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Introduction

Methods of statistical process control (SPC) have been in
existence for over eighty years now in industrial statistics
(Shewhart, Romig, Wald, Deming, etc.). SPC methods are
used, among other things, to detect when a stable process,
defined as one with a fixed mean level and a fixed variation,
departs from stability. SPC is also used to assess the quality
of a product that we are either producing ourselves or trying
to acquire from a supplier. The first objective falls within
“quality control” (QC) procedures while the second falls
within “acceptance sampling” methods.

QC methods are based on the assumption that performance
measures (PM) from “stable” processes follow some statisti-
cal distribution with fixed mean and variance. Hence, we
periodically draw independent and random samples from
these PMs to verify they remain stable. An example of PM
of central tendency is the sample mean (X). Examples of PM
of variation or dispersion include the sample standard devia-
tion (s) or the sample range (r). Under stable and Normally
distributed processes, PMs fall within well-specified regions
of the QC charts. The systematic plot and analysis of such
PM, within the context of such QC charts, is the essence of
QC. This START sheet provides an overview of some of
these QC methods. A forthcoming one will do likewise with
acceptance sampling.

Some Essential Concepts

We first review the main concepts involved in quality con-
trol. These are not definitions, but rather practical interpre-
tations, to be enhanced with the referenced bibliography.

The understanding of these key concepts is basic for the cor-
rect implementation of SPC.

Confidence: statistical assessment of the validity of a spe-
cific statement, given the data under consideration
(References 5, 7). For example, “with 99% confidence” the
reliability of an item to complete its mission is at least 90%.

Null Hypothesis (Hy): assumed status (e.g., that the process
is under control; that the product is of good quality;
(References 4, 6)).

Alternative Hypothesis (H;): negation of the null; alternative
situation (e.g., that the process is out-of-control; that the
product is defective; (References 4, 6)).

Type I Error: to decide that the alternative hypothesis (H,) is
true, when in fact the null (Hp) is true (e.g., assume that the
process is out-of-control, when in fact it is running correctly;
reject the product as defective, when in fact it is of good
quality; (References 4, 6)).

Type II Error: to decide that the null hypothesis (Hy) is true,
when in fact the alternative (H;) is true (e.g., assume that the
process is running correctly, when in fact it is out-of-control,
accept the product as having good quality, when in fact it is
defective; (References 4, 6)).

a probability (also called producer’s risk): the probability of

Type I error (e.g., the risk of rejecting a good product, or of
shutting down a process that runs in control; (References 4,

0)).
B probability (also called consumer’s risk): the probability

of Type II error (e.g., the risk of accepting a defective prod-
uct, or of continuing to run an out-of-control process;
(References 4, 6)).

ARL (average run length): is the “average” number of time
periods required for a PM to fall outside the QC Chart

bounds, under a specific assumption (References 1, 2, 3).
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Such assumptions include that the process is under control (e.g.,
target mean is the assumed “p”) or that it has gone out-of-con-
trol (e.g., due to a shift in the mean |, of size “d”; to a new mean

W=p+9d).

OC (Operating Characteristic) Curve: probabilistic statistical
function or PM that assesses charts and sampling plans. For
example, OC is the probability of accepting a product, given the
desired product conditions (e.g., quality). The OC function
depends both, on the true parameters (e.g., quality) as well as on
the required sample size “n” (References 1, 2, 3, and 4).

OC and ARL are two important procedures that yield results
used in characterizing the performance of, or in deriving the
parameters for, QC charts and methods. The sample sizes of QC
charts, for example, are determined by considering the OC and
ARL values, defined via the required probabilities o and [3.

Some QC Charts

There are two types of outputs obtained from random processes.
Hence, there are two types of QC charts to analyze them. One
type of PM is qualitative (e.g., pass or fail, good or bad) and the
QC charts to analyze them are known as “attribute.” The other
type of PM is quantitative (e.g., speed, temperature, weight) and
the QC charts that analyze them are known as “variable.” These
two types of charts address different types of situations, are
based on different assumptions and should not be confused (i.e.,
don’t try to use a “variables” chart when you have a qualitative
PM or vice-versa).

For a better understanding of the implementation and the phi-
losophy behind QC charts, we will overview several of each
type. We start with QC charts for variables (continuous meas-
urements) and overview charts for the mean and range. Then,
we discuss ways of speeding up decisions by including “warn-
ing limits” in the traditional (or Shewhart) charts or by using
CUSUM charts instead. Finally, we discuss charts for attributes
and overview QC charts for proportions (percent defective) and
for the number of defects.

Variable Control Charts

When the measurements taken are continuous (e.g., times to
failure, weights, lengths, etc.) as are their means, variances,
ranges etc., we deal with “variable” measurements. Thus we use
the “variable” control charts. We discuss next two of the most
frequently used charts.

Charts for the Mean and Range

Stable production process outputs are randomly distributed, with
amean W and a variance 0° (or standard deviation 0). If the out-
puts are Normally distributed, it is a well-known statistical result
that 99.74% of these outputs are within three standard deviations
of the mean. It also follows that 99.74% of the averages (X) of
“n” independent sample outputs, are within three standard devi-
ations of X from the process mean, where such “new” standard
deviation is now defined as o/vn.

This is the key rule used in these QC charts to assess whether a
production process is under control or not. The chart for the
mean consists of three parallel lines. In the center is the target
line for the Process Mean. Above and below this line, we find
two other lines: the Upper Control Limit (UCL) and Lower
Control Limit (LCL), respectively. They are three standard
deviations above and below the line of the Mean. In-between
the Control Limits and the target line there may be “Warning
Limit” lines, which are situated one and two standard deviations
above and below the target line. We discuss them in the next
section.

If the process is under control, averages from independent sam-
ples, taken at regular times and plotted in the QC chart, fall ran-
domly, with probability 0.9974, within the LCL and UCL limits.
The process may go out of control, say by a shift “d” in the
mean. Then, the process sample averages will soon also fall out-
side these two LCL and UCL lines.

Usually, before a QC chart signals that a process is out-of-con-
trol, there are some warning symptoms that we can take advan-
tage of. For example, the charts show slight trends up or down,
longer-than-usual runs above or below the Mean line, etc. All
these symptoms point toward the non-randomness in the process
output, but still within the LCL and UCL lines. To take advan-
tage of this additional information, the “warning” limits have
been devised.

All of this is better explained through an example. Let a pack-
aging machine fill bags with (mean) g = 16 oz. of coffee. The
natural variation in the packaging process has a (standard devi-
ation) 0 = | oz. Assume that bag weights are Normally distrib-
uted and that in the first three periods, the machine is function-
ing correctly. After that, the machine goes out of adjustment and
starts overfilling the bags at a rate of 0.1 oz per hour, every hour.

We want to construct a QC chart for the Mean and the Range, to
assess whether this machine is working on target or is out of




adjustment. We take random samples of n = 2 bags of coffee
(denoted first and second) at hourly intervals and we weigh them
and then find their average.

The choice of the sample size (here, n = 2) depends on the trade-
off between the costs of a higher detection capability of the QC
chart and the cost of drawing a larger sample size for supporting
such QC operation.

The weights of the ten samples of two bags each, taken every
hour, are shown in Table 1. The range is a measure of (popula-
tion) variability, related to the standard deviation. Sample range
is the difference between the largest and the smallest values in
the sample.

Table 1. Sample of Bag Weights

Notice how, in Figure 1, all weight measurements from the third
hour on are above the Mean. However, all measurements are
still within the X-Bar chart’s control limits and we cannot,
directly from observing the QC chart, diagnose a problem. We
will see in the next section what other things can be done to
improve on this.

In many occasions, we do not have the “historical” mean and
variance to build the chart and must estimate them from the data.
It is strongly recommended that data from at least 20 time peri-
ods are set aside and used solely for estimating the stable mean
and variance.

For illustrating such calculations only (and to provide a counter
example of what can go wrong if the above rule is violated) we
use the same ten data for both, developing the chart parameters,
as well as for charting. The statistical “description” of the coffee
sample data is shown in Table 2.

Table 2. Statistical “Description” of the Coffee Sample Data

Variable N Mean | Median* | StDev |SE Mean
First 10 16.723 16.871 0.529 0.167
Second 10 16.660 16.960 1.206 0.381
Range 10 0.799 0.618 0.810 0.514

Row First Second Average Range
1 16.2455 16.2475 16.2465 0.00203
2 15.9588 14.4558 15.2073 1.50302
3 16.9662 15.6244 16.2953 1.34183
4 16.8577 17.5097 17.1837 0.65204
5 16.8843 15.4213 16.1528 1.46301
6 15.9770 16.4575 16.2172 0.48046
7 17.0658 17.4635 17.2647 0.39773
8 16.5118 17.5911 17.0514 1.07927
9 17.4778 18.0616 17.7697 0.58384
10 17.2812 17.7638 17.5225 0.48260

The X-Bar chart, when mean Y and variance 0° are known, is
obtained by placing the upper and lower control limits (UCL,
LCL) at a distance 3X@Vn units above and below the line of the
historical Mean. For the numerical example given, the Target is
W =16 and the distance is 3xaA/n = 3x1A/2 = 2.121 (Figure 1).
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Figure 1. QC Chart for Mean and Range, When Parameters
are Known

*Median is the data value in the middle of the sorted sample The
General Sample MeanX is 16.691 and the Average Range R is
0.7986. Then, from a well-known relation between range and
standard deviation (3) we obtain the estimation of the standard
deviation of the process of filling the coffee bags (denoted here
as S):

S = Avg. Range / k =R/ k = 0.70796

In our example, tabulated value k = 1.128 (4), which depends on
the sample size, is used for obtaining the standard deviation S
from the range. The standard deviation of the sample average is
then the estimated standard deviation (S) divided by vn = V2
(S/n = 0.501). Finally, the 3-Sigma distance for establishing
the LCL and UCL values is obtained by multiplying 3*S / V2 (=
1.502). All mentioned chart values are tabulated and their tables
can be found in [References 1, 2, 3, and 4]. The resulting Chart
lines, for the X-Bar chart (Figure 2) are: Target (Mean = 16.19),
LCL (15.188) and UCL (18.192).
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Figure 2. Mean and Range QC Charts, When Parameters are
Estimated

Notice how, by using the same data values both, for establishing
the QC chart limits and for the charting itself, the “Target” line

has moved up to 16.69, from the original Mean = 16. This
occurs because data used for both objectives (charting and estab-
lishing the chart limits) reflect the actual drift occurring in the
process mean. This, in turn, modifies the chart control limits
which, as reference values, should be fixed and not move with
the data. To avoid this problem it is strongly recommended that
20 or more periods under stable process are used solely for
obtaining the QC chart limits, before starting to chart any data

values.

We now obtain the QC chart for the Range (R) a measure of
variability. For, the process can also go out-of-control by chang-
ing its variability, while still averaging the target mean value.
We obtain the parameters for the R-Chart as follows.

The Range (Target) line is the Range sample average R=0.799.
The UCL and LCL of the QC chart for the Range are obtained
by using two other tabulated values: D1 = 0 and D2 = 3.267 that,
as the above-mentioned constant k, also depend on the sample
size used for constructing Range charts. More information
about both of these QC charts, and about the tables they use, can
be found in [References 1, 2, 3, and 4].

LCL = 0 (LCL cannot be < 0) and UCL = R* D2 = 2.61

Verify how all the hand-calculated numerical results obtained
above coincide with those in the Minitab charts. The data were
drawn from a process that started shifting upwards after the third
time period, at a rate of 0.1 oz. per time period. However, all
chart points are within their Control Limits, suggesting (erro-
neously) that the process is still in control. We will see, in the
next two sections, how “warning limits” and CUSUM charts,

that use additional rules and past information, improve our
chances of detecting such shifts in the processes.

Warning Limits: Uses and Rules

The QC chart in Figure 1 (X-Bar Chart) shows a clear trend
upward after the fourth or fifth time period. If such upward
trend continues, the sample mean will eventually fall outside the
UCL in a few time periods more. However, the X-Bar Chart, as
defined so far, is unable to signal a change in the process with
the data charted. This occurs because, in standard Shewhart
charts, only individual time period samples are compared with
the target value, and with the control limits of such target value,
to verify that they are still within valid bounds. If an individual
sample point falls outside the limits, then the process is declared
out-of-control. The problem with this approach is that it may
take a long time, for one individual sample value of an out-of-
control process, to be 3 standard deviations away from its target,
especially when shifts & are small. To improve on this, the
“Warning Limits” and companion rules that alert about possible
deviations of the process, were defined.

The Warning Limits are lines parallel to the Target line, between
such line and the UC/LC Limits, at one and two standard devia-
tions above/below the Target. The Warning Limits included in
the QC charts come along with some rules for their interpreta-
tion vis-a-vis the behavior of past data. For we use, in addition
to the current time period value, several previous ones in the QC
chart. This additional information, in conjunction with Warning
Limits, serves to “warn” QC chart analysts that a trend, that will
likely result in a process being out-of-control, has appeared.
Therefore, it may be time to either stop the process, or at least to
take a very close look at it, because it is sending us a signal
about its status.

There are several empirically derived rules that accompany
these Warning Limits. As such, there is not an absolute agree-
ment about their exact numerical values (readers may find other
sources with slight variations). We will use the rules defined in
Reference 2, which state that a process is out-of-control if any
one or more of the following criteria, regarding the QC Chart
parameters, the Warning Limits and the past time period data,
are met:

1. One or more chart points fall outside the two (Upper or
Lower) Control Limits.

2. A run (sequence of similar observations) of at least eight
chart points, upwards or downwards occur above or below
the median, mean, or target line used.




3. Two of three consecutive chart points fall outside the 20
warning limits (but still within the Control Limits).

4. Four of five consecutive chart points fall beyond the 10
limit.

5. There occurs and unusual or nonrandom pattern in the
chart points.

6. One or more chart points fall very near a Control Limit.

If any of the above situations occur, it is no longer necessary to
wait until a charted value eventually falls outside of the three
standard deviation (UCL/LCL) chart limits. We stop the
process, or at least take a very close look at it, to assess whether
it has deviated from its stable state. Experience suggests that a
graduated response is adequate.

Let’s illustrate the use of such rules with an example. Applying
Rule 2, we would stop (or at least closely monitor) the process
chartered in Figure 2. For all points in X-Bar Chart, from time
period 3 onward, are above the Mean. We do not need to wait
until any chart points actually fall outside the UCL to start wor-
rying. The Warning Limits save us time as well as having to
scrap or rework the products manufactured. For, we save the
extra time periods we would have to go through, until a chart
value falls outside the QC Chart limits.

CUSUM Charts

Cumulative Sum (CUSUM) charts are statistical QC procedures
for the Mean. But, just as the “warning” rules discussed above,
CUSUM uses past information to help detect small (8) process
departures from its stable state, faster than standard Shewhart
charts. CUSUM Charts have upper and lower control limits,
inside which a stable process should evolve. However, in addi-
tion to just looking at the present (j*) time period values, the
CUSUM statistic uses past data values information (1 <1i<j) in
the form of “accumulated differences” from the target of inter-
est (e.g., the process mean [l).

CUSUM assesses whether such cumulative deviations from the
Target (instead of just the current sample average) remain with-
in some bounds. Because deviations are cumulative, they pile
up, allowing CUSUM to detect even very small deviations 0,
much faster. To illustrate this, we reanalyze the data used in
Figure 2, via CUSUM. We calculate the cumulative differences
(S;) of each (j") period sample mean (X j) to process target (H):

Si=% i=l,j (& -H)=Sj-1 + (ij 'H)

Then, we plot the successive cumulative differences S; vs. its
sample number j: 1 <j < n (Figure 3) and assess whether these
S; fall within the CUSUM control limits or not:
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Figure 3. CUSUM Chart

Notice how the Sj values start increasing until they cross
beyond the UCL = 1.9184. Based on the CUSUM result, the
said process is out of control.

The upper (lower) CUSUM limits are given by the reference
value “h”. These are either taken from “nomograms” or by con-
voluted formulas, found in References 1, 2, 3, and 4. This “h”
is a function of the sample size “n” taken at every time period,
of the variance G° of the process and of the process shift d that
we want to detect. In addition, the desired ARL (average num-
ber of time periods before a “false alarm” occurs) and the prob-
abilities o and [3 of “false alarms” and “failure to detect” a shift,
result from the value “h”.

Parameter derivations for the CUSUM chart are beyond the
scope of this introductory START. The interested reader can
find them in References 2, 3 and write a program or macro to
calculate them. However, several statistical packages, such as
Minitab, have automated procedures that calculate and plot the
CUSUM limits (Figure 3). This makes the CUSUM chart, with
its main advantage of early detection of very small shifts in the
process mean, also available to the practicing engineer who is
able to understand its logic and operation.

Attributes Control Charts

When the PM for QC analysis are “attributes” (say, defective or
not, in a production process) then we cannot use “variables”
charts. Instead, we use “attribute” QC Charts. We follow, how-
ever, the same philosophy described before, with the pertinent
modifications. We still need to define a “Target” line (say, the
percent defectives) and its corresponding UCL and LCL lines at
30 distance from the target. We can also use “warning” limits,




as described earlier. But now, the parameters are obtained based
on different statistical assumptions and even distributions.

Chart for the Percent Defective (Attribute Chart)

The modifications come about from the fact that, now, the dis-
tribution of the data is not assumed Normal, but Binomial, with
parameters “n” (sample size) and “p” (the percent or fraction
defective). Let ND be the number of defective items in a sam-
ple of size n. Then, PD = ND/n is the percent defectives in the
sample (an estimator of parameter “p”). Since the distribution
of ND is Binomial (n, p), that of PD (for n > 20) approximates
the Normal, with mean p and variance = p(1 - p)/n. Then, the

QC Chart parameters for PD are obtained as:

UCL =p +34/p(1-p)/n (if UCL <1; otherwise UCL =1)
Mean (Target) =p

LCL =p-34/p(1-p)/n (if UCL >0;else UCL =0)

As before we draw, at regular time intervals, independent sam-
ples of size n, obtain the ND, calculate from them the PD and
finally plot these in the QC Chart. As long as PD remains with-
in its LCL and UCL lines, the process is assumed in control. As
before, the probability of PD being outside the control limits,
while the process is still in control, is less than 0.0026. Let’s
illustrate this via a numerical example.

In the previous coffee-packaging example we now assume that
samples of n = 50 bags are taken and weighted every day.
Assume that, if the number of coffee-bags reported out-of-spec
is 5 or less, then the process is in control (acceptable process PD
is less than 10% i.e., p < 0.1).

Hence:

3/p(1-p)/n =34/((0.1)(0.9))/50 =3+/0.0018
=3 *0.04242 = 0.12727

and

LCL =p-3,/p(1-p)/n =-0.02720 LCL=0

and UCL =p +3/p(1-p)/n =0.2272

Assume the process goes out of control after 10 days (p becomes
15%). Table 3 shows the ND data for such defined 20 days. In
Figure 4, we show the corresponding PD Chart.

Table 3. StackNum: Number of Defectives (ND) in Samples
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Figure 4. Control Chart for Percent Defectives
Notice that after the 10" time period, there is a clear trend up
and in the 19™ time period, there is a point above the UCL. If
Warning Limits had been used, a problem could have been
detected earlier.

From the chart in Figure 4, we can state that the process has fall-
en out-of-control. Again, often the process parameters are not
known and must be estimated from the data. It is strongly rec-
ommended that at least 20 time periods are used solely for
obtaining the QC Chart parameters.

Charts for Number of Defectives “C”

Other times, we look into the Number of Defectives (ND) per
some unit (e.g., time, area). We can then assume that the distri-
bution of ND is Poisson, with mean = A and variance = A. In
such case, we can implement a control chart for ND using the
same logic given earlier:

Mean (Target) = A; UCL= A + 3VA; and
LCL = A - 3VA (if LCL is > 0; otherwise LCL = 0)




Again in the coffee-packaging example, assume an acceptable
daily production of 50 bags has an average of 5 defective bags.
The Poisson mean is then A = 5 and its variance is A = 5. Chart
parameters, see Figure 5, are obtained:

Mean (Target) = 5; UCL =5 + 3*V5 =5 + 3*2.236 = 11.71
LCL=5-3V5=5-6.71 =-1.71 (therefore, LCL = 0)
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Figure 5. QC Chart for Number of Defectives

Notice how Figures 4 and 5 are similar, differing in the target
level and control limits because of their different distributions.
In both, there is an upward trend followed by an out-of-control
point, at the 19" value. The reasons for these similarities are dis-
cussed in the next section.

The Poisson Approximation

The PD Chart works well for cases where both percent defective
“p” and the sample size “n” are such that nxp = 5 (or nx(1 - p)
> 5). Whenever this requirement is not met, we use instead the
Poisson approximation to the Binomial distribution, which is
obtained by redefining the Poisson parameter A = nxp. Then, we

construct a Chart for ND instead, as done previously.

Notice, in the two examples given above (for PD and ND), that
A =nxp=50*0.1 =5 is precisely, the boundary value defined for
using the Binomial or the Poisson distributions. For this reason,
both numerical examples have yielded very similar results. In
practice, when faced with creating a PD Chart, we first calculate
nxp. If nxp <5, the PD Chart is not efficient. We instead
implement (assuming the Poisson distribution) a QC Chart for
ND, as shown above. The results obtained will then be more
efficient and valid.

Summary

In this introductory START Sheet we have overviewed several
types of QC Charts (graphical methods) for assessing and track-
ing “variable” and “attribute” process data. We have also pre-
sented other, more advanced methods (Warning Limits and
CUSUM Charts), that detect small upward or downward process
shifts, 9, faster than traditional Shewhart Charts. We have pro-
vided several practical and numerical examples, implemented
by hand and by software, that illustrate how to apply simple
Charts in the industrial process control problems and context.
Finally, we have included some technical bibliography for those
interested in pursuing further the study of the more complex QC
procedures discussed.
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Fax: (315) 337-9932

l
|

or visit our web site at:

:

<http://rac.alionscience.com>

About the Reliability Analysis Center

The Reliability Analysis Center is a world-wide focal point for efforts to improve the reliability, maintainability, supportability
and quality of manufactured components and systems. To this end, RAC collects, analyzes, archives in computerized databas-
es, and publishes data concerning the quality and reliability of equipments and systems, as well as the microcircuit, discrete
semiconductor, electronics, and electromechanical and mechanical components that comprise them. RAC also evaluates and
publishes information on engineering techniques and methods. Information is distributed through data compilations, applica-
tion guides, data products and programs on computer media, public and private training courses, and consulting services. Alion,
and its predecessor company IIT Research Institute, have operated the RAC continuously since its creation in 1968.




