different distributions, 

namely, normal, binomial, and exponential. With a goal to generate a dataset with 10K events, we 

construct the collective-cause and single-cause datasets as follows: 

1) Generate 200 senders and 5000 receivers, each has three attributes drawn from three different 

distributions: one normal, one binomial, and one exponential. 

2) Randomly sample 10,000 senders and 10,000 receivers with replacement from the pool of 200 

senders and 5,000 receivers, respectively. A one-to-one mapping between the 10K senders and 

10K receivers results in 10K dyadic observations. 

3) Randomly sample another 2,000 senders with replacement from the pool of 200 senders and 

map each of them to one of the 10K receivers in step (2) randomly. Those matched receivers in 

this step will therefore have multiple senders.  

4) For each dyadic observation, compute the dyadic hazard, assuming the baseline hazard and all 

model parameters equal to 1. 
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5) Collective-cause: for each of the 10K receivers, compute her aggregated hazards by summing 

up the hazards from all her co-senders. Simulate a survival time for each receiver based on her 

aggregate hazards (Bender et al. 2005). 

   Single-cause: simulate a survival time for each of the 12K dyadic observations, following the 

method proposed by Bender et al. (Bender et al. 2005). If a receiver has multiple survival times 

associated with multiple senders, choose the minimum survival time as the survival time of the 

receiver. 

6) To make the data more realistic, choose the lower 20% quantile of all survival times as the 

censoring time, such that 80% of conversion events are censored in the final data. 

The data generation process of the collective-cause and single-cause data are exactly the same, 

except for step (5). We use a dyadic setup to ensure that the structure of the simulated dataset is 

similar to the structure of the dataset used in the application. Moreover, we censored 80% of events 

to test the effectiveness of the single cause model on incomplete observations.  

To show the effectiveness of the proposed collective cause model, which doesn’t speculate on the 

quantitative contribution of co-senders, we compared its performance with two benchmark models 

developed based on the idea of linear attribution in advertising.30 The key idea of linear attribution 

is that each touch point contributes equally to the conversion. In the first benchmark model, we 

assume that every co-sender has equal probability to be the sole cause of event and maximize the 

expected likelihood of the event to be caused by any co-sender. We call this model the equal 

probability model. In contrast to the first benchmark model which assumes that only one of the co-

senders is the true cause, in the second model we assume that every co-sender is part of the true 

cause. Specifically, we treat an event with multiple co-senders as multiple independent events 

caused by the co-senders each. We restrict the total case weight of each receiver to be one and 

evenly split the unit case weight among multiple co-senders. The second benchmark model is 

                                                           
30 https://support.google.com/analytics/answer/1662518?hl=en 
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called the tied events model as it can be estimated by the tie handling methods of proportional 

hazard models (Therneau 2000). 

Table A1.1 summarizes the relative errors (i.e., 
𝛽̂ –𝛽

𝛽
) of three models on two types of datasets, 

averaged over 20 runs. The prefix “r” indicates covariates on the receiver side. Enclosed in 

parentheses are the standard deviations of the relative errors.  

Table A1.1 Relative Errors of the Collective Cause Model 

 Single-Cause Data Collective-Cause Data 

 Tied Events Equal Prob.  Collective Cause Tied Events Equal Prob.  Collective Cause 

normal -0.1883 (0.02) -0.2102 (0.03)  0.0064 (0.02) -0.3312 (0.02) -0.2122 (0.03)  0.0014 (0.02) 

binomial -0.1787 (0.04) -0.1996 (0.05)  0.0060 (0.05) -0.3236 (0.04) -0.2079 (0.04) -0.0053 (0.04) 

exponential -0.1539 (0.01) -0.1776 (0.01) -0.0006 (0.02) -0.2729 (0.02) -0.1766 (0.01) -0.0003 (0.02) 

rnormal -0.1897 (0.02) -0.2109 (0.02)  0.0030 (0.02) -0.3254 (0.02) -0.2079 (0.02)  0.0066 (0.02) 

rbinomial -0.1811 (0.05) -0.2045 (0.05) -0.0034 (0.05) -0.3200 (0.05) -0.2088 (0.05) -0.0064 (0.04) 

rexponential -0.1541 (0.01) -0.1758 (0.01)  0.0015 (0.01) -0.2740 (0.01) -0.1743 (0.01)  0.0022 (0.02) 

 

As can be seen, the proposed collective cause model can recover the true parameters with 

negligible errors not only on the collective-cause data, but also on the single-cause data. This 

finding demonstrates that the collective cause model is a valid model even if only part of the co-

senders contributes to the event. The mathematical proof regarding why the collective cause model 

can still recover the true parameters when only one of co-senders contributes to the event is 

available from the authors upon request. The intuition behind this finding is that, in the single-cause 

data, the overall hazard of a receiver given in the numerator of Equation (2.2) can be reinterpreted 

as the overall hazard of the receiver to be influenced by any single source she has seen. In this 

sense, the collective cause model is a truthful representation of the single cause data, except that 

it does not use the true cause information. The estimates of the tied events model and equal 

probability model are both substantially biased downwards, which demonstrates that arbitrary 

assignment of credits among co-senders may lead to misleading results. The effectiveness of the 

collective cause model in recovering the true parameters are robust to censoring, scaling, 

distribution of survival times, and average number of co-senders on a receiver.  
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Appendix 1.2: Complete Results 

Table A1.2 Complete Parameter Estimates for Models in Table 1.8 

  Model1 Model2 Model3 Model4 

Characteristics of Sender         

isSocialTRUE 1.409** 1.577*** 1.602*** 1.482** 

isDiggAdsTRUE 0.36 -0.434 0.277 0.005 

logFollowees -0.003 0.016 -0.015 -0.004 

logFollowers -0.872*** -0.759*** -0.827*** -0.798*** 

logMutuals 0.002 0.011 0.026 0.028 

logDiggs -0.32* -0.285* -0.269. -0.239 

logComments -0.191. -0.037 -0.183. -0.155 

logSubmissions -0.009 -0.148 -0.005 -0.069 

logAvgDiggs 0.585*** 0.445*** 0.444*** 0.417*** 

logAvgComments 0.008 -0.105 0.025 -0.001 

logAvgSubmissions 0.04 0.121 0.038 0.081 

genderf 0.222 -0.047 -0.096 -0.089 

genderm 0.274* 0.274* 0.209. 0.231. 

Characteristics of Receiver      

logFollowees -0.238*** -0.248*** -0.246*** -0.248*** 

logFollowers -0.208*** -0.206*** -0.211*** -0.209*** 

logMutuals -0.101*** -0.109*** -0.102*** -0.104*** 

logDiggs 0.166*** 0.169*** 0.171*** 0.17*** 

logComments -0.156*** -0.16*** -0.163*** -0.162*** 

logSubmissions -0.152*** -0.153*** -0.155*** -0.154*** 

logAvgDiggs 0.438*** 0.435*** 0.435*** 0.435*** 

logAvgComments 0.218*** 0.217*** 0.224*** 0.221*** 

logAvgSubmissions 0.029 0.031 0.031 0.03 

genderf 0.12** 0.129** 0.129** 0.13** 

genderm 0.137*** 0.143*** 0.143*** 0.144*** 

Sharing Timing of Sender         

wday1 -0.462** -0.324* -0.448** -0.382* 

wday2 0.119 -0.117 -0.11 -0.109 

wday3 0.263* 0.073 0.122 0.088 

wday4 0.129 0.048 0.045 0.039 

wday5 -0.103 0.03 -0.002 0.021 

wday6 0.117 0.265 0.004 0.148 

hour(5,11] -0.348** -0.281* -0.259* -0.268* 

hour(11,17] -0.256* -0.165 -0.196 -0.179 

hour(17,23] 0.044 0.006 0.003 -0.002 

shareTime -0.023 0.099** 0.097** 0.116** 

Number of Co-senders         

co-senders -0.082*** -0.057*** -0.058*** -0.056*** 

Dyadic Characteristics      

isMutualTrue -0.645*** -0.499*** -0.526*** -0.5*** 

logCommonFollowees 0.23*** 0.174** 0.175** 0.175** 

logCommonFollowers 0.845*** 1.364*** 0.829*** 1.074*** 

logCommonMutuals -0.245*** -0.19*** 0.799*** 0.418** 

logCommonFollowers:logPopularity  -0.153***  -0.071** 

logCommonMutuals:logPopularity   -0.258*** -0.16*** 

Fitness         

logLikelihood -22661 -22623 -22620 -22618 

AIC 45401 45326 45320 45317 

The three levels for gender are: m – male, f – female, and u – unknown. For wday, Monday is coded as 0. Hour 
of a day is grouped into four bins. For dummy variables, the missing levels are the reference levels. 
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Appendix 1.3 Diffusion Graphs 

 

Figure A1.1 Kaplan-Meier Survival Curve for Digg Ads31 

 

                                                           
31 The KM curve is computed based on the average survival probability of all receivers who are at risk over time 
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Figure A1.2 Sharing Graphs for Ads 1 & 2.32 

  

                                                           
32 Arrow represents information flow. Nodes without incoming links share spontaneously. Nodes are labeled based on the 

order they share the ad. The darkness of the color of a node is proportional to her outgoing links in the graph. The color of 
an arrow is consistent with the source node. 



76 
 

Appendix 1.4 Additional Results 

Table A1.3 Parameter Estimates on the Digg Dataset (including inactive users) 

  Model1 Model2 Model3 Model4 

Embeddedness         

logCommonFollowees 0.257*** 0.200*** 0.208*** 0.205*** 

logCommonFollowers 0.723*** 1.275*** 0.710*** 1.043*** 

logCommonMutuals -0.227*** -0.179*** 0.754*** 0.290** 

Interactions with Popularity      

logCommonFollowers:logPopularity  -0.152***  -0.091*** 

logCommonMutuals:logPopularity   -0.237*** -0.121*** 

Fitness         

logLikelihood -23887 -23843 -23845 -23839 

AIC 47844 47757 47762 47752 

 

Table A1.4 Summary Statistics for Twitter Dataset 

Number of ads/tweets 74 

Number of sharing users (senders) 4,209 

Number of potential sharing users (receivers) 36,187 

Number of <sender, receiver> dyads 90,288 

Number of <sender, receiver, ad> tuples 171,685 

      Number of spontaneous tuples 80,721 (47%) 

      Number of social tuples 90,964 (53%) 

Number of shares (retweets) 4,740 

      Number of spontaneous shares 1,020 (21.5%) 

      Number of potential influenced shares 3,720 (78.5%) 

      Percentage with more than one co-senders (excluding special sender) 6.8% 
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Table A1.5 Descriptions of Independent Variables for Twitter Dataset 

Independent Variable Description 

𝑿𝒊/𝑿𝒋 Attributes of sender 𝒊 / receiver 𝒋 

    Network attributes 

followees Number of followees (out-degree) 

followers Number of followers (in-degree) 

mutuals Number of mutual followers 

lists Number of lists subscribed 

    Engagement levels 
statuses Total number of tweets, including retweets 

favourites Total number of favourites 

    Others 

verified Whether the Twitter account is verified 

regMon How many months have the user been registered on Twitter 

isSocial (𝒔𝒊)  1 if sender 𝒊 is a social source (i.e., followee), otherwise 0 

isAuthor 1 if the sender is the author of the tweet, otherwise 0  

𝑿𝒊𝒋  Attributes of a sender-receiver dyad 

Dyadic network attributes 

isMutual Does the sender and the receiver follow each other mutually 

commonFollowees Number of followees shared by the sender and the receiver 

commonFollowers Number of followers shared by the sender and the receiver 

commonMutuals Number of mutual followers shared by the sender and the receiver 

𝑿𝒊𝒌  Sender-specific attributes of a tweet 

    Sharing timing 

wday Day of a week when sender i retweeted tweet 𝒌 

hour Hour of a day when sender i retweeted tweet 𝒌 

shareTime Hours taken for sender 𝒊 to retweet since creation of tweet 𝒌, 0 for the front page 

𝑿𝒋𝒌  
 

Receiver-specific attributes of a tweet 

     co-senders Number of followees (co-senders) of the receiver who have already shared 

𝑿𝒌  Attributes of ads 𝒌 (only interaction with other variables can be identified) 

 popularity  Number of retweets at a given time point 

 

Table A1.6 Key Statistics of Main Variables for Twitter Dataset 

  Zeros Mean SD Min Median Max 

Unitary Network Attributes of All Users             

Number of followees 14 9298.8 43743.3 0 769 2422154 

Number of followers 202 18843.9 348931.6 0 380 59159316 

Number of mutuals 945 6278.0 31334.0 0 212 1755611 

Dyadic Network Attributes of Sender-Receiver Dyads        

isMutual (1– reciprocal, 0 – non-reciprocal) 40940 0.45 0.50 0 0 1 

Number of common followees 9596 61.1 715.5 0 10 79376 

Number of common followers 16015 235.3 6016.5 0 5 500406 

Number of common mutual followers 26864 74.5 490.5 0 2 35478 

Popularity of Tweets             

Number of retweets 15 20.5 41.9 0 10 379 
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Table A1.7 Correlation among Dyadic Network Characteristics for Twitter Dataset 

  isMutual logCommonFollowees logCommonFollowers logCommonMutuals 

isMutual 1.00 0.10 0.12 0.50 

logCommonFollowees  1.00 0.56 0.53 

logCommonFollowers   1.00 0.63 

logCommonMutuals       1.00 

 

Table A1.8 Complete Results on the Twitter Dataset 

  Model1 Model2 Model3 Model4 

Characteristics of Sender         

isSocialTRUE -1.575 -0.762 -0.742 -0.633 

isAuthorTRUE 1.459*** 1.069*** 1.23*** 1.076*** 

logFollowees -0.764*** -0.938*** -0.97*** -0.997*** 

logFollowers 0.399*** 0.416*** 0.412*** 0.421*** 

logMutuals 0.811*** 0.99*** 0.995*** 1.042*** 

logLists 0.216* 0.161* 0.176** 0.154* 

logStatuses -0.142** -0.147*** -0.119** -0.136*** 

logFavourites -0.478*** -0.463*** -0.467*** -0.463*** 

verified -1.392* -1.449*** -1.771*** -1.604*** 

logRegMon 0.482*** 0.463*** 0.416*** 0.432*** 

Characteristics of Receiver         

logFollowees -0.468*** -0.482*** -0.473*** -0.48*** 

logFollowers -0.139*** -0.145*** -0.143*** -0.146*** 

logMutuals -0.049** -0.038* -0.047** -0.039* 

logLists 0.099*** 0.086*** 0.091*** 0.086*** 

logStatuses 0.278*** 0.284*** 0.281*** 0.283*** 

logFavourites 0.081*** 0.084*** 0.084*** 0.085*** 

verified -0.525* -0.702** -0.685** -0.772*** 

logRegMon -0.165*** -0.163*** -0.164*** -0.163*** 

Sharing Timing of Sender         

wday0 -1.233 -0.976 -0.92 -0.936 

wday1 -0.049 -0.147 -0.177 -0.186 

wday2 -0.616 -0.5 -0.538 -0.491 

wday3 2.106** 1.782** 1.753** 1.721** 

wday5 1.387* 1.266** 1.468*** 1.342** 

wday6 0.23 -0.575 -0.568 -0.579 

hour(5.75,11.5] -2.347*** -2.449*** -2.479*** -2.513*** 

hour(11.5,17.2] -1.829*** -1.476*** -1.559*** -1.458*** 

hour(17.2,23] -0.253 -0.274 -0.223 -0.249 

shareTime 0.054*** 0.05*** 0.051*** 0.05*** 

Number of Co-senders         

co-senders -1.865*** -2.072*** -1.993*** -2.077*** 

Dyadic Characteristics         

isMutualTRUE 0.162* 0.146. 0.164* 0.149* 

logCommonFollowees 0.294*** 0.311*** 0.299*** 0.309*** 

logCommonFollowers -0.127*** 0.227*** -0.132*** 0.144*** 

logCommonMutuals -0.035 0.013 0.643*** 0.284*** 

logCommonFollowers:logPopularity  -0.105***  -0.081*** 

logCommonMutuals:logPopularity     -0.174*** -0.075*** 

Fitness      

likelihood -29378 -29324 -29340 -29319 

AIC 58822 58717 58747 58708 

For wday, Monday is coded as 0. Hour of a day is grouped into four bins. For dummy variables, the missing 
levels are the reference levels. 
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Appendix 2.1 Likelihood and Parameter Estimation 

The likelihood of all observations on endorser 𝑖 is given by 

𝐿𝑖 = 𝑃(𝑦𝑖1
∗ , … , 𝑦𝑖𝑇

∗ ; 𝑧𝑖1, … , 𝑧𝑖𝑇|𝒙𝑖1, … , 𝒙𝑖𝑇 , 𝒘𝑖1, … , 𝒘𝑖𝑇) 

= ∫ 𝜙(𝜀𝑖)𝑑𝜀𝑖 ∫ 𝑓(𝑢𝑖|𝜀𝑖)𝑑𝑢𝑖 ∫ 𝑃(𝑦𝑖1
∗ , … , 𝑦𝑖𝑇

∗ ; 𝑧𝑖1, … , 𝑧𝑖𝑇|𝒙𝑖1, … , 𝒙𝑖𝑇, 𝒘𝑖1, … , 𝒘𝑖𝑇, 𝜀𝑖 , 𝑢𝑖 , 𝜖𝑖1, … , 𝜖𝑖𝑇)𝜙(𝜖𝑖1) … 𝜙(𝜖𝑖𝑇)𝑑𝜖𝑖1 … 𝑑𝜖𝑖𝑇

∞

−∞

∞

−∞

∞

−∞

 

Based on the i.i.d. assumption on the error terms 𝜖𝑖1, … , 𝜖𝑖𝑇, the above likelihood can be simplified 

as 

𝐿𝑖 = ∫ 𝜙(𝜀𝑖)𝑑𝜀𝑖 ∫ 𝑓(𝑢𝑖|𝜀𝑖)𝑑𝑢𝑖 ∏ ∫ 𝑃(𝑦𝑖𝑡
∗ |𝒙𝑖𝑡, 𝜀𝑖 , 𝜖𝑖𝑡)𝑧𝑖𝑡𝑃(𝑧𝑖𝑡|𝒘𝑖𝑡, 𝑢𝑖 , 𝜖𝑖𝑡)𝜙(𝜖𝑖𝑡)𝑑𝜖𝑖𝑡

∞

−∞

𝑇𝑖

𝑡=1

∞

−∞

∞

−∞

 

=
1

2𝜋√1−𝜌2
∫ 𝑒−

𝜀𝑖
2

2 𝑑𝜀𝑖 ∫ 𝑒
−

(𝑢𝑖−𝜌𝜀𝑖)
2

2(1−𝜌2) 𝑑𝑢𝑖 ∏ ∫
1

√2𝜋
𝑃(𝑦𝑖𝑡

∗ |𝒙𝑖𝑡, 𝜀𝑖 , 𝜖𝑖𝑡)𝑧𝑖𝑡Φ ((2𝑧𝑖𝑡 − 1)
𝜶𝒘𝑖𝑡

′ +𝛿𝑢𝑖+𝜏𝜖𝑖𝑡

√1−𝜏2
) 𝑒−

𝜖𝑖𝑡
2

2 𝑑𝜖𝑖𝑡
∞

−∞

𝑇𝑖
𝑡=1

∞

−∞

∞

−∞
  

After substituting in 𝑟 =
𝜀𝑖

√2
, 𝑠 =

𝑢𝑖−𝜌𝜀𝑖

√2(1−𝜌2)
, and 𝑣 =

𝜖𝑖𝑡

√2
, the likelihood can be further simplified as 

𝐿𝑖 =
1

𝜋
∫ 𝑒−𝑟2

𝑑𝑟 ∫ 𝑒−𝑠2
𝑑𝑠 ∏

1

√𝜋
∫ 𝑃(𝑦𝑖𝑡

∗ |𝒙𝑖𝑡, √2𝑟, √2𝑣)
𝑧𝑖𝑡

Φ ((2𝑧𝑖𝑡 − 1)
𝜶𝒘𝑖𝑡

′ +√2𝜌𝛿𝑟+√2(1−𝜌2)𝛿𝑠+√2𝜏𝑣

√1−𝜏2
) 𝑒−𝑣2

𝑑𝑣
∞

−∞

𝑇𝑖
𝑡=1

∞

−∞

∞

−∞
  

In this form, the likelihood can be approximated numerically by Gauss-Hermite quadrature 

(Abramowitz and Stegun 1972; Greene 2009). Using the Gauss-Hermite quadrature procedure 

three times, the likelihood can be approximated as 

𝐿𝑖 ≈
1

𝜋
∑ 𝜔ℎ ∑ 𝜑𝑘 ∏ ∑

𝜇𝑚

√𝜋
𝑃(𝑦𝑖𝑡

∗ |𝒙𝑖𝑡, √2𝑟, √2𝑣)
𝑧𝑖𝑡

Φ ((2𝑧𝑖𝑡 − 1)
𝜶𝒘𝑖𝑡

′ + √2𝜌𝛿𝑟ℎ + √2(1 − 𝜌2)𝛿𝑠𝑘 + √2𝜏𝑣𝑚

√1 − 𝜏2
)

𝑀

𝑚=1

𝑇𝑖

𝑡=1

𝐾

𝑘=1

𝐻

ℎ=1

 

where {𝑤ℎ , 𝑟ℎ}, {𝜑𝑘 , 𝑠𝑘}, {𝜇𝑚, 𝑣𝑚} represent the weights and nodes for the three quadratures, with 

𝐻, 𝐾 , and 𝑀 points being used respectively. In our analysis, we find that 𝐻 = 𝐾 = 𝑀 = 10 are 

sufficient to yield reasonably good approximations. 

The overall log likelihood on the entire dataset can be written as 
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𝐿𝐿 = ln ∏ 𝐿𝑖

𝑁

𝑖=1

= ∑ ln 𝐿𝑖

𝑁

𝑖=1

 

Since 𝜌, 𝜏 ∈ [−1,1], we use the L-BFGS-B method (Byrd et al. 1995; Zhu et al. 1997), which allows 

for box constraints, to maximize the log likelihood. We have found from simulations that the above 

likelihood maximization procedure can recover the true parameters very well.  

Due to the complexity of the log likelihood, the asymptotic covariance matrix of the parameter 

estimates is computed using the BHHH estimator (Berndt et al. 1974; Greene 2009), which only 

requires the computation of the score function (i.e., gradient of log likelihood).  

Let 𝜽 = [𝜶, 𝛿, 𝜌, 𝜏] and 𝜼 = [𝜷, 𝜎, 𝛾], the gradient of the log likelihood is approximated by 

𝜕𝐿𝐿

𝜕𝜽
≈

1

𝜋
∑

1

𝐿𝑖

∑ 𝜔ℎ ∑ 𝜑𝑘 (∏ ∑
𝜇𝑚

√𝜋
𝑃(𝑦𝑖𝑡|𝜆𝑖𝑡

ℎ𝑚)
𝑧𝑖𝑡

Φ(𝑞𝑖𝑡
ℎ𝑘𝑚)𝑀

𝑚=1
𝑇𝑖
𝑡=1 ) ∑

∑
𝜇𝑚

√𝜋
𝑃(𝑦𝑖𝑡|𝜆𝑖𝑡

ℎ𝑚
)

𝑧𝑖𝑡
ϕ(𝑞𝑖𝑡

ℎ𝑘𝑚)
2𝑧𝑖𝑡−1

√1−𝜏2
𝒘𝑖𝑡

𝑒𝒙𝑡𝑀
𝑚=1

∑
𝜇𝑚

√𝜋
𝑃(𝑦𝑖𝑡|𝜆𝑖𝑡

ℎ𝑚
)

𝑧𝑖𝑡
Φ(𝑞𝑖𝑡

ℎ𝑘𝑚)𝑀
𝑚=1

𝑇𝑖
𝑡=1  𝐾

𝑘=1
𝐻
ℎ=1

𝑁
𝑖=1   

where 𝒘𝑖𝑡
𝑒𝒙𝑡 = [𝒘𝑖𝑡 , √2𝜌𝑟ℎ + √2(1 − 𝜌2)𝑠𝑘 , √2𝛿𝑟ℎ − √

2

(1−𝜌2)
𝜌𝛿𝑠𝑘 ,

√2𝑣𝑚+(𝜶𝒘𝑖𝑡
′ +√2𝜌𝛿𝑟ℎ+√2(1−𝜌2)𝛿𝑠𝑘)𝜏

1−𝜏2  ]  

𝜕𝐿𝐿

𝜕𝜼
≈

1

𝜋
∑

1

𝐿𝑖

∑ 𝜔ℎ ∑ 𝜑𝑘 (∏ ∑
𝜇𝑚

√𝜋
𝑃(𝑦𝑖𝑡|𝜆𝑖𝑡

ℎ𝑚)
𝑧𝑖𝑡

Φ(𝑞𝑖𝑡
ℎ𝑘𝑚)𝑀

𝑚=1
𝑇𝑖
𝑡=1 ) ∑

∑ 𝑧𝑖𝑡
𝜇𝑚

√𝜋
𝑃(𝑦𝑖𝑡|𝜆𝑖𝑡

ℎ𝑚
)(𝑦𝑖𝑡−𝜆𝑖𝑡

ℎ𝑚)Φ(𝑞𝑖𝑡
ℎ𝑘𝑚)𝒙𝑖𝑡

𝑒𝒙𝑡𝑀
𝑚=1

∑
𝜇𝑚

√𝜋
𝑃(𝑦𝑖𝑡|𝜆𝑖𝑡

ℎ𝑚
)

𝑧𝑖𝑡
Φ(𝑞𝑖𝑡

ℎ𝑘𝑚)𝑀
𝑚=1

𝑇𝑖
𝑡=1  𝐾

𝑘=1
𝐻
ℎ=1

𝑁
𝑖=1   

where 𝒙𝑖𝑡
𝑒𝒙𝑡 = [𝒙𝑖𝑡 , √2𝑟ℎ , √2𝑣𝑚]. 
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Appendix 2.2 Mean Actual Outcome 

The unconditional (not conditional on any unobserved variable value) mean of actual outcome can 

be derived as follows 

𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡, 𝒘𝑖𝑡] = 𝐸𝑢𝑖
𝐸𝜀𝑖|𝑢𝑖

𝐸𝜖𝑖𝑡
[𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡, 𝒘𝑖𝑡, 𝑢𝑖 , 𝜀𝑖 , 𝜖𝑖𝑡]] 

= 𝐸𝑢𝑖
𝐸𝜀𝑖|𝑢𝑖

𝐸𝜖𝑖𝑡
[𝑃(𝑧𝑖𝑡 = 1|𝒘𝑖𝑡, 𝑢𝑖 , 𝜖𝑖𝑡)𝐸[𝑦𝑖𝑡

∗ |𝒙𝑖𝑡, 𝜀𝑖 , 𝜖𝑖𝑡]] 

= ∫ 𝜙(𝑢𝑖)𝑑𝑢𝑖 ∫ 𝑓(𝜀𝑖|𝑢𝑖)𝑑𝜀𝑖 ∫ Φ (
𝜶𝒘𝑖𝑡

′ + 𝛿𝑢𝑖 + 𝜏𝜖𝑖𝑡

√1 − 𝜏2
) exp(𝜷𝒙𝑖𝑡

′ + 𝜎𝜀𝑖 + 𝛾𝜖𝑖𝑡) 𝜙(𝜖𝑖𝑡)𝑑𝜖𝑖𝑡

∞

−∞

∞

−∞

∞

−∞

 

= exp(𝜷𝒙𝑖𝑡
′ ) ∫ [∫ Φ (

𝜶𝒘𝑖𝑡
′ + 𝛿𝑢𝑖 + 𝜏𝜖𝑖𝑡

√1 − 𝜏2
) exp(𝛾𝜖𝑖𝑡) 𝜙(𝜖𝑖𝑡)𝑑𝜖𝑖𝑡

∞

−∞

] 𝜙(𝑢𝑖)𝑑𝑢𝑖 ∫ exp(𝜎𝜀𝑖) 𝑓(𝜀𝑖|𝑢𝑖)𝑑𝜀𝑖

∞

−∞

∞

−∞

 

= exp(𝜷𝒙𝑖𝑡
′ ) ∫ [∫ Φ (

𝜶𝒘𝑖𝑡
′ + 𝛿𝑢𝑖 + 𝜏𝜖𝑖𝑡

√1 − 𝜏2
) exp(𝛾𝜖𝑖𝑡) 𝜙(𝜖𝑖𝑡)𝑑𝜖𝑖𝑡

∞

−∞

] 𝜙(𝑢𝑖)𝑑𝑢𝑖 ∫
1

√2𝜋(1 − 𝜌2)
𝑒𝜌𝜎𝑢𝑖+

(1−𝜌2)𝜎2

2 𝑒
−

(𝜀𝑖−𝜌𝑢𝑖−(1−𝜌2)𝜎)
2

 

2(1−𝜌2) 𝑑𝜀𝑖

∞

−∞

∞

−∞

 

= exp(𝜷𝒙𝑖𝑡
′ ) ∫ [∫ Φ (

𝜶𝒘𝑖𝑡
′ + 𝛿𝑢𝑖 + 𝜏𝜖𝑖𝑡

√1 − 𝜏2
) exp(𝛾𝜖𝑖𝑡) 𝜙(𝜖𝑖𝑡)𝑑𝜖𝑖𝑡

∞

−∞

] 𝑒𝜌𝜎𝑢𝑖+
(1−𝜌2)𝜎2

2 𝜙(𝑢𝑖)𝑑𝑢𝑖

∞

−∞

 

=
1

2𝜋
exp (𝜷𝒙𝑖𝑡

′ +
𝜎2+𝛾2

2
) ∫ [∫ Φ (

𝜶𝒘𝑖𝑡
′ +𝛿𝑢𝑖+𝜏𝜖𝑖𝑡

√1−𝜏2
) 𝑒−

(𝜖𝑖𝑡−𝛾)
2

2 𝑑𝜖𝑖𝑡
∞

−∞
] 𝑒−

(𝑢𝑖−𝜌𝜎)
2

2 𝑑𝑢𝑖
∞

−∞
  

Let 𝑣 =
𝜖𝑖𝑡−𝛾

√2
 and 𝑟 =

𝑢𝑖−𝜌𝜎

√2
, the above equation can be simplified as 

𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡 , 𝒘𝑖𝑡] =
1

𝜋
exp (𝜷𝒙𝑖𝑡

′ +
𝜎2+𝛾2

2
) ∫ [∫ Φ (

𝜶𝒘𝑖𝑡
′ +√2𝛿𝑟+𝜌𝜎𝛿+𝜏𝛾+√2𝜏𝑣

√1−𝜏2
) 𝑒−𝑣2

𝑑𝑣
∞

−∞
] 𝑒−𝑟2

𝑑𝑟
∞

−∞
  

Similar to the likelihood function, 𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡 , 𝒘𝑖𝑡] can be approximated by two embedded Gauss-

Hermite quadratures.  

𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡 , 𝒘𝑖𝑡] ≈
1

𝜋
exp (𝜷𝒙𝑖𝑡

′ +
𝜎2+𝛾2

2
) ∑ 𝜔ℎ ∑ 𝜑𝑘Φ (

𝜶𝒘𝑖𝑡
′ +√2𝛿𝑟ℎ+𝜌𝜎𝛿+𝜏𝛾+√2𝜏𝑣𝑘

√1−𝜏2
)𝐾

𝑘=1
𝐻
ℎ=1   

where {𝑤ℎ , 𝑟ℎ}, and  {𝜑𝑘 , 𝑠𝑘} represent the weights and nodes for the two quadratures, with 𝐻 and 

𝐾 points being used, respectively. 
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Appendix 2.3 Relative Partial Effects  

Letting 𝑞𝑖𝑡
ℎ𝑘 =

𝜶𝒘𝑖𝑡
′ +√2𝛿𝑟ℎ+𝜌𝜎𝛿+𝜏𝛾+√2𝜏𝑣𝑘

√1−𝜏2
, the relative partial effects of 𝒙𝑖𝑡 and 𝒘𝑖𝑡 on the mean actual 

outcome are given by 

𝒈𝒘𝑖𝑡
=

𝜕 log 𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡 , 𝒘𝑖𝑡]

𝜕𝒘𝑖𝑡

= 𝑐𝑖𝑡𝜶 ≈
∑ 𝜔ℎ ∑ 𝜑𝑘𝜙(𝑞𝑖𝑡

ℎ𝑘)𝐾
𝑘=1

𝐻
ℎ=1

√1 − 𝜏2 ∑ 𝜔ℎ ∑ 𝜑𝑘Φ(𝑞𝑖𝑡
ℎ𝑘)𝐾

𝑘=1
𝐻
ℎ=1

𝜶 

𝒈𝒙𝑖𝑡
=

𝜕 log 𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡 , 𝒘𝑖𝑡]

𝜕𝒙𝑖𝑡

≈ 𝜷 

where 𝑐𝑖𝑡 =
∫ [∫ ϕ(

𝜶𝒘𝑖𝑡
′ +√2𝛿𝑟+𝜌𝜎𝛿+𝜏𝛾+√2𝜏𝑣

√1−𝜏2
)𝑒−𝑣2

𝑑𝑣
∞

−∞ ]𝑒−𝑟2
𝑑𝑟

∞
−∞

√1−𝜏2 ∫ [∫ Φ(
𝜶𝒘𝑖𝑡

′ +√2𝛿𝑟+𝜌𝜎𝛿+𝜏𝛾+√2𝜏𝑣

√1−𝜏2
)𝑒−𝑣2

𝑑𝑣
∞
−∞ ]𝑒−𝑟2

𝑑𝑟
∞

−∞

> 0.  

If a variable appears in both 𝒙𝑖𝑡 and 𝒘𝑖𝑡, the derivative for that variable would be the sum of the 

corresponding elements in 𝒈𝒙𝑖𝑡
 and 𝒈𝒘𝑖𝑡

.  

The covariance matrix of the relative partial effects can be approximated by the delta method. 

Letting 𝜽 = [𝜶, 𝜷, 𝛿, 𝜎, 𝛾, 𝜌, 𝜏], 𝐴 = ∑ 𝜔ℎ ∑ 𝜑𝑘𝜙(𝑞𝑖𝑡
ℎ𝑘)𝐾

𝑘=1
𝐻
ℎ=1 , and 𝐵 = ∑ 𝜔ℎ ∑ 𝜑𝑘𝛷(𝑞𝑖𝑡

ℎ𝑘)𝐾
𝑘=1

𝐻
ℎ=1 , the first 

order derivative of the relative partial effects w.r.t. the model parameters can be computed as   

𝑱𝒘𝑖𝑡
=

𝜕𝒈𝒘𝑖𝑡

′

𝜕𝜽
=

𝐴

√1 − 𝜏2𝐵

𝜕𝜶′

𝜕𝜽
+ 𝜶′

𝜕
𝐴

√1 − 𝜏2𝐵
𝜕𝜽

 

=
𝐴

√1 − 𝜏2𝐵
[𝐼|𝜶|∗|𝜶|, 0|𝜶|∗(|𝜷|+4),

2𝜏

1 − 𝜏2
𝜶′] + 𝜶′

∑ 𝜔ℎ ∑ −𝑞𝑖𝑡
ℎ𝑘𝜑𝑘𝜙(𝑞𝑖𝑡

ℎ𝑘)
𝜕𝑞𝑖𝑡

ℎ𝑘

𝜕𝜽
𝐾
𝑘=1

𝐻
ℎ=1 −

𝐴
𝐵

∑ 𝜔ℎ ∑ 𝜑𝑘𝜙(𝑞𝑖𝑡
ℎ𝑘)

𝜕𝑞𝑖𝑡
ℎ𝑘

𝜕𝜽
𝐾
𝑘=1

𝐻
ℎ=1

√1 − 𝜏2𝐵
 

where 
𝜕𝑞𝑖𝑡

ℎ𝑘

𝜕𝜽
=

1

√1−𝜏2
[𝒘𝑖𝑡 , 0|𝜷|, √2𝑟ℎ + 𝜌𝜎, 𝜌𝛿, 𝜏, 𝜎𝛿,

(𝛾+√2𝑣𝑘)(1+𝜏2)+2𝜏(𝜶𝒘𝑖𝑡
′ +√2𝛿𝑟ℎ+𝜌𝜎𝛿)

1−𝜏2 ] 

𝑱𝒙𝑖𝑡
=

𝜕𝒈𝒙𝑖𝑡

′

𝜕𝜽
=

𝜕𝜷′

𝜕𝜽
= [0|𝜷|∗|𝜶|, 𝐼|𝜷|∗|𝜷|, 0|𝜷|∗5] 

Similarly, if a variable appears in both 𝒙𝑖𝑡 and 𝒘𝑖𝑡, the derivative for that variable would be the sum 

of the corresponding rows in 𝑱𝒙𝑖𝑡
 and 𝑱𝒘𝑖𝑡

.  

Letting 𝒈 represent the relative partial effects of all variables, and 𝑱 be the first order derivative of 

𝒈 w.r.t. the model parameters, then according to the delta method 
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𝑉𝑎𝑟(𝒈) ≈ 𝑱𝑽𝑱′ 

where 𝑽 is the covariance matrix of the parameter estimates. 
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Appendix 2.4 Prediction of Participation and Effectiveness  

1) Probability to participate 

𝑃(𝑧𝑖𝑡 = 1|𝒘𝑖𝑡) = ∫ 𝑃(𝑧𝑖𝑡 = 1|𝒘𝑖𝑡 , 𝑢𝑖)𝜙(𝑢𝑖)𝑑𝑢𝑖
∞

−∞
= ∫ Φ(𝜶𝒘𝑖𝑡

′ + 𝛿𝑢𝑖)𝜙(𝑢𝑖)𝑑𝑢𝑖
∞

−∞
  

=
1

√2𝜋
∫ Φ(𝜶𝒘𝑖𝑡

′ + 𝛿𝑢𝑖)𝑒−
𝑢𝑖

2

2 𝑑𝑢𝑖
∞

−∞
=

1

√𝜋
∫ Φ(𝜶𝒘𝑖𝑡

′ + √2𝛿𝑣)𝑒−𝑣2
𝑑𝑣

∞

−∞
=

1

√𝜋
∑ 𝜔𝑘Φ(𝜶𝒘𝑖𝑡

′ + √2𝛿𝑣)𝐾
𝑘=1   

2) Expected number of engagements 

𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡] = 𝐸𝜀𝑖
𝐸𝜖𝑖𝑡

[𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡 , 𝜀𝑖, 𝜖𝑖𝑡]] = ∫ 𝜙(𝜀𝑖)𝑑𝜀𝑖 ∫ exp(𝜷𝒙𝑖𝑡
′ + 𝜎𝜀𝑖 + 𝛾𝜖𝑖𝑡) 𝜙(𝜖𝑖𝑡)𝑑𝜖𝑖𝑡

∞

−∞

∞

−∞
  

=
1

2𝜋
∫ 𝑒−

𝜀𝑖
2

2 𝑑𝜀𝑖 ∫ exp(𝜷𝒙𝑖𝑡
′ + 𝜎𝜀𝑖 + 𝛾𝜖𝑖𝑡) 𝑒−

𝜖𝑖𝑡
2

2 𝑑𝜖𝑖𝑡
∞

−∞

∞

−∞
  

=
1

𝜋
∫ 𝑒−𝑢2

𝑑𝑢 ∫ exp(𝜷𝒙𝑖𝑡
′ + √2𝜎𝑢 + √2𝛾𝑣) 𝑒−𝑣2

𝑑𝑣
∞

−∞

∞

−∞
  

=
1

𝜋
∑ 𝜑ℎ ∑ 𝜔𝑘 exp(𝜷𝒙𝑖𝑡

′ + √2𝜎𝑢ℎ + √2𝛾𝑣𝑘)𝐾
𝑘=1

𝐻
ℎ=1   
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Appendix 2.5 Results Using Alternative Incentives 

Table A2.1 Parameter Estimates for Different Types of Engagements (Pay Rate) 

  Selection Outcome 

  likes comments retweets likes comments retweets 

Exclusion Variable             

isEligible 2.543*** 2.543*** 2.547***     

Incentive             

payRate=High 0.018 0.020 0.018 -0.163 -0.138 -0.252 

Social Media Fanbase          

log(followers) 0.131*** 0.125*** 0.123*** 0.198** -0.011 -0.060 

verifiedRatio 0.550*** 0.613*** 0.587*** 0.642 0.631 0.066 

Prior Activity Level             

log(tweetNum) 0.044* 0.054** 0.058** -0.005 -0.470*** -0.396*** 

log(taskNum) 0.535*** 0.546*** 0.543*** -0.389*** -0.464*** -0.535*** 

approvalRate -0.030 -0.024 -0.026 0.828 1.522* -0.737 

Community Embeddedness          

regDays -4.290*** -4.277*** -4.303*** 0.092 2.048. 3.594*** 

log(friends) -0.106** -0.094* -0.088* 0.502** 0.157 0.238 

Others             

log(referralRwd) -0.016. -0.023* -0.020* 0.011 0.062 -0.099 

times -0.151** -0.146** -0.157*** -0.280 -0.167 0.044 

Heterogeneity          

𝛿 (selection)      1.358*** 1.349*** 1.364*** 

𝜎 (outcome)      1.550*** 2.232*** 2.853*** 

𝛾 (outcome)      0.109 1.144*** 1.423*** 

Correlation             

𝜌 (endorser)      -0.228*** -0.206*** -0.306*** 

𝜏 (endorser-task)       0.153 0.223 0.096 

Fitness             

Log Likelihood    -7267.5 -7347.8 -7260.5 

AIC    14650.9 14811.7 14637.0 

BIC       15250.4 15411.1 15236.5 
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Table A2.2 Parameter Estimates for Different Types of Engagements (Linear Reward) 

  Selection Outcome 

  likes comments retweets likes comments retweets 

Exclusion Variable             

isEligible 2.535*** 2.532*** 2.528***    

Incentive       

actRwd 0.011* 0.012* 0.011. 0.015 0.063 0.114*** 

Social Media Fanbase       

log(followers) 0.123*** 0.120*** 0.121*** 0.172* -0.116 -0.150. 

verifiedRatio 0.507*** 0.552*** 0.559*** 0.593 0.628 -0.051 

Prior Activity Level       

log(tweetNum) 0.045* 0.061** 0.048* -0.012 -0.408*** -0.482*** 

log(taskNum) 0.535*** 0.547*** 0.549*** -0.356*** -0.358*** -0.674*** 

approvalRate -0.023 -0.033 -0.016 0.764 1.403. -0.022 

Community Embeddedness       

regDays -4.284*** -4.303*** -4.251*** -0.050 2.244* 3.048* 

log(friends) -0.105** -0.107** -0.100* 0.452** 0.099 0.259 

Others       

log(referralRwd) -0.016. -0.022* -0.023* 0.014 0.035 -0.043 

times -0.152** -0.156*** -0.152*** -0.281 -0.169 0.008 

Heterogeneity       

𝛿 (selection)    1.358*** 1.360*** 1.359*** 

𝜎 (outcome)    1.564*** 2.105*** 2.795*** 

𝛾 (outcome)    0.005 1.040*** 1.412** 

Correlation       

𝜌 (endorser)    -0.215*** -0.297*** -0.252*** 

𝜏 (endorser-task)    -0.104 0.319* 0.269* 

Fitness       

Log Likelihood    -7265.3 -7343.7 -7256.6 

AIC    14646.6 14803.3 14629.2 

BIC    15246.0 15402.8 15228.6 
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Table A2.3 Parameter Estimates for Different Types of Engagements (Linear GainLoss) 

  Selection Outcome 

  likes comments retweets likes comments retweets 

Exclusion Variable             

isEligible 2.544*** 2.539*** 2.539***     

Incentive             

gain -0.018 -0.018 -0.018 -0.004 0.090 -0.064 

loss -0.253*** -0.245*** -0.237*** 0.108 0.187 0.033 

avgRwd 0.107* 0.102** 0.102* 0.044 0.048 0.250** 

Social Media Fanbase          

log(followers) 0.113*** 0.107*** 0.107*** 0.157* -0.189* -0.155. 

verifiedRatio 0.411*** 0.457*** 0.450*** 0.775 0.643 -0.191 

Prior Activity Level             

log(tweetNum) 0.042* 0.051* 0.050* 0.026 -0.257* -0.480*** 

log(taskNum) 0.539*** 0.554*** 0.538*** -0.366*** -0.453*** -0.386** 

approvalRate -0.004 -0.008 0.013 0.601 1.340. -0.892 

Community Embeddedness          

regDays -4.344*** -4.375*** -4.258*** 0.107 2.166. 3.134* 

log(friends) -0.098* -0.099* -0.087* 0.399* -0.059 0.205 

Others             

log(referralRwd) -0.015. -0.021* -0.021* 0.026 0.027 0.056 

times -0.154*** -0.152*** -0.152** -0.288 -0.218 0.015 

Heterogeneity          

𝛿 (selection)      1.353*** 1.359*** 1.339*** 

𝜎 (outcome)      1.578*** 2.240*** 2.846*** 

𝛾 (outcome)      0 1.175*** 1.447*** 

Correlation             

𝜌 (endorser)      -0.240*** -0.300*** -0.242*** 

𝜏 (endorser-task)       0.005 0.238 0.207 

Fitness             

Log Likelihood    -7251.3 -7329.4 -7242.0 

AIC    14626.5 14782.8 14607.9 

BIC       15267.3 15423.6 15248.7 

The negative effects of follower number on comments and retweets in the outcome equation, though not well-
supported in other models, are consistent with our reasoning that network size may have a negative effect on 
overall influence in high-effort behaviors (Katona et al. 2011). 
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Table A2.4 Parameter Estimates for Different Types of Engagements (Log Reward) 

  Selection Outcome 

  likes comments retweets likes comments retweets 

Exclusion Variable             

isEligible 0.967*** 0.948*** 0.952***       

Financial Incentive         

log(actRwd) 0.266*** 0.267*** 0.268*** -0.085 -0.010 -0.110 

Social Media Fanbase             

log(followers) 0.017 0.007 0.008 0.202* 0.005 -0.081 

verifiedRatio 0.154 0.198. 0.190. 0.646 0.806 0.386 

Prior Activity Level         

log(tweetNum) 0.047* 0.056** 0.053** 0.006 -0.478*** -0.491*** 

log(taskNum) 0.543*** 0.548*** 0.542*** -0.354** -0.414*** -0.311** 

approvalRate -0.003 0.005 0.015 0.727 1.638* -0.462 

Community Embeddedness             

regDays -4.295*** -4.255*** -4.211*** -0.025 1.997. 3.130** 

log(friends) -0.100** -0.093* -0.080* 0.389* 0.046 -0.062 

Others         

promIncm -0.018* -0.022* -0.023* 0.018 0.030 -0.033 

times -0.142** -0.144** -0.147** -0.298 -0.176 -0.127 

Heterogeneity             

𝛿 (selection)    1.360*** 1.348*** 1.344*** 

𝜎 (outcome)    1.597*** 2.257*** 2.661*** 

𝛾 (outcome)       0.031 1.124*** 1.389*** 

Correlation         

𝜌 (endorser)    -0.224*** -0.259*** -0.242*** 

𝜏 (endorser-task)    -0.012 0.433** 0.380** 

Fitness             

Log Likelihood    -7243.6 -7323.4 -7239.2 

AIC    14603.2 14762.9 14594.4 

BIC       15202.7 15362.3 15193.8 

Due to the high correlation (0.98) between “isEligible” and “log(actRwd)”, the parameter estimate on “isEligible” 
is very different from that in other models.  
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Appendix 2.6 Additional Robustness Checks 

Table A2.5 Effect of Eligibility on Effort Level 

  # Words in retweets  Use of emoji 

isEligible -0.063 -0.137 

log(gain) 0.010 0.039 

log(loss) 0.007 0.071 

log(avgRwd) -0.130** -0.105 

log(followers) 0.083*** 0.136. 

verifiedRatio 0.139 0.493 

log(tweetNum) -0.020 0.083 

log(taskNum) 0.106*** -0.114 

approvalRate 0.120 0.455 

regDays -0.018 -1.207. 

log(friends) -0.030 0.168 

log(referralRwd) 0.005 -0.012 

times 0.015 -0.350 

𝛿  1.533*** 

𝜎 0.814***   

𝛾  0.448***   

Log Likelihood -8406.1 -591.8 

Since the number of words is a count variable and the use of emoji is binary, we use a Poisson 
Lognormal model with random effects on endorser level (similar to our outcome equation) and a 
Probit model with random effects on endorser level (similar to our selection equation) to estimate 
the effects of eligibility on these two effort metrics, respectively. 
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Table A2.6 Robustness to Model Complexity 

  Full Without 𝝉 Without 𝝉 & 𝜸 

  likes comments retweets likes comments retweets likes comments retweets 

Selection                   

isEligible 2.724*** 2.723*** 2.720*** 2.727*** 2.730*** 2.732*** 2.732*** 2.719*** 2.723*** 

log(gain) 0.007 0.008 0.009 0.007 0.007 0.006 0.007 0.008 0.006 

log(loss) -0.073*** -0.074*** -0.073*** -0.074*** -0.076*** -0.075*** -0.074*** -0.072*** -0.073*** 

log(avgRwd) 0.034 0.036 0.037 0.039 0.038 0.036 0.040 0.024 0.029 

log(followers) 0.083*** 0.077*** 0.079*** 0.082*** 0.077*** 0.077*** 0.082*** 0.077*** 0.077*** 

verifiedRatio 0.256* 0.297** 0.283** 0.251* 0.302** 0.299** 0.260* 0.290** 0.290** 

log(tweetNum) 0.035. 0.045* 0.039. 0.035. 0.042* 0.036. 0.035. 0.041* 0.036. 

log(taskNum) 0.555*** 0.564*** 0.561*** 0.553*** 0.560*** 0.544*** 0.554*** 0.548*** 0.556*** 

approvalRate 0.063 0.051 0.063 0.077 0.062 0.110 0.069 0.074 0.077 

regDays -4.375*** -4.41*** -4.358*** -4.374*** -4.399*** -4.324*** -4.400*** -4.345*** -4.337*** 

log(friends) -0.088* -0.084* -0.086* -0.086* -0.079* -0.064. -0.087* -0.072* -0.069. 

log(referralRwd) -0.015. -0.017. -0.017. -0.015. -0.016. -0.016. -0.014 -0.017* -0.018* 

times -0.142** -0.142** -0.147** -0.142** -0.139** -0.139** -0.144** -0.144** -0.146** 

Outcome              

log(gain) -0.039 -0.011 -0.061 -0.037 0.002 -0.088 -0.042 -0.072 -0.004 

log(loss) 0.022 0.146 0.095 0.026 0.180. 0.067 0.015 0.162** -0.001 

log(avgRwd) -0.092 0.174 0.333 -0.101 0.140 0.345 -0.065 -0.093 0.770*** 

log(followers) 0.221. -0.039 -0.195 0.223. -0.043 -0.177 0.216* -0.028 -0.161* 

verifiedRatio 0.652 1.105 0.989 0.650 1.097. 0.971 0.622 0.737. 0.000 

log(tweetNum) 0.001 -0.478*** -0.252* 0.000 -0.396*** -0.260* -0.014 -0.409*** -0.463*** 

log(taskNum) -0.379*** -0.483*** -0.570*** -0.378*** -0.520*** -0.574*** -0.369*** -0.466*** -0.778*** 

approvalRate 0.704 1.708. -0.300 0.706 1.707. -0.338 0.672 -0.409 1.119* 

regDays 0.102 2.826* 3.258** 0.101 2.784* 3.242** 0.124 3.692*** 4.334*** 

log(friends) 0.420** 0.131 0.368 0.422** 0.065 0.358 0.419** -0.432** 0.287. 

log(referralRwd) 0.023 0.003 -0.095 0.021 -0.014 -0.092 0.021 0.101** -0.204*** 

times -0.285 -0.102 0.017 -0.285 -0.092 0.020 -0.276 0.102 1.009* 

Heterogeneity                   

𝛿 (selection) 1.310*** 1.315*** 1.314*** 1.31*** 1.308*** 1.277*** 1.311*** 1.290*** 1.291*** 

𝜎 (outcome) 1.609*** 2.190*** 2.693*** 1.607*** 2.132*** 2.616*** 1.592*** 2.106*** 2.370*** 

𝛾 (outcome) 0.097 1.131*** 1.371** 0.094 1.123*** 1.315***       

Correlation              

𝜌 (endorser) -0.216*** -0.253*** -0.247*** -0.212*** -0.211*** -0.145** -0.213*** -0.117** -0.235*** 

𝜏 (endorser-task) 0.008 0.199 0.312.         

Fitness                   

Log Likelihood -7229.7 -7304.5 -7216.5 -7229.7 -7304.8 -7219.0 -7229.5 -7319.4 -7251.7 

AIC 14583.4 14733.0 14557.0 14581.4 14731.5 14560.0 14579.1 14758.8 14623.4 

BIC 15224.2 15373.8 15197.8 15211.8 15362.0 15190.4 15199.2 15378.9 15243.5 
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Table A2.7 Robustness to Potential Outliers 

  All Tasks Without Task 2 Without Tasks 1-4 

  likes comments retweets likes comments retweets likes comments retweets 

Selection                   

isEligible 2.724*** 2.723*** 2.720*** 2.776*** 2.769*** 2.769*** 2.924*** 2.920*** 2.927*** 

log(gain) 0.007 0.008 0.009 0.001 0.003 0.002 0.005 0.006 0.004 

log(loss) -0.073*** -0.074*** -0.073*** -0.077*** -0.077*** -0.078*** -0.081*** -0.081*** -0.081*** 

log(avgRwd) 0.034 0.036 0.037 0.032 0.029 0.035 0.046 0.045 0.044 

log(followers) 0.083*** 0.077*** 0.079*** 0.085*** 0.080*** 0.079*** 0.073*** 0.071*** 0.068*** 

verifiedRatio 0.256* 0.297** 0.283** 0.264* 0.313** 0.303** 0.174 0.185 0.183 

log(tweetNum) 0.035. 0.045* 0.039. 0.034. 0.045* 0.041. 0.037. 0.040. 0.038. 

log(taskNum) 0.555*** 0.564*** 0.561*** 0.56*** 0.572*** 0.566*** 0.596*** 0.600*** 0.589*** 

approvalRate 0.063 0.051 0.063 0.091 0.058 0.077 0.045 0.033 0.053 

regDays -4.375*** -4.410*** -4.358*** -4.433*** -4.479*** -4.444*** -4.632*** -4.594*** -4.535*** 

log(friends) -0.088* -0.084* -0.086* -0.085* -0.083* -0.075. -0.089* -0.084* -0.078* 

log(referralRwd) -0.015. -0.017. -0.017. -0.015. -0.017. -0.017. -0.023* -0.024** -0.027** 

times -0.142** -0.142** -0.147** -0.140** -0.134** -0.138** -0.076 -0.077 -0.082. 

Outcome              

log(gain) -0.039 -0.011 -0.061 -0.035 -0.008 0.008 -0.110 -0.039 -0.021 

log(loss) 0.022 0.146 0.095 0.030 0.200. 0.069 -0.046 0.094 0.150 

log(avgRwd) -0.092 0.174 0.333 -0.122 -0.053 0.344 0.029 0.041 0.319 

log(followers) 0.221. -0.039 -0.195 0.231. 0.013 -0.114 0.200 -0.123 -0.105 

verifiedRatio 0.652 1.105 0.989 0.692 1.172. 0.557 0.499 0.718 0.749 

log(tweetNum) 0.001 -0.478*** -0.252* 0.000 -0.46*** -0.455*** -0.013 -0.317*** -0.235 

log(taskNum) -0.379*** -0.483*** -0.570*** -0.378*** -0.436*** -0.432** -0.343** -0.414*** -0.513*** 

approvalRate 0.704 1.708. -0.300 0.651 1.551 -0.400 0.941 1.169 -0.817 

regDays 0.102 2.826* 3.258** 0.031 2.282. 3.317. -0.140 1.095 2.066 

log(friends) 0.42** 0.131 0.368 0.419** -0.021 0.337 0.385* -0.015 0.254 

log(referralRwd) 0.023 0.003 -0.095 0.021 0.030 -0.113 0.030 0.048 -0.031 

times -0.285 -0.102 0.017 -0.287 -0.111 0.059 -0.243 -0.350 -0.176 

Heterogeneity                   

𝛿 (selection) 1.31*** 1.315*** 1.314*** 1.322*** 1.332*** 1.328*** 1.368*** 1.363*** 1.346*** 

𝜎 (outcome) 1.609*** 2.190*** 2.693*** 1.605*** 2.282*** 2.828*** 1.600*** 1.663*** 2.210*** 

𝛾 (outcome) 0.097 1.131*** 1.371** 0.124 1.186*** 1.438** 0.000 1.620*** 1.586*** 

Correlation              

𝜌 (endorser) -0.216*** -0.253*** -0.247*** -0.213*** -0.267*** -0.260*** -0.194** -0.213** -0.138* 

𝜏 (endorser-task) 0.008 0.199 0.312. 0.022 0.206 0.344* 0.000 0.058 0.094 

Fitness                   

Log Likelihood -7229.7 -7304.5 -7216.5 -7168.4 -7234.5 -7147.1 -6543.4 -6583.6 -6497.7 

AIC 14583.4 14733.0 14557.0 14460.7 14593.0 14418.3 13202.8 13283.2 13111.5 

BIC 15224.2 15373.8 15197.8 15099.6 15231.9 15057.2 13794.9 13875.3 13703.5 
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