

Project acronym: OVERSEE

Project title: Open Vehicular Secure Platform

Project ID: 248333

Call ID: FP7-ICT-2009-4

Programme: 7th Framework Programme for Research and Technological Development

Objective: ICT-2009.6.1: ICT for Safety and Energy Efficiency in Mobility

Contract type: Collaborative project

Duration: 01-01-2010 to 30-06-2012 (30 months)

Deliverable D1.4:

Functional Requirements Analysis

Editor: Florian Friederici (Fraunhofer FOKUS)

Reviewers: Rafael Grote, David Linner (TU Berlin)

Alfons Crespo (Universidad Politécnica de Valencia)

Dissemination level: Public

Deliverable type: Report

Version: 2.1

Submission date: 12 July 2011

Deliverable D1.4: Functional Requirements Analysis

ii

Abstract

This is the revised version of the functional, dependability and security requirements
document. It contains the overview on the functional and protection requirements for the
OVERSEE platform. The requirements are derived from the use cases, OVERSEE will be
designed for and are backed up by more generic requirements from the integrated
hypervisor and the requirements originated by standards. The requirements are specified
according to the vision of the OVERSEE consortium, to build the upcoming platform for
vehicular applications.

Deliverable D1.4: Functional Requirements Analysis

iii

Contents

Abstract ... ii

Contents ... iii

List of Figures ... vii

List of Tables ... viii

List of Abbreviations ... ix

Document History .. x

1 Introduction ...1

1.1 Definitions .. 1

1.2 Scope .. 2

1.3 Document Outline .. 3

2 Requirements Inquiry Method and Procedure ..4

2.1 Relevant Use Cases .. 4

2.2 Virtualisation Layer Requirements ... 5

2.2.1 Selection Criteria .. 7

2.3 Requirement Analyses Method ... 8

2.3.1 Requirements Filtering and Selection .. 8

2.3.2 Collected Information .. 9

3 OVERSEE Prerequisites ... 12

3.1 Idea of OVERSEE ... 12

3.2 OVERSEE Vision and Objectives ... 13

3.3 Predefined Framework Architecture of OVERSEE ... 14

4 Standard Requirements .. 16

4.1 Operation Systems and Applications ... 16

4.1.1 Supported Operation Systems ... 16

4.1.2 OVERSEE facilities and API ... 17

4.1.3 Requirements from OS and Applications to OVERSEE 17

4.2 Virtualisation .. 17

4.2.1 Hypervisor .. 17

4.2.2 Virtual facilities .. 17

4.3 Communications .. 18

4.3.1 Required Communication Interfaces ... 18

Deliverable D1.4: Functional Requirements Analysis

iv

4.4 Hardware .. 18

4.4.1 Drivers .. 19

5 Security and Dependability Requirements .. 20

5.1 Objectives ... 20

5.1.1 Security .. 20

5.1.2 Safety ... 20

5.2 Target of evaluation ... 21

5.3 Severity of security breaches and dependability loss .. 22

6 Next Steps .. 23

Annex A: List of collected requirements ... 24

Tabular Summaries ... 24

Connectivity Requirements ... 25

Requirement INET .. 25

Requirement PS ... 26

Requirement MIC ... 27

Requirement Speaker .. 27

Requirement TIME ... 28

Requirement BUS-READ .. 28

Requirement BUS-SEND ... 29

Requirement PAN .. 29

Requirement CEN-DSRC ... 30

Requirement GWN .. 30

Requirement DEVICE ... 31

Requirement ITS5.9GHz ... 31

Requirement USR-IDENT ... 32

API-Method Requirements ... 32

Requirement MILEAGE .. 32

Requirement HMI .. 33

Requirement SIGN.1 .. 34

Requirement ExpFile .. 34

Requirement SPEED ... 35

Requirement Airbag .. 35

Requirement VERIFY.1 ... 36

Requirement ACTUATOR ... 36

Deliverable D1.4: Functional Requirements Analysis

v

Requirement PART-Comm ... 37

Requirement CAR-AUTH.1 ... 37

Requirement SERVICE-AUTH.1 .. 37

Requirement Platform-Int1 Service access .. 38

Configuration Requirements ... 38

Requirement InactiveGWN .. 38

Requirement MODE-STOLEN ... 39

Communication Requirements ... 39

Requirement ISO-TP .. 39

Requirement UDS .. 40

Requirement USR-AUTH .. 40

Requirement Platform-Comm1 Interpartition communication 41

Requirement Platform-Comm2 Interpartition communication 41

Requirement Platform-Comm3 Interpartition communication 42

Requirement Platform-Comm4 Interpartition communication 42

Requirement Platform-Comm5 Interpartition communication 43

Requirement Platform-Comm6 Interpartition communication 43

Security Requirements .. 44

Requirement BUS-S-SEND.. 44

Requirement S-INET ... 45

Requirement S-PAN ... 45

Requirement DEV-AUTH .. 46

Requirement CAR-AUTH.2 ... 46

Requirement SERVICE-AUTH.2 .. 46

Requirement BUS-RESTRICT .. 47

Requirement Platform-Sec1 Health monitor ... 47

Requirement Platform-Sec2 Health monitor ... 48

Requirement Platform-Sec3 Health monitor ... 48

Requirement Platform-Sec6 Health monitor ... 49

Requirement Platform-Sec7 Tracing ... 49

Requirement Platform-Sec8 Tracing ... 50

Virtualisation Requirements ... 50

Requirement Platform-Virt1 Resource virtualisation .. 50

Requirement Platform-Virt2 Startup ... 51

Deliverable D1.4: Functional Requirements Analysis

vi

Requirement Platform-Virt3 Temporal and spatial isolation 51

Requirement Platform-Virt4 Interrupt management .. 52

Requirement Platform-Virt5 Device management .. 52

Requirement Platform-Virt6 Processor mode ... 53

Requirement Platform-Virt7 Clock management .. 53

Requirement Platform-Virt8 Clock management .. 54

Partitioning Requirements .. 54

Requirement Platform-Part1 Partitioning ... 54

Requirement Platform-Part2 CPU management ... 55

Requirement Platform-Part3 CPU management ... 55

Requirement Platform-Part4 CPU management ... 56

Requirement Platform-Part5 Memory management .. 56

Requirement Platform-Part6 Memory management .. 57

Requirement Platform-Part7 Memory management .. 57

References ... 59

Deliverable D1.4: Functional Requirements Analysis

vii

List of Figures

Figure 1: OVERSEE System ... 2

Figure 2: OVERSEE Workflow ... 8

Figure 3: OVERSEE Internal WIKI Requirements .. 9

Figure 4: OVERSEE Environment .. 13

Figure 5: OVERSEE Architecture ... 15

Figure 6: OVERSEE architecture from D1.3 .. 17

Deliverable D1.4: Functional Requirements Analysis

viii

List of Tables

Table 1: Use case selection of D1.1 .. 4

Table 2: Use Case Requirements .. 25

Deliverable D1.4: Functional Requirements Analysis

ix

List of Abbreviations

API Application Programming Interface

ARINC Aeronautical Radio Incorporated

CAN Controller–area Network

CPU Central Processing Unit

DSRC Dedicated Short-range Communications

ECU Electronic Control Unit

GPOS General Purpose Operating System

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Communications

HMI Human Machine Interface

ID Identity

IT Information Technology

ITS Intelligent Transportation System

OEM Original Equipment Manufacturer

OS Operating System

OSEK Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug

OVERSEE Open Vehicular Secure Platform

POSIX Portable Operating System Interface (for Unix)

PP Protection Profile

RTOS Real-time Operating System

UC Use Case

UMTS Universal Mobile Telecommunications System

USB Universal Serial Bus

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

V2X Vehicle-to-X

WAVE Wireless Access for Vehicular Environment

Wi-Fi Wireless Fidelity

Deliverable D1.4: Functional Requirements Analysis

x

Document History

Version Date Changes

2.1 28-06-2011 Included review comments from UPVLC and TUB.

Final version.

Deliverable D1.4: Functional Requirements Analysis

1

1 Introduction

The Open Vehicular Secure Platform (OVERSEE) project has produced this deliverable [4];
therefore it contains contributions from all partners even if Fraunhofer FOKUS is the main
contributor.

The present document is the final version of the document about functional, dependability
and security requirements. It replaces the initial version of this document, D1.2 [2].

Specification of non-functional requirements and constraints is not part of Task 1.2. Task 1.3
evaluates them, resulting in the deliverables D1.3 [3] and D1.5 [5].

1.1 Definitions

The terms and definitions given in D1.1 [1] apply for this document, if not otherwise noted.
Additionally the following definitions apply:

- "OVERSEE" is the term for the platform under development.

- Demonstrator or "OVERSEE-demonstrator" is the proof-of-concept implementation.

- "Facilities" is the term for commonly used services.

- Facilities which will be available to guest-OS and applications on top of OVERSEE will
be accessible through the "OVERSEE-API".

Utilising the terms above, the boundaries of the OVERSEE platform are defined as follows:

- OVERSEE system boundaries included parts:

- a hypervisor1

- the OVERSEE-API

- a set of facilities

- OVERSEE system boundaries excluded parts:

- hardware

- applications

- guest operating systems

This distinction is shown in Figure 1 and is required for the further process within the
project, to clarify which parts of the OVERSEE System have to be developed by the

consortium. The OVERSEE-demonstrator however will of course consist of hardware with
OVERSEE, a guest-OS and applications on top. Hardware requirements are discussed in
chapter 4.4.

1 See Chapter 3.3 for more details.

Deliverable D1.4: Functional Requirements Analysis

2

Figure 1: OVERSEE System

1.2 Scope

The present document provides the functional and protection requirements for the use
cases defined in [1]. The scope and purpose is limited to:

- Functional requirements

- Dependability requirements

- Security requirements

Derived from:

- The use case analysis

- The underlying core component XtratuM

- Applicable standards

- Matching protection profiles

The addressed audience of the document is the WP2 team (design of platform) of the
OVERSEE project, to start the platform design. It is not the objective of the present
document, to cover all possible requirements of the OVERSEE platform, rather it is meant to
outline the requirements important for the design team. These are:

- What OVERSEE requires from the excluded parts

Deliverable D1.4: Functional Requirements Analysis

3

- What the excluded parts require from the included parts (OVERSEE)

The specification of the OVERSEE-demonstrator is out of scope of the document. The
demonstration will show a possible OVERSEE implementation on real hardware and selected
use cases. However, in task 1.2 we concentrate on the platform itself and in particular on the
implementation independent basic requirements of OVERSEE.

1.3 Document Outline

The document is structured as follows: Section 2 introduces the method and procedures
used, in order to accomplish the work within task 1.2, for the current deliverable. Section 3
outlines the predefined OVERSEE architecture vision. In Sections 4 and 5 requirements
originated by the work of others are discussed. Finally, section 6 explains how the project is
going to proceed. Appendix A shows a tabular summary and lists all current requirements in

order of their category.

Deliverable D1.4: Functional Requirements Analysis

4

2 Requirements Inquiry Method and Procedure

2.1 Relevant Use Cases

In D1.1 [1] a number of use cases relevant to OVERSEE were identified. These use cases
reflect a broad variety of possible applications out of the following categories: Operation,
Driver Assistance Systems, Convenience, Mobility, and Security. The OVERSEE consortium
selected 20 use cases to be considered for the design of the OVERSEE platform. Table 1
shows the selected use cases. The selection represents each of the categories named above.

No. ID Use Case Name ETSI Mapping

1 UC-TOLL E-Toll C.2.9

2 UC-eC E-Call C.3.10

3 UC-PLR Parking Lot Reservation C.3.2

4 UC-SCoND Secure Integration of Nomadic Devices C.3.9

5
UC-LDW Meta-UC: Hazard Warning between Vehicle C.1.4

UC-EVSP 1/2 Emergency vehicle signal pre-emption (1 & 2) C.1.2

6 UC-SVT Stolen vehicle tracking C.3.11

7 UC-TIE Traffic Information between Entities C.2.3

8 UC-ABR Safety Reaction: Active Brake C.1.1

9 UC-PTC Personalize the Car n.a.

10 UC-CF Car Finder (e.g., via mobile phone) n.a.

11 UC-ELP Electronic License Plate n.a.

12 UC-DTM Dynamic Traffic Management C.2.4

13 UC-BDC Break-Down-Call-Live-Check C.3.12

14 UC-RCC Remote Car Control (e.g. door opener) n.a.

15 UC-PAYD Pay as You Drive (Road Safety & Eco) n.a.

16 UC-IA Install Applications n.a.

17 UC-VRE Remote Vehicle Rental C.3.4

18 UC-PSS Parking Sensor System n.a.

19 UC-ELB Electronic Driver Logbook n.a.

20 UC-WEB Web 2.0 for Cars C.3.8

Table 1: Use case selection of D1.1

Deliverable D1.4: Functional Requirements Analysis

5

Table 1 includes a mapping between OVERSEE use cases and use cases from the ETSI TC ITS

basic set of applications [12]. More than half of the relevant use cases are typical vehicular
communication use cases. However, OVERSEE will not only be capable of running plain
communications use cases, but also the more local, vehicle bound use cases. The high
number of vehicular communications use cases requires us to take the current
standardisation work by ETSI TC ITS into account. Most important are the requirements
document [10] and the threat, vulnerability and risk analysis [11] by ETSI TC ITS.

2.2 Virtualisation Layer Requirements

The Virtualisation layer is the core component of the OVERSEE platform. It provides virtual
execution environments. The OVERSEE virtualisation layer is based on the XtratuM
hypervisor [6].

XtratuM is a hypervisor specifically designed for real-time embedded systems which will be
used in aerospace for a new generation of satellites. European Space Agency (ESA) and
Centre Nationale d'Etudes Spatialles (CNES) have launched several projects for the

adaptation of XtratuM to LEON processors that are used in space systems. The goal of this
ESA and CNES program (“IMA for Space”) is to define a standard for space applications,
adapting previous work done in the aeronautic sector that defined a concept as Integrated
Modular Avionics (IMA) based on partitioned kernels. A standard as ARINC-653 has been
defined for partitioned systems in avionics.

In this framework, both organisations have defined a set of requirements to fulfil the needs
of the platform. The requirement list generated shows more than 200 requirements
covering functional and non-functional aspects. Next list shows different aspects covered by
these requirements:

 Core virtualisation elements: Refers to the hardware components that have to be

virtualised:

o Processor

o Memory

o Interrupts

o Clocks and Timers

o Floating Point Unit

o Devices

o Input Output

 Partitioning: Specifies the temporal and spatial isolation properties and the actions
that partitions can perform on the global state.

o Partition execution: How partitions are executed enforcing temporal isolation.

o Scheduling properties: How partitions are scheduled.

o Memory allocation of partitions: How partitions are allocated in memory
preserving the spatial isolation.

o Partition actions on the own state: How a partition can change its state.

Deliverable D1.4: Functional Requirements Analysis

6

o Partition attributes: How partitions with specific rights can perform some

actions on other partitions.

o Partition and memory access: How partitions with specific rights can access to
other memory areas.

o Partition and resources: How partitions can access to the virtualised
resources, devices and IO.

 Clock and Timers: Specifies the clock and timer services to be used by partitions.

o Clock definition: Global and local (to the partition) clocks are defined.

o Timers: Types and attributes of timers.

o External synchronisation: How the clock is referred to an external signal from
Earth.

 Inter-partition communication: Specifies the concepts and mechanisms used by

partitions to exchange information. It is based on ARINC-653 inter-partition
mechanisms.

o Sampling ports: Specifies the behaviour of communication through ports that
have no buffering.

o Queuing ports: Specifies the communications through ports that have
buffering.

o Shared memory: Specifies the communication between partitions through
shared memory.

 Health Monitoring: Details the requirements associated to the Health Monitor (HM)
events

o HM Mechanisms: Specifies how the system detects and handles system traps.

o HM Actions: Specifies the set of actions to be taken depending on the trap
generator.

o HM Log: Specifies how the HM events are logged.

 Initialisation: Details how the system is initialised, states and actions.

 Monitoring: Details the format of the traces generated by partitions and hypervisor.

 Auto-tests: Defines the auto-test to be executed by the hypervisor in order to inform
about the internal status.

 Modes: Specifies the different modes of the system and the protocol to be applied

when a mode change is produced.

 Performance: Details the internal measurements to be performed and the
mechanisms to provide this information to the partition with appropriated rights.

 Quality: Specifies the procedures to be applied to develop and validate the software.

 Configuration: Defines the requirements to be applied to identify and configure the

parameters related to the different components.

o Processor: Frequency, number of processors, etc.

Deliverable D1.4: Functional Requirements Analysis

7

o Memory regions: Initial address, size, rights, flags.

o Communication channels: Input, output, message length, number of
messages, etc.

o Scheduling plan: Mode, slots, duration, etc.

o Devices: IO addresses, number of registers, etc.

o Partitions: Name, identifier, list of memory regions, list of IRQs, list of devices,
etc.

2.2.1 Selection Criteria

This set of requirements shows very detailed requirements about all the aspects that have to
be validated. The goal of the requirement analysis has been to analyse and select a subset of

requirements that:

1. Cover all the aspects of the virtualisation layer.

2. Avoid excessive details or group similar functionalities.

3. Remove specific formats and implementation details for space applications.

In order to explain these selection criteria, some examples are shown:

- Criteria 1.

o We have included requirements covering the aspects considered previously.

- Criteria 2.

o In the original requirements, it can be found several requirements as:

 REQ: PAR_030: A partition with system rights shall start any other
partition.

 REQ: PAR_040: A partition with system rights shall stop any other
partition.

 REQ: PAR_050: A partition with system rights shall suspend any other
partition.

 REQ: PAR_060: A partition with system rights shall resume any other
partition.

 REQ: PAR_070: A partition with system rights shall shutdown any
other partition.

o Proposed requirement: Requirement Platform-Part1 Partitioning

 “System partitions“ can control the system execution (partition
security, robustness, etc.) and take actions to
start/stop/resume/reset/shutdown partitions.

- Criteria 3

o In the original requirements, it can be found detailed:

Deliverable D1.4: Functional Requirements Analysis

8

 REQ: MON_040: Event traces shall provide the information of

operation code (opcode); partition (module) and additional
information.

 REQ: MON_050: The opcode value 0 shall be reserved for “no error”.

 REQ: MON_060: The hypervisor shall be the modules numbered 0x01.

2.3 Requirement Analyses Method

The objective of this document is to get a preferably complete overview of requirements for
the OVERSEE platform. This can be achieved at best by analysing the requirements for all
selected use cases. These use cases are supposed to cover most requirements since they
reflect all possible categories of applications. Additionally, platform requirements are
derived from the analysis of the used platform XtratuM [6], which has been done earlier.

Figure 2 outlines the workflow between the task in work package 1 and the output towards
work package 2.

Figure 2: OVERSEE Workflow

2.3.1 Requirements Filtering and Selection

The process from the collection to the deliverable output contained different steps, which
are outlined in the following.

- Requirements collection

- Sorting and filtering

- Editorial review

- Automatic generation of word template

Each project partner has been assigned a number of use cases to analyse. The resulting
requirements where collected within the internal OVERSEE project wiki. In that manner,
doubling of requirements was avoided. Additionally, the most recent requirements are
always available to the consortium, which is especially important with regard to the

T1.1: Selection of use
cases

T1.2/T1.3: Analysis of
requirements per use case

WP2: Design of Platform

Deliverable D1.4: Functional Requirements Analysis

9

overlapping schedule of work package 2. Figure 3 shows a screenshot of the internal

requirements list.

Figure 3: OVERSEE Internal WIKI Requirements

After the initial collection was finished, the requirements where sorted into categories and
the requirement type was checked. An editorial review of all collected requirements was

done, to ensure the consistency.

The deliverable output of the requirements is automatically generated with the assistance of
scripts. Only the requirements which are marked with the status “ok” in the WIKI, were
included in the deliverable. Duplicates and requirements with flaws were dropped through
this mechanism.

2.3.2 Collected Information

For each requirement, a set of data is collected and documented. This data includes the
information described in the following. Every requirement is fully specified by the sum of all
elements, however can be identified by only the unique name or ID #.

2.3.2.1 Unique Name

A human readable and recognizable name to identify the requirement is contained in italic
letters in the headline of each requirement.

Deliverable D1.4: Functional Requirements Analysis

10

2.3.2.2 ID #

Additionally, a unique numeric id identifies each requirement.

2.3.2.3 Type

The type of requirements may be one of these:

 F - Functional

 P - Protection

 N - Non-functional

The type is separated from the name and id, because it would be easier to change the type
afterwards if we find that some requirement should have another type.

2.3.2.4 Category

Requirements are assigned to one of the following categories:

 Connectivity – Required hardware interfaces of the OVERSEE system

 API-Method – Required API calls

 Configuration – Required configurable behaviour of the OVERSEE system

 Security – Required security features

 External-API – Required external APIs to connect to

 Communication – Required communication protocols

 Virtualisation – Required virtualisation features

 Partitioning – Required partitioning features

 Interface – Required interfaces

The List of Requirements in section 3 is divided into subsections for each category.
Requirements are ordered by means of this category field.

2.3.2.5 Brief Summary

This section gives a short description of the requirement. Here we expect a simple sentence,
giving a clear statement what is required. The requirement itself is fully described by the

“Brief Summary”. The other fields (Fit Criterion and Rationale) are only additional
information to the requirement itself.

2.3.2.6 Fit Criterion

The fit criterion describes a how to measure if the requirement is met. Even if we do not use
it for validation purposes, it is necessary to make sure, that we only define requirements
that can be validated.

Deliverable D1.4: Functional Requirements Analysis

11

2.3.2.7 Rationale

The rationale justifies the requirement. If the requirement originates from multiple use cases
(or other origins) various rationales may be given. The corresponding origins are mentioned
in brackets after each rationale. An origin might be a use case, a person, legal regulations,
etc.

Deliverable D1.4: Functional Requirements Analysis

12

3 OVERSEE Prerequisites

This section outlines the vision of OVERSEE. This vision has a major impact on the high-level
requirements of OVERSEE and should be taken into account.

3.1 Idea of OVERSEE

The idea of OVERSEE can be split in two main parts: first, the open and secure platform for
the execution of OEM and non-OEM applications and second, the secure single point of
access to ITS communications. However, only the combination of these two aspects will
offer the potential for a wide range of new automotive applications.

The automotive applications running on OVERSEE will be executed in protected runtime
environments for maximum dependability and security. Applications are prevented from
influencing each other, the OVERSEE platform, or communications on the connected

networks - especially on the vehicle internal networks. To achieve this goal, virtualisation is
one of the main concepts of OVERSEE. The applications will be executed in runtime
environments that abstract from the physical hardware. They are controlled by the
virtualisation system. The concepts of virtualisation are well known in the IT domain but not
applied to automotive applications yet. Virtualisation will be the solution to offer a temporal
and spatial partitioning platform to execute several execution environments (applications)
on one physical OVERSEE-ECU with very low overhead while increasing the reliability of the
applications.

The improvements will be possible because of the intensive consideration of security,

dependability and reliability issues within the development of OVERSEE. The API for
developing OVERSEE applications will be publicly available to increase the quantity of
available applications in the short term.

The communication interface of OVERSEE is be based on existing standards, and those
currently under development, e.g. in ETSI TC ITS. Thus, it is possible to connect most recent
and new vehicle internal and external networks with only small effort. As security issues are
an integral part of OVERSEE, connecting new networks would be possible without the fear of
creating new backdoors for attackers.

The security of communication via OVERSEE and with the applications executed on OVERSEE
will be based on a small and well-defined message and command set. The message and
command set will be defined in an early stage of the project. The access of applications
executed on OVERSEE to the communication interfaces as well as the incoming interfaces of

OVERSEE will be protected by a message filtering firewall. The OVERSEE firewall will be
customisable by user policy rules. The format of the policy rules and the firewall
implementation will be developed within this project. The policy format will be based on
publicly available standards.

In order to provide a basis for secure and trustworthy communication via the connected
networks, OVERSEE will provide a cryptographic API (e.g. encryption and decryption, signing
and verify of signatures), as well as the interfaces for platform identity management to
establish trust in large networks. By using OVERSEE and the provided APIs, developers shall

Deliverable D1.4: Functional Requirements Analysis

13

be brought into the situation to quickly and efficiently develop new automotive applications

and integrate security and dependability aspects right from the start.

As another core aspect for establishing secure and dependable applications within an ITS
environment, the capabilities to validate future OVERSEE compliant open platform
implementations will be created. This enables automotive suppliers and future projects to
offer OVERSEE compliant platforms and applications easily. Openness and ease of use for
security and dependability mechanisms will promote the OVERSEE platform and make it
widespread. Economics of scale as well as available tools will reduce the costs for developing
OVERSEE compliant ECUs and applications.

3.2 OVERSEE Vision and Objectives

The vision of the OVERSEE project is to provide an open platform for secure and dependable

vehicular applications as well as the tools, services and their integration into ITS standards
necessary for its widespread acceptance.

The consortium agreed on the following objectives for the OVERSEE project:

 Providing a generic and open source platform for spatial and temporal partitioning of
secure simultaneous execution of multiple innovative automotive applications on
one single OVERSEE-ECU

 Providing a secure and dependable runtime environment

 Create an open and standardized secure single point of access to in-vehicle networks

 Providing a standardized API for accessing security and dependability services

 Providing validation support capabilities and tools

 Providing the capabilities of secure and non-deniable recording

Figure 4: OVERSEE Environment

Deliverable D1.4: Functional Requirements Analysis

14

3.3 Predefined Framework Architecture of OVERSEE

The Figure 5 shows the general architecture concept for OVERSEE.

In this figure, three main layers can be identified:

 Hardware layer. It includes the hardware devices: CPU, memory, peripherals, clocks
and timers, hardware support for secure key storage and cryptographic services, etc.

 Virtualisation Layer. It virtualises the hardware resources and offers virtualised
services to the execution environments. It also guarantees the temporal and spatial
partitioning of the system resources. The main virtualised resources are CPU,
memory, interrupts, clock, timers and security module. The Health Monitor included
in this layer performs an earlier detection of possible errors and reacts to anomalous
events or states trying to solve or isolate the faulting subsystem in order to avoid or
reduce the possible consequences. The main issues in the design of this layer for
dependable and secure real-time embedded systems, should consider:

o Spatial isolation. Partitions should be isolated from others avoiding the access
from them.

o Temporal isolation. Partitions should be executed under real-time scheduling
policies that can guarantee the real-time constraints independently of other
partitions.

o Resources virtualisation: basic hardware components as clock and timers,
interrupts, memory, cpu, time, serial i/o, need to be virtualised to partitions

o Efficient and deterministic system services.

o Efficient and secure inter-partition communication.

o Cryptography services to partitions

o Health monitoring

o Low overhead and footprint.

 Application Layer. It includes the execution environments (partitions) where the
applications are executed. A partition is composed by an operating system and the
applications. Partitions can be built using a specific operating system according to the
application needs (real-time, secure real-time or general-purpose operating system).

Deliverable D1.4: Functional Requirements Analysis

15

Figure 5: OVERSEE Architecture

Deliverable D1.4: Functional Requirements Analysis

16

4 Standard Requirements

Standards have a great impact on the requirements of OVERSEE, since OVERSEE shall offer
access to standardised communication systems. On the other hand, OVERSEE shall define an
API for applications to utilise all of OVERSEE’s facilities. To achieve the goals defined in
Chapter 3.1, it will be necessary to bring parts of OVERSEE into standardisation as well.

This section outlines which national-, international- and industry-standards shall be taken
into account in the design of OVERSEE. According to the definition of scope and OVERSEE
vision, standards for operating systems, virtualisation, communications and hardware are
evaluated.

4.1 Operation Systems and Applications

Part of the OVERSEE concept are so called partitions, including the combination of an

operation system and one or many applications. This section discusses issues around the
content of those partitions.

4.1.1 Supported Operation Systems

- Real-Time Operation Systems (RTOS)

- General Purpose Operation Systems (GPOS)

The support for Real-Time Operation Systems is required, to enable OVERSEE to run legacy
applications on the one hand, as well as newly developed time critical applications. One of

the most famous RTOS within the automotive domain is OSEK, see [7] and [8]. Alongside
they are other RTOS which may run on OVERSEE, however the OVERSEE design must at least
support OSEK guests.

Alongside AUTOSAR is a concept developed within the automotive industry, to advance
standards around electronic control units, see [13], [14]. The design of OVERSEE shall
consider these developments.

Most applications without hard real-time constraints will require some kind of GPOS. The
demand is mainly to support POSIX compliant systems like GNU/Linux. Most infotainment
applications in the automotive domain are however developed to be executed either on
(embedded) Microsoft Windows systems or on top of a JAVA/OSGi framework. Therefore
OVERSEE should also be able to execute those.

Deliverable D1.4: Functional Requirements Analysis

17

4.1.2 OVERSEE facilities and API

Figure 6: OVERSEE architecture from D1.3

An application running within a guest on top of OVERSEE may use the API of the
corresponding guest OS, as well as the OVERSEE-API, cf. Figure 6. The OVERSEE-API shall
grant access to all OVERSEE facilities independently of their concrete implementation and
location in the overall OVERSEE framework.

The design of the OVERSEE-API shall be driven by the requirements collected from the use-
cases, while the platform design shall be driven by the platform requirements, see Annex A.

4.1.3 Requirements from OS and Applications to OVERSEE

Since the operation system is nowadays in charge of abstracting the hardware to the
applications, the interface between OVERSEE and the guest OS is the only part where
requirements arise. OVERSEE shall offer a virtualized hardware to every guest partition

wherever possible, so that only minimal or in the best case no changes to the guest OS are
required.

4.2 Virtualisation

Since Virtualisation is the main architecture concept of OVERSEE, possible standards should
be carefully examined.

4.2.1 Hypervisor

OVERSEE will build upon the XtratuM hypervisor, which features a scheduling policy based

on ARINC-653 cyclic scheduling.

4.2.2 Virtual facilities

Facilities are most likely to be implemented in a separate service partition of OVERSEE and
are accessible through the OVERSEE-API. The demand of facilities is specified by the
requirements of the use-cases and should be designed like in the related projects. Within the
standardisation of ETSI TC ITS, so called SAPs (Service Access Points) are defined between

Deliverable D1.4: Functional Requirements Analysis

18

the different layers of an ITS-Station. The OVERSEE design should align with the already

available SAPs, wherever possible.

4.3 Communications

Enabling paravirtualised partitions to access the OVERSEE communication channels is of
major importance to the vision of OVERSEE. The requirements of the single communications
technologies are defined by the individual standards of the corresponding medium.

The access to those can be divided in the following parts:

- Physical device

- Device driver

- Communications stack

- OVERSEE-API access

Connecting the physical device to an OVERSEE implementation (like the demonstrator) is

discussed in chapter 4.4. The corresponding device driver may run inside the guest OS or
within the hypervisor layer, depending if the device will be available to only a single or
multiple guest partitions. The communications stack will be within the guest OS in any case.
Some shared communications media will require accessibility through the OVERSEE-API.

4.3.1 Required Communication Interfaces

The following communication interfaces are needed as identified by the use-case analysis.
They therefore form a minimal set of communication interfaces, which have to be taken into

account by the OVERSEE-API design.

- Positioning Systems (e.g. GPS)

- LF Sound in-/output (e.g. speakers and microphone)

- In-vehicle bus via an OEM gateway (e.g. CAN-bus)

- Personal area networks (e.g. Bluetooth, WiFi)

- Smartcard interface (wireless or with contact)

- Wireless ITS communications (European 5.9 GHz ITSG5A/B/C, CEN DSRC)

- Public land mobile operator networks (e.g. UMTS, GSM/GPRS)

4.4 Hardware

Hardware discussions are in principle out of scope of the OVERSEE platform, but a few
remarks should be taken into account. Concerning quality requirements:

- There are industry standards for hardware components.

- Automotive-grade equipment has to fulfil requirements regarding the storage and
usage temperature ranges and other environment conditions.

Deliverable D1.4: Functional Requirements Analysis

19

Those quality requirements are discussed in D1.5 [5].

Implementation specific functional requirements may arise from:

- Used CPU architecture

- Available interfaces (limiting connectivity)

- Special co-processors (e.g. crypto acceleration hardware)

- Tamper resistant components (e.g. for secure key storage)

4.4.1 Drivers

Some hardware components might be shared among multiple guest operating systems.
Therefore, simultaneous access and access rights have to be managed. The proposed

mechanism to do so is to bind hardware drivers to a secure IO partition, which is capable of
offering virtual drivers to the other guest partitions. This shall be implemented by the inter
partition communication mechanisms defined by the virtualisation layer.

Deliverable D1.4: Functional Requirements Analysis

20

5 Security and Dependability Requirements

Considering OVERSEE as the “Open Vehicular SECURE Platform”, it is very important to
carefully look at the functional security in terms of safety and dependability, as well as the
information security in terms of IT-security and communications security.

This chapter will outline the different types of security objectives for the system under
development. Best practices for the design of the platform will be highlighted and the
severity of failures sketched.

5.1 Objectives

OVERSEE will be designed to cover the following objectives:

- Safety: Functional correctness of the system behaviour

- Security: Protection against unauthorized information change or extraction

- Protection: Protection against unauthorized access to system resources

- Privacy: Protection of individual private data

- Reliability: Enduring functional correctness

- Dependability: Combination of safety and reliability

However, there will be restrictions on the coverage of safety, outlined in section 5.1.2.

5.1.1 Security

The obejctives of Security, Protection and Privacy are summarized as security aspects. They
are all about preventing misuse. The summary below outlines what issues are covered.

The main assets from the security perspective are:

- Confidentiality

- Integrity

- Authenticity

5.1.2 Safety

The objectives of Safety, Reliability and Dependability are taken together as safety aspects.
The OVERSEE consortium agreed on excluding safety in the specification of the OVERSEE
platform. Therefore, we will not go into detail on safety, as well on dependability. The
reason for this is explained below.

While an automotive platform most obviously also has some safety related demands on it -
notably when interacting with system busses in a vehicle, the prime focus of the OVERSEE
platform as described in the DOW is security. Nevertheless, it was the intention of the
consortium to take safety issues into consideration with respect to not making the results

Deliverable D1.4: Functional Requirements Analysis

21

unusable in the context of safety related systems. With the given time frame and resources,

it is though not realistic to provide a platform with stringent security capabilities while fully
adapting a suitable safety process along side. In this respect, we might add that the issue of
merging the sometimes-conflicting requirements of safety and security are not even
resolved at the research level in part due to a largely disconnected safety and security
community.

On the technical side, it is to be noted that while security properties can be treated in
isolation in automotive systems due to the current systems not communicating with the
outside world directly (ignoring a few cases where this is not the case like the wheel
pressure sensors, and known bus related vulnerabilities, i.e. ODB), safety is an inherently
system level property and it would not be realistic to interconnect a research platform like
OVERSEE to safety related internal busses to directly control safety functions in a car. That
though is not stating that OVERSEE is not extendible in the future to accommodate these

capabilities. Basically the architecture of OVERSEE, as noted above, did take safety needs
into consideration in the high-level design (i.e. utilization of a separation kernel, centralized
configuration of resources, restricted inter-partition communication semantics allowing to
achieve certification in principle). To verify the feasibility of such an extension based on the
current architecture design, a mapping to the predominant automotive architecture
standards, OSEK/VDX and AUTOSAR were conducted in the early design phase of OVERSEE,
and no discrepancies at the architectural level were discovered. Further to allow
development of safety related applications in a suitable restricted environment, allowing to
verify properties at the formal level, as well as ease migration of automotive applications to
the OVERSEE platform, a OSEK partition was added to the OVERSEE effort, with the intent to
provide a minimum OSEK RTE on top of the separation kernel. With these components in
place extending OVERSEE to the arena of functional safety in the context of IEC 26262 seems
doable with minor amendments to the current architecture, though serious investment in

the tooling and procedural side would seem mandatory.

The de-scoping of safety as a target of OVERSEE was a decision by the consortium in the first

Bochum meeting (March 2010) due to the unanimous conclusion that the resources
available would not allow to produce results in the context of OVERSEE that are suitable for
certification against the upcoming IEC 26262 (Note that IEC 26262 was not yet formally
released as of March 2010). This is in part due to the standard not yet being fully adopted in
Industry and no suitable (at least not published) strategies being available how to tackle
certification of pre-existing components in the context of this functional safety standard.

5.2 Target of evaluation

To do a security analysis on OVERSEE prior its design is impossible. What we however can

achieve is, to give the right directions, to create a secure by design system. The vulnerable
parts of OVERSEE are:

- External Interfaces

o Communications interfaces

- In-car system

o Physical access to OVERSEE (hardware)

Deliverable D1.4: Functional Requirements Analysis

22

- OVERSEE platform

o Logical access to OVERSEE (software)

While the first item, external communication interfaces is fully covered by the TVRA of the
ETSI TC ITS security working group [11] and the security of hardware access is out of scope of
this specification. The biggest issue remains the logical security of OVERSEE.

The OVERSEE platform shall offer secure communication channels between partitions and at
the same time, ensure the enforcement of predefined policies.

- Protect and isolate partitions against each other

- Limit partition capabilities according to a predefined policy

- Offer secure (confidential, integer and authentic) communication between partitions

5.3 Severity of security breaches and dependability loss

The design of the OVERSEE system shall include reasonable security functionalities.

Dependability is de-scoped, c.f. section 5.1.2. However, it is of cause possible, that the
security concept is broken afterwards. The impact of any breach can range from serious,
enabling attackers to overtake the whole system and maybe connected devices to rather
low, when only parts of the system get affected.

The selection of countermeasures for possible vulnerabilities requires therefore an
evaluation of the severity. OVERSEE must be designed according to [11] and [15], to
guarantee the validity of the corresponding analysis.

Deliverable D1.4: Functional Requirements Analysis

23

6 Next Steps

Task 1.2 ends with the finalization of this deliverable. The OVERSEE project will now enter
the design phase. Based on the results of the first work package, the platform will be
planned. The second work package consists of the following tasks:

- Specification of interfaces

- Design of the information flow

- Specification of required security services

- Definition of internal building blocks

- Design of secure communication

- Technical Requirements validation support

Along with the second work package, the first task of the third work package will start.

- Selection for reuse of existing building blocks

Deliverable D1.4: Functional Requirements Analysis

24

Annex A: List of collected requirements

Tabular Summaries

The following Table 2 summarises from where the requirements originate. It shows only the
use case claimed requirements. Use Cases may also induce more requirements than shown
in the table.

 U
C

-T
O

LL

U
C

-e
C

U
C

-P
LR

U
C

-S
C

o
N

D

U
C

-L
D

W

U
C

-E
V

SP

U
C

-S
V

T

U
C

-T
IE

U
C

-A
B

R

U
C

-P
TC

U
C

-C
F

U
C

-E
LP

U
C

-D
TM

U
C

-B
D

C

U
C

-R
C

C

U
C

-P
A

YD

U
C

-I
A

U
C

-V
R

E

U
C

-P
SS

U
C

-E
LB

U
C

-W
EB

Connectivity Requirements

INET x x x x x x x x

PS x x x x x x x x x x

MIC x

Speaker x

TIME x

BUS-READ x x x x x x

BUS-SEND x x x x x

PAN x

CEN-DSRC x

GWN x

DEVICE x

ITS5.9GHz x x

USR-IDENT x x x x x x x x x x x

API-Method Requirements

MILEAGE x

HMI x x x x x x x x

SIGN.1 x x x x x

ExpFile x

SPEED x

Airbag x

VERIFY.1 x x x

Deliverable D1.4: Functional Requirements Analysis

25

 U
C

-T
O

LL

U
C

-e
C

U
C

-P
LR

U
C

-S
C

o
N

D

U
C

-L
D

W

U
C

-E
V

SP

U
C

-S
V

T

U
C

-T
IE

U
C

-A
B

R

U
C

-P
TC

U
C

-C
F

U
C

-E
LP

U
C

-D
TM

U
C

-B
D

C

U
C

-R
C

C

U
C

-P
A

YD

U
C

-I
A

U
C

-V
R

E

U
C

-P
SS

U
C

-E
LB

U
C

-W
EB

ACTUATOR x

PART-Comm x

CAR-AUTH.1 x

SERVICE-AUTH.1 x

Configuration Requirements

InactiveGWN x

MODE-STOLEN x

Communication Requirements

ISO-TP x

UDS x

USR-AUTH x x x x x x x x x x x

Security Requirements

BUS-S-SEND x x x x x x

S-INET x x x

S-PAN x x

DEV-AUTH x

CAR-AUTH.2 x

SERVICE-AUTH.2 x

BUS-RESTRICT x

Virtualisation Requirements

Partitioning Requirements

Table 2: Use Case Requirements

Connectivity Requirements

Requirement INET

ID Type Category

1 Functional Connectivity

Deliverable D1.4: Functional Requirements Analysis

26

Brief Summary

An Internet connection is necessary.

Fit Criterion

Check if any remote host is reachable, e.g., ping oversee-project.com.

Rationale

 The use case requires a data connection to a backend service provider, in order to
work. (UC-PLR)

 Variants of the use case may need the facility to transmit the current logbook via an

Internet connection. (UC-ELB)

 A (secure) Internet connection is required in order to connect remotely (outside the
car) to the car with a mobile device. (UC-RCC, UC-CF, UC-SVT)

 The use case requires a data connection to a backend service provider, in order to
transmit traffic information. (UC-TIE, UC-DTM)

 Facility to reach the BDC service. (UC-BDC)

Requirement PS

ID Type Category

10 Functional Connectivity

Brief Summary

OVERSEE must connect to an indoor and/or outdoor positioning system. For indoor
positioning infrared or camera based systems shall be used. In outdoor environments GPS
shall be used.

Fit Criterion

Get positioning data (e.g., from GPS) and compare with another positioning device (e.g.,

GPS).

Rationale

 Positioning is required to find free parking lots near to the vehicle’s location.
(optional) (UC-PLR)

 Variants of the use case may need to store the geographical position together with

the mileage to fulfil legal requirements. (UC-ELB)

Deliverable D1.4: Functional Requirements Analysis

27

 For some variants of the use case it is maybe necessary to gather the geographical

position of the vehicle to determine if the vehicle drives along a road for which tolling
is required. (UC-TOLL)

 The position is part of the MSD in eCall furthermore the position is needed to

determine the direction of the vehicle prior to the accident. (UC-eC)

 The current position of the vehicle is needed to determine the proper reaction on a
received hazard warning or to send out a hazard warning including the current
position of the vehicle. (UC-LDW1, UC-EVSP, UC-EVSP2)

 The actual position is relevant for traffic information. (UC-TIE, UC-DTM)

 The actual position is relevant for car location. (UC-CF)

 Facility to combine events and vehicle’s position to send out roadside assistance or to
perform statistical analysis. (UC-BDC)

 Model cars, which will be used to demonstrate long-term use-cases, require indoor

positioning. (Model Cars)

Requirement MIC

ID Type Category

18 Functional Connectivity

Brief Summary

It is required to connect a microphone to receive voice of driver/occupant.

Fit Criterion

Recording the voice of driver and/or occupants possible.

Rationale

 Because of the requirement of in-band transmission of the MSD in eCall it is
necessary to handle also the voice connection to the driver within the platform. (UC-
eC)

Requirement Speaker

ID Type Category

18.2 Functional Connectivity

Deliverable D1.4: Functional Requirements Analysis

28

Brief Summary

It is required to connect speakers for sound output.

Fit Criterion

Playback of sound possible.

Rationale

 Because of the requirement of in-band transmission of the MSD in eCall it is
necessary to handle also the voice connection to the driver within the platform. (UC-
eC)

Requirement TIME

ID Type Category

19 Functional Connectivity

Brief Summary

Gather local time from real time clock.

Fit Criterion

Gather local time and compare with another device providing the local time.

Rationale

 The local time is part of the MSD in eCall. (UC-eC)

Requirement BUS-READ

ID Type Category

20 Functional Connectivity

Brief Summary

Read access to internal bus communication via OEM gateway.

Deliverable D1.4: Functional Requirements Analysis

29

Fit Criterion

Read left mirror setting.

Rationale

 Having the capability to read (certain) information from internal vehicle buses such
as CAN to get certain in-vehicle information such as driving parameters or settings.
Note there is an additional gateway/firewall - out-of-scope of OVERSEE and hence
safely/securely managed by the OEM - that controls which internal bus
communication can be read. (UC-TIE, UC-ABR, UC-PTC, UC-PAYD, UC-IA, UC-WEB)

Requirement BUS-SEND

ID Type Category

21 Functional Connectivity

Brief Summary

Write access to internal bus communication via OEM gateway.

Fit Criterion

Send message to change left mirror setting.

Rationale

 Having the capability to write/send (certain) information to the internal vehicle buses

such as CAN to set certain in-vehicle parameters. Note there is an additional
gateway/firewall - out-of-scope of OVERSEE and hence safely/securely managed by
the OEM - that controls which internal bus communication can be effectively
forwarded to the internal bus communication system. (UC-TIE, UC-ABR, UC-PTC, UC-
IA, UC-WEB)

Requirement PAN

ID Type Category

26 Functional Connectivity

Deliverable D1.4: Functional Requirements Analysis

30

Brief Summary

The capability to communicate with user devices via personal area networks in a wireless, bi-
directional manner is required.

Fit Criterion

Connect user device via Bluetooth or Wi-Fi connection.

Rationale

 Allow nomadic devices to connect via Bluetooth or Wi-Fi. (UC-SCoND)

Requirement CEN-DSRC

ID Type Category

36 Functional Connectivity

Brief Summary

DSRC Communication according to CEN TC278.

Fit Criterion

Receive and Transmit of a message via CEN DSRC.

Rationale

 For purposes of toll collection CEN standardized DSRC Communication within CEN

TC278. (UC-TOLL)

Requirement GWN

ID Type Category

37 Functional Connectivity

Brief Summary

OVERSEE shall enable connections via GWNs (e.g., UMTS, GSM/GPRS).

Deliverable D1.4: Functional Requirements Analysis

31

Fit Criterion

Send and receive data via a GWN connection.

Rationale

 Transmission of data (e.g., summary of trips) for accounting purposes and update of
e.g., configuration settings and maps for the tolling application. (UC-TOLL)

Requirement DEVICE

ID Type Category

39.1 Functional Connectivity

Brief Summary

It must be possible to register nomadic devices to OVERSEE.

Fit Criterion

Try to connect unregistered device (should fail). Register device and try again (should work).

Rationale

 The use case requires registering and authenticating nomadic devices. (UC-SCoND)

Requirement ITS5.9GHz

ID Type Category

32 Functional Connectivity

Brief Summary

Capability to receive and transmit messages in the frequency band for Intelligent Transport

Systems. This could be substituted for demonstration purposes with 802.11a.

Fit Criterion

Receive and transmit DEN messages according to the ETSI standards.

Deliverable D1.4: Functional Requirements Analysis

32

Rationale

 Local hazard warnings will be distributed by DEN (decentralized environmental
notification) messages hence it is necessary to receive, transmit and process DEN
messages. (UC-LDW, UC-EVSP1, UC-EVSP2)

Requirement USR-IDENT

ID Type Category

25.1 Functional Connectivity

Brief Summary

Having the capability to uniquely identify vehicle driver (and passengers) by reliable
identification interface (e.g. token reader, biometric scanner, user input).

Fit Criterion

To identify current driver (and passengers) and related him (them) to a local profile (if
existing), OVERSEE requires a reliable identification interface based for instance on (wireless)
token recognition, biometry or other user inputs.

Rationale

 Driver (and passenger) identification is required to assign individual authorizations &

resources, individual settings etc. and/or to relate individual actions and
responsibilities. Moreover, driver (and passenger) identification is mandatory
prerequisite for driver (and passenger) authentication. (In fact all, but at least UC-
TOLL, UC-eC, UC-PLR, UC-SVT, UC-PTC, UC-CF, UC-ELP, UC-RCC, UC-PAYD, UC-VRE,
UC-ELB, UC-WEB)

API-Method Requirements

Requirement MILEAGE

ID Type Category

3 Functional API-Method

Brief Summary

A facility to read current vehicle mileage is required.

Deliverable D1.4: Functional Requirements Analysis

33

Fit Criterion

Read current mileage from vehicle.

Rationale

 The use case requires access to the current mileage of the vehicle since this value has
to be stored on start and end of a trip. (UC-ELB)

Requirement HMI

ID Type Category

5 Functional API-Method

Brief Summary

Capability to show the driver an input form, to receive additional information.

Fit Criterion

Show form to driver and receive input from the driver.

Rationale

 The use case needs the capability to receive additional information concerning the

trips for legal reasons. (UC-ELB)

 Drivers need the capability to specify the destination of their trip (or another
location) where a parking lot should be reserved, as well as additional information
(vehicle size, handicapped driver, etc.). (UC-PLR)

 One of the legal eCall requirements is providing information on the processing of
eCall to the driver. Furthermore the driver must be able to activate eCall manually
(e.g., on personal disease without accident). (UC-eC)

 Show the current and archived billing information records as well as the current rates

for PAYD or eToll to the driver. (UC-PAYD, UC-TOLL)

 Show hazard warning to the driver. (UC-LDW, UC-EVSP1, UC-EVSP2)

 Nomadic devices need to be registered (and authorized) by the user using the HMI.

(UC-SCoND)

Deliverable D1.4: Functional Requirements Analysis

34

Requirement SIGN.1

ID Type Category

8.1 Functional API-Method

Brief Summary

Generate signatures for data and messages.

Fit Criterion

Generate and verify a signature.

Rationale

 The logbook must be signed with the platforms private key to prove authenticity and
integrity for legal requirements. (UC-ELB)

 The billing information for the PAYD insurance rate or the PAYD tax must be signed

with the platforms private key to prove authenticity and integrity. (UC-PAYD)

 The billing information for eToll must be signed to prove authenticity and integrity.
Furthermore the communication with enforcement vehicles and road side units have
to be authentic and of integrity. (UC-TOLL)

 Hazard warning messages must be signed to verify the authenticity of the sending

vehicle and avoid fake messages. (UC-LDW, UC-EVSP1, UC-EVSP2)

Requirement ExpFile

ID Type Category

12 Functional API-Method

Brief Summary

It shall be possible to store files to nomadic devices.

Fit Criterion

Write File on a nomadic device.

Deliverable D1.4: Functional Requirements Analysis

35

Rationale

 Variants of the use case may need the facility to store/export the ELB on a nomadic
device. (UC-ELB)

Requirement SPEED

ID Type Category

13 Functional API-Method

Brief Summary

Get current vehicle speed.

Fit Criterion

Read current vehicle speed and compare it with a reference.

Rationale

 Input Forms should only be shown while the vehicle is stopped, therefore the vehicle

velocity is necessary to know. (UC-ELB)

Requirement Airbag

ID Type Category

16 Functional API-Method

Brief Summary

Read Airbag Status.

Fit Criterion

Read Airbag Status.

Rationale

 ECall should be triggered automatically; hence it is necessary to read the status of the
airbag to trigger automatic eCall. (UC-eC)

Deliverable D1.4: Functional Requirements Analysis

36

Requirement VERIFY.1

ID Type Category

33.1 Functional API-Method

Brief Summary

The capability to verify signatures of messages and data is required.

Fit Criterion

Generate and verify a signature.

Rationale

 Hazard warning messages must be signed to verify the authenticity of the sending
vehicle and avoid fake messages. (UC-LDW, UC-EVSP1, UC-EVSP2)

 Communication with enforcement vehicles and road side units has to be authentic

and of integrity therefore verification of signatures are needed. (UC-TOLL)

Requirement ACTUATOR

ID Type Category

38 Functional API-Method

Brief Summary

The capability of controlling actively (non-safety relevant) actuators of the car (e.g. actuators
for closing and opening of windows, doors, or similar units) is required.

Fit Criterion

Trigger actuator to open front left window and have an optical check that the window is
open.

Rationale

 The use case requires access to actuators in order to control remotely functions of
the car via mobile devices. (UC-RCC)

Deliverable D1.4: Functional Requirements Analysis

37

Requirement PART-Comm

ID Type Category

41 Functional API-Method

Brief Summary

Send requests or information to other applications or partitions. Receive requests or
information from other applications or partitions.

Fit Criterion

Partitions can send a request to other partitions and receive the answer to the request.

Rationale

 Different applications (partitions) can need to exchange information. (UC-DTM)

Requirement CAR-AUTH.1

ID Type Category

44.1 Functional API-Method

Brief Summary

The vehicle is able to prove its identity in a privacy preserving way.

Fit Criterion

Authenticate Vehicle.

Rationale

 The BDC service needs to verify and authenticate the vehicle. Implies secure memory

for vehicle’s private key. (UC-BDC)

Requirement SERVICE-AUTH.1

ID Type Category

45.1 Functional API-Method

Deliverable D1.4: Functional Requirements Analysis

38

Brief Summary

The authentication of the Break Down Call (BDC) Service shall be verifiable.

Fit Criterion

The service is able to prove its identity.

Rationale

 The vehicle needs to verify and authenticate the BDC service, e.g. signed by an OEM.
Implies secure memory for OEM’s public key. (UC-BDC)

Requirement Platform-Int1 Service access

ID Type Category

124 Functional API-Method

Brief Summary

The OVERSEE platform will provide its services through a well-specified API. This mechanism
is called „hypercall“. Hypercall are equivalent to system calls in an operating system.

Fit Criterion

The API library will detail the services provided by the platform.

Rationale

 Partitions need to use the platform services to access to the virtual resources or as

support for internal operations. The API will provide the services. (All)

Configuration Requirements

Requirement InactiveGWN

ID Type Category

15 Functional Configuration

Deliverable D1.4: Functional Requirements Analysis

39

Brief Summary

GWN module should provide a mode where the GWN module is not registered within the
GWN.

Fit Criterion

Activate and Inactivate GWN module.

Rationale

 If the GWN is only used for eCall it is necessary that the GWN module could be
disconnected from the GWN and only registers to the GWN if necessary (while still

receiving GWN status information). This is a privacy requirement within the eCall
specification. (UC-eC)

Requirement MODE-STOLEN

ID Type Category

43 Functional Configuration

Brief Summary

The car emits messages to authorised services to inform about its status, if it has detected,

that it has been stolen.

Fit Criterion

Trigger the stolen vehicle sensor and test messages that are sent.

Rationale

 The car is able to detect its situation and to inform authorised services. (UC-SVT)

Communication Requirements

Requirement ISO-TP

ID Type Category

46 Functional Communication

Deliverable D1.4: Functional Requirements Analysis

40

Brief Summary

Transport segmented data over vehicle’s busses is required.

Fit Criterion

Communication over ISO-TP is possible (ISO 15765-2 compliant).

Rationale

 ISO-TP offers the facility to transmit up to 4095 Bytes at one time between two ECUs.
This protocol is needed by higher-level communication services. (UC-BDC)

Requirement UDS

ID Type Category

47 Functional Communication

Brief Summary

Unified diagnostic service according to ISO 14229-1 is required.

Fit Criterion

OVERSEE is able to read out the instrument cluster’s event memory (ISO 14229-1 compliant).

Rationale

 UDS offers the facility to read out the ECU’s event memory. (UC-BDC)

Requirement USR-AUTH

ID Type Category

25.2 Protection Communication

Brief Summary

Having the capability to securely (e.g., as shown by an adequate security analysis)
authenticate vehicle driver (and passengers).

Deliverable D1.4: Functional Requirements Analysis

41

Fit Criterion

To authenticate current driver (and passengers), i.e. to verify the claimed identity (cf. USR-
IDENT), OVERSEE requires a secure authentication interface together with secure
authentication mechanisms (e.g., authentication protocols).

Rationale

 Driver (and passenger) authentication is required to verify that the individual
authorizations & resources, individual settings, actions, responsibilities are related
only to the real / genuine person or role they are intended for. (In fact all, but at least
UC-TOLL, UC-eC, UC-PLR, UC-SVT, UC-PTC, UC-CF, UC-ELP, UC-RCC, UC-PAYD, UC-VRE,
UC-ELB, UC-WEB)

Requirement Platform-Comm1 Interpartition communication

ID Type Category

115 Functional Communication

Brief Summary

The OVERSEE platform shall provide robust and secure mechanisms to communicate
partitions.

Fit Criterion

The inter-partition communication offers the possibility to exchange partition information.

Rationale

 The platform will implement the mechanisms to guarantee the communication

between partitions in a secure and robust way. The communication involves a single
source to one or more destinations. (All)

Requirement Platform-Comm2 Interpartition communication

ID Type Category

116 Functional Communication

Deliverable D1.4: Functional Requirements Analysis

42

Brief Summary

The inter-partition communication will be performed through ports. A port is a service
through a partition can read or write messages from or to other partitions.

Fit Criterion

The partitions can see ports to read or write information.

Rationale

 Interpartition communication is conducted via messages. A message is defined as a
continuous block of data of finite length. A message is sent from a single source to

one or more destinations. The destination of a message is a partition, and not a
thread within a partition. (All)

Requirement Platform-Comm3 Interpartition communication

ID Type Category

117 Functional Communication

Brief Summary

The OVERSEE platform shall provide robust and secure channels to link partition ports.

Fit Criterion

Channels are implemented by the hypervisor in a secure way.

Rationale

 The basic mechanism for linking partitions by messages is the channel. A channel

defines a logical link between one source and one or more destinations, where the
source and the destinations may be one or more partitions. It also specifies the mode
of transfer of messages from the source to the destinations together with the
characteristics of the messages that are to be sent from that source to those

destinations. (All)

Requirement Platform-Comm4 Interpartition communication

ID Type Category

118 Functional Communication

Deliverable D1.4: Functional Requirements Analysis

43

Brief Summary

The OVERSEE platform shall provide channels with two transfer modes: sampling and
queuing.

Fit Criterion

Channels can permit the broadcast (sampling) or the point-to-point connection (queuing).

Rationale

 Partition can exchange messages considering the nature of the information
exchanged. (All)

Requirement Platform-Comm5 Interpartition communication

ID Type Category

118.1 Functional Communication

Brief Summary

The OVERSEE platform shall provide sampling port communication.

Fit Criterion

A source partition can sent messages that can be read by several partitions.

Rationale

 In the sampling mode, successive messages typically carry identical but updated data.

No queuing is performed in this mode. A message remains in the source port until it
is transmitted via the channel or it is overwritten by a new occurrence of the
message, whichever occurs first. This allows the source partition to send messages at
any time. Each new instance of a message overwrites the current message when it
reaches a destination port, and remains there until it is overwritten. This allows the
destination partitions to access the latest message. (All)

Requirement Platform-Comm6 Interpartition communication

ID Type Category

118.2 Functional Communication

Deliverable D1.4: Functional Requirements Analysis

44

Brief Summary

The OVERSEE platform shall provide queuing port communication.

Fit Criterion

A source partition can sent messages that can be read by one partition in a buffered way.

Rationale

 In the queuing mode, each new instance of a message may carry uniquely different
data and therefore is not allowed to overwrite previous ones during the transfer. No
message should be unintentionally lost in the queuing mode. The ports of a channel

operating in queuing mode are allowed to buffer multiple messages in message
queues. A message sent by the source partition is stored in the message queue of the
source port until it is transmitted via the channel. When the message reaches the
destination port, it is stored in a message queue until it is received by the destination
partition. (All)

Security Requirements

Requirement BUS-S-SEND

ID Type Category

23 Protection Security

Brief Summary

Secure write access to internal bus communication via OEM gateway.

Fit Criterion

Enforce confidentiality of message to vehicle logbook.

Rationale

 Having the capability to enforce protection of information to internal vehicle buses
such as CAN regarding authenticity, integrity, freshness or confidentiality. Note there
is an additional gateway/firewall - out-of-scope of OVERSEE and hence
safely/securely managed by the OEM - that controls which internal bus
communication can be written at all. (UC-TIE, UC-ABR, UC-PTC, UC-IA, UC-WEB, UC-
LDW)

Deliverable D1.4: Functional Requirements Analysis

45

Requirement S-INET

ID Type Category

24 Protection Security

Brief Summary

There should be an option to have secure Internet connections.

Fit Criterion

Open a secure connection to a remote host, e.g., ssh oversee-project.com.

Rationale

 Having the capability to securely (e.g., via SSL/TLS) communicate with (external)
Internet servers in a bi-directional manner. (UC-PAYD, UC-CF, UC-SVT)

Requirement S-PAN

ID Type Category

27 Protection Security

Brief Summary

Communication with user devices via personal area networks shall be secure in order to
have the capability to enforce protection of information (regarding authenticity, integrity,
freshness, or confidentiality).

Fit Criterion

Connect user device via encrypted Bluetooth connection.

Rationale

 Secure integration of nomadic devices requires secure near field communication.

(UC-SCoND)

 Secure near field communication is required for remote car control, in order to
connect mobile devices from inside the car. (UC-RCC)

Deliverable D1.4: Functional Requirements Analysis

46

Requirement DEV-AUTH

ID Type Category

39.2 Protection Security

Brief Summary

It is required that all external devices must authenticate themselves against the OVERSEE
platform.

Fit Criterion

Try to connect unregistered device (should fail). Register device and try again (should work).

Rationale

 The use case requires registering and authenticating nomadic devices. (UC-SCoND)

Requirement CAR-AUTH.2

ID Type Category

44.2 Protection Security

Brief Summary

Private key material must be stored in a secure way within the vehicle.

Fit Criterion

Secure Memory must conform a later to be defined security standard.

Rationale

 The BDC service needs to verify and authenticate the vehicle. Implies secure memory

for vehicle’s private key. (UC-BDC)

Requirement SERVICE-AUTH.2

ID Type Category

45.2 Protection Security

Deliverable D1.4: Functional Requirements Analysis

47

Brief Summary

Broken Down Call (BDC) Service must offer its authentication.

Fit Criterion

The service must prove its identity.

Rationale

 The vehicle needs to verify and authenticate the BDC service, e.g. signed by an OEM.
Implies secure memory for OEM’s public key. (UC-BDC)

Requirement BUS-RESTRICT

ID Type Category

49 Protection Security

Brief Summary

Access to vehicle’s signals has to be restricted.

Fit Criterion

An application running on OVERSEE do not get access to signals which should not be
available to that application.

Rationale

 If OVERSEE offers a partition for 3rd party applications, bus access has to be

restricted to ensure the application’s behaviour and to avoid unauthorised bus read
and bus write operations. (UC-IA)

Requirement Platform-Sec1 Health monitor

ID Type Category

119 Functional Security

Deliverable D1.4: Functional Requirements Analysis

48

Brief Summary

When a fault is detected, the OVERSEE platform shall execute a health monitor module that
will perform a predefined action. The occurrence of the fault will be logged or not according
the system configuration.

Fit Criterion

Faults are handled by the hypervisor and, as a consequence of the fault, an action is
executed.

Rationale

 The Health Monitor (HM) is the function of the O/S responsible for monitoring and
reporting hardware, application and O/S software faults and failures. The HM helps
to isolate faults and to prevent failures from propagating. Logs will permit to perform
auditing activities. (All)

Requirement Platform-Sec2 Health monitor

ID Type Category

120 Functional Security

Brief Summary

The actions to be executed by the OVERSEE platform as consequence of a fault shall be
defined at system configuration time.

Fit Criterion

All actions performed by the HM shall be defined in the configuration time. If not defined, a
default action specific to each fault shall be assumed.

Rationale

 In a robust and secure environment the actions to be taken when a fault is triggered

have to be statically defined. (All)

Requirement Platform-Sec3 Health monitor

ID Type Category

120.1 Functional Security

Deliverable D1.4: Functional Requirements Analysis

49

Brief Summary

The actions to be executed by the OVERSEE platform as consequence of a fault include:
halt/restart the system, stop/suspend/restart partitions, change to a maintenance mode,
ignore and propagate.

Fit Criterion

Depending on the default nature the appropriated action has to be executed when a failure
is triggered.

Rationale

 These actions try to avoid chained faults in the system. (All)

Requirement Platform-Sec6 Health monitor

ID Type Category

121 Functional Security

Brief Summary

When the fault is generated by a partition, one of the possible actions will be to propagate
the fault to the partition.

Fit Criterion

Partition will have the possibility to manage internal errors (i.e. numeric errors).

Rationale

 When a fault is generated by a partition (i.e. numeric error), the platform will capture

the fault and propagate it to the partition to be handled internally. (All)

Requirement Platform-Sec7 Tracing

ID Type Category

122 Functional Security

Deliverable D1.4: Functional Requirements Analysis

50

Brief Summary

The OVERSEE platform shall provide a trace system to store relevant information of the
system operation.

Fit Criterion

The platform requires being audited.

Rationale

 A trace system permits to store event generated by the system or logged as result of
the HM actions. These events can be used to audit the system operation. (All)

Requirement Platform-Sec8 Tracing

ID Type Category

123 Functional Security

Brief Summary

The OVERSEE platform will provide a specific trace system to each partition allowing storing
relevant information of the partition operation.

Fit Criterion

Partitions require to be audited.

Rationale

 A trace system permits to store event generated by the partition. These events can

be used to debugging purposes or to audit the partition operation. (All)

Virtualisation Requirements

Requirement Platform-Virt1 Resource virtualisation

ID Type Category

100 Functional Virtualisation

Deliverable D1.4: Functional Requirements Analysis

51

Brief Summary

The OVERSEE platform shall be able to paravirtualise the system resources providing a
virtual machine to execute building blocks (partitions).

Fit Criterion

Partitions are executed in an independent way.

Rationale

 Several applications have to run in partitions accessing to the system resources
(virtualised resources) in an independent way. (All)

Requirement Platform-Virt2 Startup

ID Type Category

101 Functional Virtualisation

Brief Summary

The OVERSEE platform shall be able to initialise the system resources and, then, to initiate
the partition execution.

Fit Criterion

The system is initialised.

Rationale

 When booting, the system has to initialise the different virtualised resources in order

to build the virtual machines. Once the virtualisation layer is initialised, it initialises
the partitions. (All)

Requirement Platform-Virt3 Temporal and spatial isolation

ID Type Category

102 Functional Virtualisation

Deliverable D1.4: Functional Requirements Analysis

52

Brief Summary

The OVERSEE platform shall be able to execute partition in an isolated way guaranteeing the
temporal independence and providing a complete spatial isolation to the partitions.

Fit Criterion

Partitions are executed in an independent way. A partition cannot access to the memory
allocated to other partitions. A partition cannot be influenced by the way that other
partitions use the system resources (CPU).

Rationale

 The execution of a partitioned system implies a strong temporal and spatial isolation
of partitions. Possible failures in a partition are completely isolated and do not affect
to others. (All)

Requirement Platform-Virt4 Interrupt management

ID Type Category

103 Functional Virtualisation

Brief Summary

Errors shall be captured by the virtualisation layer and handled at the faulty level.

Fit Criterion

Check if errors are handled to maintain the secure state of the platform.

Rationale

 The OVERSEE platform shall manage all the interrupts, traps and exceptions that can

be generated by the system resources and take the specified actions to maintain the
system in a secure state. One of the actions will be to propagate the interrupt, trap
or exception to a faulty partition. (All)

Requirement Platform-Virt5 Device management

ID Type Category

104 Functional Virtualisation

Deliverable D1.4: Functional Requirements Analysis

53

Brief Summary

The OVERSEE platform shall be able to allocate the peripheral management to a partition in
exclusive mode.

Fit Criterion

Non virtualised devices are handled by partitions.

Rationale

 Devices shall not be managed by the virtualisation layer. These handlers can be
allocated to a partition (IOServer) or an application partition. (All)

Requirement Platform-Virt6 Processor mode

ID Type Category

105 Functional Virtualisation

Brief Summary

The OVERSEE platform shall be executed in privilege processor mode and the partitions in
user processor mode.

Fit Criterion

Partitions cannot directly access to the system resources.

Rationale

 It permits to the hypervisor be the unique component in the system to access to the

system resources. Any attempt to access these resources by the partitions will
generate a system trap which will be captured by the hypervisor. (All)

Requirement Platform-Virt7 Clock management

ID Type Category

106 Functional Virtualisation

Deliverable D1.4: Functional Requirements Analysis

54

Brief Summary

The OVERSEE platform shall provide two monotonic virtual clocks to the partitions. The
virtual clocks can be absolute (real-time) or relative to the partition execution.

Fit Criterion

Partitions can manage the virtual clocks internally and take decisions based on any of these
virtual clocks.

Rationale

 Partitions require to access to the real clock and the clock associated to its execution

in order to know how the global and local time is increased. (All)

Requirement Platform-Virt8 Clock management

ID Type Category

107 Functional Virtualisation

Brief Summary

The OVERSEE platform shall provide two timers to the partitions based on the two virtual
clocks.

Fit Criterion

Partition can setup as many timers as needed based on these two timers.

Rationale

 Partitions need to take actions depending on the time elapsed in some operations.

Take an action after a time, set a deadline for a specific action, etc. These time
intervals can have as reference the global or local time. (All)

Partitioning Requirements

Requirement Platform-Part1 Partitioning

ID Type Category

108 Functional Partitioning

Deliverable D1.4: Functional Requirements Analysis

55

Brief Summary

The OVERSEE platform shall permit to partitions labelled as „system partitions“ a set of
rights to allow the capability to control other partitions.

Fit Criterion

„System partitions“ can manage other partitions.

Rationale

 „System partitions“ can control the system execution (partition security, robustness,
etc.) and take action to start/stop/resume/reset/shutdown partitions. (All)

Requirement Platform-Part2 CPU management

ID Type Category

109 Functional Partitioning

Brief Summary

The OVERSEE platform shall be able to allocate the CPU to the partitions in a robust way
guaranteeing the temporal isolation. The scheduling policy can be cyclic or bandwidth
servers.

Fit Criterion

Partitions are scheduled according to the scheduling policy.

Rationale

 In a partitioned system, the system concurrency is controlled by the virtualisation

layer at partition level. The scheduling policy determines the time allocated to each
partition. When partitions have real-time constraints, the scheduling policy has to
satisfy the temporal requirements of the partitions. (All)

Requirement Platform-Part3 CPU management

ID Type Category

110 Functional Partitioning

Deliverable D1.4: Functional Requirements Analysis

56

Brief Summary

The OVERSEE platform shall provide to the partitions the services to implement an operating
system inside of the partition.

Fit Criterion

A partition that includes an operating system and its applications has to be executed in the
OVERSEE platform.

Rationale

 The platform has to include the services to paravirtualise any operating system.

These services include to enable/disable interrupts, support for threading, clock and
timer management, memory management and low level services to support the
thread context switch at partition level. (All)

Requirement Platform-Part4 CPU management

ID Type Category

111 Functional Partitioning

Brief Summary

The OVERSEE platform shall provide the ability to a system partition to change dynamically
the scheduling plan according to a set of predefined plans.

Fit Criterion

The platform can change the time allocation to the partitions according to external
conditions.

Rationale

 The platform can support several execution modes of the system: normal, error,

maintenance, or used defined. Every execution mode can require different time

allocations to the partitions. (All)

Requirement Platform-Part5 Memory management

ID Type Category

112 Functional Partitioning

Deliverable D1.4: Functional Requirements Analysis

57

Brief Summary

The OVERSEE platform shall allocate partitions in independent memory regions. These
memory regions will be unreachable to other partitions.

Fit Criterion

Partitions have to be executed in a spatial isolated mode.

Rationale

 The platform has to provide spatial isolation to the partitions in order to guarantee
the security and confidentiality of the partitions. Any attempt of a partition to access

to a memory region that is allocated to other partition will capture by the platform
and raised the appropriated exception. (All)

Requirement Platform-Part6 Memory management

ID Type Category

113 Functional Partitioning

Brief Summary

The OVERSEE platform shall allocate memory regions to be shared by partitions. Partitions

shall declare the shared regions and the access rights in the specification of the system.

Fit Criterion

Shared memory between partitions permits to communicate partitions through memory
based schemes.

Rationale

 Partitions can interchange data using special memory regions that are shared among

the partitions involved in the communication. Partitions sharing a memory region
have to be specified in the configuration file. (All)

Requirement Platform-Part7 Memory management

ID Type Category

114 Functional Partitioning

Deliverable D1.4: Functional Requirements Analysis

58

Brief Summary

The OVERSEE platform shall permit to system partitions the access to all memory regions to
be able to manage partitions.

Fit Criterion

A system partition could perform some security actions on other partitions: perform a digest
of the code, reinstall the code and load a new partition.

Rationale

 A specific service to access to all memory regions is provided in order to perform

security actions on the system. Only „system partitions“ can use this service that
break the spatial isolation. (All)

Deliverable D1.4: Functional Requirements Analysis

59

References

[1] OVERSEE Project: D1.1 Use Case Identification. 2010

[2] OVERSEE Project: D1.2 Initial Version of the Functional, Dependability and Security

Requirements Document. 2010

[3] OVERSEE Project: D1.3 Initial version of the non-functional requirements and constraints

document. 2010

[4] OVERSEE Project: D1.4 Functional Requirement Analysis. 2010

[5] OVERSEE Project: D1.5 Non-functional requirement analysis. 2010

[6] XtratumM, http://www.xtratum.org/

[7] OSEK/VDX, http://osek-vdx.org

[8] OSEK Operating System Specification 2.2.3, http://portal.osek-

vdx.org/files/pdf/specs/os223.pdf

[9] OSEK/VDX Operating System Test Plan, http://portal.osek-

vdx.org/files/pdf/modistarc/ostestplan20.pdf

[10] ETSI: TS 102 637-1 V1.1.1. Intelligent Transport Systems (ITS); Vehicular Communications; Basic

Set of Applications; Part 1: Functional Requirements. Sep. 2010

[11] ETSI: TR 102 893 V1.1.1. Intelligent Transport Systems (ITS); Security; Threat, Vulnerability and

Risk Analysis (TVRA). Mar. 2010

[12] ETSI: TR 102 638 V1.1.1. Intelligent Transport Systems (ITS); Vehicular Communications; Basic

Set of Applications; Definitions. Jun. 2009

[13] AUTOSAR Technical Specification,

http://autosar.org/download/R3.1/AUTOSAR_TechnicalOverview.pdf

[14] AUTOSAR Software Requirements, http://autosar.org/download/R3.1/AUTOSAR_SRS_OS.pdf

[15] U.S. Government Protection Profile for Separation Kernels in Environments Requiring High

Robustness Version 1.03

http://www.xtratum.org/
http://osek-vdx.org/
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/modistarc/ostestplan20.pdf
http://portal.osek-vdx.org/files/pdf/modistarc/ostestplan20.pdf
http://autosar.org/download/R3.1/AUTOSAR_TechnicalOverview.pdf
http://autosar.org/download/R3.1/AUTOSAR_SRS_OS.pdf

