
Master Test Plan
for Software Testing Course OHJ-3060/3066,

periods I-II year 2008-2009
Tampere University of Technolgy

Version 3.1.1

Antti Kervinen
ask@cs.tut.fi

18th August 2008

Version Changes
3.1→3.1.1 • Firefox 3.1 alpha 1 candidate will be tested.
3.0→3.1 • The requirement for testing IPv6 clarified.

• RFC 3986 replaces RFCs 2396 and 2732.
2.01→3.0 • Major changes in unit test design.

• Firefox 3.0 alpha 7 “minefield” will be tested.
2.0→2.01 • Fixed the explanation of setUp and tearDown.
1.1→2.0 • Tested software changed to Firefox version 2.0b1.

• Test environment changed from Solaris to Linux.
• Added sample output of the parser.

1.0→1.1 • Lots of small changes for Autumn 2005 course.
0.9→1.0 • An example of relative url system test case added.

• The requirements for reporting working hours was clarified.
• New fields (created & modified) were introduced in test cases.
• Dependencies between test cases are now required to be men-

tioned in test plans.
0.8→0.9 • Task list for system testing. (Section 8.2)

• Outline for system test report. (Section 7.2)
• Instructions for setting up system test environment. (Section 9)

0.7→0.8 • Requirements for the submission of the unit test report changed.
(Section 15.2)

• Outline for test reports added. (Section 14.2)

1

Contents

References 4

Glossary 4

1 Introduction 5
1.1 Overview . 5
1.2 Test environment and tools . 5

1.2.1 Shell: Bash . 5
1.2.2 Operating system: Linux 5
1.2.3 Code coverage: CTC++ 6
1.2.4 Unit test framework: CPPUnit 6

1.3 Structure of this document . 6

I Test plan for system testing 7

2 Test items 7

3 Features to be tested 7

4 Features not to be tested 7

5 Approach 7

6 Item pass/fail criteria 10

7 Test deliverables 10
7.1 Test design and test case specifications (the first task) 10
7.2 Test summary report (the fourth task) 13

8 Testing tasks 13
8.1 System test design (the first task) 13
8.2 System test (the fourth task) . 13

9 Environmental needs 13

II Test plan for unit testing 15

10 Test items 15

11 Features to be tested 15

12 Features not to be tested 15

13 Approach 15
13.1 Class hierarchy . 15
13.2 Stubs . 16
13.3 Driver . 16

2

14 Test deliverables 16
14.1 Test design (the second task) . 16
14.2 Test summary report (the third task) 18

15 Testing tasks 19
15.1 Unit test design (the second task) 19
15.2 Unit test (the third task) . 19
15.3 Setting up the unit testing environment 20
15.4 Setting up CTC++ . 20
15.5 Using cppunit and CTC++ . 20

16 Environmental needs 22

3

References

[CPPUNIT] Feathers M., Lepilleur B.: CppUnit Cookbook
http://cppunit.sourceforge.net/doc/lastest/cppunit_cookbook.html

[HTML] Korpela, J.: Documents about WWW written or recommended by Jukka
Korpela. http://www.cs.tut.fi/˜jkorpela/www.html

[IEEE829] IEEE Standard for Software Test Documentation.IEEE Std
829-1998. September, 1998. Available from TUT addresses in
http://www.ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=16010

[Firefox] Firefox web pages.http://www.mozilla.com.

[Mye04] Myers G. J., Sandler C., Badgett T., Thomas T. M.:The Art of Software
Testing, 2nd edition. John Wiley & Sons, 2004.

[RFC3986] Uniform Resource Identifiers (URI): Generic Syntax.
http://www.ietf.org/rfc/rfc3986.txt

Glossary

Firefox An open source graphical web browser.
RFC Request for comments, a series of Internet informational docu-

ments and standards
URL Unified Resource Locator, a string that identifies a resource by its

location

4

1 Introduction

This document describes the course project for software testing courses (both En-
glish and Finnish) in Tampere University of Technology, periods I-II year 2008-
2009.

1.1 Overview

In this project the URL parser of Firefox [Firefox] web browser will betested. The
tests are designed and executed according to the “V” model:

1. System test designց ր 4. System test execution and report
2. Unit test designցր 3. Unit test execution and report

In the system test, the parsers will be tested by running a slightly modified Firefox,
giving it some URLs to parse, and by examining the output of the parser. Inthe
unit test, a nsStdURLParser class is tested separately by calling its methods from
test drivers written by students. Running unit tests requires implementing stubs,
too.

The first two tasks are the most important. Once you have good test plans for both
unit and system tests, the tests in the last two tasks will be easy to implement and
run. With a pitiful test design, however, testing will be very laborious and inthe
worst case you have to redesign the tests during the execution tasks.

1.2 Test environment and tools

1.2.1 Shell: Bash

This document contains some shell commands and scripts. They are writ-
ten for Bash shell. Do not run them in (t)csh shells. If your default
shell in Lintula is tcsh, it is recommended that you change it to Bash, see
http://www.cs.tut.fi/lintula/ohjeet/komentotulkki.s html
for instructions. If you do not want to change the default shell, rememberto start
Bash with commandbash before running the commands and scripts.

If you are not sure about your shell, run “ps | grep $$ ”.

1.2.2 Operating system: Linux

All the necessary tools, libraries and scripts are installed in Lintula Linux environ-
ment. Do not try to use them on Solaris, they will not work on it. If you are unsure
about the operating system of a workstation or a server, run “uname” (SunOS
equals Solaris).

5

Lintula Linux workstations are located in TC217. In addition to them, Lintula
Linux serverhaikara.cs.tut.fi can be used for the project.

1.2.3 Code coverage: CTC++

CTC++ is a test coverage analyser from Testwell. The tool is used for measuring
multicondition coverage in unit testing. CTC++ is installed in Lintula and can be
used in both Solaris and Linux operating systems. For more information, run (in
Bash):

~$. /share/testwell/bin/testwell_environment
~$ man ctc

1.2.4 Unit test framework: CPPUnit

CPPUnit is a C++ port of JUnit unit testing framework. In task 3, tests are imple-
mented and run with CPPUnit.

1.3 Structure of this document

This document contains two parts: the test plan for system testing and the testplan
for unit testing. Both parts follow the template for test plans in IEEE standard for
software test documentation [IEEE829].

Due to the “V” model, the first part includes the requirements for tasks 1 and4 ,
the second part for tasks 2 and 3.

6

Part I

Test plan for system testing

2 Test items

The URL parser of Firefox 3.1 alpha 1 CE will be tested in the system level. “CE”
stands for “Course Edition”, meaning a slightly modified version of the original
Firefox 3.1 alpha 1. It is quite likely that the slight modifications have introduced
some new faults in the parser.

The syntax of URLs is specified in [RFC3986]. The document must be usedas a
specification in the test case design.

3 Features to be tested

Test how Firefox parses valid URLs and what it does to the invalid
ones. The objective is to find valid URLs that are parsed incorrectly
(separation to various fields fails) and incorrect URLs that are considered
valid. Finding a URL that causes a crash or some other unexpected be-
haviour is even more desired. You may even get rewarded for that (see
http://www.mozilla.org/security/bug-bounty.html).

We limit the testing to the URLs in http scheme, that is,

• absoluteURLs that begin withhttp: (including URLs that contain IPv6
addresses),
for example “http://www.cs.tut.fi/˜testaus/ ”

• relativeURLs in the cases where the base URL is in http scheme,
for example “../../images/foobar.jpg ”

4 Features not to be tested

Others than URLs in http scheme (such asftp://ftp.funet.fi/README ,
mailto:testaus@cs.tut.fi etc.) will not be tested.

Other functionality than the URL parsing will not be tested.

5 Approach

Firefox (in /share/tmp/testaus/firefox3.1a1) has been altered to sup-
port system testing in this project. Every time a URL in http-scheme is parsed, the

7

results of the parsing are printed to standard output. That is, either “valid URL” or
“invalid URL” is printed. If the URL was considered valid, the URL parser prints
the contents of every field in the URL, such as port number, scheme, authority and
so on. It should be verified that the separation is correct.

In the system testing phase you should run Firefox so that it parses the URLs in
your test cases. All the output, that is, results of the parsing should be recorded.

You may decide how you give the URLs in your test cases to Firefox. There are
several ways to do this. One possibility is to write an HTML [HTML] file contain-
ing all the URLs to be tested. Here is one example of the file contents.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>

<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">

<base href="http://u:p@foo.foobar.fi:8080/dir1/dir2/ file1.ext;p?q#r">
<title>
</title>

</head>

<body>

<p>Valid relative paths

starts with *

</p>

<p>Invalid relative paths

</p>

<p>Valid absolute paths

ends with dir ectory
</p>

<p>Invalid absolute paths

space in host name
</p>

</body>

If testurls.html contains the URLs, you run the test as follows:

/share/tmp/testaus/firefox3.1a1/run.sh \
file:testurls.html 2>/dev/null | tee output.txt

tee program reads standard input and copies it to the given files (here
output.txt and standard output.2>/dev/null hides the stuff Firefox writes
to standard error.

When Firefox reads the file, all URLs of the links are parsed and thus the results
can be found in theoutput.txt file. You can then check the parsing results in
the file. The output caused by parsing the above example file is:

§ parsing ’http://u:p@foo.foobar.fi:8080/dir1/dir2/fi le1.ext;p?q#r’
§ result ’valid URL’

8

§ port ’8080’
§ scheme ’http’
§ authority ’u:p@foo.foobar.fi:8080’
§ username ’u’
§ password ’p’
§ hostname ’foo.foobar.fi’
§ path ’/dir1/dir2/file1.ext;p?q#r’
§ filepath ’/dir1/dir2/file1.ext’
§ directory ’/dir1/dir2/’
§ basename ’file1’
§ extension ’ext’
§ param ’p’
§ query ’q’
§ ref ’r’

§ parsing ’http://u:p@foo.foobar.fi:8080/dir1/dir2/ * foo.txt’
§ result ’valid URL’
§ port ’8080’
§ scheme ’http’
§ authority ’u:p@foo.foobar.fi:8080’
§ username ’u’
§ password ’p’
§ hostname ’foo.foobar.fi’
§ path ’/dir1/dir2/ * foo.txt’
§ filepath ’/dir1/dir2/ * foo.txt’
§ directory ’/dir1/dir2/’
§ basename ’ * foo’
§ extension ’txt’
§ param ’’
§ query ’’
§ ref ’’

§ parsing ’http://www.cs.tut.fi/~testaus/’
§ result ’valid URL’
§ port ’-1’
§ scheme ’http’
§ authority ’www.cs.tut.fi’
§ username ’’
§ password ’’
§ hostname ’www.cs.tut.fi’
§ path ’/~testaus/’
§ filepath ’/~testaus/’
§ directory ’/~testaus/’
§ basename ’’
§ extension ’’
§ param ’’
§ query ’’
§ ref ’’

§ parsing ’http://space in.host.fi/illegal’
§ result ’invalid URL’

This is just one possibility how a test could be run. You are allowed to separate
your test cases in many HTML files or feed the URLs one by one in the location
text box (the latter works only with absolute URLs). If it makes your life easier,
you may write a program that, for example, reads a list of URLs from your system
test design document, generates an HTML file that contains the URLs, runsFirefox
and checks that the results of parsing are what you required in the document.

After all, all you are required to do is to test how Firefox parses URLs in thesystem
level. No matter how you get there.

9

6 Item pass/fail criteria

The system test fails if and only if any (valid or invalid) URL causes Firefoxto
crash or stop responding, or if a valid URL is incorrectly parsed.

7 Test deliverables

7.1 Test design and test case specifications (the first task)

The information required in the test design document is listed below. It is recom-
mended that you use the list as an outline for your document. However, if you
think that an item in the list is irrelevant, redundant or otherwise unnecessary, it is
better that you ignore it than write something stupid under the heading. But if you
ignore an item, an explanation is required!

1. Cover page

• Provide the names and student numbers of the authors.

• Give a unique identifier to this document so that you can refer to it in
the report, for instance.

2. Features to be tested

• Identify test items and describe the features and combinations of fea-
tures that is going to be tested.

– Numerical IPv4 addresses

– User info (names and passwords)

– . . .

3. Approach refinement

• Tell how the tests will be run and what will be needed to do that. To
reach the right level of detail, imagine that you are writing instructions
for unskilled testers.

• For example, list the files that should be created or modified for test
runs and the files that will be created during the test run. Tell what the
files are for and describe their contents. List the commands that will be
executed and why. What should the tester do during a test run? How is
the data going to be gathered and analysed? Is it the same for all test
cases or just for some sets of test cases?

4. Test identification

• Here you present what features are tested by which test case.

10

• Give an identifier and a brief description of each test case: which fea-
tures (item 2) are tested by each test case. Note that the same test case
can test many features.

For example, you can present identified features and test cases in a table
like this:

Username Password Hostname
Empty TC1 TC1 –
Very long TC2 TC2 TC2
Illegal – TC3 –

In the table it is easy to see that empty username and empty password
are tested in test caseTC1. It also shows that there is no test case that
would test a URL with an illegal hostname. However, do not forget
features like “handling too many ‘../../ ’ in relative URLs”, which
might not fit in the table. You may use more tables, trees or some other
ways to systematically derive and present test cases and the features
they test.

5. Priorisation

• There might not be enough time to execute all the test cases you have
designed. To prepare for this situation, divide your test cases in three
classes based on their importance:

– Critical. At least these test cases should be executed and passed
before the new browser can be released.

– Important.These test cases should be run next, if there is still time
left.

– Low. The rest of the test cases. Important, of course, but not
necessarily as important as the others.

• Explain why you divided the test cases like you did. (A risk analysis
with impact and probability estimates is required.)

6. Dependencies between test cases

• Describe the dependencies between test cases and their effects on test
runs. What causes the dependencies? Which test cases (or test suites)
should be executed before the other? If some test cases fail, should the
tester skip some other test cases? Explain why.

7. Test casesAt least the following information should be included in every
test case.

• Test case identifier

• Time when the test case was created

• Time of last modification

• Priority

• Input specifications

• Output specifications

11

In addition to the information above, you may provide more detailed expla-
nation and/or appropriate references to the RFC. From the references, it is
possible to verify why the password in test caseTC3 is illegal. If you have
to check the correctness of your test cases later on (was the error in Firefox
or in the test case?), you may be in trouble without any explanations and
references to specifications.

If necessary, divide test cases to test suites. It helps the reader andit helps
you to document the common properties of test cases without having to re-
peat them over and over again.

In the following example of test cases the first test caseok-allfields includes
all the fields that the modified Firefox parser outputs when it is given a valid URL.
In the output specifications of test cases you need to specifyonly the values of the
fields that should be checkedin the test case (see the second test case for example).
In the output specifications of a test caseerr-IPv4 shows the output in case of
an invalid URL.

Test case id ok-allfields
Times (c/m) 2005-07-14 13:30 / 2005-07-15 16:00
Priority Critical
Input http://usr:pwd@tut.fi/d1/f.txt;p1?q#r
Output result valid URL

port -1
scheme http
authority usr:pwd@tut.fi
username usr
password pwd
hostname tut.fi
path /d1/f.txt;p1?q#r
filepath /d1/f.txt
directory /d1/
basename f
extension txt
param p1
query q
ref r

Test case id relative-parentdir
Times (c/m) 2005-07-14 13:00 / 2005-07-14 13:00
Priority Important
Input base URL:http://www.cs.tut.fi/tos/su/

relative part: ../../../tos/tausta.jpg
Output result valid URL

path /tos/tausta.jpg
Test case id err-IPv4
Times (c/m) 2005-07-14 13:00 / 2005-07-14 13:00
Priority Low
Input http://www. foobar.com/999/foo.txt
Output resultinvalid URL
Special notes Host name must not include white space [RFC3986

3.2.2].

12

7.2 Test summary report (the fourth task)

The outline for the test summary report is similar to the one in Section 14.2 on
page 18.

8 Testing tasks

8.1 System test design (the first task)

1. Familiarise yourself with the URL specifications [RFC3986].

2. Based on the RFC document, identify the features to be tested (empty user-
name, extremely long password, invalid IPv6 address. . .).

3. Design test cases that test the features you identified. Specify inputs (URLs),
expected outputs (the results of the parsing).

4. Decide how you run the test cases. (Approach.)

5. Prioritise the test cases. (Risk analysis.)

6. Write system test design document, outlined in Section 7.1. Students are
adviced to check out Sections 5 and 6 in [IEEE829].

8.2 System test (the fourth task)

1. Set up environment for system testing.

2. Create the files you need for test runs.

3. Run your test cases.

4. Check the results carefully. Did you find errors? Were errors in the test cases
(fix them!) or in the browser?

5. Write test summary report outlined in Section 14.2.

9 Environmental needs

You need access to Lintula network (cs.tut.fi). There you can test Firefox on
any Linux workstation (seehttp://www.cs.tut.fi/lintula/koneet/)
or, in a case of emergancy, on Lintula student server Haikara. If you really have to
do this, at least use compression (option-C) in your ssh connection:

ssh -C haikara.cs.tut.fi

Before starting Firefox, make sure that you do not already have any versions of
Firefox running. To make sure that the Firefox does not mess up your current

13

Firefox plugins, bookmarks etc., move your .mozilla directory under some other
name. For example:

~$ mv .mozilla mozilla-backup

Start Firefox CE by running/share/tmp/testaus/firefox3.1a1/run.sh .
After the test run you can remove.mozilla directory created by the Firefox CE
and restore your old settings from the backup.

~$ rm -rf .mozilla
~$ mv mozilla-backup .mozilla

14

Part II

Test plan for unit testing

10 Test items

A slice of the class hierarchy that implements the URL parser of Firefox 3.1 alpha
1 will be tested. Note, that here we are testing the original URL parser library, not
a modified CE version as in the system test. All errors you can find are real.

11 Features to be tested

Four methods of the class nsStdURLParser will be tested. Three of the methods
are implemented in its base classes. The methods are

• ParseURL (85 %)

• ParseAfterScheme (85 %)

• ParsePath (85 %)

• ParseServerInfo (92 %)

The requiredmulticondition coverage[Mye04] (“moniehtokattavuus” in Finnish)
percentages are given in the parentheses for each method.

12 Features not to be tested

No other than the above mentioned methods is to be tested. Be sure to test the
right implementations of the methods. There are several implementations under
the same names, but only one of them is called when the call comes from a nsSt-
dURLParser object. Non-functional features of the methods are not tested.

13 Approach

13.1 Class hierarchy

The class hierarchy to be tested is located innsURLParsers module. The code
insidensURLParsers has not been modified, but the module has been extracted
from the Firefox source tree and relocated to

15

/share/tmp/testaus/unittest-READONLY

The directory includes all the necessary header files (most of them are empty)
needed for compiling the module. To run the tests, drivers and stubs have tobe
implemented.

13.2 Stubs

nsIURLParser module includes the skeletons of two functions,
(net_isValidScheme , IsAsciiAlpha), one method (ToInteger)
and one class constructor (nsCAutoString). Some of them are necessary for
your test runs.

The necessary stubs should pass the cppunit tests defined intestCAutoString
and testUtilityFunctions modules. Do not care about the unnecessary
ones. You can run the stub tests by setting up the unit test environment, explained
in Section 15.3 on page 20, and running in there

% make run_stubtest

To implement the stubs, you are allowed to extract code from the Firefox source
tree (/share/tmp/testaus/firefox3.1a1), or you can write your own
implementations. The latter is probably much easier because the needed function-
ality is very limited.

13.3 Driver

cppunit will be used to run tests, so you should write the test cases in cppunit
classes. To find out how to do that, you can use modulestestCAutoString
andtestUtilityFunctions as examples, and refer to cppunit documentation
[CPPUNIT].

Note that the same test cases should be immediately runnable also with the new
versions of the unit under test. Therefore,do not modify the code of the unit
under test.

14 Test deliverables

14.1 Test design (the second task)

The outline of the unit test design document is quite similar to the system test
design, but there are some changes.

1. Features to be tested

16

To find out which truth value combinations you should cover, use CTC++.
A quick guide for that:

$. /share/testwell/bin/testwell_environment
$ /share/tmp/testaus/scripts/setup.unittest.sh
$ cd unittest
$ make clean
$ make run_stubtest
$ ctcpost MON.dat | less

Consider each truth value combination as a separate feature. For example,
true, true, false, “don’t care” in line 97 in ParseURL should be covered by
some test case. Do not include this section to the unit test design document,
because everyone can reproduce the list of these features with CTC++.

2. Approach refinement

• Tell how the tests will be run and what will be needed to do that. Again,
to reach the right level of detail, imagine you are writing instructions
for unskilled testers.

• For example, list the files that should be created or modified for test
runs and the files that will be created during the test run. Tell what
the files are for and what they contain. List the commands that will be
executed and why. What should the tester do during a test run? How is
the data going to be gathered and analysed? Is it the same for all test
cases or just some sets of test cases?

3. Test case identification

• Explain how you have divided test cases to separate suites. Which sets
of features are tested by which suite?

• You do not need to identify individual test cases and the features they
test.

4. Pass/fail criteria

• Specify the criteria to determine whether tested functions and the class
structure as a whole have passed or failed the test.

5. Dependencies between test cases

• Describe the dependencies between test cases and their effects on test
runs. What causes the dependencies? Which test cases (or test suites)
should be executed before the other? If some test cases fail, should the
tester skip some other test cases? Reason why.

6. (C++) Test casesAt least the following information should be included in
every test case. The information is given in the CPPUnit code.

• Test case identifier. This is the name of the method that runs the test
case.

17

• Time when the test case was created. Give this as a comment in the
implementation of the method. For example:
/ * Created: 2008-09-22 * /

• Time of the last modification. Also as a comment. For example:
/ * Modified: 2008-09-25 * /

• Input specifications (which method is called and what are the argu-
ments). This should be easy to read from the code.

• Output specifications (expected return value, expected values in call
arguments given by reference, what else has changed its value). This
should be easy to read from the code.

• Environmental needs (which stubs are required to execute this test
case). Give this as a comment in the method. For example:
/ * Requires stubs: stubxyz * /

Include the test cases, that is the CPPUnit methods you have written with the
above mentioned comments, in the PDF. Readability should be considered
very important here. Do not include headers or other code that does not
describe functionality of the test cases.

14.2 Test summary report (the third task)

Outline of test summary report is the following.

1. Cover page— provide the names and student numbers of the testers and
give a unique identifier to this document

2. Summary — answer to the following questions

• Exactly what was being tested? Specify version/revision level.

• In what environment the testing activities took place? List everything
that may affect test results. For instance, provide information on the
computers (hostname, hardware, software) that were used in the test
runs. Version numbers of the testing tools and other relevant software
are important.

• Which test design documents and/or test plans was the test based on?
Give references to the correct versions of appropriate documents.

3. Variances — report how test execution differed from the test plan or test
design. Specify reasons for variances.

4. Comprehensiveness assessment— evaluate how well the tests covered
what was required in the test plan. Identify features that were not sufficiently
tested and explain the reasons.

5. Summary of results— This is one of the most important parts in the test
report : everything suspicious should be mentioned and all errors should be
documented so well that they can be easily reproduced by developers.

18

Identify all test incidents, that is situations where a test case failed or other
anomalies arose. Provide the following information on each incident: inputs,
expected results, actual results, anomalies (any other suspicious behaviour?),
date and time, environment, attempts to repeat the error, testers, observers.
Furthermore, whatcausedthe incident: was there an error in the test case
(was the specification misinterpreted?), in the test execution, in the system
or in somewhere else? Whatimpact the incident had on the test plan, the
test design, the test case specifications or the test execution?

6. Evaluation — Provide an overall evaluation based on the test results and
pass/fail criteria in test plan and design documents.

7. Summary of activities— Summarise the major testing activities and events.
Estimate total elapsed time used for the activities. Report the sum of the
working hours of all students in the group.

8. Approvals — Specify the names of persons (your course assistant) who must
approve this report. Provide space for signatures and date.

15 Testing tasks

What you should do in the second and the third tasks is described in the firsttwo
subsections. The tools needed are shortly introduced in the following subsections.

15.1 Unit test design (the second task)

1. Read the code of the methods that will be tested.

2. For each method, identify the “features” to be tested as described in Sec-
tion 14.1 item 1.

3. For each method, design test cases so that every identified feature willbe
tested. Specify the parameters that are given to the method and what output
is expected (what is returned by the function and what is returned in the
parameters). Write the test cases in CPPUnit classes.

4. Find out how the test cases will be run.

5. Write the unit test design document.

15.2 Unit test (the third task)

1. Set up your unit testing environment.

2. Implement the necessary stubs innsIURLParser.cpp file.

19

3. Modify the Makefile so that commandmake run_unittest runs the
cppunit test suites and measures the multicondition coverage of the code in
nsURLParsers (MON.symandMON.dat files are generated when the
command is run).

4. Write the test report outlined in 14.2.

15.3 Setting up the unit testing environment

Execute

/share/tmp/testaus/scripts/setup.unittest.sh

in a directory under which you want the unittest environment to be set up.

Less than 300 kB of space will be required.

15.4 Setting up CTC++

CTC++ is used to instrument the code during the compilation. When the instru-
mented code is run,MON.dat andMON.symfiles will be created. They contain
the coverage information of the instrumented code.

You can examine the results by executingctcpost MON.dat . Whenever the
CTC++ tools are used or the instrumented code executed, you must have the
CTC++ environment variables set. It can be done by running

. /share/testwell/bin/testwell_environment

(The dot and the space in the front of the line are important!) When the environ-
ment is set, you can see the manual page of CTC++ with commandman ctc . For
the purposes of this project it should be enough to understand the ctc commands
that are explained in Section 15.5.

15.5 Using cppunit and CTC++

Cppunit provides means of dividing test cases into test suites. It provides macros
for implementing test suites and stating assertions in the test cases. What you need
is

• the unit under test (object code is enough)

• the main program (object code is again enough) and

20

• a class for each test suite (a test case in a test suite is a method in the cor-
responding class. The classes and the methods are what you need to imple-
ment).

Given that you have the unit test environment ready (see 15.3) and youalso have
CTC++ environment variables set (see 15.4), run

make clean
make stubtest

The commands exececuted by GNU Make are explained in the following.

ctc -i m g++ -o stubs.o -c nsIURLParser.cpp

This command compilesnsIURLParser.cpp to stubs.o object file.
nsIURLParser.cpp contains the stubs that you will implement in the third
task. The code is instrumented with CTC++, because in “stubtest” the stubs are the
unit under test. (When you testnsURLParsers.cpp , it will be instrumented in-
stead of the stubs.)-i m switch tells CTC++ to instrument the code for measuring
the multicondition coverage.

g++ -I. -Wall -pedantic -o testRunner.o \
-c testRunner.cpp

This compiles the main program. The main runs all the test cases that are writ-
ten in cppunit classes in the othertest * .o files. You do not need to edit
testRunner.cpp in any task.

g++ -I. -Wall -pedantic -o testCAutoString.o \
-c testCAutoString.cpp

This compiles the cppunit test class that will test the implementation of CAu-
toString stub class.

g++ -I. -Wall -pedantic -o testUtilityFunctions.o \
-c testUtilityFunctions.cpp

Similarly to the previous command this compiles again a class containing test
cases. These test cases will test the stubs of utility functions.

ctc -i m g++ -o stubtest stubs.o testRunner.o \
testCAutoString.o testUtilityFunctions.o \
-L. -lcppunit

21

This links the object files to an executable binary. Note that the unit under test
(in this casestubs.o) and the main program (testRunner) do not need changes
nor recompiliation when new test cases are created and added. Just relink the two
object files with whatever test case object files you have, and you will geta new
binary which executes all linked test cases.

Test cases are implemented in cppunit test classes (test suites) as separate methods.
In addition to test cases, test suites include alsosetUp andtearDown methods.
They are automatically called every time a test case is executed (the first one before
and the second after the execution).

Test cases do the testing and then check the results with assertion macros, for ex-
ample with CPPUNIT_ASSERT_MESSAGE(assertion,message) macro.
This macro checks the given assertion and, if it fails, causes the execution of the
test case to return with verdict “fail” and the given message to be printed. The test
case is passed if the execution of a test case reaches the end of the method.

Note that CTC++ collects coverage data inMON.dat cumulatively if the file al-
ready exists. Therefore, to see the real coverage of your test suite,first delete the
file, then run the test and finally examine the coverage withctcpost .

16 Environmental needs

Unit tests have to be run in Lintula Linux workstations or servers. Only the Linux
version of cppunit is available in the unit test environment.

Use bash shell rather than tcsh.

22

Troubleshooting

I cannot create ssh connection to haikara.cs.tut.fi.

A firewall blocks ssh connections from the wilderness (outside the
TUT domain) to haikara. You need to log in to some other com-
puter in TUT (for example,ssh2.cs.tut.fi) and then continue
to haikara .

I cannot execute command. . .

The problem is most likely some of the following: wrong shell (use
Bash), wrong OS (use Linux) or lacking environment variables (run
. /share/testwell/bin/testwell_environment).

g++ gives warnings

g++ does not like non-virtual destructors in virtual classes inside CPP-
Unit code. You can ignore those warnings. CTC++ instrumentation
may also produce some code which generates warnings.

23

