

Agile Testing in a Plan-Driven Process

Master Thesis

A thesis submitted in partial fulfillment of the requirements for the degree of

 Master of Science in International Information Systems

 at Friedrich-Alexander-Universität Erlangen-Nürnberg

 Submitted by: Surabhi Vohra

 Advisors: Prof. Dr. Dirk Riehle

MSc. Ramon Anger

Dipl. Inf.. Stefan Eberlein

 Submitted on: 30th September, 2013

Friedrich-Alexander-University Erlangen-Nuremberg

Department of Computer Science

Professorship for Open Source Software

Versicherung

II

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der

angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form

noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prü-

fungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß über-

nommen wurden, sind als solche gekennzeichnet.

Nürnberg, den 30. Sept 2013

License

This work is licensed under the Creative Commons Attribute 3.0 Unported license (CC-BY

3.0 Unported), see http://creativecommons.org/licenses/by/3.0/deed.en_US

Nürnberg, den 30. Sept 2013

http://creativecommons.org/licenses/by/3.0/deed.en_US

Acknowledgements

III

Acknowledgements

I would like to acknowledge Prof. Dr. Dirk Riehle for his guidance in the research work

while writing this thesis. I would also like to thank him for introducing me to Capgemini.

In addition, I would like to express my gratitude towards Capgemini employees for their

valuable time and inputs for case studies. In particular, I wish to express my sincere thanks

to Mr. Ramon Anger and Mr. Stefan Eberlein for their continuous guidance and feedback.

Without their supervision and expert opinions, this thesis wouldn‘t have been possible. I

would also like to extend my gratitude towards Mr. Krisztian Edöcs for his suggestions and

comments during presentations at Capgemini.

Abstract

IV

Abstract

Software firms are aiming to reduce software development costs and improve software

quality at the same time. Customer satisfaction is very important in today‘s competitive

market. Different software development approaches guide companies in software devel-

opment but none can independently provide the ideal solution.

This thesis, written in collaboration with Capgemini Germany, attempts to combine tradi-

tional software development approaches with agile methods. Agile testing practices have

been suggested to be incorporated inside traditional software development approaches with

the focus on V-model. Extended V-models with agile testing methods embedded in them

have been proposed and analyzed for their pros and cons. Four hypotheses emphasizing

benefits of agile testing methods inside V-model have been formulated. Extended V-

models and hypotheses are validated against three case studies. Three case studies i.e. three

projects using agile testing methods inside V-model have been presented and compared for

weaknesses and strengths.

The results of research and case studies‘ analysis indicate that Scrum can be used as a

framework inside V-model, within which other agile testing methods like Feature Driven

Development (FDD), Test Driven Development (TDD), Acceptance Test Driven Devel-

opment (ATDD) or Specification by example etc. can be embedded. FDD was found to be

least agile and best candidate for adoption inside V-model, followed by ATDD and TDD.

The hybrid approach combining agile testing and traditional methods provides a balance

between agility and stability.

Table of Contents

V

Table of Contents

VERSICHERUNG .. II

ACKNOWLEDGEMENTS .. III

ABSTRACT .. IV

TABLE OF CONTENTS .. V

LIST OF FIGURES .. IX

LIST OF TABLES .. XI

LIST OF ABBREVIATIONS ... XII

1 INTRODUCTION .. 1

1.1 STRUCTURE OF THESIS .. 2

1.2 MOTIVATION .. 3

2 PLAN DRIVEN SOFTWARE DEVELOPMENT PROCESSES ... 7

2.1 WATERFALL MODEL ... 7

2.2 V-MODEL .. 9

3 AGILE SOFTWARE DEVELOPMENT PROCESSES ... 14

3.1 INSPECTION OF AGILE METHODS FOR V-MODEL SUITABILITY ... 16

3.2 SCRUM .. 19

3.2.1 Scrum Roles .. 20

3.2.2 Scrum Events .. 22

3.2.3 Scrum Artifacts ... 23

3.3 EXTREME PROGRAMMING (XP) .. 25

3.3.1 XP Values .. 26

3.3.2 XP Practices .. 26

3.4 LEAN SOFTWARE DEVELOPMENT (LSD) ... 29

3.4.1 LSD Principles .. 29

3.4.2 Kanban ... 30

4 AGILE TESTING ... 34

4.1 AGILE TESTING CHARACTERISTICS .. 35

4.2 AGILE TESTING QUADRANTS .. 37

4.3 AGILE TESTING METHODS ... 39

Table of Contents

VI

4.3.1 Test Driven Development (TDD) ... 39

4.3.2 Acceptance Test Driven Development (ATDD) .. 42

4.3.3 Feature Driven Development (FDD) .. 44

4.3.4 Exploratory Testing ... 48

4.3.5 Specification by Example .. 51

5 HYPOTHESIS FORMULATION .. 59

6 TOWARDS HYBRID APPROACHES FOR SOFTWARE DEVELOPMENT .. 62

6.1 AGILE VS. PLAN-DRIVEN APPROACHES ... 62

6.2 NEED FOR HYBRID APPROACHES ... 63

6.3 CHALLENGES OF HYBRID APPROACH IMPLEMENTATION ... 66

7 EXTENDED V-MODELS .. 70

7.1 SCRUM AND V... 70

7.1.1 V-SCRUM-V Model in Detail ... 71

7.1.2 SCRUM inside Test Team .. 72

7.1.3 Mapping of Roles .. 72

7.1.4 Independent Test Team .. 74

7.1.5 Benefits of V-SCRUM-V Hybrid Approach ... 74

7.2 TDD INSIDE V-MODEL ... 75

7.2.1 TDD-V Extended Model in Detail .. 75

7.2.2 Mapping of Roles .. 77

7.2.3 Benefits of TDD-V Extended Model .. 77

7.3 ATDD INSIDE V-MODEL ... 78

7.3.1 ATDD-V Extended Model in Detail .. 78

7.3.2 Mapping of Roles .. 79

7.3.3 Benefits of ATDD-V Extended Model .. 79

7.4 FDD INSIDE V-MODEL.. 80

7.4.1 FDD-V Extended Model in Detail .. 81

7.4.2 Mapping of Roles .. 82

7.4.3 Benefits of FDD-V Extended Model ... 83

7.5 KANBAN AND V ... 84

7.5.1 Kanban-V Extended Model ... 84

7.5.2 Benefits of Kanban-V Extended Model ... 86

7.6 SPECIFICATION BY EXAMPLE INSIDE V-MODEL .. 87

7.6.1 Implementation of Specification by Example inside V-Model .. 87

8 COMPARISON OF EXTENDED V-MODELS .. 89

Table of Contents

VII

8.1 COMPARISON OF AGILE TESTING METHODS .. 89

8.2 EXTENDED V-MODELS’ COMPARISON .. 95

8.3 CONCLUSIONS ... 98

9 CASE STUDY RESEARCH .. 99

10 CASE STUDY 1 – TINS (THIS IS NOT SCRUM)...102

10.1 PROJECT DESCRIPTION .. 102

10.1.1 Organizational Structure .. 102

10.1.2 Process Description .. 103

10.2 INTRODUCTION OF AGILE APPROACHES - TINS .. 105

10.2.1 TINS (This is not Scrum) .. 105

10.2.2 Agile Testing Methods and Quality Assurance Activities ... 108

10.3 COMPARISON OF TINS WITH SCRUM ... 111

10.4 CASE STUDY ANALYSIS .. 112

10.4.1 Pros of TINS Hybrid Approach .. 112

10.4.2 Cons of TINS Approach ... 113

10.5 HYPOTHESES VALIDATION .. 114

11 CASE STUDY 2 –LARGE SCALE SCRUM ..115

11.1 HYBRID APPROACH .. 115

11.2 ROLES IN LARGE SCALE SCRUM ... 117

11.3 COMPARISON OF TINS AND LARGE SCALE SCRUM APPROACHES .. 117

11.4 CASE STUDY ANALYSIS .. 118

11.4.1 Pros of Large Scale Scrum Approach .. 118

11.4.2 Cons of Large Scale Scrum Approach ... 119

11.5 HYPOTHESES VALIDATION .. 119

12 CASE STUDY 3 – SMALL SCALE SCRUM ..121

12.1 PROJECT DESCRIPTION .. 121

12.1.1 Organizational Structure .. 121

12.2 HYBRID APPROACH .. 121

12.2.1 Agile Testing Methods and Quality Assurance Activities ... 124

12.3 CASE STUDY ANALYSIS .. 125

12.3.1 Pros of Small Scale Scrum Approach .. 125

12.3.2 Cons of Small Scale Scrum Approach ... 126

12.4 HYPOTHESES VALIDATION .. 126

13 CASE STUDIES’ COMPARISON ..128

14 CONCLUSIONS AND FUTURE WORK ..131

Table of Contents

VIII

14.1 SUMMARY AND CONCLUSIONS ... 131

14.2 FUTURE WORK .. 133

APPENDIX A - AGILE MANIFESTO .. 135

APPENDIX B - CHICKENS AND PIGS ANALOGY OF SCRUM ROLES ... 137

APPENDIX C - EXPLANATION OF PERSONNEL LEVELS IN BOEHM’S HOME GROUND POLAR CHART 138

APPENDIX D - 4-DAT FRAMEWORK’S FOUR DIMENSIONS ... 139

APPENDIX E - CASE STUDIES’ INTERVIEW QUESTIONNAIRE ... 141

REFERENCES ... XIII

List of Figures

IX

List of Figures

FIGURE 1-1. COST OF SOFTWARE DEVELOPMENT .. 1

FIGURE 1-2. AGILE TECHNIQUES ADOPTION RATE ... 3

FIGURE 1-3. PROJECT SUCCESS RATES BY SOFTWARE DEVELOPMENT METHODOLOGY .. 4

FIGURE 1-4. SOFTWARE DEVELOPMENT APPROACHES’ EFFECTIVENESS ... 4

FIGURE 1-5. BENEFITS OBTAINED FROM IMPLEMENTING AGILE APPROACHES ... 5

FIGURE 2-1. WATERFALL MODEL FOR SOFTWARE DEVELOPMENT .. 7

FIGURE 2-2. COMPARISON OF WATERFALL AND ITERATIVE DEVELOPMENT PROCESSES ... 9

FIGURE 2-3. V-MODEL FOR SOFTWARE DEVELOPMENT .. 10

FIGURE 3-1. AGILE MODEL LIFECYCLE ... 16

FIGURE 3-2. HOME GROUND POLAR CHART .. 18

FIGURE 3-3. THE STACEY GRAPH. .. 19

FIGURE 3-4. SCRUM PROCESS ... 20

FIGURE 3-5. RESPONSIBILITIES OF SCRUM TEAM MEMBERS. .. 22

FIGURE 3-6. SAMPLE PROJECT BURN-DOWN CHART .. 24

FIGURE 3-7. COST OF CHANGE CURVES ... 25

FIGURE 3-8. XP PRACTICES ... 27

FIGURE 3-9. KANBAN IN PRODUCTION .. 31

FIGURE 3-10. KANBAN BOARD .. 32

FIGURE 4-1. TRADITIONAL VS. AGILE TESTING ... 34

FIGURE 4-2. TRADITIONAL VS. AGILE ROLES ... 35

FIGURE 4-3. AGILE TESTING .. 36

FIGURE 4-4. AGILE TESTING QUADRANTS .. 37

FIGURE 4-5. TDD CYCLE .. 40

FIGURE 4-6. ATDD CYCLE .. 43

FIGURE 4-7. FDD CYCLE .. 45

FIGURE 4-8. EXPLORATORY TESTING ON A CONTINUUM ... 48

FIGURE 4-9. KEY PROCESS PATTERNS OF SPECIFICATION BY EXAMPLE ... 53

FIGURE 6-1. AMBIDEXTERITY AS THE SOLUTION ... 64

FIGURE 6-2. FRAMEWORK FOR ORGANIZATIONAL CHANGE ... 69

FIGURE 7-1. V-SCRUM-V MODEL .. 70

FIGURE 7-2. TDD-V EXTENDED MODEL .. 76

FIGURE 7-3. TDD-V EXTENDED MODEL WITH ITERATIONS.. 77

FIGURE 7-4. ATDD-V EXTENDED MODEL ... 78

FIGURE 7-5. QUALITY ASSURANCE ACTIVITIES IN FDD ... 80

List of Figures

X

FIGURE 7-6. FDD-V EXTENDED MODEL .. 81

FIGURE 7-7. KANBAN-V EXTENDED MODEL ... 85

FIGURE 8-1. SUPPORTED SOFTWARE DEVELOPMENT PHASES BY AGILE METHODS ... 91

FIGURE 8-2. COMPARISON OF DEGREE OF AGILITY DERIVED FROM 4-DAT TOOL .. 93

FIGURE 8-3. REPRESENTATION OF HEAVY WEIGHT AND LIGHT WEIGHT METHODS ON A SCALE .. 94

FIGURE 8-4. REPRESENTATION OF EXTENDED V-MODELS ON A SCALE ... 98

FIGURE 10-1. ORGANIZATIONAL STRUCTURE – OVERALL PROJECT ... 103

FIGURE 10-2. ORGANIZATIONAL STRUCTURE - DESIGN & IMPLEMENTATION .. 103

FIGURE 10-3. IMPLEMENTATION OF SOFTWARE IN RELEASES .. 104

FIGURE 10-4. TINS INSIDE TRADITIONAL MODEL .. 105

FIGURE 10-5. VARIOUS PHASES OF TINS APPROACH ... 106

FIGURE 10-6. ILLUSTRATION OF TINS PLANNING WORKSHOP (BASAR) ... 107

FIGURE 10-7. DEPLOYMENT PIPELINE ... 109

FIGURE 11-1. SCRUM INSIDE DESIGN AND IMPLEMENTATION PHASE .. 115

FIGURE 11-2. SCRUM VS. TINS DEVELOPMENT CYCLES.. 116

FIGURE 11-3. PRODUCT OWNERS IN LARGE SCALE SCRUM MODEL ... 117

FIGURE 12-1. HYBRID SOFTWARE DEVELOPMENT APPROACH.. 122

FIGURE 12-2. DEVELOPMENT CYCLE IN SMALL SCALE SCRUM MODEL ... 123

FIGURE 12-3. TESTING IN SMALL SCALE SCRUM MODEL ... 125

List of Tables

XI

List of Tables

TABLE 4-1. COLLABORATION MODELS IN SPECIFICATION BY EXAMPLE .. 55

TABLE 5-1. RELATIVE COST OF FIXING DEFECTS .. 59

TABLE 7-1. MAPPING OF V-SCRUM-V AND SCRUM ROLES .. 73

TABLE 7-2. MAPPING OF FDD-V AND FDD ROLES .. 83

TABLE 8-1. EVALUATION MECHANISM .. 95

TABLE 8-2. COMPARISON OF EXTENDED V-MODELS .. 96

TABLE 9-1. RELEVANT SITUATIONS FOR DIFFERENT RESEARCH METHODS .. 99

TABLE 9-2. DESCRIPTION OF CASE STUDIES .. 100

TABLE 10-1. TINS AND SCRUM COMPARISON .. 111

TABLE 13-1. CASE STUDIES‘ COMPARISON .. 130

List of Abbreviations

XII

List of Abbreviations

ATDD Acceptance Test Driven Development

BRS Business Requirements Specification

CRACK Collaborative, Representative, Authorized, Committed and Knowledgeable

DSDM Dynamic Systems Development Method

ESB Enterprise Service Bus

FDD Feature Driven Development

ISTQB International Software Testing Qualifications Board

JIT Just-In-Time

LSD Lean Software Development

NSIT National Institute of Standards and Technology

OMG Object Management Group

OOPSLA Object-Oriented Programming, Systems, Languages & Applications

QA Quality Assurance

ROI Return On Investment

SDLC Software Development Lifecycle

SOA Service Oriented Architecture

SRS Software Requirements Specification

SWEBOK Software Engineering Body of Knowledge

TDD Test Driven Development

TINS This Ist Not Scrum

XP Extreme Programming

YAGNI You Aren‘t Gonna Need It

4-DAT Four Dimensional Framework

Introduction

1

1 Introduction

Software Testing can be defined as an activity which ensures that the product meets the

user specified requirements. It helps demonstrate quality of the product to the stakeholders.

Testing has become an integral part of Software Development lifecycle. It is done with an

intention to find bugs and thus helps improve quality of the product. Developer‘s perspec-

tive of requirements might be different from user‘s perspective. Testing ensures that the

product meets users‘ specified requirements.

Approximately 40-50% of total effort and cost is spent on testing which indicates the im-

portance of testing in software development (Brykczynski, Meeson, & Wheeler, 1994). It

is very important that software testing is conducted at the right time and in the right way.

Figure 1-1. Cost of Software Development

(Adapted from: Brykczynski, Meeson, & Wheeler, 1994)

Testing can be performed at any stage of software development. However, it is mostly per-

formed after the development or coding phase in traditional plan-driven software develop-

ment. In waterfall model, testing occurs at the last stage when all the requirements have

been specified and product has been developed. In V-model, which is basically an exten-

sion of waterfall model, each development activity is accompanied by a corresponding test

Introduction

2

activity. In more recent agile methods, testing is usually carried out along with the devel-

opment. Waterfall model, V-model and Agile methods are explained in more detail in

chapter 2-Plan Driven Software Development Processes and chapter 3-Agile Software

Development Processes.

1.1 Structure of Thesis

In chapter 1, overall motivation for adoption of agile testing methods and practices has

been provided.

Chapter 2 briefly describes traditional plan driven software development approaches.

Chapter 3 describes agile methods. It also provides the selection criteria for agile testing

methods.

Chapter 4 starts with the introduction of agile testing. It then explains in detail Agile test-

ing methods selected based upon the selection criteria presented in chapter 3.

In chapter 5, based upon literature review, four hypotheses have been formulated.

Chapter 6 compares agile and plan-driven approaches. It provides detailed motivation for

use of hybrid approaches and also discusses challenges faced by organizations implement-

ing Agile and hybrid approaches.

In chapter 7, extended V-models combining agile testing methods inside V-model have

been proposed.

Chapter 8 compares extended V-models on various parameters and conclusions are drawn

regarding best fit and least fit candidate for adoption inside V-model.

Chapter 9 introduces case study research and the adopted methodology for analyzing case

studies.

 Chapters 10, 11 and 12 present three case studies i.e. three software industry projects im-

plementing agile testing methods inside V-model. Strengths and weaknesses of case stu-

dies have been discussed and hypotheses proposed in chapter 5 have been validated against

case studies.

In chapter 13, three case studies are compared to each other based upon the methodology

described in chapter 9.

Introduction

3

Finally, in chapter 14, overall conclusions from case studies‘ analysis and extended V-

models are drawn.

1.2 Motivation

Numerous surveys on agile methods have indicated increased adoption rate of Agile me-

thodologies in software companies. More and more companies have started to implement

agile methodologies either in pure form or in combination with plan-driven methods.

Ambysoft (February, 2008) conducted an Agile adoption rate survey in which 642 profes-

sionals were interviewed, 54.8% were developers and 29.4% were from management. 69%

of the respondents indicated that their organization has adopted one or more agile tech-

nique. 31% indicated that they are not following any agile methodology but 15% indicated

that they hoped to do so the same year. The results of the survey are indicated in Figure

1-2. (Ambysoft, February, 2008)

Figure 1-2. Agile Techniques Adoption Rate

(Source: Ambler, February, 2008)

Companies practicing agile methods have indicated various benefits such as reduced time

to market, software development costs, planning efforts, increased customer satisfaction

and so on. Software professionals have also reported higher project success rates of agile

projects as compared to projects managed by traditional approaches. Another survey con-

ducted by Ambysoft in December, 2008 indicated 70% higher project success rates of agile

projects (Figure 1-3).

Introduction

4

Figure 1-3. Project Success Rates by Software Development Methodology

(Source: Ambysoft, December, 2008)

The same survey indicated higher quality, better stakeholder satisfaction and improved

Return on Investment (ROI) as some of the success factors of agile projects (Figure 1-4).

(Ambysoft, December, 2008)

Figure 1-4. Software Development Approaches‘ Effectiveness

(Source: Ambysoft, December, 2008)

VersionOne Inc. also conducts annual surveys on the usage of agile methods. The results

of 2012 survey indicated 90% improvement in ability to respond to changing priorities,

81% improvement in software quality and 85% increase in productivity. The survey in-

cluded 4048 software professionals coming from companies of size ranging from 100 to

Introduction

5

500 employees. The results of the survey are summarized in Figure 1-5. (VersionOne,

2012)

Figure 1-5. Benefits Obtained from Implementing Agile Approaches

(Source: VersionOne, 2012)

The results of all these surveys indicate increased use of agile methods and various benefits

offered by them as compared to traditional plan-driven approaches.

However, companies operating in the below mentioned situations face huge challenges

while attempting to use agile methods:

 Public Sector: German companies in public sector are restricted to use agile me-

thodologies by the government. Companies operating in public sector are accus-

tomed to traditional methods for 20 years or so, hence it is very difficult to bring

any change. Mindset of people and organization culture are other opposing factors.

 Hierarchical Organization: An organization which is strictly hierarchical with

pre-defined roles and responsibilities faces lots of challenges while implementing

flexible, non-hierarchical agile methods. People in such organizations are accus-

90

85

84

84

81

80

79

79

76

65 70 75 80 85 90 95

Ability to manage changing
priorities

Increased Productivity

Improved Project visibility

Improved team morale

Enhanced software quality

Reduce Risk

Faster time-to-market

Better alignment between IT
and Business objectives

Simplify development process

Improvement in Percentage

Introduction

6

tomed to defined processes and formal methods; hence they find it hard to accept

informal techniques of agile methods.

 Complex and larger projects: Agile methods are known to work well within

smaller teams and projects. Complex and larger projects need comprehensive and

formal communication methods, hence agile methods are hard to implement in such

situations.

This thesis attempts to provide solutions to implement agile methods in above situations

where it is not possible to immediately shift to pure agile methodologies or organizations

want to reap benefits of both agile as well as plan-driven methods. A hybrid approach with

an extension of V-model with agile testing methods has been suggested in such situations.

Plan Driven Software Development Processes

7

2 Plan Driven Software Development Processes

Failure of many software projects in 1960s and 70s led to evolution of software develop-

ment processes. Many software projects either ran out of budget or were scraped due to

delays or because of final product not meeting user expectations.

The main purpose of software development processes and models is to guide the software

development process. They define the order of execution of various phases and transition

criteria from one phase to another phase (Boehm, 1988).

Plan driven software development models, also known as classical software development

models are described in this chapter.

2.1 Waterfall Model

Waterfall model, developed by W. Royce, is the oldest model for software development. It

consists of a set of phases, where one phase must be finished before starting the next phase.

The progress of the software is seen as flowing downward like a waterfall and hence the

name. Original waterfall model can be seen in Figure 2-1.

Figure 2-1. Waterfall Model for Software Development

(Source: Royce, 1970)

Plan Driven Software Development Processes

8

The various phases of waterfall model are: Requirements specification, Analysis, Design,

Coding, Testing, Operation and Maintenance.

Features of waterfall model:

- Software is developed sequentially

- Each phase must be finished before starting next phase

- Requirements are frozen at the beginning of the project

- Huge emphasis on documentation during the testing as well as operational phase.

Verbal record is considered intangible and inadequate (Royce, 1970)

- Testing is considered an important phase

- Formal customer involvement is considered important

- Simple and easier to understand

One of the assumptions in waterfall model is requirements don‘t change. However, this

rarely happens. User requirements evolve during product development and hence they keep

on changing.

Waterfall Model also suffers from ‗Late Design Breakage‘. In waterfall model, software

development progresses fine until the integration phase when design issues are uncovered

and flaws are discovered (Royce, 1970). This results in unplanned rework and stress on

budget and resources. Figure 2-2 shows comparison between waterfall model and iterative

software development with respect to late design breakage phenomena.

Plan Driven Software Development Processes

9

Figure 2-2. Comparison of Waterfall and Iterative Development Processes

(Royce, August, 1970)

Pitfalls of waterfall model:

- Unsuitable for changing customer requirements

- Errors are detected quite late in the development cycle (Late Design Breakage)

- Huge effort spent on documentation

- Not suitable for long running projects because of possibility of change in

requirements and technology

Waterfall model is most suitable for stable projects where requirements are clearly defined

and change is not very likely.

Various modified versions of waterfall model have evolved over time but they all suffer

from above mentioned drawbacks. This led to the development of V-model for software

development.

2.2 V-Model

V-Model which is an extension of waterfall model was proposed by Paul E. Brook in 1986.

It means verification and validation. It is similar to waterfall model but with special focus

on testing phases. In V-model, each phase in development has an associated testing phase.

Plan Driven Software Development Processes

10

Testing is planned in parallel with development. Test documentation starts as early as re-

quirement analysis phase. V-model can be represented in Figure 4.

Figure 2-3. V-Model for Software Development

(Source: http://en.wikipedia.org/wiki/V-Model_(software_development))

Right hand side of V-model represents verification phases and left hand side represents

corresponding validation phases. International Software Testing Qualifications Board

(ISTQB) defines verification and validation as:

Verification: ―Confirmation by examination and through provision of objective evidence

that specified requirements have been fulfilled. [ISO 9000]‖ (ISTQB, October, 2012).

Validation: ―Confirmation by examination and through provision of objective evidence

that the requirements for a specific intended use or application have been fulfilled. [ISO

9000]‖ (ISTQB, October, 2012).

http://en.wikipedia.org/wiki/V-Model_(software_development)

Plan Driven Software Development Processes

11

In short, verification means ‗Are we building the product right?‘ It involves reviews of

documents and plans. On the other hand, validation means ‗Are we building the right

product?‘ It involves real testing of software to check if it meets the requirements.

V-Model encompasses both verification and validation activities and hence provides a use-

ful framework for software development.

Verification Phases of V-Model:

Various verification phases of V Model are:

Requirement Analysis: In this phase, requirements are gathered from users and this stage

specifies what the software is intended to do and not how it is intended to do it. Users are

interviewed and Business Requirements Specification (BRS) is prepared.

Roles involved: Business Analysts, Users

Associated Test Planning: User Acceptance Tests

System Design: In this phase, software design is created. System engineers go through

BRS and design software according to the requirements. Software Requirements Specifica-

tion (SRS) and entity diagrams are usually the deliverables of this phase.

Roles involved: System engineers

Associated Test Planning: System Tests

Architecture Design: Architecture Design, also known as High Level Design defines ar-

chitecture of system. It provides list of modules and their relationships. System hardware,

technology, database systems are other considerations of this phase.

Roles involved: Software Architect

Associated Test Planning: Integration Test Designs

Module Design: Module Design, also known as Low Level Design specifies detailed

functionality of all sub-modules. Class diagrams, detailed interface diagrams, database

tables are the deliverables of this phase. Information from this phase is used by developers

while developing software.

Roles Involved: Software Architect, Developers

Associated Test Planning: Unit Test Design

Plan Driven Software Development Processes

12

Coding: In this phase, actual development of software takes place. Developers take their

respective module‘s design and convert it into code.

After coding phase, validation phases of V-model start where the test documents created

during verification phase are used by testing team to test the software.

Validation Phases of V-Model:

In validation phases, the real testing of software takes place. The various validation phases

of V-Model are:

Unit Testing: In Unit testing, each smallest unit or method or function is tested to make

sure the source code works fine and there are no errors in the code. Unit test design and

plans created earlier are used in this phase. This testing is normally carried out by pro-

grammers and white box testers.

Integration Testing: In this testing, interaction between different modules is tested. This

is also known as interface testing. The main purpose of this phase is to ensure that different

components of system work together and there are no issues in interfaces. The integration

test design developed earlier during verification phase is used as a reference for this phase.

System Testing: In system testing, the system or software on the whole is tested to make

sure that it meets the system requirements or specifications.

Acceptance Testing: In this phase of testing, software is checked to see if it meets the user

requirements specified at the beginning of verification phase. Testing is done from the user

perspective and in real situations. It can either be carried out by testers along with the cus-

tomer or it can also be carried out independently by the customer. There are two types of

user acceptance testing.

Alpha Testing: Alpha testing is carried out at the customer site by the testers.

Beta Testing: Beta testing, also known as Field testing is carried out by end users or cus-

tomers at their own location.

Features of V-Model:

- Sequential and disciplined software development

- Unlike waterfall model, test activities start in parallel with development

- Defines discrete testing phases

Plan Driven Software Development Processes

13

- Simpler and easier to understand and provides useful framework for software

development

- Clearly defined roles and deliverables

- Documentation driven

Cons of V-Model:

- Inflexible for changing customer requirements

- Like waterfall model, huge emphasis on documentation

- Limited customer involvement

- Testing is again conducted after the whole software has been developed. Hence

bugs are detected at a later stage after they have already been implemented

- Huge resources requirement

- Not suitable for smaller projects

V-Model is mostly suitable for large organizations and large projects. Also, the require-

ments need to be clearly defined, since subsequent change in requirements is a costly af-

fair.

Agile Software Development Processes

14

3 Agile Software Development Processes

The term ‗Agile‘ means ‗able to move quickly and easily‘ (Merriam Webster Online). The

history of agile methods dates back to 1930s with formal evolution of methods in 1990s. In

1986, Hirotaka Takeuchi and Ikujiro Nonaka published an article called ‗New New Prod-

uct Development Game in the Harvard Business Review‘, which described flexible strate-

gy for product development (Layton, 2012). In 1995, at the request of Object Management

Group (OMG), Ken Schwaber and Jeff Sutherland worked together to summarize their

experiences and co-presented Scrum at the Object-Oriented Programming, Systems, Lan-

guages & Applications (OOPSLA) conference (Schwaber & Sutherland, 2013).

Agile Manifesto & Agile Principles

In February, 2001, a group of 17 software developers having experience in Extreme Pro-

gramming (XP), Scrum, Dynamic Systems Development Method (DSDM), Feature Driven

Development (FDD), met at a ski resort in Utah to discuss alternatives to heavyweight me-

thodologies of software development. The result of discussion was creation of ‗Manifesto

for Agile Software Development‘.

Agile Manifesto as described by its authors is shown below: (agilemanifesto.org)

We are uncovering better ways of developing software by doing it and helping others

do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left

more.

http://agilemanifesto.org/

Agile Software Development Processes

15

All agile methods follow Agile Manifesto for guidelines. The four values of Agile Mani-

festo are based upon twelve principles. The four values and the principles behind them can

be summarized below:

Value 1 - Individuals and interactions over processes and tools: Agile methods emphas-

ize face to face communication among team members. They consider direct communica-

tion between stakeholders and developers more important as compared to following a

process such as sending emails. Therefore, they stress upon co-location of all team mem-

bers and onsite customer presence. Self-organizing teams are considered key to best archi-

tectures and designs (agilemanifesto.org). Layton (2012) lists some of the advantages of

face to face communication as clear and effective communication, strong teamwork, more

chances for innovation and better job satisfaction.

Value 2 - Working software over comprehensive documentation: Agile methods value

working software as compared to documentation. Boehm and Turner (2005) describe agile

processes motto as YAGNI (You aren‘t gonna need it) which means limiting design and

documentation to just required level. The highest priority of agile processes is to satisfy

customer and this is achieved by iterative and incremental development (agilemanifes-

to.org). Product is developed iteratively and delivered to the customer. Hence after each

iteration, customer has the chance to see working software. Feedback and lessons learned

from previous iteration are accommodated in next iteration.

Value 3 - Customer collaboration over contract negotiation: Close interaction with cus-

tomer results in desired product being delivered to the customer. It helps to improve quali-

ty of product and reduces defect rate.

Value 4 - Responding to change over following a plan: Agile methods are adaptive ra-

ther than predictive in nature. They embrace change during any phase of software devel-

opment and are capable of responding to changing customer requirements. In today‘s dy-

namic world, business requirements change very rapidly, hence it is very important to

adapt according to change rather than sticking to a pre-defined plan.

Agile model lifecycle based upon four values of Agile Manifesto can be depicted in Figure

3-1.

Agile Software Development Processes

16

Figure 3-1. Agile Model Lifecycle

(Balaji & Murugaiyan, 2012)

3.1 Inspection of Agile Methods for V-Model Suitability

There are numerous agile methods and agile testing approaches available. The focus of this

thesis is the selection of agile testing methods which can incorporate well into V-model.

Agile method chosen should not disrupt the existing model completely and should impose

minimum challenges for its implementation. Incorporation of a completely different Agile

testing approach can lead to failure of a project. For this purpose, agile methods satisfying

below criteria have been considered.

1) Quality Assurance activities: The foremost condition for selection of agile method

is that it should have sufficient quality assurance activities associated with it. There

are some agile methods which clearly provide some guidelines on testing (like XP)

and there are some which do not provide specific guidelines on testing practices

(like Scrum). This doesn‘t mean that such agile methods are excluded from the list.

Agile methods which do not talk anything about testing practices but having some

Agile Software Development Processes

17

associated activities which impact quality of a product directly or indirectly are also

considered.

2) Roles: Agile methods which have some predefined roles and responsibilities are

preferred over the ones which have none. This criterion allows easy mapping of ex-

isting roles when adopting an agile testing approach inside V-model. It will also

need minimum organizational change during implementation.

3) Degree of Scalability: Agile methods are known to work well in smaller projects

as compared to traditional methods which can be applied in larger projects. Agile

method chosen should be scalable to larger projects and team size. The implemen-

tation of an agile method should start from a smaller level but later on it should be

possible to scale it to larger level.

4) Degree of Agility: Another criterion for selection of agile methods is degree of

agility of an agile method. Degree of agility can be measured on the basis of level

of processes, planning, documentation, iteration length etc. Qumer and Henderson

(2008) have compared agility of six agile methods using a four dimensional frame-

work (4-DAT). Results from their study and other factors have been used to com-

pare agile methods on the scale of light weight to heavy weight methods in chapter

8.1-Comparison of Agile Testing Methods. Methods having less degree of agility

should be easier to incorporate inside V-model which is a heavy weight process.

5) Smallest unit of work: Agile methods which are based on some sort of smallest

unit of work are considered e.g. Feature Driven Development (FDD) based on fea-

tures, Acceptance Test Driven Development (ATDD) based on acceptance tests are

chosen. While adopting such a method inside V-model, it will be easier to map re-

quirements to this smallest unit of work.

6) Communication mechanism: Agile methods having some sort of specified com-

munication mechanism and techniques within the team and with the customer have

been selected. These techniques could be formal in the form of documentation or

could be informal like daily stand-ups.

7) Criticality: Boehm & Turner (2003) have presented a Home Ground Polar Chart in

their book entitled ‗Balancing Agility and Discipline: A Guide for the Perplexed‘

for the selection of appropriate software development approach (See Figure 3-2).

Criticality is one of the factors listed for determination of relative suitability of

Agile Software Development Processes

18

agile or plan-driven methods in a project (Boehm & Turner, 2003). Agile method

chosen for adoption inside V-model should be tailorable to critical projects.

8) Personnel: This is another factor described by Boehm & Turner (2003) for selec-

tion between agile vs. plan driven approach. Agile approaches need more number

of Level 2 and Level 3 people (highly experienced and skilled) as compared to

plan-driven approaches which can work with mixture of Level 2 and 3 and Level

1B (trainable) resources (Boehm & Turner, 2003) (See Figure 3-2). Agile method

chosen for inclusion inside V-model should not be too much dependent upon highly

skilled and experienced people. It should be possible to work with less experienced

people which could be trained later on.

Figure 3-2. Home Ground Polar Chart

(Source: Boehm & Turner, 2003)

Agile software development processes and agile testing methods satisfying above criteria

are explained in detail in following sub chapters and in chapter 4-Agile Testing.

Agile Software Development Processes

19

3.2 Scrum

Scrum is the most popular agile method. A survey conducted by VersionOne in 2012 indi-

cates increased popularity of Scrum among organizations. 54% of respondents said that

they use Scrum and 18% said that they use Scrum variants (Scrumban, Scrum/XP hybrid

etc.) (VersionOne, 2012).

Schwaber and Sutherland (2013), who are the creators of Scrum, describe it as

A framework within which people can address complex adaptive problems, while pro-

ductively and creatively delivering products of the highest possible value

Scrum is:

 Lightweight

 Simple to understand

 Difficult to master. (p.3)

Figure 3-3 (Schwaber & Sutherland, 2012) shows complexity of software projects as de-

pendent upon three dimensions – requirements, technology and people. Software projects

are complex since requirements are known with less certainty and technology employed is

complex in nature.

Figure 3-3. The Stacey Graph.

(Source: Schwaber & Sutherland, 2012)

Agile Software Development Processes

20

Scrum tackles complexity of software projects by using empirical process control. Empiri-

cal process is based upon experience and three pillars of transparency, inspection and adap-

tation. Transparency means common understanding of process and definition of ‗Done‘ is

shared by all the participants. Scrum artifacts are periodically inspected to detect any unde-

sirable variations. Adjustments are made to the process as soon as deviations are detected.

(Schwaber & Sutherland, 2013)

Scrum is based upon iterative incremental approach to deliver potentially releasable prod-

uct increment. Scrum process can be depicted in Figure 3-4. Product is developed in short

iterations called sprints where each sprint usually lasts for 30 days.

Figure 3-4. Scrum Process

(Source: Boehm & Turner, 2005)

Scrum framework is composed of Scrum team, events, deliverables and artifacts.

3.2.1 Scrum Roles

Scrum team consists of three roles – the Product Owner, Development Team and the

Scrum Master. Schwaber (2004) has compared these roles to chickens and pigs, where

people who are committed to the project are referred to as pigs and those who are just in-

volved are referred to as chickens (Please see Chapter 1Appendix B for the related joke on

chickens and pigs). In Scrum - product owner, development team and Scrum master are pig

Agile Software Development Processes

21

roles (Schwaber, 2004). They are the ones who are directly responsible for the product

whereas customer and management are chicken roles (Schwaber, 2004). They are not

committed to the project at all the times and are just interested in project progress. Scrum

team is self organizing and cross functional team. Team plans and works on its own (self-

organizing team) without much interference of management.

Product Owner is responsible for maintaining the list of requirements in a product back-

log. He describes requirements in terms of user stories which explain the intended functio-

nality. A simple user story consists of the pattern Title….As a…I want to…so that…It also

contains acceptance criteria in the form When I do this, this happens. (Layton, 2012)

Additional responsibilities of product owner include:

- Listing all requirements in product backlog

- Prioritizing items in product backlog on regular basis

- Ensuring that development team builds the required functionality and meets the

acceptance criteria

- Explaining all the requirements by means of user stories which are clear and un-

derstandable by development team

- Maintaining project‘s Return on Investment (ROI)

- Tracking project progress and providing project status to stakeholders

Product owner has the final say on requirements implementation and prioritization. If cus-

tomer wants some requirement to be developed on priority, he needs to contact and coordi-

nate with product owner.

Development Team is responsible for development of product. It is a cross functional

team with people having required skills, eliminating team‘s dependency on external re-

sources. Development team is responsible for design, development and testing of product,

delivering potentially releasable product at the end of each iteration. It is also responsible

for estimation and implementation of the user stories it has committed for the current

sprint.

Scrum Master ensures that proper Scrum process is followed by the team. His responsibil-

ities include:

Agile Software Development Processes

22

- Coaching team for Scrum process

- Removing any impediments to the team‘s progress (Schwaber & Sutherland, 2013)

- Maximizing business value the team delivers within a sprint

- Facilitating Scrum meetings

A.Pham and P.V. Pham (2012) have summarized responsibilities and collaboration be-

tween Scrum Team members as shown in Figure 3-5.

Figure 3-5. Responsibilities of Scrum team members.

(Source: A. Pham & P.V. Pham, 2012)

3.2.2 Scrum Events

Scrum meetings or so called events facilitate transparency, inspection and adaptability

which are necessary for empirical process control. All Scrum events are time boxed which

means they are held for specified time. Scrum events are organized on four levels – sprint

planning meeting, daily scrum meeting, sprint review and sprint retrospective.

In Sprint Planning Meeting, planning for the sprint takes place. Sprint planning meeting

is usually held for eight hours for a four week sprint. It consists of two parts which answer

Agile Software Development Processes

23

questions of ‗What‘ and ‗How‘ (A. Pham & P.V. Pham, 2012). During the first part of

planning meeting, the product owner presents product backlog and works with the devel-

opment team to decide which user stories will be part of next sprint. Development team has

the autonomy to decide on its own how many user stories it wants to work upon. It also

provides estimation for the user stories. During the second part of the sprint planning meet-

ing, development team works together to analyze user stories selected during the first part.

The team divides each user story in its tasks. The tasks are placed on the task board and

each team member decides himself which task he wants to handle first.

Daily Scrum Meeting lasts for 15 minutes and is held daily at the same time and place.

During the daily Scrum meeting, team members discuss three questions (Schwaber & Su-

therland, 2013):

- What was done since the last Scrum meeting?

- What will be done before the next Scrum meeting?

- What are the obstacles being faced by the team?

Daily Scrum meetings help timely achievement of sprint deliverables. Any impediments

faced by the team are identified and resolved on time, avoiding any delays. Scrum master

ensures that daily Scrum meeting happens but his presence is not mandatory.

Sprint Review Meeting takes place at the end of sprint and is attended by product owner

and development team. Scrum master organizes sprint review meeting. Development team

demonstrates what was done during the sprint to product owner and product owner can

accept or reject the implementation. Based upon what was achieved and what was not

achieved, product backlog is adjusted and stories might be identified for the next sprint.

Sprint Retrospective Meeting is held after the sprint review meeting. The main purpose

of retrospective meeting is to inspect last sprint and get team‘s feedback on what went well

and what did not go well. Sprint retrospective meeting provides the opportunity to identify

weaknesses of last sprint and to include the improvements in next sprint.

3.2.3 Scrum Artifacts

Scrum artifacts include product backlog, sprint backlog, burn-down charts, burn-up charts

and task boards. These artifacts help to track project progress and ensure shared under-

standing of all stakeholders.

Agile Software Development Processes

24

Product Backlog: It lists all the requirements ordered from high priority to low priority.

The product owner is responsible for maintaining product backlog. Product backlog is the

single source for all the requirements and features for the stakeholders. It keeps on evolv-

ing with time. Task estimations, sprint numbers, user stories are some of the items included

in product backlog.

Sprint Backlog: The sprint backlog is the subset of product backlog which contains the

requirements to be worked on by the development team in a specific sprint. The sprint

backlog contains task estimations, responsible person for task and status. Development

team updates sprint backlog during a sprint. Any item not covered in a sprint is moved

back to the product backlog.

Burn-down charts: In order to track progress of sprint, burn-down charts are used. Sprint

burn-down chart indicates how much needs to be done to complete a sprint. Similarly

project burn-down chart shows work progress for whole of project (See Figure 3-6)

Figure 3-6. Sample Project Burn-down chart

(Source: Schwaber, 2004)

Burn-up charts: Like burn-down charts, burn-up charts can be used in agile projects ma-

naged by Scrum methodology. Burn-up charts plot work completed in a sprint against

time, hence they slope upward as compared to burn-down charts that slope downward.

Agile Software Development Processes

25

Task Boards: A task board is used by development team members to track their work. A

task board lists tasks on sticky notes along with their status and names of developers re-

sponsible for their completion. A task board is usually divided into columns – To Do, In

progress, Accept and Done (Layton, 2012).

3.3 Extreme Programming (XP)

Extreme programming (XP) is another popular agile method. It was created by Kent Beck

at around 1996 at Chrysler. In XP, each good practice is done in an extreme way and hence

the name e.g. XP suggests that if testing is a good practice then do it at all the times and if

pair programming is good, then team should always follow pair programming practice

(Slinger & Broderick, 2008). Kent Beck challenged the traditional cost of change curve

and argued that cost of changing software can be kept uniform over time by following

some practices (See Figure 3-7). Upfront requirements gathering can be avoided and re-

quirements can be defined with the progress of project.

Figure 3-7. Cost of Change Curves

(Source: Adapted from Szalvay, 2004)

Kent defined 4 values and 12 engineering practices in order to achieve flat cost of change

curve. 12 practices later on evolved into 28 practices.

Agile Software Development Processes

26

3.3.1 XP Values

XP is based upon four values:

1) Communication

2) Simplicity

3) Feedback

4) Courage

Communication: XP also emphasizes upon first value mentioned in agile manifesto which

considers face to face communication important over written one. Developers and custom-

ers are encouraged to be co-located to avoid any misunderstandings and to resolve issues

faster.

Simplicity: XP emphasizes upon simple design and code. Designing is done only for the

current iteration and complexity is kept at minimum.

Feedback: XP considers feedback an important part of the project. Customer is involved at

regular intervals. He defines requirements for each iteration and steers the project by pro-

viding frequent feedback.

Courage: It takes a lot of courage for the developer to throw away and rewrite the code he

wrote if it doesn‘t meet customer expectations any longer. XP encourages developers to

throw away code that is not performing well and is breaking here and there.

3.3.2 XP Practices

XP defines some practices for software development. These practices can be followed in

any project independent of software methodology employed. Some of the useful XP prac-

tices are defined here.

Agile Software Development Processes

27

Figure 3-8. XP Practices

(Source: XProgramming.com)

Whole Team: Whole team is responsible for the project. XP recommends on-site customer

which means customer or a representative from customer is available at all the times to

answer queries related to the product. Customer is suggested to be physically present at the

same location as the developers.

Planning Game: XP utilizes planning at two levels – Release planning and Iteration plan-

ning. During release planning, planning for the whole project takes place. Customer pro-

vides a set of requirements and decision is made which requirement will go into which

release. Scope and cost estimations are done on high level. Release planning is usually

rough and changes with the progress of project. Release is usually broken down into 1 to 3

weeks long iterations. Iteration planning is usually more concrete as compared to release

planning. Customer decides the priority and order of features in the form of user stories.

Developers break down stories into tasks and provide their estimates. Planning game is

important for steering the project in the right direction.

Small Releases: In XP, product is developed in small iterations and after each iteration,

working software having business value can potentially be delivered to the customer.

Small releases ensure regular customer feedback and reduce risk.

Agile Software Development Processes

28

Customer Tests: Customer writes acceptance tests for each feature in XP. These tests are

usually automated and ran every time new feature or change is checked-in or code is refac-

tored to make sure no existing functionality is broken upon addition of new one.

Collective Ownership: Code ownership is considered the responsibility of whole team

rather than individual team members. Every team member is allowed to view and edit oth-

er team member‘s code (Ambler & Lines, 2012). Every team member can check-in any

change or fix anytime, he doesn‘t need to take permission or wait for anybody.

Coding Standard guidelines: XP guides developers to use uniform coding standard. This

makes the code easier to read and understandable by everyone in the team. This also leads

to reduction in defect rate and cleaner code.

Sustainable Pace: XP discourages overtime and suggests working on a sustainable veloci-

ty. Standard 40 hour week work is suggested for the team.

Metaphor: A metaphor is the set of terms and common language used to describe functio-

nality of system (Hightower et al., 2004). Use of metaphors avoids any misinterpretations

and makes sure everyone uses the same language for the system.

Continuous Integration: Developers should check-in their code as frequently as possible.

This avoids ‗Late design breakage‘ and unnecessary delays in project. Developers are en-

couraged to check-in their code on daily basis. Automated builds are the suggestion to

avoid manual work.

Test Driven Development (TDD): In XP, developers practice test first approach which

means developers write tests before writing code. Each time a developer checks-in his

changes, whole set of tests are run to make sure the system doesn‘t exhibit any undesired

behavior. TDD is explained in more detail in chapter 4.3.1-Test Driven Development

(TDD).

Refactoring: XP recommends refactoring which means restricting and improving the code

design without changing its behavior (Dooley, 2011). Refactoring removes redundant, dup-

licate, unnecessary, bad smelling code and leads to cleaner, more understandable and better

smelling code (Stephens & Rosenberg, 2003).

Agile Software Development Processes

29

Simple Design: XP suggests keeping design as simple as possible while fulfilling all the

requirements. Refactoring is one technique for keeping design simple.

Pair Programming: Pair programming means two developers work on the same piece of

code on one computer. Pair programming helps to reduce defect rate and facilitates know-

ledge sharing. XP recommends switching pairs on regular basis.

3.4 Lean Software Development (LSD)

Lean thinking or lean manufacturing can be dated back to 1940s when Taiichi Ohno, father

of Toyota‘s production system created a way to deal with Toyota‘s manufacturing prob-

lem. Toyota needed to produce cars at a cheap rate but they couldn‘t use mass production

because of small number of customers. Ohno, then invented lean manufacturing which is

based upon principle of waste elimination. (Russo, Scotto, Sillitti & Succi, 2010)

The Toyota Production System was based upon Just-in-Time (JIT) concept which means

produce only what is necessary. The upstream process doesn‘t produce until the down-

stream process needs it.

3.4.1 LSD Principles

LSD is based upon lean manufacturing principles. M. Poppendieck & T. Poppendieck

(2003) applied lean principles to software development and explained them in their book

‗Lean Software Development: An Agile Toolkit‘. The seven lean principles adapted to

software development can be explained here.

1. Eliminate waste: Any activity which does not create value to the customer is a

waste. Lean principles guide to identify such activities and eliminate them. M.

Poppendieck & T. Poppendieck (2003) have explained seven sources of waste in

software development which include partially done work, extra processes, extra

features, task switching, waiting, motion and defects.

2. Amplify learning: Software development is an empirical and learning process. In

LSD, learning is achieved by iterative development. After each iteration, prototype

is shown to customer and his opinion is asked. Feedback from customer provides a

way of improving product and minimizing defects.

Agile Software Development Processes

30

3. Decide as late as possible: It is not important to start with full set of requirements

upfront. M. Poppendieck & T. Poppendieck (2003) recommend delaying decisions

until the last responsible moment until the feature is clear and complete information

is available. This is particularly important in software industry where there is high

uncertainty.

4. Deliver as fast as possible: Delivering high quality product frequently is the key to

customer satisfaction and success. Design, develop and deployment cycle times

should be reduced and small iterations should be incorporated.

5. Empower team: In lean organization, developers can take decisions on their own

without management interference. Team is given more power and responsibilities

which boosts their confidence and trust.

6. Build integrity in: M. Poppendieck & T. Poppendieck (2003) define two types of

integrity – perceived and conceptual. The software needs to have both types of in-

tegrities. Perceived integrity delights the customers by delivering them what they

want. For perceived integrity, regular flow of information between customers and

developers is important. Conceptual integrity means all pieces of software work to-

gether properly and for this flow of information between developers is important.

(Russo et. al, 2010)

7. See the whole: Lean thinking recommends seeing the software as whole and opti-

mizing processes accordingly rather than looking at sub systems and concentrating

too much on them. Interaction between sub systems is more important than indi-

vidual systems.

3.4.2 Kanban

The meaning of Japanese word Kanban is card/ticket. Kanban, which is the basis of lean

manufacturing and JIT principles, first originated in Toyota Production system. In the con-

text of manufacturing, it is a physical card used by downstream processes for signaling

upstream processes when replenishment is required. It is based upon ‗Pull‘ concept where-

in downstream processes pull work from upstream processes as and when required. This

leads to reduction in waste and limits the work in progress and inventory. Kanban concept

as applied to production processes can be seen in Figure 3-9.

Agile Software Development Processes

31

Figure 3-9. Kanban in Production

(Source: http://www.infoq.com/articles/hiranabe-lean-agile-kanban)

3.4.2.1 Kanban Software Development

David J. Anderson applied principles of Kanban to software development and identified

five principles.

Kanban Core Principles:

1. Visualize workflow: In order to get clear understanding of a process, it is impor-

tant to visualize it first. In Kanban software development, teams use Kanban board

which displays all the work items in columns representing their status and phase of

software development. Status of work item is represented in three columns – To

Do, Doing and Done (names may vary with organizations). Team members have

responsibility of updating Kanban board thus reducing management overhead.

2. Limit work in progress: In Kanban method, work in progress is limited at each

phase. This avoids work overload for team members. Pull concept is applied to

move work from one phase to another. When ‗To Do‘ queue in downstream phase

becomes empty, work is pulled from ‗Done‘ queue of upstream phase.

3. Manage flow: Flow of work through each phase of software development should

be measured and managed. Any bottlenecks should be identified and resolved.

http://www.infoq.com/articles/hiranabe-lean-agile-kanban

Agile Software Development Processes

32

4. Make policies explicit: Without making process policies explicit across organiza-

tion and team, it is very hard to hold discussions about improvement. Hence

process policies should be made explicit and understandable by everyone in the

team. (Anderson, 2010)

5. Improve collaboratively (using models and the scientific method): Kanban me-

thod suggests use of models and theories and scientific approach about work and

workflow. Team should have a shared understanding of these theories and models

to bring about improvement. David J. Anderson suggests three models in his book

titled ‗Kanban - Successful Evolutionary Change for your Technology Business‘ –

The Theory of Constraints, The Theory of Profound Knowledge and the Lean Eco-

nomic Model. (Anderson, 2010)

Sample Kanban board can be seen in Figure 3-10.

Figure 3-10. Kanban Board

(Source: Bell & Orzen, 2011)

One of the distinct features of Kanban method is that it respects existing roles and respon-

sibilities and applies five core principles stated above to the existing process. Hence Kan-

ban method can be applied irrespective of the software development method in use. The

fundamental principles as stated by the originator of Kanban, David J. Anderson are:

Agile Software Development Processes

33

Start with what you do now

Agree to pursue incremental, evolutionary change

Respect the current process, roles, responsibilities & titles (Anderson, 2010).

Agile Testing

34

4 Agile Testing

―Agile testing is a software testing practice that follows the rules of the agile manifesto,

treating software development as the customer of testing‖ (agiletesting.com.au, 2009, Sep-

tember). It is normally followed in projects practicing agile methods but can be imple-

mented in traditional projects too. Agile testing differs from traditional testing in below

respects:

1) The time at which testing is carried out in the project

2) The frequency of testing

3) The extent of testing

Agile testing starts from the beginning of project with testers involved in conception or

requirement analysis phase whereas traditional testing starts only after the coding phase.

Agile Testing is carried out frequently and in each iteration, whereas traditional testing is

only carried once and usually with a specific start and end date. Figure 4-1 shows tradi-

tional vs. agile testing.

Figure 4-1. Traditional vs. Agile testing

(Source: Crispin & Gregory, 2008)

http://agiletesting.com.au/

Agile Testing

35

4.1 Agile Testing Characteristics

In order to understand testing in agile projects, it is important to understand its various fea-

tures and how it differs from traditional testing. The following characteristics are guided by

Lisa Crispin‘s thoughts on agile testing (Crispin & Gregory, 2008).

 Whole team approach: Testing is considered the responsibility of whole team. It is

done collaboratively by testers, developers and users. There is overlapping of roles

as whole team works collaboratively (Figure 4-2). Testers help users in writing ex-

ample tests which are used by developers in coding. Apart from writing code, de-

velopers also follow other testing practices like unit testing, continuous integration,

TDD etc. Testers also collaborate with developers in writing unit tests. (Crispin &

Gregory, 2008)

Figure 4-2. Traditional vs. Agile roles

(Source: Crispin & Gregory, 2008)

 Testing is not a separate phase: In agile software development unlike traditional

development, testing is not considered as a separate phase instead it is merged in-

side development / construction phase. Tests are written for every user story, fol-

lowed by its coding and testing. Agile testing is a continuous and fluid process

where several stories can be in conception, development or testing phases (Carter,

2010).

Ambler (2006) has shown agile testing as a continuous process in Software Devel-

opment Lifecycle (SDLC) which starts with the first phase and goes on till the

software is released to the customer (Figure 4-3).

Programmer

Tester Business

Analyst

Agile Testing

36

Figure 4-3. Agile Testing

(Adapted from Ambler, 2006)

 Test often and early: Agile testing methods occur much earlier in the SDLC and

are carried out in each iteration. Since in agile methods, product is developed in ite-

rations and after each iteration, potentially shippable increment is delivered to the

customer; hence it is important to completely test increment in each iteration.

 Feedback guides development: In Agile testing, continuous feedback guides de-

velopment process. Testers play a key role in providing feedback to developers and

users. Other automated methods like continuous integration, build results also pro-

vide timely feedback and help in avoiding bottlenecks. (Crispin & Gregory, 2008)

 Definition of „Done‟: In agile projects, definition of ‗Done‘ is modified. No user

story is considered ‗Done‘ until it is developed and tested too. Hence testing is con-

sidered mandatory activity for Doneness of a user story or a feature. (Crispin &

Gregory, 2008)

 Lean testing approach: Agile testing is based upon lean principles with emphasis

on limited documentation. Direct conversations with developers are considered

valuable as compared to logging defects in a defect tracker and writing lengthy test

reports. (Crispin & Gregory, 2008)

Agile testing is similar to traditional testing in some aspects. A testing process encompass-

ing various testing types needs to be followed in both agile as well as traditional testing. In

Agile Testing

37

order to make sure that the final product meets the quality criteria in all the aspects, it

needs to be properly tested and this makes the testing strategy an important consideration.

4.2 Agile Testing Quadrants

Crispin & Gregory (2008) have described agile testing Quadrants in their book ‗Agile

Testing: A Practical Guide for Testers and Agile Teams‘. These Quadrants help in effec-

tively planning testing activities in an agile team. They help in communicating testing

goals to the entire team and help to identify which role performs which testing and at what

stage.

Figure 4-4 shows Agile Testing Quadrants.

Figure 4-4. Agile Testing Quadrants

(Source: Crispin & Gregory, 2008)

A user story or a feature is considered ‗Done‘ when apart from design and development; it

has been tested in all four quadrants. The quadrants help ensure that the team is supported

and at the same time product is also critiqued. They also help ensure that the product meets

business as well as technology requirements.

All four quadrants of agile testing are explained below. Agile testing techniques such as

TDD, ATDD, Feature Driven Development (FDD), Specification by Example, Exploratory

Agile Testing

38

testing etc. mentioned below are explained in more detail in chapter 4.3-Agile Testing Me-

thods.

Q1: Technology facing tests that support the team

The tests which fall in Quadrant1 include unit tests and component tests. These tests help

ensure that the quality is built inside product and provide the basis for good design.

Agile techniques such as TDD, FDD, etc. come under Q1 tests. Programmers perform

these tests. However, testers can help developers in writing unit tests and in understanding

requirements from customer perspective. Q1 tests provide an important base for other qua-

drant tests. (Crispin & Gregory, 2008)

Q2: Business facing tests that support the team

Functional tests, story tests are some of the tests included in Quadrant2. These tests drive

development with customer or business facing tests. Requirements from customers are

captured in the form of executable examples which help developers in coding from cus-

tomer point of view. Direct examples avoid any ambiguity and confusion regarding cus-

tomer needs. It also helps in clear consensus between developers and users regarding speci-

fications. (Crispin & Gregory, 2008)

ATDD, Specification by Example, Pair Testing are some of the agile testing methods fol-

lowed in Q2. Programmers in collaboration with testers and customers carry out Q2 tests.

Q3: Business facing tests that critique the product

Exploratory tests, User acceptance tests (Alpha and Beta) which evaluate product from

customer needs fall under Quadrant3 tests. These tests are carried out under realistic condi-

tions and provide immediate feedback. Test execution fosters learning and new tests design

(exploratory testing). (Crispin & Gregory, 2008)

Q3 tests are carried out normally by end users. Testers and developers provide support to

the customers. It is recommended to carry out these tests manually instead of automating

them.

Agile Testing

39

Q4: Technology facing tests that critique the product

Quadrant4 includes technical tests that analyze and evaluate the product. ‗ility‘ or non-

functional tests such as scalability, stability, reliability, maintainability, interoperability,

compatibility, installability and so on fall under this category. Other tests include perfor-

mance tests, load and stress tests, security and recovery tests. The importance of these tests

depends upon the customer and software to be developed and may be carried out at any

stage. Special tools and skills are required to run these tests. (Crispin & Gregory, 2008)

Mapping of agile testing techniques to agile testing quadrants ensures that product is tested

from all the aspects and provides guidelines on whether the tests should be run manually or

should be automated.

4.3 Agile Testing Methods

This section explains agile testing methods and practices as being followed by agile teams.

These methods look upon agile manifesto for guidelines and follow all four agile values as

explained in agile manifesto.

4.3.1 Test Driven Development (TDD)

Test Driven Development (TDD) is one of the core practices of XP. Its origin can be attri-

buted to Kent Beck, the father of XP. Even though TDD was first practiced in XP, it can be

implemented in any software development methodology.

TDD is based upon test first programming concepts of XP. In traditional way of software

development, developers write tests after writing code. This traditional way of develop-

ment leads to unnecessary code being written since we do not have direct mapping be-

tween requirements and code. It also sometimes leads to few of the requirements not being

implemented inside code. Writing test cases is an afterthought and it may lead to skipping

of some of the test cases. Defects are already built into the application and detected late.

TDD provides a solution to this problem by turning the process upside down and suggests

developers to write tests before writing code (Bender & McWherter, 2011). As the name

suggests, in TDD, tests drive development. TDD forces developers to think about require-

ments before writing code. This needs paradigm shift since most of the developers are ac-

customed to first writing code, followed by writing tests to verify that code. Hence devel-

Agile Testing

40

opers at first find it painful to start with tests but once they get used to this, TDD benefits

can be clearly realized.

Some people argue TDD to be a design practice and some argue it to be a testing practice,

however in agile methods, since design, development and testing are closely integrated,

hence it doesn‘t matter if we consider TDD a design approach or a testing approach (Colli-

no, 2009). TDD is basically a design technique but it creates automated tests as a by-

product which can be used for automated unit level regression testing, hence it can be con-

sidered a testing technique too (Reid, 2009).

4.3.1.1 TDD Cycle

TDD is based upon three phases of Red, Green and Refactor and can be represented in

Figure 4-5.

Figure 4-5. TDD Cycle

(Source: http://diogoosorio.com/blog/entry/test-driven-development-tdd-using-phpunit)

TDD starts with developer writing an initial test and then he tries to compile and run that

test which obviously fails (Red Phase) since there is no code written yet. The developer

then writes just minimum amount of code to pass this test (Green Phase). During the

Green Phase, the developer needs to make sure that none of the existing tests fail. The next

step in TDD is code refactoring which means developer tries to remove redundant and

duplicate code without changing its behavior. Refactoring is a normal practice followed by

developers but TDD makes it mandatory after writing each line of code. The whole cycle

http://diogoosorio.com/blog/entry/test-driven-development-tdd-using-phpunit

Agile Testing

41

of Red -> Green -> Refactor is repeated again until all the requirements have been covered

by tests and the corresponding code.

In TDD, unit tests are derived from specifications and requirements, hence by means of

running tests, we have in fact executable requirements. Tests provide a means to ensure

that intended business functionality is implemented in code. (Bender & McWherter, 2011)

TDD is based upon the rule that no functionality is added without test. A feature which

does not have an associated test is either not added or its test is written first. For a bug fix

again a test is added first which makes sure that bug is properly tested and avoids unneces-

sary rounds between development team and testers.

4.3.1.2 Benefits of TDD

Practicing TDD needs a mindset change and once it is done, it provides various advantages

in software development. Some of them are listed below:

Iterative development: TDD leads to development of small increments of code. The ini-

tial increment might not be that useful to the user but later on as more and more functional-

ity is added, working software can be delivered to customer at regular intervals.

Simpler high quality code: One of the main benefits of TDD is that it avoids unnecessary

complicated code being written. Simpler code is written just to pass the required test. Code

which doesn‘t correspond to any test and requirement is not written at all.

Direct mapping between code and requirements: TDD provides a means of direct map-

ping between code and requirements. Specifications are represented in terms of tests and

every line of code corresponds to tests. No code is written unless we have a corresponding

test for it. Passing of all tests help build confidence in developers since code matches re-

quirements.

Built in regression testing: TDD results in a set of automated unit tests as a by-product.

These unit tests provide a means of regression testing and can be run every time a new

functionality is added or a bug is fixed. This set of unit tests can also be run after code re-

factoring and hence ensure that external behavior of code is not changed after refactoring.

Tests not an afterthought: Unlike in traditional software development, tests are not an

afterthought in TDD. Testability of code is given primary importance and developers are

Agile Testing

42

forced to think in terms of user perspective. TDD ensures maximum test coverage for all

the code and builds quality in.

4.3.2 Acceptance Test Driven Development (ATDD)

Like TDD, Acceptance Test Driven Development (ATDD) also known as Executable Ac-

ceptance Test Driven Development (EATDD) is based upon test-first programming con-

cepts of XP. In ATDD also, developers write tests before writing code. However there are

some differences between ATDD and TDD. The difference lies in the nature of the tests. In

TDD, unit tests drive development, whereas in ATDD, acceptance tests or requirements

drive development. Another difference lies in the creator of these tests. In TDD, develop-

ment team writes unit tests and they may take help of customer or domain experts in this

process, in ATDD, acceptance tests are written by the customer in collaboration with do-

main experts or business analysts and testers (Park & Maurer, 2008). TDD mainly works in

the design phase and is practiced by the developers; ATDD is mainly a practice in the re-

quirements and specification phase and is practiced by both developers and domain experts

in order to have shared understanding of the specifications (Koudelia, 2011).

In ATDD, requirements are written in the form of executable acceptance tests (Park &

Maurer, 2008) and these tests are used to drive coding. Fit, FitNesse, Selenium are some of

the tools that support ATDD.

4.3.2.1 ATDD Cycle

Hendrickson (2008) in her article on ATDD has described ATDD cycle as composed of

Discuss, Distill, Develop and Demo phases with TDD at the heart of it.

Agile Testing

43

Figure 4-6. ATDD Cycle

(Source: Hendrickson, 2008)

Discuss: ATDD starts with discussion of requirements among customers and business ana-

lysts or domain experts. Once the specifications become clear, the user stories are

represented in terms of acceptance tests with clear acceptance criteria. Testers are also in-

volved in this stage. This process leads to clear understanding of requirements among vari-

ous stakeholders.

Distill: In the next stage, acceptance tests are distilled in a framework friendly format

(Hendrickson, 2008). There are table-based (FitNesse), text-based and scripting language-

based acceptance testing framework tools available (Koudelia, 2011).

Develop: In the next step, TDD cycle of Red -> Green -> Refactor is followed and accep-

tance tests are used to drive software development. Developers start with executing accep-

tance test which initially fails, then they go on writing minimum amount of code to pass

that test. Once the test passes, code is refactored to remove bad smelling code. Like TDD,

this whole process is followed iteratively till all the tests pass.

Demo: Once the tests pass (Green Phase), exploratory testing (explained in Chapter 4.3.4-

Exploratory Testing) is conducted and demo of working software is given to the customer.

Agile Testing

44

4.3.2.2 ATDD Benefits

Apart from the benefits offered by TDD, ATDD based upon executable acceptance tests

offers some additional benefits.

Shared understanding: Following ATDD practice leads to clear and common understand-

ing between customers, domain experts, testers and developers. During the ‗Discuss‘

phase, a clear acceptance criteria for an acceptance test is agreed upon and this eliminates

any ambiguity and confusion related to requirements.

Living specifications: In ATDD, business analysts don‘t write lengthy requirements doc-

uments, instead they write executable requirements in the form of acceptance tests (Park &

Maurer, 2008). These tests and hence requirements evolve constantly along with the soft-

ware development. Developers are forced to update the acceptance tests in case they

change anything in the code; otherwise the acceptance tests will fail.

Evaluation of development progress: In ATDD acceptance tests provide a means of

tracking development progress. The number of tests passed indicates how much the system

has been developed according to user requirements.

4.3.3 Feature Driven Development (FDD)

Feature Driven Development (FDD) is a ―client-centric, architecture-centric, and pragmat-

ic software process‖ (Ambler, n.d.). FDD‘s origins can be dated back to 1997 when Jeff De

Luca and Peter Codd applied concept of features to a project of large Singapore Bank. The

50 person project was implemented in 15 months (Ambler, n.d.). Later on, in 1999, Jeff De

Luca and Peter Codd published description of FDD in their book ‗Java Modeling in Color

with UML‘. Stefan Palmer and Mac Felsing also published a book ‗A Practical Guide to

Feature Driven Development‘ in 2001.

FDD is based on object oriented concepts and emphasizes upon creation of object model

prior to design and development phases. FDD is considered less agile since it stresses upon

modeling and design activities. It also defines prescribed roles and assigns responsibilities.

Features are the core pieces in FDD as user stories are in XP and Scrum. Features can be

defined as small functions which have value for the client and are expressed in the form

<action><result><object> (Ambler, n.d.). Each feature represents client requirements and

Agile Testing

45

is represented in a domain object model using Unified Modeling Language (UML) (Palmer

& Felsing, 2001).

4.3.3.1 FDD Cycle

FDD process consists of five activities with last two activities performed iteratively:

1. Develop an Overall Model

2. Build a Features List

3. Plan by Feature

4. Design by Feature

5. Build by Feature

The first three phases involve modeling and planning activities, while the last two phases

involve design and development activities.

Figure 4-7. FDD Cycle

(Source: Palmer & Felsing, 2001)

There are six main roles in FDD - Project Manager, Chief Architect, Development

Manager, Chief Programmer, Class Owner, and Domain Expert with additional roles of

Domain Manager, Release Manager, Build Engineer, System Administrator, Tester,

Deployer etc. (Palmer & Felsing, 2001).

Agile Testing

46

The five activities of FDD can be described below in detail.

Develop an Overall Model: The first step in FDD is creation of an overall model for the

project by domain experts and development team members. This is achieved by first defin-

ing the scope of the project and by conducting domain walkthroughs by domain experts.

Small teams consisting of domain experts and chief programmers for each domain are

formed and these teams create models for each domain. Chief Architect may suggest alter-

natives and guide in refinement of models. The overall object model is then prepared from

individual domain models. (Palmer & Felsing, 2001)

Roles involved: Domain experts
1
, Chief Programmers

2
 and Chief Architect

3
.

The results of first activity are creation of overall object model, class diagrams, sequence

diagrams and model notes.

Build a Features List: In the second activity, a features list is prepared by Chief Pro-

grammers. For this, domains are decomposed into subject areas which are in turn decom-

posed into business activities and business activities steps. Features are granular functions

such that a completion of feature should not take more than two weeks. In case a feature

takes more than two weeks, it is broken down into smaller features. (Palmer & Felsing,

2001)

Roles involved: Chief Programmers

Plan by Feature: During the next FDD activity, a development plan is created. The order

in which features need to be developed is planned. Chief Programmers are assigned busi-

ness activities and completion date of business activities is calculated based upon complex-

ity of features, dependencies of features and load of developers. After assignment of busi-

ness activities, classes are assigned to developers. (Palmer & Felsing, 2001)

Roles involved: Project Manager
4
, Development Manager

5
 and Chief Programmers.

1
 Domain experts are users, clients, sponsors, business analysts, or any mix of these (Palmer & Felsing,

2001).
2
 Chief Programmers are experienced developers who have been through the entire software development

lifecycle a few times (Palmer & Felsing, 2001).
3
 Chief Architect is responsible for the overall design of the system. The Chief Architect resolves disputes

over design that the Chief Programmers cannot resolve themselves. (Palmer & Felsing, 2001)

Agile Testing

47

Design by Feature: During the design by feature activity, Chief Programmers select fea-

tures for development from the features assigned to them. Feature team comprising devel-

opers who own the classes belonging to features to be developed is then formed. The de-

velopers of feature team create sequence diagrams for the features. Chief Programmers

then refine the object models to add additional classes, methods and attributes. Finally a

design inspection is held. (Palmer & Felsing, 2001)

Roles involved: Chief Programmers, Developers

Build by Feature: In the last activity of FDD, features are developed by feature team.

Class owners implement their respective features followed by code inspection, unit testing

and build process. (Palmer & Felsing, 2001)

Roles involved: Chief Programmers, Developers

The ‗Design by Feature‘ and ‗Build by Feature‘ activities are performed iteratively over

features with tasks like designing of features, coding, code inspection, unit testing, integra-

tion testing, system testing etc.

4.3.3.2 Benefits of FDD

FDD offers some distinct advantages as compared to other agile approaches. Some of them

are listed below:

Scalable: FDD is more scalable as compared to other agile approaches like XP and hence

it is more suitable for use in large and complex projects.

Tracks project progress: FDD provides ways of tracking project‘s progress by means of

features. It uses percentage of completeness of each feature to predict project completion

date (Palmer & Felsing, 2001).

4
 Project Manager is the administrative lead of the project responsible for reporting progress; managing

budgets; fighting for headcount: and managing equipment. space, and resources, etc. (Palmer & Felsing,

2001)
5
 Development Manager is responsible for leading the day-to-day development activities. He is responsible

 for resolving everyday conflicts for resources when the Chief Programmers cannot do it between themselves.

(Palmer & Felsing, 2001)

Agile Testing

48

Helps transition towards agility: FDD, being more planned agile approach, is good for

organizations transitioning from traditional approaches to agile approaches (McDonald,

n.d.).

4.3.4 Exploratory Testing

The term Exploratory Testing was coined by Cem Kaner in 1983 in his book ‗Testing

Computer Software‘. Before early 1990s, exploratory testing was also known as ad-hoc

testing.

Kaner (April, 2008) defines exploratory testing as ‗the style of software testing that em-

phasizes the personal freedom and responsibility of the individual tester to continually op-

timize the value of her work by treating test-related learning, test design, test execution and

test result interpretation as mutually supportive activities that run in parallel throughout the

project‘.

Bach (2003), author of ‗Rapid Software Testing‘ gives widely accepted definition of ex-

ploratory testing as ‗simultaneous learning, test design and test execution. Exploratory test-

ing is any testing to the extent that the tester actively controls the design of the tests as

those tests are performed and uses information gained while testing to design new and bet-

ter tests.‘

Bach & Bolton (2012) have demonstrated testing on a continuum where on one hand we

have pure scripted testing, which is planned well in advance and includes execution of pre-

defined scripts and on the other hand we have freestyle exploratory testing (pure explorato-

ry testing). Testing performed in projects can be anywhere on this continuum with varying

degrees of scripted and exploratory testing.

Figure 4-8. Exploratory Testing on a Continuum

(Source: Bach & Bolton, 2012)

Agile Testing

49

Tests are not designed in advance in case of exploratory testing and testers do not follow

step by step instructions unlike scripted testing. As the tester executes tests, he uses the

feedback gained from last test in order to write and execute new tests. Learning is the key

factor in exploratory testing. In scripted testing, scripts hardly change during the execution,

on the other hand in exploratory testing; new tests are always optimized based upon the

execution of old tests (Bach, 2003).

4.3.4.1 Exploratory Testing Methodology

Bach (2003) has mentioned five basic elements of exploratory testing namely – time, tes-

ter, product, mission and reporting. Exploratory tester interacts with a product over a pe-

riod of time to fulfill a testing mission and reports results. A charter defines the testing

mission, it may be detailed or it may just state the overall requirements. A tester then

works towards achieving this test mission. (Bach, 2003)

There are two ways to manage exploratory testing – delegation and participation. In man-

agement by delegation, a tester is assigned charter by test lead. The tester then executes

and writes tests in order to fulfill mission specified in the charter. A tester has the freedom

to execute tests on his own. He then reports the results back to the test lead. In manage-

ment by participation, test lead also participates in testing. He sits along with testers and

directs test strategy. (Bach, 2003)

Documentation in exploratory testing varies from documenting bugs to capturing all ac-

tions of testers by an automated tool which also serves as a way of regression testing later

on. Due to lack of documentation in terms of test cases and scripts, one of the drawbacks

of exploratory testing is difficulty in tracking tester‘s efforts and overall testing progress.

Session-based Test Management: In order to overcome challenge posed by exploratory

testing, Bach (2000) has devised tool-supported approach called session-based test man-

agement which helps to track testing effort on the basis of ‗session‘. ‗A session is an unin-

terrupted block of reviewable, chartered test effort‘ – Bach (2000). A session usually lasts

for 90 minutes with three sessions in a day. Time spent in meetings, emails, or conversa-

tions is excluded from a session. Only the time spent in testing the mission specified in

charter is included in a session. Testers provide session report at the end of a session or at

the end of multiple sessions which is reviewed by the test lead or test manager. A session

report usually contains information about charter (test mission and areas to be tested), tes-

Agile Testing

50

ter name, task breakdown metrics, issues, bugs, notes etc. Task breakdown metrics contain

information about time spent on various tasks in a session such as test design and execu-

tion, bug investigation and reporting. Testers also have the freedom to test outside the mis-

sion specified in charter. Session reports are scanned by a tool which provides metrics in

the form of tables. (Bach, 2000)

Session based test management is considerably a new approach and puts a lot of burden on

test manager.

4.3.4.2 Exploratory Tester Skills

Skills of tester are very important in exploratory testing. Software Engineering Body of

Knowledge (SWEBOK) indicates the same in its definition of exploratory testing ‗The

effectiveness of exploratory testing relies on the software engineer’s knowledge, which can

be derived from various sources: observed product behavior during testing, familiarity

with the application, the platform….‘ (SWEBOK, 2004). A skilled exploratory tester can

begin testing with minimal documentation and can find bugs in a small time.

Bach (2003) describes some of the distinguished skills of exploratory tester as:

- Skilled exploratory tester is a test designer who is able to design such tests that are

able to explore product from all perspectives such as risk, value, functionality etc.

- Experienced tester is a careful observer. He is able to observe bugs over and above

what is mentioned in scripts.

- Exploratory testers are critics of their own. They are able to critique their own re-

sults and findings.

- Skilled experienced testers give better ideas about testing a product than a novice

tester. They are also able to utilize wide variety of tools and resources as and when

required.

4.3.4.3 Benefits of Exploratory Testing

There are various benefits of exploratory testing but experts suggest it using along with

scripted testing in order to reap its maximum benefits. The following benefits have been

discussed in the existing literature (Bach, 2003; Itkonen & Rautiainen, November 2005;

Itkonen, Mantyla & Lassenius, September 2007):

Agile Testing

51

Rapid feedback: Exploratory testing provides rapid feedback between developers and

testers; hence any changes can be quickly accommodated in the system and tested.

Diversify testing: Exploratory testing provides a way to diversify testing. It appends

scripted testing and confirms the testing performed by test case based testing.

Effective defect detection: Studies indicate that exploratory testing leads to more efficient

testing by detecting effective and more number of bugs. A study conducted by Itkonen et

al. (2007) indicates that test case based testing produces more false defect reports as com-

pared to exploratory testing.

Minimum preparation: Exploratory testing needs minimum preparation for execution

since it doesn‘t need any scripts to start with. This is particularly helpful in situations

where testing needs to be started soon and requirements are unclear or change rapidly.

4.3.5 Specification by Example

Adzic (2011) has defined Specification by example as ‗a set of process patterns that helps

teams build the right software product by writing just enough documentation to facilitate

change effectively in short iterations or in flow-based development‘. The components of

this definition are:

Set of process patterns: Adzic (2011) has described a set of seven patterns for successful

implementation of specification by example. These patterns are described in detail in sub-

chapter 4.3.5.1-Key Process Patterns.

Right software: There is a difference between building right software and building soft-

ware right. Building right software (Validation) focuses on if the software meets the user

requirements and expectations. Building software right (Verification) focuses on if the

software meets the quality criteria. Specification by example helps to build right software

and also complements practices that ensure software is built right (Adzic, 2011).

Just enough documentation: Specification by example is based upon just enough docu-

mentation for software development. It avoids lengthy and bulky documentation as in tra-

ditional software development and utilizes documentation that is maintainable, evolving

and testable (Adzic, 2011).

Agile Testing

52

Short iterations: Like other agile methods, specification by example emphasizes product

development in short iterations. It can be used in conjunction with Scrum or XP or with

flow based processes like Kanban (Adzic, 2011).

The various terms used interchangeably with specification by example are Acceptance Test

Driven Development (ATDD), agile acceptance testing, Behavior-Driven Development

(BDD) etc. (Adzic, 2011). ATDD has already been described in chapter 4.3.2-Acceptance

Test Driven Development (ATDD). The preceding sub-chapters discuss in detail the various

concepts of specification by example. While comparing various agile testing methods and

extended V-models (see chapter 8-Comparison of Extended V-Models), the two terms -

specification by example and acceptance test driven development have been used inter-

changeably.

4.3.5.1 Key Process Patterns

Adzic (2011) has described in his book ‗Specification by Example: How successful teams

deliver the right software‘ a set of key process patterns which has been followed by teams

implementing specification by example. Figure 4-9 shows the key process patterns of spe-

cification by example.

Agile Testing

53

Figure 4-9. Key Process Patterns of Specification by Example

(Source: Adzic, 2011)

1) Just-in-time approach: The key process patterns are not followed in one shot or in

one phase. They are followed at different stages of software development and in

iterations. (Adzic, 2011)

2) Deriving scope from goals: In most of the cases, business users, customers, ana-

lysts and product owners specify scope of project in the form of user stories, use

cases or product backlog items. Development team is not involved in the process

and it simply implements those user stories and features. By providing scope, busi-

ness users indirectly provide a design of solution for which they don‘t have exper-

tise. In specification by example, development team derives scope from goals.

Business users and customers provide business goals. The implementation team

works along with users to design a high level solution in the form of user stories

and use cases to achieve those business goals. One of the ways to derive scope from

goals is to understand why some application is needed and who the users of that

application are. Understanding these two parts can lead to better solutions. Another

Agile Testing

54

way to design better solutions is to understand where the value comes from. This

helps development team to prioritize business goals and hence scope (in the form of

user stories, use cases etc.). (Adzic, 2011)

3) Specifying collaboratively: Specification by example suggests collaboration and

participation from entire team in requirements specification. Testers and developers

are suggested to work along with business analysts in specifying requirements. This

practice leads to shared understanding among team members. With developers and

testers taking part in specification process, any misinterpretation of requirements at

a later stage during development is avoided. Skills and expertise of team members

is exploited and it leads to specification of requirements from business as well as

technical perspective. (Adzic, 2011)

Collaboration models: Adzic (2011) has suggested different models for collabora-

tion of entire team. The choice of collaboration model depends upon product‘s ma-

turity, availability of business users and level of domain knowledge in the team.

All-team workshops: Teams starting with specification by example are sug-

gested to begin with all team workshops. These are big workshops involving all

team members. These type of workshops lead to knowledge sharing among

team members. All-team workshops are hard to organize since they involve lot

of participants. Once the team has sufficient domain knowledge, other types of

collaboration models can be used. (Adzic, 2011)

Three Amigos: Another type of collaboration model is smaller workshops.

These workshops involve one developer, one tester and one business analyst

and are called Three Amigos. These type of workshops are easier to organize

and are suggested when developers and testers need frequent clarifications re-

garding requirements and domain. (Adzic, 2011)

Pair-writing: In case of mature products, where developers have sufficient do-

main knowledge, it is suggested to write tests in pair. Developers can form pairs

either with testers or with business analysts. Developers-analysts pairs make

sure that tests are written from business as well as technical perspective. Devel-

opers-testers pairs help testers to get an overview of executable specifications

and help them to plan automation in advance. (Adzic, 2011)

Agile Testing

55

Frequent review of tests by developers: This form of collaboration is sug-

gested in projects where analysts write tests. Analysts write acceptance tests

and get them reviewed from developers. This saves developers‘ time and allows

them to spend more time on implementation. (Adzic, 2011)

Informal conversations: Informal conversations are suggested in situations

where business users and development team sit close to each other. These con-

versations happen on demand and between anyone who is involved in the

project. (Adzic, 2011)

Table 4-1 summarizes the various collaboration models discussed.

Collaboration

model

Participants Applica-

ble situa-

tion

Product

maturity

Domain

know-

ledge of

team

members

Availability

of business

users

All-team work-

shops

Entire team Starting with

specification

by example

Immature

product

Less Less

Three Amigos Developer,

tester, business

analyst

Frequent

clarifications

required

Immature

product

Less More

Pair-writing Developer-

analyst or De-

veloper-tester

Mature

product

Mature

product

More More

Review of tests

by developers

Analysts and

developers

Analysts

write tests

Mature

product

More More

Informal con-

versations

Anyone having

stake in project

Business

users readily

available

Mature

product

More More

Table 4-1. Collaboration models in specification by example

(Source: Adapted from Adzic, 2011)

Agile Testing

56

4) Illustrating using examples: Requirements written in natural language can lead to

misinterpretation by various stakeholders and team members. Specification by ex-

ample suggests representation of requirements in the form of examples. These ex-

amples illustrate the expected functionality of product. Illustration of requirements

in the form of examples is useful in case of complex domains where specification

of requirements in natural language is difficult. Choice of key examples is an im-

portant point to be considered. Developers and testers help business users and ana-

lysts in finding corner cases and representation of those cases in the form of exam-

ples. Examples should be precise, realistic and easy to understand by all stakehold-

ers. (Adzic, 2011)

5) Refining specification: It is important to refine the specification and remove extra

details from it. A specification should be precise and it should describe what the

application does rather than how it does it. Business users often create examples of

user interface of application. These details should be removed from examples. Spe-

cifications in the form of examples can serve as acceptance tests and criteria for the

entire team. (Adzic, 2011)

Adzic (2011) has suggested some characteristics of an ideal specification. It should

be:

- precise

- testable

- not a script

- about business functionality and not about software design

- not tightly coupled with the code

- self explanatory

- focused

- in domain language

6) Automating validation without changing specifications: Specifications

represented by examples are used for validating system during development to

make sure the developed product meets user needs. This process of validation needs

to be faster in case of short iterations in order to provide quick feedback. Hence it is

suggested to automate the validation process. The automation should not change

the specifications. If technical automation like in development and testing is used to

Agile Testing

57

automate specifications, there are chances of loss of information. Also, technically

automated specifications cannot be understood by business users. There are some

tools like Concordion, FitNesse etc. which help in automating specifications. These

automated specifications are called executable specifications and these can be ex-

ecuted and utilized by any stakeholder.

7) Validating frequently: System should be validated against executable specifica-

tions as often as possible. Executable specifications should be in sync with the sys-

tem functionality at all the times. Any changes required in the specifications can be

made after discussion with the business users. In case of large teams spread across

multiple sites, the validation process might take long hours. Also, if there is any er-

ror, it is hard to detect. In such situations, it is suggested to set up multistage valida-

tion. Each site/team can have an isolated validation environment. Any changes

made should be checked in this isolated environment first. If all tests pass in this

environment, changes can be checked in central validation environment. (Adzic,

2011)

8) Evolving a documentation system: Executable specifications should provide a liv-

ing documentation system. The specifications should be easy to read, understand,

find, consistent and access. They should be continuously updated, always

representing current requirements. Any stakeholder and team member should be

able to access executable specifications and understand them.

4.3.5.2 Benefits of Specification by example

Specification by example offers various benefits in software development.

Living documentation: Living documentation system is achieved by executable specifica-

tions. This system is understandable by everyone in the team. Any changes made in the

specifications are reflected immediately by this system and communicated across all team

members.

Shared understanding: Specification by example leads to shared understanding among

team members. Collaboration, being the main pillar of specification by example leads to

knowledge sharing and avoids miscommunications or misinterpretations.

Continuous validation: By means of executable specifications, system is continuously

validated against requirements.

Agile Testing

58

Business-IT alignment: Specification by example leads to business and IT alignment.

Requirements specified collaboratively by both technical as well business representatives

enable this alignment.

Hypothesis Formulation

59

5 Hypothesis Formulation

In this chapter, hypotheses will be formulated and discussed. These hypotheses are based

upon results of surveys presented in Chapter 1.2-Motivation and various benefits of agile

testing methods described in literature and presented in preceding chapters. First detailed

motivation behind use of agile testing methods is discussed and then hypothesis based

upon that motivation is formulated.

These hypotheses discuss various perceived benefits of inclusion of agile testing methods

inside V-model.

Motivation 1: Early and Often Testing

A study conducted by National Institute of Standards and Technology (NSIT) (2002) indi-

cates that relative cost of fixing bugs in the beta testing phase is 15 times as compared to

fixing it in the requirement analysis phase.

Table 5-1. Relative Cost of Fixing Defects

(Source: NSIT, 2002)

Table 5-1 shows that defects detected at design and coding phases are easier and less ex-

pensive to fix as compared to ones found during testing and production phases.

Reduction of cost of development and improvement in software quality are the major ob-

jectives of software development firms. One of the possible ways to achieve these objec-

tives is early detection and fixing of bugs. This can be in turn achieved by conducting test-

ing as early as possible in the software development lifecycle. Since agile methods encour-

age testing along with development, hence agile testing practices are the recommended

solution.

Hypothesis Formulation

60

Hypothesis 1: ―Agile testing methods when embedded inside V-model will lead to early

and often testing and hence bugs being detected earlier in the software development life-

cycle”

Motivation 2: Regular Customer Feedback

‗Paradox of Expertise‘ in psychology states that an expert sometimes thinks to know things

that he actually doesn‘t really know. The ‗You know it all‘ conception of experts prevents

them from further learning (Eikenberry, 2009). Sometimes experts think that they know

everything and this prevents them from listening to others having lesser experience (Ei-

kenberry, 2009).

Another case when expertise paradox occurs is when experts cannot describe their actions

in detail. When an expert solves so many problems in a domain, their solving becomes

hardwired in brain and it becomes automatic. They can solve more problems, but cannot

describe in detail step by step process of solving. ("The Expertise Paradox", 2011)

Sometimes end users of software cannot express their implicit knowledge in a way that

developers can understand. A user cannot decide and express his needs until and unless he

has a look at the working software. A stakeholder after looking at the working software

may realize that this was not exactly what he really wanted. Also, it is very rare that re-

quirements remain fixed during course of software development. Customer requirements

keep on changing because of technology changes or market changes.

Hence it is really important to involve customer in the software development and get regu-

lar customer feedback.

Traditional software development approaches engage customer only at the beginning and

at the end of project which results in delayed feedback and misinterpretation of require-

ments. On the other hand, iterative software development approaches and agile methods

engage customer at regular intervals. Product is developed iteratively and after every itera-

tion, working prototype is shown and delivered to the customer.

Hypothesis 2: “Agile testing methods when embedded inside V-model will lead to regu-

lar customer feedback and hence will be able to react quickly to changing customer re-

quirements”

Hypothesis Formulation

61

Motivation 3: Reduced Development Time

Time-to-market is an important factor in today‘s competitive industry. The success stories

of companies like Apple and Samsung, companies in the automotive sector can be attri-

buted to this factor. Companies struggle hard and try to get their innovative product as

quickly as possible in the market in order to gain early and maximum market share.

Agile methods lead to reduction in development cycle times and hence time-to-market.

Frequent feedback, testing, and shorter releases are some of the techniques employed by

agile methods which reduce development times.

This view is supported by results of surveys conducted by VersionOne and Ambysoft

which are presented in Chapter 1.2-Motivation. This leads to third hypothesis related to

benefits of adoption of Agile testing inside V-model.

Hypothesis 3: “Agile testing methods when embedded inside V-model will lead to reduc-

tion in development cycle times”

Motivation 4: Better Product Quality

In today‘s world, customers are very demanding and expect excellent quality product.

Agile testing methods build quality in by techniques like continuous integration, pair pro-

gramming, exploratory testing, test driven development, refactoring, on-site customer etc.

Testing is considered with priority instead of last step in the development cycle.

Hypothesis 4: “Agile testing methods when embedded inside V-model build better quali-

ty product”

The hypotheses formulated above will be proven true or false with the help of real world

case studies. These case studies making use of agile testing methods inside traditional ap-

proaches will be analyzed in order to examine if the merits discussed in literature regarding

adoption of agile methods are also practically true.

Towards Hybrid Approaches for Software Development

62

6 Towards Hybrid Approaches for Software Development

In this chapter, hybrid approaches combining traditional and agile methodologies for soft-

ware development have been discussed. The need for such hybrid approach has been ex-

plained and extended V-models with embedded agile testing methods have been presented.

6.1 Agile vs. Plan-Driven Approaches

Boehm & Turner (2003) have identified home grounds in four areas namely Application,

Management, Technical and Personnel for agile and traditional approaches where they

work best.

Application: Agile methods work best in smaller projects of size up to 40 members, how-

ever there have been cases where agile methods have been able to scale up. Traditional

methods on the other hand work well in larger and complex projects. In terms of environ-

ment, agile methods are most appropriate for turbulent, high change environment where

requirements keep on changing. Traditional methods are best suited for projects with stable

requirements with change rate of only 1 percent per month. (Boehm & Turner, 2003)

Management: Agile and plan-driven methods differ in the way they are managed. Agile

methods depend upon close customer interaction. They stress upon regular customer in-

volvement and feedback. Product delivery is considered more important than planning.

Team‘s tacit knowledge is the base for planning rather than documentation. Traditional

methods on the other hand are based upon formal contract between customer and develop-

ers. Extensive planning mechanism and documentation is used upfront in order to avoid

any risk. (Boehm & Turner, 2003)

Technical: In agile methods, development takes place in short iterative cycles delivering

potential usable product at the end of each iteration. Simplicity is the basis of agile me-

thods like XP where simple architecture and design is stressed upon. In techniques like

TDD and ATDD, tests are written before code and tests drive development. Plan-driven

methods depend upon upfront requirements gathering and analysis. Most of the require-

ments are explained in the beginning of the project and agreed upon. In traditional me-

Towards Hybrid Approaches for Software Development

63

thods, testing occurs as the last phase of software development and hence they suffer from

expensive ‗late design breakage‘ which has already been explained in Figure 2-2.

Personnel: Agile methods‘ success depends upon Collaborative, Representative, Autho-

rized, Committed and Knowledgeable (CRACK) customers. On-site customer presence is

considered very important. Plan-driven methods also benefit from the presence of CRACK

customers but it is not the requirement. Agile methods have the dependency on highly ex-

perienced and skilled developers – 30 percent full-time level 2 and level 3 resources (See

Chapter 1Appendix C for description of personnel levels). Traditional methods can work

with mixture of low skilled and high skilled resources. In terms of culture, agile approach-

es work in a chaotic environment, whereas plan-driven approaches work in an environment

with clearly defined roles and responsibilities. (Boehm & Turner, 2003)

6.2 Need for Hybrid Approaches

While agile and plan-driven methods work best in specific project environments, question

arises why do we need hybrid approaches combining agile and plan-driven methods.

Boehm (2002) argues the importance of hybrid approaches outside the home grounds of

agile and plan-driven methodologies. There is a need for a balanced approach which reaps

the benefits of two and compensates their weaknesses (Boehm & Turner, 2003).

Various surveys indicate rising popularity of hybrid approaches. A report by Forrester Re-

search indicates this trend. In one of the surveys conducted by Forrester Research in 2009,

39% of the respondents said that they mix different agile methodologies and 35% said that

they mix agile and traditional methods. (West, Grant, Gerush & D‘Silva, 2010)

Below are some of the reasons that demand use of hybrid approaches:

1) Need for balance: There is a need for balance to be maintained between agility and

stability. Agility provides flexibility and space for innovation, stability on the other

hand provides assurance and risk prevention (Vinekar, Slinkman & Nerur, 2006).

Agility leads to chaos, stability leads to bureaucracy. ‗Neither agile nor plan-driven

methods provide a methodological silver bullet‘ – Boehm & Turner (2003). Suc-

cessful organizations need both agility and discipline. (Boehm & Turner, 2003)

Vinekar et al. (2006) suggest ambidexterity as the possible solution. An ambidextr-

ous organization with agile and traditional subunits will be able to respond to

Towards Hybrid Approaches for Software Development

64

changing requirements without compromising stability. It will be able to provide

explorative6 as well as exploitative7 abilities.

Figure 6-1. Ambidexterity as the solution

(Source: Vinekar et al., 2006)

2) Compensation for each method‟s weaknesses: Hybrid approach combining both

agile and traditional software development processes in a right way can compensate

for each method‘s weaknesses and provide maximize benefits from both. It can

strike a perfect balance on below aspects:

Planning: Agile methods employ minimum planning techniques which might work

in smaller projects but in larger projects, considerable planning is required to avert

any future risks. Plan-driven methods employ huge upfront planning techniques

which results in huge effort being spent and delayed time-to-market. Hybrid ap-

proach combining planning techniques of agile methods with those of traditional

methods can maximize benefits resulting in risk aversion and faster time-to-market.

Documentation: Agile methods rely on tacit knowledge of the team members

(Boehm, 2002). Hence if some team member leaves the team or company, there is a

risk of losing this knowledge. Tacit knowledge also doesn‘t work well in large

projects and organizations. Traditional methods on the other hand rely too much on

documentation which becomes obsolete and needs to be changed every time there

6
 Explorative innovations are radical innovations, designed to meet demands of emerging customers and

markets. They are based upon acquiring new knowledge and skills. A non-hierarchical structure and in-

formal communication in an organization promotes explorative innovations. (Jansen, Van Den Bosch &

Volberda, 2006)
7
 Exploitative innovations are incremental innovations, designed to meet demands of existing customers and

markets. They are based upon existing knowledge and skills. A hierarchical organization with centralized

decision making promotes exploitative innovations. (Jansen, Van Den Bosch & Volberda, 2006)

Towards Hybrid Approaches for Software Development

65

is change in requirements. Hybrid approach with neither too less nor too much do-

cumentation can provide a viable solution.

Risk management: Both agile and traditional methods employ different risk man-

agement strategies. Agile methods avert risk by frequent delivery, regular feedback

and continuous integration. Traditional methods avert risk by documentation, plan-

ning and well defined architectures. Hybrid approaches can prove beneficial by

combining risk aversion strategies of both the methods.

Customer involvement: As explained earlier, success of agile methods depends

upon availability of CRACK customers. In some situations, clients might be un-

available or not willing to get too much involved into the project. In such situations,

there are high chances of failure of agile projects.

One of the examples of such failures is C3 project, the first XP project which failed

because of the replacement of on-site customer in the middle of the project. New

on-site customer was not able to define user stories as clearly as the old on-site cus-

tomer which led to project being cancelled. (Boehm & Turner, 2003)

Plan-driven methods only involve customer at the beginning and at the release of

software which doesn‘t work in situations with changing requirements. Hybrid ap-

proach which is not too much dependent upon customer for its success and involves

customer at regular intervals will be the optimal solution.

3) Need for flexibility in larger projects: Apart from high assurance provided by

plan-driven methods, today‘s fast paced market demands the need for flexibility

and speed in larger and complex projects. Agile methods are flexible to changing

environment. Hence hybrid approaches combining agile methods in a traditional

approach can provide a solution.

4) Requirement of appropriate mix of testing techniques: Both agile and plan-

driven methods use different testing techniques for product quality. Agile methods

use constructive activities which build quality in the product (Itkonen, Rautiainen

& Lassenius, 2005). Developers perform tester role too and test their own code.

Traditional methods use destructive testing techniques where independent testing

team tests product with the purpose of finding errors in it.

Itkonen et al. (2005) have contrasted between heartbeat quality assurance activities

of agile methods and release quality assurance activities of traditional methods.

Heartbeat quality assurance activities build quality in product during development

Towards Hybrid Approaches for Software Development

66

or construction phase. Agile techniques like continuous integration, TDD, Pair-

programming, refactoring etc fall into this category. Release quality assurance ac-

tivities test product at the end of release and are performed by an independent test-

ing team. Traditional methodologies mostly employ this technique. (Itkonen et al.,

2005)

Testing is an important aspect of software development. Both agile and traditional

methods can benefit by adopting each other‘s testing techniques.

6.3 Challenges of Hybrid Approach Implementation

Proper care needs to be taken while combining agile and traditional approaches since the

two contrast each other in various dimensions. Adoption of agile methods inside traditional

models poses various challenges which need to be considered and tackled accordingly in

advance. Nerur, Mahapatra & Mangalaraj (2005) have identified these challenges occur-

ring at four levels – management and organizational, people, process and technology.

1) Management Challenges: Adoption of agile methodologies poses significant man-

agement challenges which can further be categorized into three levels – manage-

ment style, management attitude and Reward systems

Management style: Traditional methods employ ‗command and control‘ style of

management. Software is developed in phases with assigned roles and responsibili-

ties for each phase. Management structure is hierarchical with top management in-

volved in big decisions. Agile methods on the other hand employ ‗leadership and

collaboration‘ style of management. Stakeholders and developers take part in deci-

sion making process. Teams are self-organized with developers having decision au-

tonomy on the assignment of tasks. Hence, it poses a significant management chal-

lenge to shift from command and control style of management to leadership and

collaboration style of management. (Nerur et al., 2005)

Management attitude: Project manager in traditional methods acts as a planner

and controller, whereas in agile methods, he acts as a facilitator and coordinator

(Nerur et al., 2005). He plays roles of protector and coach, guiding team and resolv-

ing barriers faced by it (Boehm & Turner, 2005). Adoption of agile methods needs

change in project manager‘s role and attitude. Sometimes, managers find it difficult

Towards Hybrid Approaches for Software Development

67

to give up the autonomy and authority they enjoyed earlier in traditional methods

(Nerur et al., 2005).

Reward systems: Adoption and transition to agile methods needs changes in re-

ward systems in an organization. Team-work is an important aspect of agile devel-

opment. In contrast to individual contributors in traditional processes, we have

team-contributors in agile processes (Boehm & Turner, 2005). Reward systems

need to be changed in order to recognize and reward team-contributors.

Organizational culture: Schein (2010) has defined culture in his book ‗Organiza-

tional Culture and Leadership‘ as ―a pattern of shared basic assumptions learned by

a group as it solved its problems of external adaptation and internal integration…‖.

Schein (2010) mentions one of the sources of culture as the learning experiences of

group members as their organization evolves. Hence the more established and ma-

ture the organization is, the more deeply rooted its organizational culture is.

Organizational culture affects the actions and behavior of people (Nerur et al.,

2005). It has significant impact on their decision making processes, strategies, in-

novation practices and planning and control mechanisms (Nerur et al., 2005). Cul-

ture change is difficult and time-consuming (Schein, 2010) which makes the adop-

tion of agile methods in existing processes difficult. It is even more harder for lega-

cy systems.

2) People Challenges: People are the key factor in software development. Boehm &

Turner (2003) have righty said ―Software engineering is done of the people, by the

people and for the people.‖ People challenges are categorized into below levels ac-

cording to the roles:

Developers‟ issues: Developers in traditional methods need to adapt to agile prac-

tices like TDD, pair-programming, continuous integration to name few. This needs

change in mindset and requires time till the developers get used to using these tech-

niques and methods.

Testers‟ issues: Testers in traditional approaches are used to working in an inde-

pendent team. Hence they find it difficult to adapt to working in a collaborative

manner with developers. Testers are used to writing test cases from lengthy re-

quirements documents; hence they find it difficult to write test cases from user sto-

ries and cards.

Towards Hybrid Approaches for Software Development

68

Customers‟ issues: Agile methods rely on availability of CRACK customers.

Many times it is difficult to find dedicated and knowledgeable clients who are will-

ing to take active part in software development. Hence customer involvement needs

to be optimized while adopting agile practices otherwise it poses a threat to project

success.

Staff issues: Agile methods‘ dependency on experts poses another challenge to

their adoption. It is sometimes difficult to find sufficient number of experts for

software development team (Nerur et al., 2005).

3) Process & Environment Challenges: Agile and traditional methodologies differ in

many aspects with respect to their processes which poses another challenge while

bringing the two methods together in an organization.

Contrasting processes: Agile and traditional methods have contrasting processes

in terms of release cycles, process progress metrics, development practices and

tools. In contrast to traditional methods, agile methods emphasize development in

short iterative cycles with frequent deliveries. The two methodologies also vary in

the way requirements are defined. The shift from phased approach to development

to iterative approach is difficult.

Compliance adherence: Another challenge for adoption of agile methods is re-

quirement of organizations for standards and compliance adherence. Agile methods

with emphasis on less documentation and processes, normally don‘t qualify for

process ratings and certifications (Boehm & Turner, 2005). However CMMI, ISO

and compliance to other process standards is required in case of safety critical areas

and software (Boehm & Turner, 2005). Hence organizations adopting agile me-

thods need to strike proper balance so that their processes adhere to standards if re-

quired.

Nerur et al. (2006) have used the framework for organizational change by Adler and Shen-

har (1990) to explain the level of impact and time required by organizations to tackle vari-

ous challenges described above.

Towards Hybrid Approaches for Software Development

69

Figure 6-2. Framework for Organizational Change

(Source: Adler & Shenhar, 1990)

Of the three categories of challenges described above, process challenges occur at the skills

and procedures level, hence the magnitude of change is small and the time required for

adjustment is also short. However management and people challenges occur at the culture

and strategy level and hence the magnitude of change is large and the time required for

adjustment is also long. (Nerur et al., 2006)

Extended V-Models

70

7 Extended V-Models

In this chapter, hybrid approaches for adoption of agile testing methods inside traditional

V-model have been suggested. V-model has been extended to include agile testing ap-

proaches. The presented extended V-models try to keep challenges discussed in chapter

6.3-Challenges of Hybrid Approach Implementation to a minimum. Care has been taken

that these models require minimum changes to existing processes and roles and hence are

easier to adopt in an organization.

7.1 SCRUM and V

This section discusses the hybrid approach of blending Scrum inside V-model. Although

Scrum doesn‘t provide any specific testing techniques but it provides the agile process

management framework (Rong, Shao & Zhang, 2010). Scrum prescribes management

practices which when implemented inside projects managed by traditional approach can

lead to flexibility and stability at the same time. It can provide benefits of both agile as

well as traditional development. The suggested approach has been named as V-SCRUM-V

inspired from Water-Scrum-Fall approach suggested by West (2011). The hybrid approach

is depicted in Figure 7-1.

Figure 7-1. V-SCRUM-V Model

Extended V-Models

71

7.1.1 V-SCRUM-V Model in Detail

The hybrid approach described in V-SCRUM-V model uses V-model framework and

blends Scrum inside it. The initial phases like requirements analysis and design are based

upon traditional concepts. However, coding and testing phases are based upon iterative

concepts of agile development. The later phases of system testing and acceptance testing

are again based upon traditional development concepts. Strict V-methodology and strict

Scrum is not followed, but best practices from both the methodologies have been combined

in all the phases. Hayata & Han (2011) have suggested a similar model for software devel-

opment which is based upon Waterfall-Up-Front and Waterfall-At-End concept. However,

they haven‘t provided detailed explanation of the model and the possible ways of its im-

plementation.

In order to support the development and testing phases, requirements from the users need

to be presented in the form of user stories. Acceptance criteria could be included in user

stories so that developers and testers are on same page (Schiffmann, 2012). Unlike tradi-

tional development methodology, 100% requirements need not be defined in the require-

ment analysis phase. However, critical requirements should be defined upfront. This leads

to flexibility and ability to accommodate changing requirements. Overall system design

specifying major components should be completed before coding. Detailed architecture

design evolves during the sprints.

Scrum methodology should be followed during the coding and testing phases. User stories

should be prioritized and presented in a product backlog. Unlike Scrum, independent test-

ing team should perform product testing. The usual sprint duration of 4 weeks can be di-

vided into two 2-week mini sprints of development and testing. The role of independent

testing team and the reason for its inclusion is described in chapter 7.1.4-Independent Test

Team. Apart from following Scrum inside development team, it can also be followed in-

side test team. The next chapter describes the use of Scrum inside test team. After devel-

opment and testing, the overall system testing should be conducted. User acceptance test-

ing in the customer environment should also be performed and after that product is ready

for delivery. Incase customer is interested, potential product increments can be released to

the customer at an earlier stage during Scrum sprints.

Extended V-Models

72

7.1.2 SCRUM inside Test Team

In V-SCRUM-V model, development and test teams follow Scrum practices and product is

developed in iterations known as sprints which deliver potentially shippable product at the

end of each sprint. After 2 weeks of mini sprint, development team can hand over devel-

oped user stories to the independent test team for testing which again follows Scrum and

performs testing for another 2 weeks. Scrum practices based upon the principles of transpa-

rency, inspection and adaption can lead to improved management practices inside test

team. The implementation of Scrum inside test team has been inspired by an article from

Schiffmann (2012) in Agile Record magazine.

Test Product Backlog: After the mini sprint of 2 weeks in development team, Quality

Assurance Manager or Test Manager can pick developed user stories and present them in a

separate test product backlog or same product backlog utilized by the development team

can also be used.

Sprint Planning meeting: Before testing in a mini testing sprint begins, the test product

backlog can be presented to all the test team members by the Quality Assurance Manager

or Test Manager where each member decides on its own the stories to test.

Daily Scrum test meeting: Daily Scrum meetings could be performed inside the test team.

Quality Assurance Manager or Test Manager could organize such meetings. Test lead can

lead these meetings. Daily Scrum meetings can help in identifying any impediments to

testing and resolve them on time (Schiffmann, 2012).

Sprint Retrospective meeting: At the end of mini testing sprint, a retrospective meeting

can be organized in which all test team members can provide their feedback and areas of

improvement can be identified.

Test Boards and Burn-down Charts: Schiffmann (2012) suggests use of test boards simi-

lar to task boards which present all the items to be tested along with their status. Burn-

down charts can also be used in the testing team (Schiffmann, 2012).

7.1.3 Mapping of Roles

The V-SCRUM-V model provides benefits of traditional development in terms of clear

roles and responsibilities. Since Scrum is followed inside development and testing phases,

Extended V-Models

73

hence care needs to be taken while defining roles. Table 7-1 suggests one way to map tra-

ditional roles with Scrum roles, avoiding any duplicity.

V-SCRUM-V Model Role SCRUM Role

Business Analyst / Product Manager Product Owner

Software Architect Scrum Team

Developer Scrum Team

Tester Scrum Team

Development Manager Scrum Master in development team

Quality Assurance Manager / Test Manager Scrum Master in test team

Table 7-1. Mapping of V-SCRUM-V and SCRUM Roles

The role of Product owner in Scrum can be performed by Business Analyst or Product

Manager since he is responsible for gathering customer requirements and has the clear un-

derstanding of customer needs. A representative from customer should also be involved

during the development process to provide frequent feedback from user perspective.

We have cross-functional team inside Scrum where developers are also responsible for

testing. Since testers are specialized in testing techniques and they test application from

user point of point, hence clear roles of developers and testers are suggested in hybrid ap-

proach.

The role of Scrum Master inside development team can be performed by Development

Manager after proper training. Since within an organization in a traditional setup, devel-

opment manager is familiar with traditional plan-driven concepts, hence after proper

Scrum training, he should be able to blend and utilize best practices from both the ap-

proaches. He should be responsible for making sure that proper Scrum process is followed

within the team and should remove any impediments being faced by the team. Similarly,

Quality Assurance Manager or Test Manager can serve the role of Scrum Master in test

team.

Extended V-Models

74

7.1.4 Independent Test Team

As described earlier in chapter 6.2-Need for Hybrid Approaches, agile methods employ

constructive testing techniques as compared to traditional methods which employ destruc-

tive testing techniques. V-Scrum-V model suggests use of an independent testing team.

This team is independent in the sense that it is a separate team which works closely with

the development team. This team should be responsible for testing user stories at the end of

2-week development mini sprint. Itkonen et al. (2005) and Nawaz & Mallik (2008) also

support use of independent test team.

In psychology, ‗Theory of Cognitive Dissonance‘ states that people sometimes have con-

flicting cognitions (knowledge, opinion, or belief about the environment, about oneself, or

about one‘s behavior) which leads to dissonance (feeling of discomfort) and people try to

reduce this dissonance (Festinger, 1962). Applying this theory to software development, it

is difficult for a developer to detect and accept bugs in his own code. An independent tester

is required who will test the application with an intention of finding bugs in it (Nawaz &

Mallik, 2008). A professional tester can test the application from customer perspective.

It is also important that test team should work in collaboration with the development team.

Nawaz & Mallik (2008) have suggested a communication model for effective working of

an independent testing team in agile development. This communication model suggests

testers, developers and customers working very closely and all three actors participating in

all the meetings. Pair testing is one of the recommended techniques where testers sit along

with developers and test the system. (Nawaz & Mallik, 2008)

7.1.5 Benefits of V-SCRUM-V Hybrid Approach

The V-Scrum-V hybrid approach discussed above offers various benefits in software de-

velopment. Traditional organizations attempting to go agile can definitely benefit from this

model.

1. Iterative development: V-SCRUM-V approach offers a way of including iterative

development inside traditional setup. This model incorporates flexibility to respond

to changing customer requirements and avoids unexpected delays caused by late

design breakage.

Extended V-Models

75

2. Prioritized requirements: By means of product backlog and prioritized user sto-

ries, more riskier and valued requirements can be developed first. If customer wants

any functionality earlier, it can be developed first in a sprint.

3. Improved visibility: The hybrid model leads to improved visibility by means of

task/test boards and daily sprints. This can lead to effective resource handling with-

in the team.

4. Easy mapping of roles: The hybrid approach presented above offers a simple way

to blend agile practices inside existing V-model. There is direct mapping of roles of

two approaches without need of additional roles.

5. Provides a base: Since V-SCRUM-V model provides a framework for including

Scrum management practices inside V-model, it can be extended to include other

agile testing techniques like TDD, ATDD, FDD etc.

7.2 TDD inside V-Model

Test first programming concepts of XP can be followed inside traditional V-model. This

section describes blending of TDD, one of XP practices inside V-model. It presents an ex-

tended V-model and discusses the various benefits of hybrid approach.

7.2.1 TDD-V Extended Model in Detail

TDD concepts can be adopted inside V-model. Figure 7-2 shows an extended V-model

with TDD embedded in it.

Extended V-Models

76

Figure 7-2. TDD-V Extended Model

In the extended V-model shown above, TDD has been implemented inside coding phase.

All other phases follow V-model for software development. The process begins with re-

quirements analysis, followed by system and architecture design. The coding phase has

been modified to include TDD practices. In the coding phase, developers write tests before

writing code. They follow TDD cycle of Red -> Green -> Refactor and make sure none of

the tests fail after implementation. V-model phases of validation are followed afterwards.

Unit testing, integration testing, system testing and user acceptance testing are conducted

to deliver quality product.

In order to achieve maximum benefits of TDD, another possible suggestion is shown in

Figure 7-3. In this model, the TDD-V extended model shown in Figure 7-2, is followed in

iterations. The process starts with initial requirements gathering from the user. The re-

quirements are divided into sets and for each set of requirements; TDD-V extended model

is followed in iterations. This leads to iterative development and customer feedback can be

gathered after each iteration. Any change in requirements can also be accommodated in

Extended V-Models

77

next iteration. Number of iterations depends upon the complexity and number of require-

ments and the capacity of development team.

Figure 7-3. TDD-V Extended Model with Iterations

7.2.2 Mapping of Roles

TDD-V extended model doesn‘t need any specialized roles for its implementation. It just

needs a change in mindset of developers. They need to get used to writing tests before

writing code.

7.2.3 Benefits of TDD-V Extended Model

TDD when embedded inside V-model provides various benefits:

1) Iterative development: TDD-V extended model is based upon iterative development.

Product is developed in iterations and after each iteration; product increment can poten-

tially be delivered to customer.

2) Ability to accommodate changing requirements: TDD-V extended model is able to

accommodate changing customer requirements. After iteration, developed increment

can be shown to customer and if it doesn‘t meet his expectations or if requirements

have changed meanwhile, they can be accommodated during next iteration.

3) Cleaner design and code: TDD-V extended model improves development practices. It

leads to cleaner design and code by avoiding unnecessary code being written by devel-

opers.

Extended V-Models

78

4) Based upon existing roles and responsibilities: TDD-V extended model doesn‘t in-

troduce any new roles and responsibilities and is based upon existing roles of V-model.

This makes its implementation easier.

7.3 ATDD inside V-Model

Like TDD, ATDD can be embedded inside V-model. However, ATDD is based upon ac-

ceptance tests as compared to unit tests in TDD. Use of acceptance tests forces developers

to write code from customer perspective and makes testing an integral part of development.

7.3.1 ATDD-V Extended Model in Detail

Figure 7-4 shows ATDD-V extended model.

Figure 7-4. ATDD-V Extended Model

Like traditional V-model, ATDD-V extended model starts with requirements analysis

phase in which requirements are gathered from users. In this phase requirements from us-

ers are expressed in the form of acceptance tests and these tests are written by users in col-

Extended V-Models

79

laboration with domain experts and testers. This phase can be mapped to ‗Discuss‘ phase

in ATDD. After discuss phase, tests are represented in table-based or text-based format

(Distill phase). After this, high level architecture of system is designed by architects. The

main phase which has been modified to accommodate ATDD inside V-model is coding

phase. In this phase, test-first programming concepts are followed. Developers follow TDD

and write tests before code. Small subsets of acceptance tests are taken iteratively through

TDD cycle and developed increment is tested by an independent test team working closely

with developers. After testing, the developed increment is shown to the customer (Demo

phase) and any change needed is accommodated. Again in next iteration, small subset of

acceptance tests is taken and this process is followed iteratively. After the product has been

developed, overall system testing should be conducted. During the last phase of user ac-

ceptance testing, all the acceptance tests written by customer during the beginning of the

project are run in the customer environment.

7.3.2 Mapping of Roles

ATDD-V extended model doesn‘t need any roles different from traditional V-model. How-

ever, there is a need to change developers‘ mindset. They need to get accustomed to TDD

and work with acceptance tests. Another requirement is high customer involvement. Cus-

tomers need to be more dedicated. They need to write acceptance tests with testers and

domain experts and also take active part in demo phase.

7.3.3 Benefits of ATDD-V Extended Model

ATDD when embedded inside V-model leads to better development practices and hence

consequently better product quality. Some of its benefits are listed below:

1. Tests as a by-product: ATDD-V extended model creates acceptance tests as a by-

product. These tests can later be utilized by customers during user acceptance test-

ing. Hence this model avoids rework.

2. Added benefits: Since ATDD-V extended model embeds TDD inside coding

phase, hence apart from providing other benefits, it provides all the benefits of

TDD also.

Extended V-Models

80

3. More clarity: In ATDD-V extended model, acceptance tests are written by cus-

tomer. Hence there is no confusion between team members regarding expected be-

havior

4. Accommodate changing requirements: In ATDD-V extended model, acceptance

tests are always evolving. If requirements change, customers can update tests and

developers are forced to update code, otherwise tests will fail. Hence developers are

indirectly forced to accommodate changing customer requirements.

7.4 FDD inside V-Model

FDD, being considered less agile because of defined roles and responsibilities and model-

ing activities, provides a good fit for adoption inside traditional model of software devel-

opment. FDD works upon splitting of requirements into features and utilizes best practices

for software development.

Abrahamsson, Salo, Ronkainen & Warsta (2002) have shown quality assurance activities

of FDD during design by feature and build by feature iterative activities (Figure 7-5).

Figure 7-5. Quality Assurance Activities in FDD

(Source: Abrahamsson et al., 2002)

Extended V-Models

81

Figure 7-5 shows quality assurance activities during design by feature and build by feature

cycles. FDD employs static as well as dynamic quality assurance activities. Static quality

assurance activities include design and code inspection and dynamic activities include unit

testing, integration testing etc. Simultaneous testing of features along with development is

a benefit provided by FDD.

7.4.1 FDD-V Extended Model in Detail

This chapter describes in detail extended V-model with FDD embedded in it. Figure 7-6

shows the hybrid model. In order to embed FDD inside V-model some additional phases

need to be added and some FDD phases can be mapped directly to V-model phases. Exist-

ing V-model phases have been highlighted in Green color and FDD phases have been hig-

hlighted in Blue color.

Figure 7-6. FDD-V Extended Model

The hybrid approach shown above starts with the normal requirements gathering process.

High level requirements from customer are gathered and documented as in traditional

process. System design phase of traditional V-model which involves creation of system

design can be mapped to ‗Develop an overall model‘ phase of FDD. In this phase, like in

FDD, domain walkthroughs can be conducted by domain experts (users, business analysts).

Extended V-Models

82

It is suggested to involve testers also at this stage like in V-model. Testers can also partici-

pate in domain walkthroughs and can give their inputs for creation of domain object mod-

els. Based upon the information gathered from this stage, testers can also start writing sys-

tem tests. The next phase includes architecture and module design which can be mapped to

‗Build a features list‘ activity of FDD. Like in traditional V-model at this stage, system is

decomposed into modules and class diagrams are created, similarly, in this phase, in FDD,

domains are decomposed into subject areas and features list is prepared. Hence the two

activities in V-model and FDD can be directly mapped to each other in hybrid model. Next

FDD activity of ‗Plan by feature‘ can be performed, in which class owners are identified

and assigned features for development.

During the next phase, ‗Design by feature‘ and ‗Build by feature‘ activities of FDD are

performed in iterations. New activity added in the hybrid FDD-V extended model is ‗Test

by feature‘. During these activities, feature teams are formed by Chief Programmers (Se-

nior Developers in V-model) and features are designed, developed and tested. In this hybr-

id model also, independent test team is suggested to perform feature testing as and when

feature is developed. Developers can carry out other quality assurance activities of design

and code inspection, and unit and integration testing. Continuous integration should be

carried out to avoid any integration issues. In the FDD-V extended model, the usual 2-

week iteration time per feature can be extended to include one more week for testing. At

the end of iteration, product can be shown to customer and domain experts for their feed-

back and any changes in requirements and design can be accommodated in next iteration.

After the development phase, usual V-model phases of system and user acceptance testing

can be followed in which the overall system can be tested by the customer representatives.

7.4.2 Mapping of Roles

It is easier to map roles in FDD and traditional V-model since FDD prescribes defined

roles and responsibilities. Table 7-2 compares roles of FDD-V extended model with those

of FDD.

Extended V-Models

83

FDD-V Extended Model Role FDD Role

Business Analyst & Users Domain experts

Senior Software Architect Chief Architect

Senior Developers Chief Programmers

Project Manager Project Manager

Development Manager Development Manager

Developer Class Owner

Tester Tester

Table 7-2. Mapping of FDD-V and FDD Roles

Business Analysts and users can serve role of domain experts in extended V-model. The

senior most software architect can serve the role of chief architect. Similarly, senior devel-

opers having considerable amount of experience can act as chief programmers.

7.4.3 Benefits of FDD-V Extended Model

Embedding FDD into V-model offers various benefits as compared to traditional V-model.

Some of the benefits are listed below:

1. Easier adoption: FDD being less agile is easier to adopt inside traditional plan-

driven organization as compared to other agile approach. Mapping of FDD roles

with existing V-model roles is also easier and doesn‘t need additional roles.

2. Scalable: The FDD-V extended model can be scaled for use inside larger and com-

plex projects which provides an added advantage as compared to other agile ap-

proaches such as XP which are difficult to scale in larger projects.

3. Best practices: FDD uses best practices such as domain object modeling, develop-

ing by feature, feature teams, inspections, regular builds, configuration manage-

ment, reporting of results etc. (Palmer & Felsing, 2001). Hence incorporation of

FDD and consequently these practices inside V-model can improve software devel-

opment process and software quality.

Extended V-Models

84

4. Iterative development: The design by feature and build by feature cycles of FDD

build product iteratively. Hence FDD-V extended model brings iterative develop-

ment into traditional V-model.

5. Quality assurance activities: As shown in Figure 7-5, FDD utilizes static as well

as dynamic quality assurance activities. Apart from these activities, FDD-V ex-

tended model uses additional independent test team for conducting system and re-

gression testing.

7.5 Kanban and V

The core Kanban principles can be applied inside V-model to improve software develop-

ment process. Since Kanban accepts existing roles and responsibilities within an organiza-

tion and doesn‘t introduce any new roles, it is a very effective method to be adopted inside

V-model. As explained under chapter 3.1-Inspection of Agile Methods for V-Model Suita-

bility, one of the criteria for selection of an agile method is that it should not disrupt V-

model completely; Kanban method satisfies this criteria very well.

In this section, Kanban principles as stated by David J. Anderson and explained in chapter

3.4.2.1-Kanban Software Development have been adopted inside V-model and an extended

version of V-model has been discussed.

7.5.1 Kanban-V Extended Model

Core five Kanban principles as explained by David J. Anderson are:

1) Visualize workflow

2) Limit work in progress

3) Manage flow

4) Make policies explicit

5) Improve collaboratively

The five principles can be applied for software development irrespective of software de-

velopment methodology used. An extended V-model with Kanban principles applied can

be seen in Figure 7-7.

Extended V-Models

85

 Figure 7-7. Kanban-V Extended Model

The Kanban-V extended Model shown above makes use of Kanban boards in all the V-

model phases. A Kanban board is like a task board which represents user stories or work

items by means of sticky notes or cards on a board or on a wall. The use of task boards in

software development is as old as agile methods (Ladas, 2008). The main difference be-

tween task board and Kanban board is that Kanban puts a restriction on work in progress.

It defines a limit of work items or user stories for each queue/column.

‗A task card without a limit is not a Kanban in the same way that a photocopy of a dollar

bill is not money‘ – Ladas (2008).

Limit for work items can be specified for each queue on Kanban boards. This limit de-

pends upon how the user stories are decomposed into work items or tasks and it depends

upon the capacity of the team. This limit should be decided initially after discussion within

the team.

The Kanban-V extended model presented is inspired from ‗Kanban System for Sustaining

Engineering‘ by Anderson & Garber (2007) and ‗Lean + Agile Kanban‘ concept of Hira-

nabe (2008).

One of the wastes in software development is waiting for things (M. Poppendieck & T.

Poppendieck, 2003). Effective linking of processes together can reduce this waste (Rior-

Extended V-Models

86

dain & Burgt, 2011). In the Kanban-V extended model, pull concept has been imple-

mented. The next phase pulls work item from the previous phase if its To-Do list becomes

empty. It makes the whole flow self-directing and reduces waste of waiting. For example,

if the To-Do list in testing phase becomes empty, the items to be tested can be pulled from

the Done queue of coding Phase with the maximum items being pulled dependent upon the

limit set for the To-Do list queue. Within the same phase e.g. in coding phase, if the devel-

oper has finished coding the work items assigned to him, he can himself take the next work

items from the To-Do list queue. The whole process and flow is continuous. After a speci-

fied time or when sufficient number of user stories have been developed and tested, a demo

can be given to the customer for his feedback.

Anderson & Garber (2007) supplemented a Kanban system with colors representing quali-

ty of service for work items. For example, a blocked work item can be represented in Red

color on Kanban board. Reason for blockage can also be indicated on the card. This makes

it easier to identify bottlenecks and resolve them on time.

The Kanban-V extended model can be used along with Scrum method. Ladas (2008) has

suggested a method to combine Scrum and Kanban in his essay Scrumban.

7.5.2 Benefits of Kanban-V Extended Model

The Kanban-V extended method presented in previous section offers some benefits of lean

software development.

1) Self-directing: The whole process and flow is self-directing (Hiranabe, 2008). This

leads to reduction in management overhead and waiting time between phases.

2) Increased transparency: The Kanban-V extended method based upon ‗Visualize

workflow‘ Kanban principle leads to increased transparency among team members.

At any time, it is visible which team member is working upon which work item and

if any team member is overbooked.

3) Limits work in progress: The method explained above sets a limit on number of

work items in a queue; hence it limits work in progress and avoids piling of work

items in a queue.

4) Resolved bottlenecks: By making use of colored cards, bottlenecks and issues can

be easily identified and worked upon in time.

Extended V-Models

87

5) Respect of existing roles and responsibilities: The Kanban-V extended model re-

spects existing roles and responsibilities with an organization and hence poses

comparatively lesser challenges for its implementation.

7.6 Specification by Example inside V-model

Apart from agile projects, specification by example can be implemented inside traditional

projects also. Implementation of specification by example in traditional plan-driven

projects leads to defects being detected earlier in the product development lifecycle (Adzic,

2011). In this chapter, various suggestions will be provided regarding implementation of

specification by example inside V-model.

7.6.1 Implementation of Specification by Example inside V-Model

Like other agile methods, implementation of specification by example inside V-model re-

quires process as well as cultural changes. Below suggestions can be given in order to

make the implementation process easier and smoother:

TDD or ATDD as the stepping stone: Implementation of specification by example be-

comes easier inside V-model if TDD or ATDD methods have already been implemented

inside the team (Adzic, 2011). Hence as a starting step, TDD-V extended model or ATDD-

V extended model can be implemented, followed by specification by example concepts.

Functional Automation: Adzic (2011) has suggested to start with functional test automa-

tion in an existing project. Test automation involves business users, testers and developers

in the process and hence removes the barriers between them, making way for specification

by example. Testers also get more time after automation, thus enabling them to take part in

specification workshops. (Adzic, 2011)

Change team culture: In order to implement specification by example, team culture needs

to be changed. One of the most important pillars of specification by example is collabora-

tion between developers, testers and business users. In traditional V-model, analysts, de-

velopers and testers work independently and are not used to working together. In specifica-

tion by example, all three roles work closely starting from the time goals are specified by

the user. Adzic (2011) suggests avoiding use of agile terminology in an environment that is

resistant to change.

Extended V-Models

88

Follow key process patterns: In order to successfully implement specification by exam-

ple, it is important to follow key process patterns described in chapter 4.3.5.1-Key Process

Patterns. The process patterns can be followed in combination with other agile methods in

iterations.

Comparison of Extended V-Models

89

8 Comparison of Extended V-Models

It is important to compare extended V-models discussed in previous chapter in order to

assess their viability and suitability for adoption inside an organization. The comparison of

extended models is directly dependent upon agile method used, hence the parent Agile

testing methods should first be compared to each other before a comparison is made be-

tween extended V-models. In this chapter, first agile testing methods are assessed based

upon the criteria defined in chapter 3.1-Inspection of Agile Methods for V-Model Suita-

bility and other factors. Next extended V-models are compared based upon the same crite-

ria. Finally, conclusions are drawn regarding best suited and viable extended V-model.

8.1 Comparison of Agile Testing Methods

In this section, agile testing methods are compared to each other on number of factors. The

selection criterion which was used initially is utilized for comparison also.

1) Quality assurance activities: Since testing is an integral part of software develop-

ment, it is important to compare quality assurance activities of agile testing me-

thods.

Scrum: Scrum doesn‘t provide any specific guidelines on testing. It provides man-

agement guidelines and a framework within which other practices can be adopted.

However, many companies practicing Scrum follow below quality assurance activi-

ties (Nawaz & Mallik, 2008)

- Unit testing

- Continuous Integration

- Exploratory Testing

As discussed in chapter 7.1.2-SCRUM inside Test Team, Scrum practices can be

followed inside test team. It will lead to iterative testing in parallel with the devel-

opment which will greatly impact product quality and improve the efficiency of test

team. By following such a model, testers can work closely with the development

Comparison of Extended V-Models

90

team and high quality developed and tested product can potentially be delivered to

the customer.

TDD and ATDD/Specification by example: TDD and ATDD or specification by

example employ similar quality assurance activities. They make testing an integral

part of development by forcing developers to write tests before code. Developers

can‘t go away with testing. By employing acceptance tests, they develop code from

customer perspective.

Itkonen et al. (2005) have contrasted between heartbeat and iteration quality assur-

ance activities. XP practices utilize heartbeat Quality Assurance activities and build

quality into product during its implementation. Various XP heartbeat quality assur-

ance activities are (Itkonen et al., 2005):

- Test Driven Development

- Continuous Integration

- Pair-Programming

- Acceptance Tests

- Refactoring

All these activities blend testing into development and lead to higher quality prod-

uct being developed.

FDD: As shown earlier in Figure 7-5, FDD has strong focus on testing and utilizes

number of quality assurance activities in its design by feature and build by feature

phases. It is based upon static as well as dynamic quality assurance activities.

ISTQB (2012) defines static testing as ‗Testing of a software development artifact,

e.g., requirements, design or code, without execution of these artifacts, e.g., reviews

or static analysis‘ and dynamic testing as ‗Testing that involves the execution of the

software of a component or system‘. FDD utilizes static techniques such as design

and code inspection and dynamic techniques such as unit testing and integration.

Again these techniques are heartbeat quality assurance activities and build quality

into the product.

FDD-V extended model has additional phase of test by feature in which an inde-

pendent test team tests features s soon as they are developed. This makes testing a

mandatory activity for readiness of feature.

Comparison of Extended V-Models

91

Kanban: Like Scrum, Kanban also doesn‘t specify any quality assurance activities.

It provides a framework and guidelines and within this framework, other technical

activities can be implemented. Kanban-V extended model based upon principles of

visualize workflow, limit work in progress and manage flow impact quality of

product.

2) Supported phases of software development: All agile methods do not support and

provide guidelines on all phases of software development lifecycle. For the com-

parison of extended models, it is important to compare which phases are covered by

their parent agile methods.

Abrahamsson, Warsta, Siponen & Ronkainen (2003) have compared agile methods

based upon the support for project management, supported phase of software de-

velopment lifecycle and the type of guidance provided. Figure 8-1 shows the com-

parison. It has been extended to include Kanban, TDD, ATDD and specification by

example methods.

Figure 8-1. Supported Software Development Phases by Agile Methods

(Source: Adapted from Abrahamsson et al., 2003)

Comparison of Extended V-Models

92

The various parameters based upon which comparison has been made by Abrahamsson

et al. (2003) are project management support, software lifecycle coverage and type of

guidance. In Figure 8-1, the green colored upper bar indicates if agile method provides

support for project management. The blue colored middle bar indicates which phases of

software development lifecycle are supported by agile method in question. The red co-

lored lowermost bar indicates if the agile method provides abstract or concrete guid-

ance for its use. White color of bar indicates missing support from agile method for that

particular phase of software development (Abrahamsson et al., 2003)

As shown in Figure 8-1, Scrum, FDD and Kanban provide project management sup-

port. These methods provide guidelines on managing agile projects. ATDD and FDD

cover all phases of software development lifecycle. TDD, being a XP practice provides

concrete guidance since it is based upon concrete practices. (Abrahamsson et al., 2003)

3) Heavy weight vs. Light weight methods: Agile methods and consequently ex-

tended models emerging out of them can be categorized into heavy weight and light

weight methods. Heavy weight methods promote upfront planning, documentation,

specification of roles and activities. The main advantages perceived are lower over-

all cost, timely product delivery and better product quality (Germain & Robillard,

2005). Traditional software development methods like V-model, waterfall model

fall into this category. Light weight methods on the other hand do away with much

of the administrative overhead and documentation (Riehle, 2000). Agile methods

fall into this category but some agile methods are more light weight as compared to

others. The more an agile method is heavy weight or the lesser it is light weight; the

easier it is to adopt it inside V-model which is heavy weight process. Based upon

the definitions of heavy weight and light weight methods, agile methods can be dif-

ferentiated based upon below factors:

- Degree of Agility

- Level of planning and documentation

Degree of Agility: Succi, D. Wells, Williams & J. Wells (2003) define agility as

‗the ability to both create and respond to change in order to profit in a turbulent

business environment‘. Qumer & Henderson (2008) have defined agility as ―Agility

is a persistent behavior or ability of a sensitive entity that exhibits flexibility to ac-

Comparison of Extended V-Models

93

commodate expected or unexpected changes rapidly, follows the shortest time span,

uses economical, simple and quality instruments in a dynamic environment and ap-

plies updated prior knowledge and experience to learn from the internal and exter-

nal environment‖. Agile methods differ in their degree of agility which can be

measured on the basis of some factors.

Qumer & Henderson (2008) have measured degree of agility of six agile methods

using an analytical tool called 4-DAT which is based upon below four dimensions:

1) Method scope (in terms of project size, team size, code style etc.)

2) Agility characterization (measured on the basis of flexibility, speed, leanness,

learning and responsiveness)

3) Characterization of agile values (based upon values mentioned in Agile Mani-

festo)

4) Software process characterization (measured on the basis of product engineer-

ing and process management processes)

The four dimensions of 4-DAT tool are shown in detail in Chapter 1Appendix D

Except second dimension; the other three dimensions provide qualitative analysis.

The results of research conducted by Qumer & Henderson (2008) can be shown in

Figure 8-2.

Figure 8-2. Comparison of Degree of Agility Derived from 4-DAT Tool

(Source: Qumer & Henderson, 2008)

Comparison of Extended V-Models

94

As can be seen in Figure 8-2, among XP (TDD), Scrum and FDD, Scrum is most

agile in terms of practices followed by XP and FDD. XP is most agile in terms of

phases followed by Scrum and FDD. FDD is least agile amongst three.

Level of planning and documentation: Agile methods employ different planning

methods and processes. They also differ in the nature and number of artifacts.

TDD, being a XP practice utilizes planning game, small releases, test suites etc.

Scrum utilizes daily stand-ups, sprint review and retrospective meetings, user sto-

ries and burn-down charts for planning. Kanban is based upon use of Kanban

boards, story cards etc. ATDD and specification by example is based upon execut-

able specifications and living documentation. FDD is based upon high upfront

planning and designing activities in terms of features, feature sets, domain models,

class diagrams and sequence diagrams. In terms of level of planning and documen-

tation, it can be concluded that FDD utilizes high planning and documentation ac-

tivities followed by ATDD, Scrum, TDD and Kanban.

Based upon above discussion, agile methods can be presented on a scale of heavy

weight and light weight methods as shown in Figure 8-3.

Figure 8-3. Representation of Heavy Weight and Light Weight Methods on a Scale

4) Ease of implementation: Agile testing method should be easier to implement. This

depends upon the complexity of method and its dependency upon employees‘

skills. The more a method is dependent upon skills of team, the more it is difficult

to implement. Kanban method is the simplest to implement, followed by Scrum and

FDD.

Comparison of Extended V-Models

95

5) Scalability: All agile testing methods are scalable. However, some agile testing

methods are more scalable and applicable in larger projects in comparison to other

agile testing methods.

Scrum provides a way to introduce agility in plan-driven methods. It is also scala-

ble. FDD is also scalable and can be implemented well in larger projects because of

its high upfront planning. ATDD/Specification by example can also be scaled. XP

is difficult to scale and is mostly applicable in smaller to medium projects, however

individual XP practices can be adopted in any project. (Boehm & Turner, 2003)

8.2 Extended V-models‟ Comparison

In the above section, comparison was made between various agile testing methods. Based

upon this comparison, extended V-models discussed in Chapter 7-Extended V-Models can

now be compared to each other. Table 8-2 shows the comparison between extended V-

models. If a model meets the criteria and factor of comparison to maximum extent as com-

pared to other models, it is indicated by ‗+++‘ sign, and if it meets the criteria sufficiently,

it is indicated by ‗++‘ sign. Complete evaluation mechanism is shown in Table 8-1.

Symbol Meaning

+++ Meets the criteria to maximum extent

++ Sufficiently meets the criteria

+ Meets the criteria to some extent

0 Doesn‘t meet the criteria / is neutral

Table 8-1. Evaluation Mechanism

Comparison of Extended V-Models

96

Extended V-Model

Factor for

comparison

V-SCRUM-V TDD-V ATDD-V

/Specification

by example

FDD-V Kanban-V

QA activities ++ + ++ +++ +

Degree of Agility

(from Figure 8-2)

+ ++

+

0 +++

Level of planning

and documenta-

tion

++ + ++ +++ +

Continuous Im-

provement

++ ++ ++ ++ ++

Customer inte-

raction

++ + ++ + 0

Software Life-

cycle support

+ + ++ ++ +

Ease of imple-

mentation

++ + + ++ +++

Scalability ++ + ++ ++ ++

Existing Roles‘

mapping

++ + + ++ ++

Project Manage-

ment support

++ + + ++ ++

Table 8-2. Comparison of Extended V-Models

QA activities: FDD-V and V-SCRUM-V models employ considerable number of QA ac-

tivities. ATDD-V by means of acceptance tests also impact quality of product, followed by

TDD-V and Kanban-V models.

Degree of agility: The results of this factor‘s comparison are taken directly from compari-

son of degree of agility of agile testing methods with FDD-V being the least agile among

all other extended models.

Comparison of Extended V-Models

97

Level of planning and documentation: FDD-V model again employs highest level of

planning and documentation, followed by V-Scrum-V and ATDD-V models.

Continuous improvement: All agile methods conduct retrospective meetings to conti-

nuously improve the process.

Customer interaction: Customer involvement and interaction is highest in case of V-

SCRUM-V and ATDD-V models with customer taking part in regular meetings and

representing requirements in the form of acceptance tests.

Software Lifecycle support: Although all models have been extended to support all phas-

es of software development lifecycle, but some models provide specific guidelines for

some phases based upon their parent agile testing method. Among all the models, FDD-V

supports all phases of software development lifecycle.

Ease of implementation: Kanban-V extended model is the simplest and easiest to adopt in

an organization. V-SCRUM-V and FDD-V extended models are also simpler as compared

to TDD-V and ATDD-V.

Scalability: FDD-V and V-SCRUM-V models can be scaled to larger projects. Kanban-V

and ATDD-V extended models are also more scalable as compared to TDD-V model.

Existing Roles‟ mapping: As shown in Table 7-1 and Table 7-2, existing V-model roles

can be mapped to roles in FDD-V and V-SCRUM-V models. These extended models do

not need any specialized roles for their implementation. With little training, existing roles

can play new roles and support implementation of these models.

Project Management support: FDD-V and V-SCRUM-V models provide sufficient

project management support.

By taking into account results of all factors of comparison shown in Table 8-2, extended

V-models can be represented on a scale in terms of best fit and least fit candidate for adop-

tion inside V-model. Extended V-model in which roles can be mapped to existing roles of

V-model will pose lesser challenges for its adoption on organizational level. Similarly,

extended V-model which supports all phases of software lifecycle and is scalable and pro-

vides risk coverage is better candidate for blend inside V-model. Figure 8-4 shows the

comparison results.

Comparison of Extended V-Models

98

Figure 8-4. Representation of Extended V-Models on a Scale

8.3 Conclusions

In above chapters, comparison was made between extended V-models and their agile test-

ing methods. Based upon the analysis, below conclusions can be drawn:

FDD-V extended model has the maximum associated quality assurance activities. FDD

also provides project management support and supports all phases of software develop-

ment lifecycle. It is highly scalable as compared to other agile methods.

FDD also seems to be best fit for V-model in terms of degree of agility and level of plan-

ning and documentation used. Hence FDD can be considered best agile method for adop-

tion inside V-model.

Scrum and Kanban methods do not provide specific technical guidelines. These methods

provide guidelines on overall management aspects of projects. These methods can be used

as project management frameworks for managing projects and within these methods other

technical agile testing methods like TDD or ATDD can be incorporated in order to have a

complete software development lifecycle model.

The results from above analysis will be compared with case studies‘ analysis.

Case Study Research

99

9 Case Study Research

Case study research, like experiments, surveys, histories and archival analyses, is one of

the social science research methods. Yin (2013) has given two fold definition of case

study. The first part deals with the scope of case study and defines case study as an empiri-

cal inquiry that investigates a contemporary phenomena (the ‗case‘) within its real-world

context when the boundaries between phenomenon and context may not be clearly evident.

The second part of definition deals with the features of a case study and defines case study

as relying on multiple sources of evidence with data triangulation and having more va-

riables of interest than data points. (Yin, 2013)

Yin (2013) mentions below three conditions for use of case study as a research method:

1) The main research questions are ‗how‘ or ‗why‘ questions

2) Researcher has little or no control over behavioral events

3) The study focuses on contemporary events (as opposed to entirely historical)

Table 9-1 shows the situations where different research methods are applicable.

Method Form of Research

Question

Requires Control

of Behavioral

Events?

Focuses on con-

temporary Events?

Experiment How, why? Yes Yes

Survey Who, what, where,

how many, how

much?

No Yes

Archival Analysis Who, what, where,

how many, how

much?

No Yes/no

History How, why? No No

Case Study How, why? No Yes

Table 9-1. Relevant Situations for Different Research Methods

(Source: Yin, 2013)

Case Study Research

100

The research question of this thesis is:

„How can agile testing methods be applied in projects managed by plan-driven me-

thods?‟

This research question (a ‗How‘ question) and this research satisfies Yin‘s criteria for us-

ing case study as a research method.

The case study research method utilized in this thesis follows Yin (2013) suggestions for

conducting a case study research.

Study Propositions: The propositions are mentioned in chapter 5-Hypothesis Formulation.

These propositions or hypotheses have guided case studies‘ design, their scope and also

aided in analytic generalization as part of case studies‘ analysis.

Case Study Design: The conducted case study research follows multiple case study design

with use of three case studies based upon replication logic. The unit of analysis is the indi-

vidual projects using one or more agile testing methods in traditional V-model.

Description of Case Studies: Three case studies have been utilized as part of research. All

three case studies have replication logic and are based upon similar agile methodologies

which made it easier to do comparative analysis. All three case studies describe software

projects in public domain in Germany with agile testing methods embedded inside V-

model. Table 9-2 gives brief overview of case studies utilized.

Case Study Name Description

Case Study 1 – TINS (This is not Scrum) Describes implementation of agile hybrid

approach called TINS inside V-model in a

project in public domain

Case Study 2 –Large Scale Scrum Describes implementation of Scrum on larger

scale. Project described in case study 1 was

restructured and complete Scrum methodolo-

gy was implemented in it.

Case Study 3 – Small Scale Scrum Describes implementation of Scrum in con-

tract and task manager system in context of

small size project

Table 9-2. Description of Case Studies

Case Study Research

101

Data Collection: The main sources of data were the interviews conducted with Capgemini,

Germany employees and the data collected from the individual projects by direct observa-

tions. The interview partners varied from product owners, project managers to developers

and architects. For the first case study, apart from the interviews with employees, another

major source was thesis written by a Capgemini employee, Simon Boldinger, which de-

scribed in detail the implementation of agile hybrid approach. Interview questions can be

found in Chapter 1Appendix E The same set of interview questions were asked to all the

interviewees of three projects.

Case studies‟ analysis: The data collected was analyzed by means of theoretical proposi-

tions and by working with the data from the ground up. Cross case synthesis technique was

then employed.

Cross case synthesis technique is used to analyze two or more case studies. It can be ap-

plied to individual case studies which have been conducted as independent research studies

or to case studies which are part of the same research. In cross case synthesis technique,

case studies are analyzed by creation of word tables which enable drawing of cross case

conclusions. In this thesis, three case studies were compared to each other based upon

some uniform categories and results are presented in word table. (Yin, 2013)

Case Study 1 – TINS (This is not Scrum)

102

10 Case Study 1 – TINS (This is not Scrum)

This case study describes agile approaches and testing methods embedded inside tradition-

al V-model in a software project in Germany. The case study starts with the history of

project and project description. It then states the reasons for introduction of agile ap-

proaches and describes in detail the agile software development approach used inside V-

model and the various agile testing methods and quality assurance activities utilized in this

project. The case is then analyzed for the pros and cons of using such a hybrid approach.

10.1 Project Description

This case study deals with a project for a client in public sector in Germany. The devel-

oped application calculated and accounted social benefits for unemployed people. It in-

volved transfer of billions of Euros each year. The project involved complex requirements

and could lead to people not receiving proper social benefits and unable to make a living if

not implemented properly. The project was initiated in 2008 with start of development in

2010.

The system had three tiers – client, server and database. The client server architecture was

based upon JAVA/JEE stacks with backend utilizing Oracle database. Around 50000 users

worked on the system in parallel and around 3 million customers utilized the application.

The future plan was to expand the number of customers to 10 million.

10.1.1 Organizational Structure

About 180 employees worked at peak time in the project which was divided into three sub-

projects - conception, design and implementation and testing. Rest of the people worked in

cross functional areas like project management office.

Case Study 1 – TINS (This is not Scrum)

103

Figure 10-1. Organizational Structure – Overall Project

(Source: Boldinger, 2013)

The Design & Implementation sub-project was led by sub-project manager and consisted

of Delivery Manager, Technical Chief Designer and Development Team. The development

team comprised of seven teams. Four teams developed the server part, one team was in-

volved in development of client application and two teams were support teams. Each team

consisted of 6 people, with about 60 people working in total in design and implementation

sub-project during peak time. (Boldinger, 2013)

Figure 10-2. Organizational Structure - Design & Implementation

(Source: Boldinger, 2013)

10.1.2 Process Description

Before introduction of agile approaches, the whole project was structured around V-model

and tailored according to waterfall model. Upfront requirements were gathered at the be-

ginning of the project. The whole project was divided into three releases and product was

developed in releases. Conception phase took about 6 months, design and implementation

phase about 6 to 9 months and testing phase lasted for about 3 months in a release. Re-

Case Study 1 – TINS (This is not Scrum)

104

quirements specification started for the next release while the product was being developed

in a previous release. Figure 10-3 shows the product development in releases.

Figure 10-3. Implementation of Software in Releases

(Source: Adapted from Boldinger, 2013)

The process described above suffered from below drawbacks (Boldinger, 2013):

- High upfront requirements gathering led to lot of effort being spent on planning ac-

tivities. Any unplanned requirements or any changes to requirements were difficult

to accommodate. Lot of unnecessary effort was being spent to accommodate such

changes.

- Testing didn‘t start until the design and implementation phase was completed. This

led to lot of major bugs being discovered late in the lifecycle.

- Testing was also squeezed to meet the delivery deadline.

- The process also suffered from late design breakage or late integration.

- Long development cycle led to late feedback from the customer.

Owing to the above problems, timely delivery of high quality product was difficult. There

was no regular customer feedback and changing customer requirements were also difficult

to accommodate.

Case Study 1 – TINS (This is not Scrum)

105

10.2 Introduction of Agile Approaches - TINS

The problems described above led to the introduction of agile approaches. The main goals

were to reduce the planning effort, ability to accommodate changing requirements, earlier

customer feedback, avoid big-bang integration at the end and detection of bugs earlier in

the software development lifecycle.

Projects in public sector in Germany were forced to follow traditional V-model because of

government regulations. Also, it was not possible to immediately switch to complete agile

methodologies because of organization culture and larger project setting. Because of these

reasons, agile development approach was introduced inside the design and implementation

sub-project without impacting other phases. Other phases continued to follow V-model. In

this section, this hybrid approach known as TINS (This is not Scrum) is being described.

The way it was implemented inside traditional setting, its roles and responsibilities are also

discussed.

10.2.1 TINS (This is not Scrum)

TINS (This is not Scrum) was the hybrid - model in model approach followed inside de-

sign and implementation phase. This approach was named TINS since it had lot of simi-

larities with Scrum but was not completely identical to Scrum, hence to avoid any miscon-

ceptions, it was named as such. Figure 10-4 shows TINS inside traditional tailored water-

fall model.

Figure 10-4. TINS inside Traditional Model

(Source: Capgemini, Germany, 2012)

Case Study 1 – TINS (This is not Scrum)

106

In TINS, the 6 to 9 months period of development was split into 1 month long iterations.

These iterations were called Stages which are similar to Sprints in Scrum. In each iteration,

potential deliverable increment was developed. Figure 10-5 shows various phases of TINS

approach.

Figure 10-5. Various Phases of TINS Approach

(Source: Capgemini, Germany, 2012)

Release Initialization: In release initialization phase, overall planning for the release took

place. Work packages were defined for the release and split into features. Any dependen-

cies between work packages were also identified and a product backlog with prioritized

features was prepared by TINS architect. TINS architect also defined which feature was

supposed to be part of which iteration but this product backlog was updated before the start

of each iteration. (Boldinger, 2013)

Stages / Sprints Planning: In this phase of TINS, planning for the iteration took place. A

planning workshop called Basar was held in which the iteration was planned. Figure 10-6

shows TINS planning workshop – Basar.

Case Study 1 – TINS (This is not Scrum)

107

Figure 10-6. Illustration of TINS Planning Workshop (Basar)

(Source: Capgemini, 2012)

The planning workshop was organized by Delivery Manager and attended by all seven

team leaders.

Retrospective meeting: In the first part of workshop, retrospective analysis of last ite-

ration was done. Feedback was collected from all the team members. The goal of this

meeting was to identify shortcomings of last iteration and to bring about improvements

in next iteration. The development teams also gave overview of their achievements in

last iteration including the features which could not be implemented and could be

planned for next iteration. (Boldinger, 2013)

Next iteration planning: During the second part of planning workshop, measurable

goals were set for the next sprint. Stakeholders were responsible for setting up these

goals.

In the next part of planning, TINS architect presented the prioritized product backlog.

Team leaders of all seven teams presented the resource capacities of their respective

teams and committed to features which their teams would implement during the next

sprint (Boldinger, 2013).

Implementation: During the implementation phase, product was developed in iterations

known as Stages / Sprints. Each team member worked on its committed feature. At the end

of iteration, all team members demonstrated developed increment to TINS architect and he

Case Study 1 – TINS (This is not Scrum)

108

had authority to accept or reject implemented features. Features which were not imple-

mented were also identified and planned for next iteration based upon their priority.

10.2.1.1 TINS Roles

The various roles involved in hybrid approach described above were:

Sub-Project Manager: Sub-project manager was responsible for the overall project in

design and implementation phase. He took care of project planning activities and guidance

of individual team members.

Delivery Manager: Delivery manager was responsible for timely delivery of product. He

ensured that high quality product was delivered on time and within budget. He was respon-

sible for organizing planning workshops and removed any impediments faced by the team.

He was also responsible for ensuring that the entire team followed TINS process properly.

TINS Architect: TINS architect was responsible for prioritization of features and present-

ing them in a product backlog. At the end of each iteration, he rejected or accepted imple-

mented features based upon users‘ requirements.

Technical Chief Designer: Technical chief designer was responsible for design and archi-

tecture of application.

Team Leader: Team leader was responsible for his individual team. He represented his

team members in planning workshop and presented resource capacities of his team. Based

upon the feedback from team, team leader committed to features on behalf of the team.

(Boldinger, 2013)

Development Team members: Individual team members of development teams were re-

sponsible for implementation of product in iterations. Each team member decided on its

own which feature he wanted to work on in iteration.

10.2.2 Agile Testing Methods and Quality Assurance Activities

This section describes the agile testing methods and quality assurance activities employed

in the project for achieving high quality software.

The testing activities in TINS followed Deployment pipeline (shown in Figure 10-7). The

deployment pipeline shows the various tests conducted in the project which made sure high

quality product was delivered to the customer.

Case Study 1 – TINS (This is not Scrum)

109

Figure 10-7. Deployment Pipeline

(Source: Anger & Eichler, 2013)

Developer and Unit Tests: Developer and unit tests were important part of implementa-

tion in TINS. For every feature, unit tests were mandatory. Unit tests were automated and

whenever any feature was implemented, these automated tests were run. Any check-in

made by the developer followed two-phase commit staging. In the first part of procedure,

before a check-in could be made by the developer, his code was reviewed by his colleague.

Only when it had passed code review, it cleared first staging area. During the second part

of staging, implementation team followed build on commit which meant every time code

was checked-in, automatic build was triggered and only when the build was successful,

code was committed. This way it was ensured that continuous integration took place.

Automated Acceptance tests: Set of automated test cases was run every time build was

triggered. The goal was to ensure that test cases were always green even during develop-

ment (Anger & Eichler, 2013).

Daily Nightly Builds: At the end of the day, automated builds were started and set of au-

tomated test cases was run. Any failed test case was investigated next day and issues were

resolved on time.

System and Integration testing: Developers also conducted system and integration testing

in each iteration. This was part of doneness of feature. A feature was not considered done

until it was tested in all respects.

Refactoring and Pair-programming: Developers followed pair-programming for imple-

menting complex requirements. Refactoring was done continuously in order to maintain

code quality.

User Acceptance tests: User acceptance testing was conducted by users while product was

still implemented by the development team. This procedure was called ‗Quality Circle‘.

Case Study 1 – TINS (This is not Scrum)

110

Actual state of the software was provided to the users and few experts from the user side

conducted free hands tests on the software. Experts tested software from user perspective

and this provided users a chance to include improvements and other changes in software.

Quality Day: ‗Quality day‘ was a special day in a release during which quality targets

were set. For example one of the targets during one of the releases was to conduct static

code analysis and improve quality of code by refactoring etc. Another target was to im-

prove quality of tests, every developer had to either improve or fix existing tests or write

new tests.

All Hands tests: Design and implementation team arranged ‗All Hands tests‘ once in a

release. All hands tests were conducted in two parts. During first half of the day, develop-

ers formed pairs and conducted pair-testing. Developers tested each other‘s code. One of

the developers played the role of a navigator and navigated other through his code while

the other developer conducted testing. During the second part of all hands tests, developers

conducted freestyle testing and tested application in whatever way they wanted. At the end

of the day, the winner of all hands tests, the one who found maximum number of defects or

raised maximum number of bug tickets was declared.

TDD: The development team sometimes used TDD. Implementation of TDD approach

was difficult since the requirements were very complex in nature, hence developers found

it hard to write tests before writing code. The plan was to increase TDD practices in future.

Specification by example: Another agile method implemented by development team was

specification by example. It was followed in case of domain specific requirements. With-

out representation of such requirements in terms of examples, it was difficult to implement

them.

 Apart from all the tests and quality assurance activities employed in design and implemen-

tation team, testing team also tested software in traditional way. The testing team followed

traditional V-model for testing and conducted system testing, integration testing, regression

testing, performance testing etc.

Case Study 1 – TINS (This is not Scrum)

111

10.3 Comparison of TINS with Scrum

Hybrid approach TINS can be compared to Scrum approach for software development.

There are lots of similarities between the two approaches. TINS roles can also be directly

mapped to the ones in Scrum. Table 5-1 shows comparison between TINS and Scrum.

Table 10-1. TINS and Scrum comparison

Apart from roles of Scrum Master, Product owner and Scrum team, there are additional

roles of Technical chief designer and Project manager in TINS. Like Sprints in Scrum,

there are Stages in TINS. However in TINS there is no cross-functional team. There are

only developers and testers are missing. Unlike Scrum, in TINS, team lead commits on the

Case Study 1 – TINS (This is not Scrum)

112

behalf of whole team. There are similar planning meetings in TINS as in Scrum but they

are clubbed together in one planning workshop called Basar with one additional release

planning phase called initialization phase.

10.4 Case Study Analysis

In this section, case study – TINS will be analyzed for its pros and cons. The problems

faced while implementation of hybrid approach inside existing traditional model will be

discussed.

10.4.1 Pros of TINS Hybrid Approach

This section describes the various pros and strengths of TINS approach.

1) Early feedback: The introduction of agile development approach inside traditional

V-model provided earlier feedback to the team. The results from unit testing, conti-

nuous integration avoided Big-bang integration at the end of 6 months. Regular

feedback was obtained by showing increment to the TINS architect during each ite-

ration.

2) Hybrid approach: TINS made it possible to introduce agile development approach

inside traditional V-model. This hybrid approach combined the best practices of

two approaches - traditional and agile.

3) Reduced development cycle: Development cycle was reduced considerably. Earli-

er development cycle of 6 to 9 months was reduced to 1 month iterations. At the

end of each iteration, potential deliverable increment was developed. This incre-

ment could be utilized by testing team for their tests.

4) Transparent: The hybrid approach increased transparency among team members.

Planning workshops (Basar) and regular meetings avoided any confusion and in-

creased trust level among team members. Other teams (like testing or specification

team) could also utilize and benefit from the hybrid approach.

5) Reduced risk: Continuous delivery and feedback led to reduction of risks.

6) Improved product quality: Product quality was improved considerably through

earlier testing and detection of bugs.

Case Study 1 – TINS (This is not Scrum)

113

7) Reduced planning: The micro planning done before the introduction of TINS was

reduced. High upfront planning was avoided and this led to reduction in planning

costs and administrative overhead.

8) Scalable: TINS was proved to be scalable. It was implemented successfully in de-

velopment team of 60 employees and could be scaled to higher level also.

9) Ability to accommodate changing customer requirements: Changing customer

requirements could now be accommodated through iterative development.

10) Continuous improvement: TINS was continuously improved. Retrospective meet-

ings provided a good way to collect team‘s feedback and bring about improvements

in next iteration.

10.4.2 Cons of TINS Approach

This section describes the cons and weaknesses of TINS approach. The difficulties faced

during implementation of TINS are also discussed.

1) Identification of critical path: The use of agile approaches made it difficult to see

the critical path. In traditional methods, it is easier to identify the critical path. In

TINS, traditional methods were used for this purpose as and when required and

TINS architect was responsible for it.

2) Absence of complete agile methodology: Absence of agile approaches inside the

testing team and specification team made it difficult to implement complete agile

methodology. If test stages could also be handled using an agile approach, then it

would have been possible to gather earlier feedback by testing of increment after

each iteration. This would have improved product quality to a greater extent and in-

troduced more flexibility.

3) Difficulty in implementing some agile approaches: It was difficult to implement

some agile approaches like TDD and ATDD. Requirements could have been pro-

vided in the form of examples or acceptance tests, had the specification team also

followed agile methodology. This would have made it easier to follow TDD,

ATDD or specification by example inside design and implementation team.

4) Organization of Basar: It was difficult to organize Basar in bigger team size by

Delivery Manager. Commitment of features by team leaders on behalf of their team

members also posed some planning difficulties.

Case Study 1 – TINS (This is not Scrum)

114

10.5 Hypotheses Validation

In this section, hypotheses introduced earlier in chapter 5-Hypothesis Formulation will be

validated against TINS case study. This validation is based upon responses received from

interviewees and analysis of interviews.

Hypothesis 1: ―Agile testing methods when embedded inside V-model will lead to early

and often testing and hence bugs being detected earlier in the software development life-

cycle”

This hypothesis holds true in the case of TINS. Unit tests and continuous integration led to

bugs being detected earlier. Had the test team also followed agile methodology, it would

have led to detection of bugs after each iteration.

Hypothesis 2: “Agile testing methods when embedded inside V-model will lead to regu-

lar customer feedback and hence will be able to react quickly to changing customer re-

quirements”

This hypothesis is true in case of TINS. After each iteration, teams showed developed in-

crement to TINS architect and experts from specification team, which provided immediate

feedback and fixing of reported bugs. Any changes in customer requirements were ac-

commodated in the next iteration.

Hypothesis 3: “Agile testing methods when embedded inside V-model will lead to reduc-

tion in development cycle times”

This hypothesis has already been stated as a pro of TINS approach. Development cycle

times were reduced considerably from 6 to 9 months to 1 month iterations.

Hypothesis 4: “Agile testing methods when embedded inside V-model build better quali-

ty product”

This hypothesis has again been stated as strength of TINS. Product quality can be qualita-

tively measured in terms of customer satisfaction and reduced defect rate. Earlier testing

and shorter feedback cycles improved product quality to a great extent.

Case Study 2 –Large Scale Scrum

115

11 Case Study 2 –Large Scale Scrum

This case study describes the implementation of Scrum and agile testing practices inside

traditional V-model in a public project in Germany. It describes in brief the successful im-

plementation of Scrum on large scale. The project described in Case Study 1 – TINS (This

is not Scrum) was restructured to implement complete Scrum methodology. The project

history, description, organizational structure are all same as in Case Study 1 – TINS (This

is not Scrum), hence those parts are not described again. The main section highlighted in

this case study is differences in the implementation of Scrum and TINS for the same

project.

11.1 Hybrid Approach

TINS made it possible to implement agile methodologies in a complete traditional plan-

driven environment. TINS, with its strategies and roles in between traditional V-model and

Scrum, provided a pavement for future implementation of complete agile approaches. Af-

ter the successful implementation of TINS, Scrum was implemented in the same project.

Like TINS, it was introduced inside design and implementation phase. Other phases con-

tinued to follow traditional approaches. Figure 11-1 shows Scrum embedded inside tradi-

tional waterfall model tailored according to V-model.

Figure 11-1. Scrum inside Design and Implementation Phase

(Source: Adapted from Capgemini, Germany, 2012)

Case Study 2 –Large Scale Scrum

116

The software development process started with requirements gathering and analysis like in

traditional V-model. The requirements were very complex in nature. The specification

phase created business logic and also defined interfaces to other systems. In the design and

implementation phase, business logic was converted into technical design and development

of application took place. After the application was developed, it was tested by an inde-

pendent test team. This team conducted system testing, integration testing, regression test-

ing etc. It also executed business tests which tested software against user requirements and

from user perspective. Other non-functional tests like load and performance tests, security

tests were also the responsibility of test team.

In the design and implementation phase, software was developed by following Scrum me-

thodology. The development period of 6 to 9 months was split into 1 week long iterations

called Stages. An iteration took 5 work days and was conducted on Thursdays. It started on

previous week‘s Thursday and was brought to closure on next week‘s Thursday. In TINS,

the iteration length was 4 weeks. Figure 11-2 illustrates differences in development cycles

in TINS and Scrum.

Figure 11-2. Scrum vs. TINS Development Cycles

Case Study 2 –Large Scale Scrum

117

11.2 Roles in Large Scale Scrum

The roles in large scale Scrum model were the combination from TINS and Scrum metho-

dology. The roles included Product owners, Scrum master, development team along with

delivery manager, project manager, sub-project manager etc.

Each development team had one product owner, so in total there were seven product own-

ers headed by a super product owner. All product owners met before the sprint and dis-

cussed the distribution of features.

Figure 11-3. Product Owners in Large Scale Scrum model

11.3 Comparison of TINS and Large scale Scrum approaches

In this section, TINS approach discussed in Case Study 1 – TINS (This is not Scrum) will

be compared to large scale Scrum approach.

1) Iteration duration: The two approaches differed in the duration of iterations. In

large scale scrum approach, development took place in 1 week iterations as com-

pared to 4-week iterations in TINS.

2) Involvement and participation of test team: Another difference lied in the in-

crease in involvement and participation of test team in large scale scrum. Test team

now took part in sprint planning meeting which enabled them to plan their test

strategies in advance. Test team could also influence the product backlog. They

could ask the product owner to increase the priority of a feature, if they thought

something was of high priority from testing or customer point of view.

3) Cross functional team: In large scale scrum approach, cross functional team was

achieved by involving two members from test team. These two members from test

team took part in sprints and tested developed increments. This provided immediate

feedback to the development team.

Case Study 2 –Large Scale Scrum

118

4) Dedicated bug fixing team: Large scale scrum model now had a dedicated bug fix-

ing team. This team fixed bugs and tested fixes in each iteration. Buffer was also

assigned to fix any high priority bug in between iterations.

5) Regression test suite execution: Development team in large scale scrum model

executed regression test suite of testing team. This led to earlier detection of regres-

sion bugs. Early feedback was provided to test team in case some feature was up-

dated and implemented in a different way and they could update their test scripts

accordingly.

11.4 Case Study Analysis

In this section, large scale scrum model case study will be analyzed for its pros and cons.

11.4.1 Pros of Large Scale Scrum Approach

Apart from pros of TINS approach, large scale scrum approach offered additional benefits.

1) Continuous improvement: In large scale scrum model, like Scrum, sprints were

planned in sprint planning meeting. Sprint review and retrospective meetings took

place at the end of 1 week sprint which led to continuous improvement of process

and approach. Involvement of test team in the meetings provided added benefit.

2) Much earlier feedback: In large scale scrum approach, feedback was provided

much earlier through results of testing by test team members in sprints, shorter ite-

rations and execution of regression test suite by development team.

3) Scalable: In large scale scrum model, Scrum approach was successfully imple-

mented in project size of 180 employees with 60 employees in design and imple-

mentation team and it could be scaled even to larger size project.

4) Flexibility: Large scale scrum model was flexible enough to accommodate chang-

ing customer requirements. Owing to shorter iterations duration, any high priority

feature could be accommodated in next iteration. In case of TINS, any high priority

feature could be taken up only after 4 weeks.

5) Better product quality: Due to increased involvement of test team and earlier

feedback, better product quality was achieved.

Case Study 2 –Large Scale Scrum

119

11.4.2 Cons of Large Scale Scrum Approach

Large scale Scrum approach suffered from same cons as TINS approach. However because

of shorter iteration durations and involvement of test team in Scrum model, difficulties

faced were reduced to some extent. More benefits and flexibility could be achieved if agile

approaches were implemented completely inside test team and specification team.

11.5 Hypotheses Validation

The hypotheses introduced in chapter 5-Hypothesis Formulation could be validated against

case study 2 – Large scale Scrum.

Hypothesis 1: ―Agile testing methods when embedded inside V-model will lead to early

and often testing and hence bugs being detected earlier in the software development life-

cycle”

This hypothesis holds true in case of large scale scrum model. Apart from bugs detected by

unit tests and continuous integration, additional bugs were detected by testing conducted

by test team after each iteration. The bugs were discovered and fixed weekly after each

sprint.

Hypothesis 2: “Agile testing methods when embedded inside V-model will lead to regu-

lar customer feedback and hence will be able to react quickly to changing customer re-

quirements”

This hypothesis is true in case of large scale scrum approach. At the end of each sprint,

developed product increment was shown to the customer and experts from specification

team. Any changes requested by the customer could potentially be accommodated in next

iteration depending upon their priority.

Hypothesis 3: “Agile testing methods when embedded inside V-model will lead to reduc-

tion in development cycle times”

This hypothesis again holds true in case of large scale scrum approach. Development cycle

times were reduced considerably owing to development in 1 week iterations.

Case Study 2 –Large Scale Scrum

120

Hypothesis 4: “Agile testing methods when embedded inside V-model build better quali-

ty product”

Better product quality was achieved in large scale scrum model because of involvement of

test team in sprints and early feedback.

Case Study 3 – Small Scale Scrum

121

12 Case Study 3 – Small Scale Scrum

This case study describes the implementation of Scrum methodology in small scale project

managed by traditional V-model. The project described here belonged to public sector in

Germany. The case starts with project history and project description. It then describes the

implementation of Scrum inside traditional V-model and later on analyzes the hybrid ap-

proach for its strengths and weaknesses.

12.1 Project Description

The project described in this case study belonged to public sector domain in Germany. It

started as task manager application in 2010 and was later moved under Enterprise Service

Bus (ESB) project. The system was based on oracle techniques and lots of performance

issues were noticed during runtime. At the end of 2012, decision was made to switch to

JAVA technology for implementation and the result was a new project which was a spin

off from ESB project. This new project was called Contract and Task manager which is the

focus of this case study.

The software had two components service and graphic user interface. Through graphic user

interface client could retrieve all contracts and tasks, but it was not utilized at the moment

and the focus was on service component. The system was based upon Service Oriented

Architecture (SOA).

12.1.1 Organizational Structure

The total number of employees in project were 45 with 30 people working in development

team and 3 people working in Project Management Office.

The development team was further divided into 3 sub-teams in order to achieve scalability

while implementing agile methodologies.

12.2 Hybrid Approach

Government regulations forced the companies to follow traditional V-model for software

development for public sector projects in Germany. In order to gain flexibility, fast deli-

Case Study 3 – Small Scale Scrum

122

very, high product quality, reduced costs etc., organizations strived to adopt agile metho-

dologies. Hence a mid way solution was found and the result was a hybrid approach.

The project described above followed hybrid approach by blending Scrum methodology

inside V-model for software development. Requirements were gathered at the beginning of

release from the client. Product was then developed using Scrum methodology. The vari-

ous phases followed inside one sprint were analysis, design, implementation and testing. A

separate independent test team also conducted testing after the product was developed.

Figure 12-1 shows this hybrid approach for product development.

Figure 12-1. Hybrid Software Development Approach

Development cycle of 4 months was split into 4 weeks sprints.

Case Study 3 – Small Scale Scrum

123

Figure 12-2. Development Cycle in Small Scale Scrum model

The various roles involved were Scrum master, product owner and development team. The

development team was divided into 3 sub-teams and each sub-team followed Scrum ap-

proach and had its own product owner. The three product owners were headed by a chief

product owner. The product owners had the responsibility to prioritize requirements and

present them in the form of user stories in a product backlog. They also provided clarifica-

tions regarding requirements if needed. A lead analyst helped product owners in getting

detailed information about requirements. A cross functional team consisting of developers,

architects and testers was responsible for product development. At the end of each sprint,

product increment was shown to the product owner and he had the authority to accept or

reject developed user stories. Sprints were planned in sprint planning meetings. Sprint re-

view and retrospective meetings helped in continuous improvement. Daily standup meet-

ings were conducted in order to track progress and identify any impediments to develop-

ment. Scrum master supported team in removing any blockages and helped them to follow

Scrum process.

Case Study 3 – Small Scale Scrum

124

12.2.1 Agile Testing Methods and Quality Assurance Activities

This section describes the various quality assurance activities implemented inside the

project.

Unit tests: Developers wrote unit tests for all the user stories they implemented. These unit

tests were automated and executed during each sprint.

Continuous integration: Every time a developer checked-in his code, an automatic build

would be triggered. Any integration problems would be detected and fixed immediately

within the same sprint.

TDD: The development team implemented test first programming concepts of TDD. They

wrote tests before writing code and followed Red -> Green -> Refactor cycle of TDD.

Regression tests: Within a sprint, regression tests were conducted by testers. In sprint re-

view meeting, it was important to demonstrate that regression tests were Green. It was part

of doneness of a user story. If any test was Red, that user story was rejected and not consi-

dered done.

User acceptance testing and free hands testing: As a part of sprint review meeting,

product owners conducted user acceptance testing and free hands testing on the developed

increment and tested product from user perspective.

Independent test teams: After the product was developed, independent testing was con-

ducted by customer and an external vendor. A team at customer end conducted system

acceptance testing and load and performance testing in their environment for about 6

weeks. Sometimes there were some specific user stories which required support from de-

velopment team and in such cases; development team had to support customer test team in

their tests. An external vendor conducted system integration and acceptance tests in a sepa-

rate environment. The vendor didn‘t follow Scrum process. Figure 12-3 shows various

types of tests conducted within the project.

Case Study 3 – Small Scale Scrum

125

Figure 12-3. Testing in Small Scale Scrum Model

12.3 Case Study Analysis

In this section, the small scale scrum model will be analyzed for its strengths and weak-

nesses.

12.3.1 Pros of Small Scale Scrum Approach

The various pros of hybrid model were:

1) Avoidance of 90%-complete-syndrome: The hybrid small scale Scrum approach

was an honest approach. It prevented the 90%-complete-syndrome explained by the

ninety-ninety rule which states that ‗The first 90 percent of the code accounts for

the first 90 percent of the development time. The remaining 10 percent of the code

accounts for the other 90 percent of the development time‘ (Bentley, 1985). A user

story was either 0% done or 100% done, any other status was not accepted.

2) Realistic estimations: Since in hybrid approach, developers were responsible for

providing estimations for story points, the estimations were realistic.

3) Reduced development cycle time: There was reduction in development cycle

time. It was reduced from 4 months to 4 weeks.

Case Study 3 – Small Scale Scrum

126

4) Improved testing: Since testers were part of scrum team, hence product was tested

in each sprint. Testing was part of doneness of user story. Product was also tested

afterwards by independent test teams which greatly improved product quality.

12.3.2 Cons of Small Scale Scrum Approach

The various weaknesses of hybrid model were:

1) Lack of participation of business department: The major weakness of hybrid ap-

proach was the lack of participation of business department in the process. There

was lack of business-IT alignment and business department didn‘t participate di-

rectly in the requirements gathering and analysis process. The requirements stated

by the IT department sometimes conflicted with the business requirements. There

was need for one common department representing requirements from both busi-

ness as well as IT perspective.

2) Support to independent test teams: Sometimes the development team had to sup-

port customer test team in their testing. Some user stories specified this support re-

quirement. The problem was that these user stories could not be estimated and

hence could not be managed. Also, the customer test team worked independently

from the development team which made the coordination difficult.

12.4 Hypotheses Validation

The hypotheses stated in chapter 5-Hypothesis Formulation can be validated against hybr-

id approach discussed in previous sections.

Hypothesis 1: ―Agile testing methods when embedded inside V-model will lead to early

and often testing and hence bugs being detected earlier in the software development life-

cycle”

This hypothesis is true in case of small scale scrum approach. Owing to agile testing me-

thods and testing conducted by scrum testers, bugs were detected earlier in the software

development lifecycle.

Case Study 3 – Small Scale Scrum

127

Hypothesis 2: “Agile testing methods when embedded inside V-model will lead to regu-

lar customer feedback and hence will be able to react quickly to changing customer re-

quirements”

Regular customer feedback was provided after each sprint. Lead analyst helped product

owners in clarifying and updating requirements. Any changes in requirements were ac-

commodated in next sprint.

Hypothesis 3: “Agile testing methods when embedded inside V-model will lead to reduc-

tion in development cycle times”

Development cycle time was reduced from 4 months to 4 weeks. At the end of 4 weeks,

potential deliverable increment was developed.

Hypothesis 4: “Agile testing methods when embedded inside V-model build better quali-

ty product”

This hypothesis also holds true in case of case study described above. Product quality,

measured in terms of reduced defect rate and increased customer satisfaction, was im-

proved considerably because of use of agile methods (like TDD, continuous integration

etc.) and scrum methodology inside V-model.

Case Studies‘ Comparison

128

13 Case Studies‟ Comparison

In this chapter, the three case studies discussed in Chapters 10-Case Study 1 – TINS (This

is not Scrum), 11-Case Study 2 –Large Scale Scrum and 12-Case Study 3 – Small Scale

Scrum have been analyzed and compared to each other. The cross case synthesis technique

described by Yin, 2013 (See chapter 9-Case Study Research for its description) was uti-

lized for case studies‘ comparison. Categories for comparison were identified and three

case studies were analyzed based upon these categories.

The three case studies presented three different situations in which agile testing methods

were embedded inside traditional V-model.

 Case Study 1 – TINS (This is not Scrum) discussed a situation in which agile me-

thodology similar to Scrum was embedded inside traditional V-model. The project

described was large scale project. It demonstrated a possible solution for large

projects transitioning to agile methodologies from complete traditional approaches.

 Case Study 2 –Large Scale Scrum discussed a situation in which Scrum metho-

dology was implemented inside V-model. It showed successful implementation of

hybrid approach combining Scrum and traditional concepts in a large scale setting.

 Case Study 3 – Small Scale Scrum discussed a situation in which Scrum metho-

dology was embedded inside V-model in a small scale project.

Despite of three different situations, the three case studies have common parameters based

upon which comparison can be made.

Case Studies‘ Comparison

129

Category Case Study 1 –

TINS

Case Study 2 –Large

Scale Scrum

Case Study 3 –

Small Scale Scrum

Software development

model

Methodology similar to

Scrum embedded inside

V-model

Scrum embedded inside V-

model

Scrum embedded inside V-

model

Development period 6 to 9 months 6 to 9 months 4 months

Iteration duration 4 weeks 1 week 4 weeks

Agile quality assur-

ance practices used

TDD, Specification by

example, Developer and

Unit tests, Automated

Acceptance tests, Daily

Nightly Builds, System

and Integration testing,

Refactoring and Pair-

programming, User Ac-

ceptance tests, Quality

Day, All Hands tests,

Regression testing, Per-

formance testing

TDD, Specification by example,

Developer and Unit Tests, Au-

tomated Acceptance tests, Daily

Nightly Builds, System and

Integration testing, Refactoring

and Pair-programming, User

Acceptance tests, Quality Day,

All Hands tests, Regression

testing, Performance testing,

Dedicated Bug fixing team,

Involvement and Participation

of Test team

TDD, Unit tests, Continuous

integration, Regression

testing, User Acceptance

testing, Free hands testing,

System integration testing,

Load and Performance test-

ing

Roles Project Manager, Sub-

Project Manager, Deli-

very Manager, TINS

Architect, Technical

Chief Designer, Team

leaders, Development

team members

Project Manager, Sub-Project

Manager, Delivery Manager,

Super Product owner, Product

owners, Scrum master, Devel-

opment team members, Team

leaders

Chief Product owner, Prod-

uct owners, Development

team members, Lead analyst

Number of develop-

ment teams

7 7 3

Development team

Size

60 employees 60 employees 30

Scalable Yes Yes Yes

Scrum testers No Yes Yes

Commitment on user

stories

Team lead committed Team lead committed Team committed

Cross functional team No Yes Yes

Independent test team Yes Yes Yes

Case Studies‘ Comparison

130

Strengths Early Feedback, Hybrid

approach, Reduced devel-

opment cycle, Transpa-

rent, Reduced Risk, Im-

proved Product Quality,

Reduced Planning, Scala-

ble, Ability to accommo-

date changing customer

requirements

Much earlier feedback, Conti-

nuous improvement, Scalable,

Flexibility, Better product quali-

ty, Hybrid approach, Reduced

development cycle, Transparent,

Reduced Risk, Reduced Plan-

ning, Ability to accommodate

changing customer requirements

Avoidance of 90%-

complete-syndrome, Realis-

tic estimations, Reduced

development cycle time,

Improved testing, Hybrid

approach, Ability to accom-

modate changing customer

requirements

Weaknesses Identification of Critical

Path, Absence of com-

plete agile methodology,

Difficulty in implement-

ing some agile approaches

Identification of Critical Path,

Difficulty in implementing some

agile approaches

Lack of participation of

business department, Support

to independent test teams

Table 13-1. Case Studies‗ Comparison

Table 13-1 shows the comparison between three case studies based upon various catego-

ries.

In summary,

 Case study 1 and case study 2 differed in the way agile methodology was imple-

mented inside V-model. In Case study 1, methodology similar to Scrum was im-

plemented, whereas in case study 2, complete Scrum methodology was imple-

mented. The two differed in the duration of iterations. In comparison to case study

1, testers were part of Scrum team in Case study 2 making it a cross functional

team. Owing to shorter sprint durations, various additional benefits like much earli-

er feedback, better product quality and improved flexibility etc. were obtained in

case study 2.

 Case study 3 differed from case study 1 and 2 in the way Scrum methodology was

implemented inside V-model. Apart from initial requirements gathering; analysis,

design, implementation and testing were all conducted inside Scrum. Development

cycle duration (4 months) was also different from the release duration (6 to 9

months) of case study 1 and 2. The project size was smaller and number of devel-

opment teams was also less. In contrast to team lead‘s commitment in case study 1

and 2, whole team committed in case study 3. An external vendor additionally

tested application in case study 3.

Conclusions and Future Work

131

14 Conclusions and Future Work

14.1 Summary and Conclusions

As Boehm & Turner (2003) have rightly said ‗Neither agile nor plan-driven methods pro-

vide a methodological silver bullet‘. In today‘s competitive world, organizations need to

strike a balance between agility and stability. They need to be flexible and responsive to

changing customer needs and deliver high quality product at the same time. Testing is an

important aspect of software development. Proper testing increases confidence in product

and leads to increased customer satisfaction by delivering high quality product.

This master thesis analyzed various agile testing methods and suggested ways they can be

adopted inside V-model. Since there are number of agile methods, hence criterion for se-

lection of agile methods was used. Quality assurance activities of agile methods was the

foremost condition for their selection. Other factors for selection included degree of scala-

bility, degree of agility, roles, smallest unit of work etc. Based upon these criteria, agile

testing methods were selected and discussed in detail.

Based upon literature review, four hypotheses were formulated. These hypotheses are

summarized below:

 Hypothesis 1: ―Agile testing methods when embedded inside V-model will lead to

early and often testing and hence bugs being detected earlier in the software devel-

opment life-cycle‖

 Hypothesis 2: ―Agile testing methods when embedded inside V-model will lead to

regular customer feedback and hence will be able to react quickly to changing cus-

tomer requirements‖

 Hypothesis 3: ―Agile testing methods when embedded inside V-model will lead to

reduction in development cycle times‖

 Hypothesis 4: ―Agile testing methods when embedded inside V-model build better

quality product‖

Agile and plan-driven methods were compared to each other in four areas – Application,

Management, Technical and Personnel. Weaknesses were identified in both the approaches

Conclusions and Future Work

132

and the need for hybrid approaches combining traditional and agile methods was dis-

cussed. The challenges of this hybrid approach implementation were also discussed. The

challenges of agile methods adoption occur at three levels – Management, People and

Process & Environment. Out of these challenges, management and people challenges oc-

curring at the culture and strategy level in an organization were found to be most difficult

to tackle. Implementation of agile methods inside traditional hierarchical organization

needs support from management and proper care needs to be taken during transition.

One of the most important contributions of this research was the presentation of five ex-

tended V-models with embedded agile testing methods. Care was taken that proposed

models required minimum changes to existing processes and roles. The models suggested

ways to embed various methods like Scrum, TDD, ATDD, specification by example, FDD,

Kanban inside V-model. Use of an independent test team was suggested in all the models.

This team tested product increment as soon it was developed and worked closely with the

development team.

Extended V-models and their parent agile testing methods were compared to each other on

various grounds. These included QA activities, supported phases of software development,

degree of agility, level of planning and documentation, ease of implementation, scalability,

customer interaction etc. It was concluded that FDD-V extended model employs consider-

able number of QA activities and supports all phases of SDLC. It is also scalable and has

the lowest degree of agility and was found to be the best candidate for adoption inside V-

model. Another conclusion made was that Scrum and Kanban methods don‘t provide any

specific technical guidelines and these methods can be used as frameworks within which

other agile testing methods like TDD, ATDD etc can be adopted.

In order to validate hypotheses, case study research method was used. Interviews were

conducted and three case studies i.e. three projects which implemented agile testing me-

thods inside V-model were discussed. These projects belonged to public sector in Germa-

ny. The three case studies represented different situations in terms of project size, project

history and implementation of hybrid approach. Cross case synthesis technique was then

used to compare and analyze case studies. Case studies were compared to each other based

upon some uniform categories.

Below is the summary of conclusions drawn upon comparison of extended V-models and

case studies.

Conclusions and Future Work

133

 Case studies demonstrated that agile testing methods can be successfully imple-

mented inside V-model

 Case studies showed various benefits achieved by implementation of agile methods

namely early feedback, reduced development cycle, increased transparency, better

product quality, increased flexibility to accommodate changing customer require-

ments etc.

 Validation of all four hypotheses against three case studies proved the hypotheses

to be true

 Case Study 1 – TINS (This is not Scrum) and Case Study 2 –Large Scale Scrum

showed that Scrum is scalable and can be implemented successfully in larger teams

 Comparison of extended V-models showed FDD as the best approach which can

be adapted inside traditional models, followed by Scrum, ATDD/Specification by

example, Kanban and TDD

 Case studies as well as extended V-models supported the view that Scrum can be

used as a framework inside traditional V-model. Within this framework, other

agile testing methods like TDD, FDD, specification by example etc. can be em-

bedded.

 Participation of other phases like conception and testing in agile methodologies re-

duces challenges for agile methods implementation inside development team

 Apart from Scrum testers, presence of independent test teams improved the prod-

uct quality

14.2 Future work

There are three main areas on which future work could be based.

 Study of other Agile testing methods

There exists number of agile testing methods. Study of other agile testing methods and

extended V-models apart from the ones discussed in this master thesis could be part of

future work.

Conclusions and Future Work

134

 Extended V-models‟ validation

The master thesis proposed some extended V-models. However, the adoption of agile test-

ing methods and extended V-models depends upon the specific project environment. Ex-

tended V-models presented in this thesis could be implemented inside an organization to

check their validity and viability.

 Different Case studies

All three case studies discussed in this thesis implemented Scrum agile methodology. Case

studies implementing other agile methods like Kanban, FDD, ATDD etc. could be studied

as part of future work. The three case studies belonged to public sector in Germany and

showed that hybrid approaches combining agile and traditional methods worked well in

public sector. Case studies in other sectors could also be studied to check if hybrid ap-

proaches work well in other domains too.

Appendix A

135

Appendix A - Agile Manifesto

(Source: http://agilemanifesto.org/)

http://agilemanifesto.org/

Appendix B

136

- Agile Principles

(Source: http://agilemanifesto.org/principles.html)

http://agilemanifesto.org/principles.html

Appendix C

137

Appendix B - Chickens and Pigs analogy of Scrum

Roles

(Source: implementingscrum.com)

Appendix D

138

Appendix C - Explanation of Personnel levels in

Boehm‟s Home Ground Polar Chart

(Source: Boehm & Turner, 2003)

Appendix E

139

Appendix D - 4-DAT framework‟s four dimensions

4-DAT‟s four dimensions

Dimension 1 (Method Scope)

Scope Description

1. Project size
Does the method specify support for small, medium or

large projects (business or other)?

2. Team size
Does the method support for small or large teams (single

or multiple teams)?

3. Development style
Which development style (iterative, rapid) does the me-

thod cover?

4. Code style
Does the method specify code style (simple or complex)?

5. Technology environment
Which technology environment (tools, compilers) does the

method specify?

6. Physical environment
Which physical environment (co-located or distributed)

does the method specify?

7. Business culture
What type of business culture (collaborative, cooperative

or noncollaborative) does the method specify?

8. Abstraction mechanism
Does the method specify an abstraction mechanism (ob-

ject-oriented, agent-oriented)?

Dimension 2 (Agility Characterization)

Features Description

1. Flexibility
Does the method accommodate expected or unexpected

changes?

2. Speed
Does the method produce results quickly?

3. Leanness
Does the method follow the shortest time span, use eco-

nomical, simple and quality instruments for production?

4. Learning
Does the method apply updated prior knowledge and expe-

Appendix E

140

rience to create a learning environment?

5. Responsiveness
Does the method exhibit sensitiveness?

Dimension 3 (Agile Value Characterization)

Agile Values Description

1. Individuals and interac-

tions over processes and

tools

Which practices value people and interaction over

processes and tools?

2. Working software over

comprehensive docu-

mentation

Which practices value working software over comprehen-

sive documentation?

3. Customer collaboration

over contract negotiation
Which practices value customer collaboration over con-

tract negotiation?

4. Responding to change

over following a plan
Which practices value responding to change over follow-

ing a plan?

5. Keeping the process agile
Which practices help in keeping the process agile?

6. Keeping the process cost

effective
Which practices help in keeping the process cost effective?

Dimension 4 (software process characterization)

Process Description

1. Development process
Which practices cover the main life cycle process and test-

ing (quality assurance)?

2. Project management

process
Which practices cover the overall management of the

project?

3. Software configuration

control process/support

process

Which practices cover the process that enable configura-

tion management?

4. Process management

process
Which practices cover the process that is required to man-

age the process itself?

(Source: Qumer & Henderson, 2008)

Appendix F

141

Appendix E - Case Studies‟ Interview Questionnaire

History of Project

1. What is the size of project? Number of employees

2. How old is this project?

3. How many releases have been released so far?

4. What is the length of each release and iteration?

Product developed

1. What is the product developed? Is it UI or some other software?

2. What is the risk factor involved in this product?

3. For which client is this product developed?

4. How many users use this software?

5. What is the technology used for development? JAVA, C..?

6. What is the overall architecture? Client-Server, SOA or..?

Process Description

1. What is the process flow? Various phases followed in product development

2. Input, Output and deliverable of each phase with emphasizes on Testing phases

3. Are Testing phases followed in parallel with development or afterwards?

4. How much is the customer interaction and involvement?

Testing Phases

Checklist of Test phases: Which testing phases do you follow and who performs which

testing phase?

 Unit Testing

 Integration Testing

 System Testing

 User Acceptance Testing (Alpha and Beta Testing)

 Load / Performance Testing

Appendix F

142

 Regression Testing

 Any additional Test phases followed?

Agile Testing Methods

1. Which Agile testing practices or methods are used inside testing or development?

Like TDD, FDD etc.

2. How are these practices followed? Like use of boards or user stories or..?

Roles

1. What are the various roles involved in product development? Like analyst, developer,

scrum master etc…?

2. What are the respective tasks performed by these roles?

3. How is the interaction between these roles?

Pros and Cons

1. What are the Pros & Cons of following Agile Testing methods inside V Model?

2. What are the reasons for following such a mixed approach? Why not complete

traditional or complete Agile?

3. What is it that you would like to do better?

Challenges

1. What are the difficulties faced while implementing such a mixed approach?

2. What is the overall impression of this approach?

Future Plans

1. Do you want to ultimately shift to complete Agile methodology?

2. Why or why not?

Hypothese Validation

1. Hypothesis 1 – Valid or Invalid with respect to this project. Kindly provide some

details.

―Agile testing methods when embedded inside V-model will lead to early

Appendix F

143

and often testing and hence bugs being detected earlier in the software

development lifecycle‖

2. Hypothesis 2 - Valid or Invalid with respect to this project. Kindly provide some

details.

―Agile testing methods when embedded inside V-model will lead to regu-

lar customer feedback and hence will be able to react quickly to changing

customer requirements‖

3. Hypothesis 3 - Valid or Invalid with respect to this project. Kindly provide some

details.

―Agile testing methods when embedded inside V-model will lead to reduc-

tion in development cycle times‖

4. Hypothesis 4 - Valid or Invalid with respect to this project. Kindly provide some

details.

―Agile testing methods when embedded inside V-model build better

quality product‖

References

XIII

References

Brykczynski, B., Meeson, R., & Wheeler, D. A. (1994). Software Inspection : Eliminating

Software Defects. Alexandria, VA: Institute for Defense Analyses.

Ambysoft (2008, February). Agile Adoption Survey. Retrieved June 20, 2013 from

http://www.ambysoft.com/surveys/agileFebruary2008.html

Ambysoft (2008, December). Software Development Project Success Survey. Retrieved

June 10, 2013 from http://www.ambysoft.com/surveys/success2008.html

VersionOne (2012). 7
th

 Annual State of Agile Development Survey. Retrieved July 20, 2013

from http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-

Survey.pdf

Royce, W. W. (1970, August). Managing the development of large software systems.

In proceedings of IEEE WESCON, 26(8).

International Software Testing Qualifications Board, ISTQB (2012, October). Standard

glossary of terms used in Software Testing. Version 2.2.

Agile [Def. 1]. (n.d.). In Merriam Webster Online, Retrieved July 25, 2013, from

http://www.merriam-webster.com/dictionary/agile

Layton, M.C. (2012). Agile Project Management for Dummies. Hoboken, NJ: John Wiley

& Sons.

Schwaber, K., & Sutherland, J. (2013, July). The Scrum Guide. The Definitive Guide to

Scrum: The Rules of the Game, Retrieved September 12, 2013 from

https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-

Guide.pdf#zoom=100

Manifesto for Agile Software Development (2001). Retrieved July 30, 2013 from

http://agilemanifesto.org/

http://www.ambysoft.com/surveys/agileFebruary2008.html
http://www.ambysoft.com/surveys/success2008.html
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.merriam-webster.com/dictionary/agile
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf#zoom=100
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf#zoom=100
http://agilemanifesto.org/

References

XIV

Principles behind the Agile Manifesto. Retrieved July 30, 2013 from

http://agilemanifesto.org/principles.html

Boehm, B., & Turner, R. (2005). Management Challenges to Implementing Agile

Processes in Traditional Development Organizations. Software, IEEE, 22(5), 30–39.

Balaji, S., & Murugaiyan, M.S. (2012, June). Wateerfall Vs V-Model Vs Agile: A

Comparative Study on SDLC. International Journal of Information Technology and

Business Management, 2 (1), 26-30.

Qumer, A., and Henderson-Sellers, B. (2008). An Evaluation of theDegree of Agility in

Six Agile Methods and its Applicability for Method Engineering. Information and

Software Technology (50), 280-295.

Schwaber, K., & Sutherland, J. (2012). Software in 30 Days—How Agile Managers Beat

the Odds, Delight Their Customers, and Leave Competitors in the Dust. Hoboken,

NJ: John Wiley & Sons.

Schwaber, K (2004). Agile Project Management with Scrum. Redmond, Washington: Mi-

crosoft Press.

Pham, A., & Pham, P.V. (2012). Scrum in Action: Agile Software Project Management and

Development. Boston, USA: Course Technology.

Sliger, M., & Broderick, S. (2008). The Software Project Manager's Bridge to Agility. Ad-

dison-Wesley Professional.

Szalvay, V. (2004, November). An Introduction to Agile Software Development. Danube

Technologies.

Ambler, S., & Lines, M. (2012). Disciplined Agile Delivery—A Practitioner's Guide to

Agile Software Delivery in the Enterprise. Upper Saddle River, NJ: IBM Press.

Hightower, R., Onstine, W., & Visan, P. (2004). Professional java tools for extreme pro-

gramming. Indianapolis, IN: Wiley Publishing.

Dooley, J. (2011). Software Development and Professional Practice. Apress.

http://agilemanifesto.org/principles.html

References

XV

Stephens, M., & Rosenberg, D. (2003). Extreme Programming Refactored—The Case

Against XP. Apress.

Russo, B., & Scotto, M., & Sillitti, A., & Succi, G. (2010). Agile Technologies in Open

Source Development. NY: Information Science Reference-Imprint of: IGI Publish-

ing.

Poppendieck. M, Poppendieck. T (2003). Lean Software Development: An Agile Toolkit,

Upper Saddle River, NJ: Addison-Wesley Professional.

Anderson, D.J. (2010, December). The Principles of the Kanban Method. Retrieved Sep-

tember 12, 2013 from http://www.djaa.com/principles-kanban-method-0

Bell, S. C., & Orzen, M. A. (2011). Lean IT—Enabling and Sustaining Your Lean Trans-

formation. NY: Taylor & Francis.

Ambler, S.W. (2006). Agile Testing and Quality Strategies: Discipline Over Rhetoric. Re-

trieved September 17, 2013 from http://www.ambysoft.com/essays/agileTesting.html

Crispin, L., & Gregory, J. (2008). Agile testing: A practical guide for testers and agile

teams. Pearson Education.

Carter, J. (2010). The Agile Tester. VersionOne. Retrieved from July 31, 2013 from

http://www.versionone.com/pdf/WP_AgileTester.pdf

Bender, J., & McWherter, J. (2011). Professional test driven development with C#: devel-

oping real world applications with TDD. Indianapolis, IN: Wiley Publishing.

Collino, A. (2009, September). A Tester Perspective on Agile Test Driven Development.

Testing Experience, 18.

Reid, S. (2009). Are All Pigs Equal. Testing Experience, 2.

Park, S. S., & Maurer, F. (2008, May). The benefits and challenges of executable accep-

tance testing. In Proceedings of the 2008 international workshop on Scrutinizing

agile practices or shoot-out at the agile corral, ACM, 19-22.

http://www.djaa.com/principles-kanban-method-0
http://www.ambysoft.com/essays/agileTesting.html
http://www.versionone.com/pdf/WP_AgileTester.pdf

References

XVI

Koudelia, N. (2011). Acceptance Test-Driven Development. University of Jyväskylä,

Jyväskylä.

Hendrickson, E. (2008). Driving development with tests: ATDD and TDD. Quality Tree

Software, Inc. Retrieved August 2, 2013 from http://testobsessed.com/wp-

content/uploads/2011/04/atddexample.pdf

Ambler, S.W. (n.d.) Feature Driven Development (FDD) and Agile Modelling. Retrieved

June 12, 2013 from http://www.agilemodeling.com/essays/fdd.htm

Palmer, S. R., & Felsing, M. (2001). A Practical Guide to Feature-Driven Development.

Pearson Education.

MacDonald, K. J. (n.d.). Agile Method Brief – Feature Driven Development (FDD). Re-

trieved June 20, 2013 from

http://www.projectconnections.com/templates/detail/agile-techniques-fdd.html

Kaner, C. (2008, April). A Tutorial in Exploratory Testing. In QAI QUEST Conference,

Chicago.

Bach, J. (2003). Exploratory Testing Explained. Retrieved 25 June, 2013 from

http://www.satisfice.com/articles/et-article.pdf

Bach. J, & Bolton. M. (2012). Rapid Software Testing. Version (3.0). Satisfice, Inc. Re-

trieved 25 June, 2013 from http://www.satisfice.com/rst.pdf

Bach, J. (2000). Session-based test management. Software Testing and Quality Engineer-

ing, 2(6).

Guide to the Software Engineering Body of Knowledge, SWEBOK (2004). IEEE Computer

Society.

Itkonen, J., & Rautiainen, K. (2005, November). Exploratory testing: a multiple case study.

In Proceedings of the 4th International Symposium on Empirical Software Engineer-

ing (ISESE 2005), 84-93. IEEE.

http://testobsessed.com/wp-content/uploads/2011/04/atddexample.pdf
http://testobsessed.com/wp-content/uploads/2011/04/atddexample.pdf
http://www.agilemodeling.com/essays/fdd.htm
http://www.projectconnections.com/templates/detail/agile-techniques-fdd.html
http://www.satisfice.com/articles/et-article.pdf
http://www.satisfice.com/rst.pdf

References

XVII

Itkonen, J., Mantyla, M. V., & Lassenius, C. (2007, September). Defect detection efficien-

cy: Test case based vs. exploratory testing. In Proceedings of International Sympo-

sium on Empirical Software Engineering and Measurement, 61–70. IEEE.

Adzic, G. (2011). Specification by Example: How Successful Teams Deliver the Right

Software. Manning Publications Co.

Tassey, G. (2002). The economic impacts of inadequate infrastructure for software test-

ing. National Institute of Standards and Technology, RTI Project,7007.

Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide for the per-

plexed. Addison-Wesley Professional.

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64-69.

Vinekar, V., Slinkman, C. W., & Nerur, S. (2006). Can agile and traditional systems de-

velopment approaches coexist? An ambidextrous view. Information systems man-

agement, 23(3), 31-42.

Itkonen, J., Rautiainen, K., & Lassenius, C. (2005). Towards understanding quality assur-

ance in agile software development. In ICAM 2005.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of Migrating to Agile Me-

thodologies. Communications of the ACM, 48(5), 72-78.

Boehm, B., & Turner, R. (2005). Management Challenges to Implementing Agile

Processes in Traditional Development Organizations. Software, IEEE, 22(5), 30-39.

Schein, E. H. (2010). Organizational Culture and Leadership (Vol. 2). John Wiley & Sons.

Adler, P. S., & Shenhar, A. (1990). Adapting your Technological Base: the Organizational

Challenge. Sloan Management Review, 25(25-37).

Rong, G., Shao, D., & Zhang, H. (2010, November). SCRUM-PSP: Embracing Process

Agility and Discipline. In Software Engineering Conference (APSEC), 2010 17th

Asia Pacific (pp. 316-325). IEEE.

References

XVIII

West, D. (2011). Water-Scrum-Fall Is The Reality Of Agile For Most Organizations To-

day. Forrester, July, 26.

Hayata, T., & Han, J. (2011, July). A hybrid model for IT project with Scrum. In Proceed-

ings of 2011 IEEE International Conference on Service Operations, Logistics and In-

formatics (pp. 285-290). IEEE.

Schiffmann, J. (2012, February). Agile methods for (phase-oriented) test managers?. Agile

Record, 9, 42-45.

Nawaz, A., & Malik, K. M. (2008). Software Testing Process in agile development. Ble-

kinge Institute of Technology, Ronneby, Sweden.

Festinger, L. (1962). A theory of cognitive dissonance (Vol. 2). Stanford university press.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software Develop-

ment Methods. VTT Publications (478).

Ladas, C. (2008, July). Scrum-ban. Retrieved August 22, 2013 from

http://leansoftwareengineering.com/ksse/scrum-ban/

Anderson, D.J., & Garber, R. (2007). A Kanban System for Sustaining Engineering on

Software Systems. Corbis Corporation. Retrieved August 22, 2013 from

http://www.lean.org/FuseTalk/Forum/Attachments/Kanban%20for%20Software%20

Development-Corbis.pdf

Hiranabe, K. (2008, January). Kanban Applied to Software Development: from Agile to

Lean. Retrieved August 22, 2013 from http://www.infoq.com/articles/hiranabe-lean-

agile-kanban

Riordain, I. P., & Burgt, B.V. (2011, December). Lean Test Management – The future of

testing?. Testing Experience, 16, 4-7.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003, May). New direc-

tions on agile methods: a comparative analysis. In the Proceedings of the Interna-

tional Conference on Software Engineering (pp. 244-254). IEEE.

http://leansoftwareengineering.com/ksse/scrum-ban/
http://www.lean.org/FuseTalk/Forum/Attachments/Kanban%20for%20Software%20Development-Corbis.pdf
http://www.lean.org/FuseTalk/Forum/Attachments/Kanban%20for%20Software%20Development-Corbis.pdf
http://www.infoq.com/articles/hiranabe-lean-agile-kanban
http://www.infoq.com/articles/hiranabe-lean-agile-kanban

References

XIX

Germain, É., & Robillard, P. N. (2005). Engineering-based processes and agile methodolo-

gies for software development: a comparative case study. Journal of Systems and

Software, 75(1), 17-27.

Riehle, D. (2000). A Comparison of the Value Systems of Adaptive Software Develop-

ment and Extreme Programming: How Methodologies May Learn from Each Other.

In Proceedings of the First International Conference on Extreme Programming and

Flexible Processes in Software Engineering (XP 2000). Retrieved 25 August, 2013

from http://www.riehle.org/computer-science/research/2000/xp-2000.html

Succi, G., Wells, D., Williams, L., & Wells, J. D. (2003). Extreme programming perspec-

tives (Vol. 176, p. 312). Addison-Wesley.

Yin, R.K. (2013). Case Study Research: Design and Methods (Vol. 5). Thousand Oaks,

California: Sage Publications.

Boldinger, S. (2013). Einführung agiler Vorgehensweisen in traditionellen Softwareent-

wicklungsprojekten. Master Thesis, Otto - Friedrich - University of Bamberg, Bam-

berg, Germany.

Anger, R. & Eichler, F. (April, 2013). Keine Ausreden: TestAutomatisierung in Agilen

Projekten. Objektspektrum. Retrieved August 15, 2013 from http://www.sigs-

data-

com.de/fileadmin/user_upload/zeitschriften/os/2013/04/anger_eichler_OS_04_13_m

vut.pdf

Bentley, J. (1985). Programmimg pearls. Communications of the ACM, 28, 896–901.

Boehm, B. W. (1988). A Spiral Model of Software Development and Enhance-

ment. Computer, 21(5), 61-72.

The Expertise Paradox (2011). Retrieved September 18, 2013 from

http://blog.lib.umn.edu/hamdi002/blog/2011/11/the-expertise-paradox.html

http://www.riehle.org/computer-science/research/2000/xp-2000.html
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2013/04/anger_eichler_OS_04_13_mvut.pdf
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2013/04/anger_eichler_OS_04_13_mvut.pdf
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2013/04/anger_eichler_OS_04_13_mvut.pdf
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2013/04/anger_eichler_OS_04_13_mvut.pdf
http://blog.lib.umn.edu/hamdi002/blog/2011/11/the-expertise-paradox.html

References

XX

Eikenberry, K. (2009, March). The Paradox of Expertise. Retrieved September 18, 2013

from http://salesandmanagementblog.com/2009/03/18/guest-article-the-paradox-of-

expertise-by-kevin-eikenberry/

Jansen, J. J., Van Den Bosch, F. A., & Volberda, H. W. (2006). Exploratory Innovation,

Exploitative Innovation, and Performance: Effects of Organizational Antecedents

and Environmental Moderators. Management science, 52(11), 1661-1674.

West, D., Grant, T., Gerush, M., & D‘Silva, D. (2010). Agile development: Mainstream

adoption has changed agility. Forrester Research.

http://salesandmanagementblog.com/2009/03/18/guest-article-the-paradox-of-expertise-by-kevin-eikenberry/
http://salesandmanagementblog.com/2009/03/18/guest-article-the-paradox-of-expertise-by-kevin-eikenberry/

