
SIMPLE REGRESSION ANALYSIS 
 
Introduction.  Regression analysis is used when two or more variables are thought to be systematically connected by 
a linear relationship.  In simple regression, we have only two – let us designate them x and y – and we suppose that 
they are related by an expression of the form            y = β0 + β1 x + ε.  We’ll leave aside for a moment the nature of the 
variable ε and focus on the x - y relationship.  y = β0 + β1 x  is the equation of a straight line; β0 is the intercept (or 
constant) and β1 is the x coefficient, which represents the slope of the straight line the equation describes.   To be 
concrete, suppose we are talking about the relation between air temperature and the drying time of paint.  We know 
from experience that as x (temperature) increases, y (drying time) decreases, and we might suppose that the relationship 
is linear.  But suppose that we need to know the exact nature of the relationship, so that we can predict drying time at 
various temperatures.  How could we discover the actual values of β0 and β1?  Well, to start with, we cannot discover 
the actual values.  Note that β0 and β1 are Greek letters, indicating that these are parameters, and they are somewhat in 
the nature of population parameters which can never be known exactly.  What we can do is to get estimates of these 
parameters – let us call them b0 and b1, using Latin characters to indicate that these are statistics and only 
approximations of the real thing.  How could we find b0 and b1?  Let’s do an experiment: let’s paint some boards at 
different temperatures and observe how long it takes them to dry.  Such an experiment might generate the following 
data: 
Temperature       Drying Time (hours) 
    54     7 
    65   6 
    72   3 
    83   1 
If we plotted these points on an axis system, we could see the relationship: 

 
Each little box represents a temperature/drying time observation, and we can see that in a general way, as temperature 
goes up, drying time goes down.  One way to find the exact relationship would be to take a straight edge and try to 
draw the line that comes closest to hitting all the dots.  By measuring with a ruler, we could then determine the slope 
and intercept of this line.  This is somewhat laborious, however, and since everyone is likely to see the scatter diagram 
a little differently, this technique would not give us a single, agreed-upon line.  Another way to find the exact 
relationship would be to use regression analysis.  By entering the data into the appropriate formulas (discussed below) 
we could find the line shown next: 
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This straight line has the equation DT = 19.26 − 0.22 x Temp, so that b0 = 19.26 and b1 = − 0.22, and we may take this 
equation to describe the relation between our two variables.  By entering a temperature, we can evaluate the equation 
to discover the drying time at that temperature. 
 
We are left with a question however: why is it that all the points aren’t on the straight line?  Well, because other things 
besides temperature affect drying time, and those other things had different values for each of our sample points.  This 
is likely always to be the case – for any y, there may be literally hundreds of things that affect its value, and we have 
concentrated on only one.  To take explicit account of this, when we stated the regression equation above, we included 
a factor labeled ε.  Since we cannot control or account for all the myriad things that affect drying time, we summarize 
them in ε and take ε to be a random variable whose value on any particular occasion is determined simply by chance; it 
is the operation of this ε that causes our actual observations to diverge from the straight line.  The existence of these 
random deviations is what makes regression analysis interesting and useful.  If all relations were exact and free from 
chance, we could simply establish two points and draw a line between them to represent the relation; as it is, we must 
deal with randomness, and the regression line thus represents the average relationship between x and y. 
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The Regression Model 
 

Ø   Assumptions of the Regression Model 
�  the relation between x and y is given by y = β0 + β1 x + ε 
ε is a random variable, which may have both positive and negative values, so 

                � ε is normally distributed 
                �    E(ε) = 0 
                � the standard deviation of ε, σyx, is constant over the whole range of variation of x.  This property is called 
“homoscedasticity.” 

w  since E(ε) = 0, we’re supposing that E(y) = β0 + β1x + E(ε) = β0 + β1x 
   

Ø  Finding the regression line: the method of “ordinary least squares” or OLS 
begin with assumed values for b0 and b1 and suppose that the relation between x and y is given by y = b 0 + b1x; 
some b0’s and b 1’s will give us better fits than others 

let  y = a + bxi be the value of y estimated by the regression equation when x has the value xi; then if y i  is 
actual value, y i − ŷ i is called the residual or the error 

substituting, let ei = yi − ŷ i = yi − b0 − b1xi 

different b0’s and b 1’s will cause each ei to have a different value: 

 
The residuals along the line marked A are larger than those along the line marked B 

but the sum of deviations is always zero 
⇒ square each residual and define the sum of squared errors as ∑ (yi − b0 − b1xi)

2 
�  x and y are data: the variables are b0 and b1, and choosing different values of these will change the size of 
the sum of squares 
�  minimizing the sum of squares with respect to b0 and b1, using minimization methods from differential 
calculus, gives unique values for the b’s 

 
Resulting formulas are rarely used explicitly anymore, but 
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Continuing the paint-drying example: (recall that temp = x and drying time = y) 

                         Temperature       Drying Time (hours)           x × y                        x2 
                                54     7        378                     2916  
                                65   6        390                     4225  
                                72   3                     216                     5184 
                                83   1                       83                     6889 

            
        x̄   = 68.5                       ȳ   = 4.25         ∑ x × y = 1067         ∑ x2 = 19214 
  

21910.0
5.68419214

25.45.6841067
1 −=

×−
××−

=b  

  
 b0  = 4.25 − (−0.21910) × 68.5 = 19.25842 

  
Using a Spreadsheet to explore Linear Relations 

Looking at relations often begins with a scatter plot of the data, as in the following examples 
 

 

  
  
Each point in the scatterplot represents an individual faculty member; the arrow is pointing at a point 
which represents a faculty member with 2 publications and salary just over 1.4 times the department’s 
minimum at the time 
Chairman’s Claim:  “Salary differences are determined by differences in success in publication.” 
 
But – there is no discernible pattern in this plot 
�  individuals with same number of publications have very different salaries 
�  individuals with about the same salary have very different numbers of publications 

almost any line would fit the data equally well  
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Same time period, the next diagram plots the salary index against “total research projects,” self-declared stuff 
put on the Annual Report: 

  
  
except for the three “outliers” in the upper left corner, all points are more or less on a straight line, and 
we might sensibly conclude that more research projects systematically means a larger salary 
 

Important point: if the three outliers are left in the data set, the regression line is nearly horizontal, and the 
correlation is low 
�  leaving the outliers out of the data set greatly improves the fit  
�  the outliers would be difficult to spot, even in this small data set, without doing the scatter plot 
Ø  we are led to investigate the nature of these outliers 

 
Creating a Scatter Diagram with Excel 

 
Begin by entering the Data you want to plot in columns 
Click on the Chart Wizard button in the task bar or click on Insert then click on Chart 

�  brings up the Chart Wizard, a series of dialog boxes 
�  choose XY (Scatter) and the variant with no lines 
�  if the X and Y variables are in adjacent columns with the X to the left, you can mark the whole 
data range, and Excel will assume that the left-most column is X 
�  if the X and Y variables are separated or reversed, click on the “Series” tab, then on “Add”; there 
are separate entry lines for X and Y variables; be careful to get them straight and note that in 
Microsoft’s peculiar terminology, a “Series” is an X variable and a Y variable.  In most of the scatter 
diagrams we’ll be doing in Stats II, there is only one series, consisting of two columns of variables. 
�  Variable names at the head of a column will be picked up and preserved as titles on your graph 
�  Many things can be edited after the chart is prepared; others cannot 
      w  experience is the most reliable teacher 
�  To print, click on the chart to highlight it, then be sure that the print dialog box specifies printing 
the selected chart  
�  Charts may also be copied to the clipboard, then inserted into Word documents 
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SIMPLE REGRESSION II 
Spreadsheet Calculations & Predictions 

 
Using Excel to Calculate the Regression Line 

Be sure to enter data in separate columns 
 

Click on TOOLS 
from TOOLS choose DATA ANALYSIS  
then choose REGRESSION 
you’ll get a dialog box 

if you marked the data before clicking on TOOLS, all you have to do is click on OK 
otherwise, go ahead and use the dialog box to enter your data ranges 
choose an output range: if you don’t specify, Excel creates a new sheet and puts your output on it  

 
Output example:  

 SUMMARY OUTPUT      
       

 Regression Statistics      
 Multiple R 0.96902261      
 R Square 0.93900482      
 Adjusted R Square 0.90850722      
 Standard Error 0.83295872      
 Observations 4      

       
 ANOVA       

  df SS MS F Significance F  
 Regression 1 21.36235955 21.36236 30.78947 0.030977392  
 Residual 2 1.387640449 0.69382    
 Total 3 22.75     

       
  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

 Intercept 19.258427 2.736669611 7.037176 0.019601 7.483479796 31.03337 
 X Variable 1 -0.2191011 0.03948603 -5.54883 0.030977 -0.388995917 -0.04921 

 
Intercept Coefficient: the b0 which estimates β0 
X Variable 1 Coefficient: the b1 that estimates β1 , or the slope of the regression line 

 
Using the Regression Equation 

Equation may be used to 
interpolate: predict values within the limits of observation 
extrapolate (or forecast): predict values outside the range of observation or experience 

 
To make a point prediction, simply plug an x value into the equation 

DT = 19.26 – 0.22 x Temp; what will drying time be at 75 degrees? 
DT = 19.26 – 0.22 x 75 = 2.76 hr.  

Extrapolation: drying time at 45 degrees: DT = 19.26 – 0.22 x 45 = 9.36 
can lead to absurdity: drying time at 95 degrees? 

 
Practitioners generally prefer interval estimates:  we’re 95% confident that drying time will be between 9 
and 9.72 hours, for example  
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Using a Spreadsheet to Make Predictions 

We must use the regression output to create the regression equation somewhere in the spreadsheet.  We also 
need to select a set of adjacent cells as entry cells, so that we can conveniently type in the x value for which we 
wish to make a prediction and the confidence level for interval predictions.  

 
For point predictions  

we must enter x value at which to make predictions 
spreadsheet output gives you 

constant term or intercept 
x coefficient 

thus you can create the regression equation as  
(Cell address for Constant) + (Cell address for x coefficient)*(Cell address used to enter x value) 
 

Homework:  13.1, 13.5, 13.7 
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SIMPLE REGRESSION III 
Evaluating the Equation 

 
Ø  Issue One:  Have the assumptions of OLS regression been met? 

�  Linear relation 
�  constant distribution of errors  
�  absence of relation between succeeding values of y variable over time  
 if yt+1 is correlated with y t the condition is called autocorrelation or serial correlation 
⇒  analysis of residuals  
      if there’s a pattern, there’s a problem 
 

Ø  Issue Two:  Is there a significant relationship between x and y? 
Purposes and Intuition of the Procedures 
The least-squares technique will always give us coefficients, but 
�  there may be no relation – as when a scatter plot is just a random set of dots  
�  also – the data points are a sample, subject to sampling error 
suggests a need for techniques to evaluate whether there is a relation and, if so, how good x is at explaining y 

 
Ultimately, the simple techniques all come down to 
�  How close the data points are to the regression line 

the coefficient of determination or r2 
�  how different the slope of the regression line is from zero: the t test on β1 

the quantity b 1 ÷ sb1 is distributed as a t distribution, so tests the hypothesis H0: β1 = 0 
Examples: 
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r2, the coefficient of determination 
 

This number serves as an evaluation of the overall closeness of the relationship and represents 
�  the proportion of variation in y “explained” by variation in x 
�  how closely data points cluster around the regression line 

 
necessarily, 0 ≤ r2 ≤ 1 

values near 0 indicate a weak relation; not much of the variation in y is associated with variation in x 
Cautions: 
     �   r2 doesn’t necessarily mean anything about the relation between x and y as such 

some third force, z, may be causing both x and y 
       the problem of “omitted variables” 
�  low r2 doesn’t mean there’s no relation – only that x explains little of the variation in y 

 
Definition: 

r
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 In this definition 
�   the numerator is the sum of squared residuals, or “sum of squared errors” 

represents deviation of actual from predicted values, that is, variation which is not explained by the 
regression 

�  denominator is a measure of total variation in y 
 
•  somewhat the same thing as the standard deviation of the residuals divided by the standard deviation of y 
    �  the smaller are the residuals, that is, the closer the observations lie to the regression line, the closer this 
fraction is to zero 
    �  since the ratio (sum of squared residuals)/(sum of squared deviations) represents the portion of variation 
not explained, 1 − that ratio is the portion of total variation that is explained. 

 
Evaluating the coefficients 

 
Ø  confidence intervals for the coefficients 

remember that b1 estimates the unknown parameter β1 
confidence interval for β1: 

b1 ± t(n-2)d.f. ×   sb1  
Example: we have regressed quantity sold on the price of cat food; our data were generated by setting 15 
different prices in 15 different test markets.  We have the estimated regression equation Sales = 4000 − 2000 × 
Price, with price measured in dollars.  Further, sb1 = 500.  Calculate a 90% confidence interval for β1 
Solution: There are 15 − 2 = 13 degrees of freedom, which gives a t value of 1.771 for a 90% confidence interval.  
Thus our confidence interval is  

−2000 ± 1.771 x 500 or −2000 ± 855.5 
we could also say that we’re 90% confident that −2855.5 ≤ β1 ≤ −1144.5 
changing the price by $0.10 will reduce sales by at least 114.5 but by no more than 285.5 

�  confidence intervals are generated automatically by Excel 
 

Ø   Hypothesis tests for the coefficients  
b1 is based on a sample; a different set of data (different sample) will give different b1 

the mean of all these possible b1’s is β1, the actual slope of the x-y line 
if β1 = 0 we could, by sheer chance, once in a while get a b1 ≠ 0 
but the further b is from 0, the less likely that’s due to chance 

the quantity (b 1 − β1)/sb1 is distributed as a t distribution 
most often we wish to test  
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H0: β1 = 0 
H1: β1 ≠ 0 

that is, if β1 = 0, there is no systematic relation between x and y, and the equation reduces to y = β0 + ε 
rejecting H0 means concluding that there is a significant relationship between x and y 

Note that since β1 = 0 by hypothesis, the t statistic reduces to t = b 1/sb1 
From above: with 13 degrees of freedom, at 1% significance level the critical values of t = ±3.012.  From our data 
t = −2000/500 = − 4 < −3.012, so we reject H0 and conclude that there is a statistically significant relationship 
between price and quantity 

 
Ø  An F test for the regression using ANOVA  

recall that F = (variation between groups)/(variation within groups), where the between group variation 
represented systematic variation caused by a difference of “treatments,” while within group variation is 
random, or “error” variation 
 
here, “variation between groups” is equivalent to variation explained by the regression, so that  

F = =
Regression Mean Square

Error Mean Square
RMS
EMS

 

Regression Sum of Squares: ∑ −= 2)ˆ( yySSR  

since the ŷ values are predicted by the regression, this sum represents variation from the mean value of y 

which is due to variation in x 
then RMS = SSR/m where m is the number of explanatory variables and represents the degrees of freedom 
in SSR 

Error Sum of Squares:  ∑ −= 2)ˆ( yySSR  

each term represents the difference between the predicted value and actual value; or the portion of the 
variation in y that isn’t “explained” by variation in x 
then EMS = SSE/(n − 2) since n − 2 is the degrees of freedom in the residuals  

Total Sum of Squares: SST = SSR + SSE = ∑(y − ȳ  )2 
which measures the total variation in y from all sources 

�  We may simply give the F ratio, although it is customary to present an ANOVA table 
Excel reports the ANOVA table as part of the output, giving both the F value and the p value (“significance 
F”) for the ANOVA test 

 
       �  In simple regression, the ANOVA test merely repeats the result of the t test on the regression coefficient 

in Excel output, note that F test and t test on the x1 coefficient have the same p value 
real significance is in multiple regression 

 
More on Residuals  

 
Ø  Assumptions of OLS regression: 

�  relation is linear, that is, y = β0 + β1X + ε 
�  ε is normally distributed with 

E(ε) = 0 
σYX constant 

�  the residuals may be taken as a sample of the ε term and used to check whether these assumptions are met 
 

Ø  Some possibilities: 
�  relation is not linear: positive residuals, then negative, then positive (or the reverse) 
�  σYX is not constant (heteroscedasticity): the residuals will fan out, or get larger, as x increases 
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Ø  Autocorrelation (serial correlation): a problem with time-series data 

�  the residuals themselves trace a pattern, typically rising then falling then rising 
�  Example:  A classic picture of autocorrelation 
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Effect of autocorrelation:  biases r2 upward 
                                          biases s b downward ⇒ calculated t statistic is biased upward and p-values   
                                             downward 
 
β1 appears to be significantly different from 0 when it isn’t 
Amount of variation explained appears to be greater than it actually is  
 
Testing for autocorrelation:  the Durbin-Watson statistic  
 

Making Predictions with a Regression Equation 
 

Ø  Equation may be used to 
interpolate: predict values within the limits of observation 
extrapolate (or forecast): predict values outside the range of observation or experience 

Ø  To make a point prediction, simply plug an x value into the equation 
DT = 19.26 – 0.22 x Temp; what will drying time be at 75 degrees? 

DT = 19.26 – 0.22 x 75 = 2.76 hr.  
Extrapolation: drying time at 45 degrees: DT = 19.26 – 0.22 x 45 = 9.36 

can lead to absurdity: drying time at 95 degrees? 
 

Statisticians generally prefer interval estimates 
�  interval for the average (or mean) value of y, given a value of x 

if we paint twenty boards at 70 degrees, find an interval for the average drying time of the twenty boards 
�  interval for a specific value of y, given a value of x 

if we paint a board, find a confidence interval for the time it’ll take to dry 
the first of these is somewhat narrower since it’s an average of repeated cases.  Like all averages, positive 
deviations tend to be offset by negative ones 
 

Interval for the average y value, using a t statistic 
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here, t has n - 2 degrees of freedom 

2
)ˆ( 2

−
−∑=

n
yys ii

yx  

syx  appears as Standard Error in Excel 

s
s

x nx
b

y x
=

∑ −

.

2 2
 

this term appears in Excel as Standard Error for X Variable 1 (or whatever name is used) 
 

NOTE:  The formula for the confidence interval seems different from that in your text because it is adapted to 
use spreadsheet output; interested students may prove to themselves, by appropriate substitutions, that the 
two formulae are in fact equivalent 
 

Example:  From above,  
SUMMARY OUTPUT     

      
Regression Statistics     

Multiple R 0.96902261     
R Square 0.93900482     
Adjusted R Square 0.90850722     
Standard Error 0.83295872     
Observations 4     

      
ANOVA      

 df SS MS F Significance F 
Regression 1 21.36235955 21.36236 30.78947 0.030977392 
Residual 2 1.387640449 0.69382   
Total 3 22.75    

      
 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 19.258427 2.736669611 7.037176 0.019601 7.483479796 31.03337
X Variable 1 -0.2191011 0.03948603 -5.54883 0.030977 -0.388995917 -0.04921

 
from spreadsheet output, s yx = 0.83295872 and sb = 0.03948603; there are two degrees of freedom, so the 
appropriate t value for a 90% confidence interval is 2.92.  Let us calculate a confidence interval for the average 
value of drying time at a temperature of 50 degrees.   

ŷ  = 19.26 − 0.22 x 50 = 8.30 

plugging numbers into the above formula, the confidence interval is  

46.230.8
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Note: although I’ve rounded off at intermediate steps in this calculation, you should NEVER do so in 
practice; carry your calculations out to as many decimal places as possible, rounding off only with the 
final answer. 
 

Notice that the quantity (x - x̄  ) gets larger the further we get from the mean; hence the confidence interval 
widens 
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Interval for a specific value of y, given a value of x, using t 
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where all terms are as previously defined 
 
This expression is very similar to that for an average value: it differs only in the inclusion of a “1” under the 
radical 
 

Example: from above, the confidence interval is  

46.330.8
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Using a Spreadsheet to Make Predictions 
 Use the regression output to create the regression equation somewhere in the spreadsheet.  We also need to select a 
set of adjacent cells as entry cells, so that we can conveniently type in the x value for which we wish to make a 
prediction and the confidence level for interval predictions.   Use the TINV function to find the t value for use 
calculating the confidence interval: =TINV(0.05, df) gives the t value for a 95% confidence interval; df can be found by 
entering the cell address for number of observations − 2. 
 

Correlation 
 

Ø   Simple Correlation 
the coefficient of correlation (or Pearson’s coefficient of correlation) is a measure of the closeness of the relation 
between x and y 

Definition: r
x x y y

x x y y
=

− × −

− × −

Σ

Σ Σ

( ) ( )

( ) ( )2 2
  

here the x’s and y’s are paired observations 
�   Intuition of the correlation coefficient 

denominator serves to scale the expression; note that numerator ≤ denominator, so that     -1 ≤ r ≤ +1 
look at terms in numerator 

when x is greater than its mean and y is greater than its mean, both terms are positive and product is 
positive 
if x < x̄   while y < ȳ  , the product is again positive 
but if when x < x̄  , y > ȳ  , or vice versa, product is negative 
so, if x and y deviate from their respective means in the same direction, the sum of the products is positive 
and r > 0 
but if deviations are opposite, sum of products is negative, and r < 0 

Magnitude: if x and y are not associated, then large (x - x̄  ) is as likely as not to be associated with small (y - ȳ  ) – 
the size of the products is simply random and the sum will be close to 0 
but if x and y are associated, then large x differences will be associated with large y differences, producing large 
products and a large sum 
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Example: Prices and unit sales of a particular model of rat trap were recorded on five occasions with these results: 
Price       Units Sold 
 $10                3 
    8                 5 
   12                2 
     6                8 
     4              12 
Calculate r, the correlation coefficient 
  
Solution: First, note that ̄x = 8 and ̄y  = 6.  Then arrange the data in a table as follows 
  
 x   (x - x̄  )   (x - x̄  )2    y    (y - ȳ  )    (y - ȳ  )2   (x - x̄  ) x (y - ȳ  ) 
  
10       2          4         3       -3           9            2  x  - 3 = 6 
  8       0          0         5       -1           1                    0 
12       4         16        2       -4          16                  -16 
  6     -2           4         8        2           4                   -4 
  4     -4          16       12       6          36                  -24        
  
∑ =               40                               66                  -50 

 then r =
−

×
= −

50
40 66

097.  

 
In these calculations, look at the pattern of positive and negative deviations 

if all pairs (x - x̄  ) x (y - ȳ  ) are positive or negative, then r will be positive or negative respectively 
if some are positive and some are negative, the will tend to offset one another 

the more this occurs, the closer will r be to zero 
Now, actually, r is a statistic, that is, it’s based on a sample.  It is an estimate of the unknown parameter ρ (Greek 
letter rho) and is subject to sampling error. 

ρ is what we would get if we computed the above expression for every possible pair of x and y – it represents 
the “true” degree of correlation between x and y 
we can test for whether ρ actually is different from zero; for samples drawn independently from the same 
population, the following quantity is distributed as a t distribution with n - 2 degrees of freedom 
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Thus we can test H0: ρ = 0 vs. H1: ρ ≠ 0 
from above 
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for a two-tailed test, with 3 degrees of freedom, at α = 0.01, tC = ± 5.841, so we can reject H0 and  
conclude r ≠ 0 

that is, we reject the premise that the observed correlation is due to sampling error and conclude that there 
is a linear relation between price and sales 
 
Ø   Using Excel to find r 
�   Appears as “Multiple R” in regression output 
       w  attach the sign from regression coefficient 
       w  DO NOT DO THIS if there is more than one X variable 
�   Use the Tools -Data Analysis -Correlation Procedure 
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       w  Data must be entered into adjacent columns: designate the whole block as Input Range 
Output: 

 Column 1 Column 2 
Column 1 1 
Column 2 -0.93044 1
   

     w  the correlation between the variables in column 1 and column 2 is the correlation between X and Y 
�   Use the CORREL spreadsheet formula 

CORREL(X range, Y range) returns the correlation coefficient 
 

 

CORRELATION DOES NOT PROVE CAUSATION! 
 

 
  

 


