
Core
Tech

The 
Architecture & 
Motivation For 
NuoDB

Te
ch

ni
ca

l W
hi

te
pa

pe
r



The Architecture & Motivation For NuoDB
This whitepaper provides an introduction to the NuoDB architecture. 
It covers the internals of the database, the management model and 
the key differentiators of the technology. It does not detail all of the 
protocols or implementation specifics. This paper is designed to 
provide familiarity with both what the NuoDB architecture looks like 
and what the motivation was for that design.

Table of Contents 

I. Introduction & Background     1 

II. The NuoDB Architecture      2
i. Three Tiers       2
ii. Peer-to-Peer Caching, Coordination & Scale-Out  3
iii. Atoms: Internal Object Structure    4
iv. Multi-Version Concurrency Control    6
v. Data Durability       7

vi. A Tunable Commit Protocol     8 

III. The NuoDB Architecture: Examples    9
i. Cache Population      9
ii. Data Update       10
iii. Commit Protocol      11 

IV. Management and Operations Model    12
i. Logical Administration and Templates   13
ii. Database Backup and Provisioning    13 

V. Benefits of the Architecture     14
i. Single, Logical Database     14
ii. Geographical Distribution     14
iii. Flexible Schemas      15
iv. Operational and Analytic Mixed Workloads   

16
v. Multi-Tenancy and Resource Efficiency   16

vi. Live Upgrade and On-Demand Migration   17
vii. Reactive HA       18
viii. Scale-Out Performance     18 

VI. Future Directions       21
i. Partitioned Storage      21
ii. Distributed Queries      21
iii. Automation       22
iv. Commit Protocol and Consistency    22 

VII. Conclusion        23 

VIII. About NuoDB       24



A Technical Whitepaper

The Architecture & Motivation For NuoDB

NuoDB is a distributed 
database designed with 
cloud-scale challenges in 
mind. It’s a true SQL service: 
all the properties of ACID 
transactions, standard 
SQL language support and 
relational logic.

3

Introduction & Background

Traditionally, relational databases were designed for scale-up 
architectures. Supporting more clients or higher throughput 
required an upgrade to a larger server. Until recently this meant 
that implementing a scale-out architecture either required a 
non-SQL programming model or relying on sharding and explicit 
replication. There were no solutions that provided complete ACID 
semantics. This tension is what inspired the NewSQL movement1.

In the NewSQL model and in modern distributed datacenters, 
on-demand scale-out databases that maintain ACID semantics 
are an architectural requirement2. Also critical are key features 
associated with being cloud-scale like ease of provisioning 
and management, security, agility in the face of unpredictable 
workloads or failures and support for widely distributed 
applications.  Widely distributed applications, in turn, require 
distributed services that are highly available and can provide 
low latency. These are the design goals that defined the NuoDB 
architecture.

NuoDB is a distributed database designed with global application 
deployment challenges in mind. It’s a true SQL service: all 
the properties of ACID transactions, standard SQL language 
support and relational logic. It’s also designed from the start 
as a distributed system that scales the way a cloud service has 
to scale providing high availability and resiliency with no single 
points of failure. Different from traditional shared-disk or shared-
nothing architectures, NuoDB presents a new kind of peer-to-
peer, on-demand independence3 that yields high availability, low-
latency and a deployment model that is easy to manage.

Unlike some cloud services, however, NuoDB was not designed 
with a specific operating system, network backplane or 
virtualization model in mind. It is a general piece of software that 
will exploit the resources it’s given. This makes the development 
and operational models simpler, but also means that the 
underlying architecture must do more to stay ahead of potential 
failures or resource limitations.

This paper covers the NuoDB architecture, how it was designed 
to solve these classes of problems and what new solutions 

1 Aslett, M., “How will the database incumbents respond to NoSQL and 
NewSQL?”, 451 Analyst Report, April 2011.

2 Shute, J et al, “F1: A Distributed SQL Database that Scales”, VLDB ‘13, August 
2013

3 See the section on Peer-to-Peer Caching, Coordination & Scale-Out below for 
more on this design and how peers maintain autonomy.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

4

it brings to bear on old challenges. It also highlights the key 
concepts and architectural differences that set NuoDB apart from 
traditional relational databases, the motivation for those design 
decisions and the resulting deployment and management model. 
It concludes with a discussion about future directions for the 
product, highlighting why the architecture positions NuoDB to be 
a true, general-purpose SQL database for future applications.

The NuoDB Architecture

This section focuses on the core architecture supporting a single, 
active database. It covers the communications, consistency 
and durability models. The sections that follow build on this 
architecture to describe client access and automation.

Three Tiers

NuoDB is a distributed architecture split into three layers: an 
administrative tier, a transactional tier and a storage tier. This 
section focuses on the transactional and storage tiers that 
support database activity, and the motivation for this design.

Splitting the transactional and storage tiers is key to making 
a relational system scale. Traditionally4, an SQL database is 
designed to synchronize an on-disk representation of data with 
an in-memory structure (often based on a B-tree data-structure). 
This tight application and its data are coupled, and therefore hard 
to scale out. Separating these roles allows for an architecture that 
can scale out without being as sensitive to disk throughput5 (as 
seen in shared-disk architectures) or requiring explicit sharding 
(as seen in shared-nothing architectures).

In NuoDB durability is separated from transactional 
processing. These tiers are scaled separately and handle failure 
independently. Because of this, transactional throughput can 
be increased with no impact on where or how data is being 
stored. Similarly, data can be stored in multiple locations with no 
effect on the application model. Not only is this key to making 
a database scale, it enables NuoDB to scale on-demand and 
implement powerful automation models.

4 http://en.wikipedia.org/wiki/IBM_System_R

5 See the section on Data Durability below for more on why this is true.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

5

The transactional layer is responsible for maintaining Atomicity, 
Consistency and Isolation in running transactions. It has no 
visibility into how data is being made durable. It is a purely in-
memory tier, so it’s efficient as it has no connection to durability 
or consistency. The transactional tier is an always active, always 
consistent on-demand cache.

The storage layer ensures Durability. It’s responsible for making 
data durable on commit, and providing access to data when 
there’s a miss in the transactional cache. It does this through a set 
of peer-to-peer coordination messages.

Peer-to-Peer Caching, Coordination & Scale-Out

The two tiers discussed above consist of processes running 
across an arbitrary number of hosts. NuoDB defines these tiers by 
running a single executable in one of two modes: as a Transaction 
Engine (TE) or a Storage Manager (SM). All processes are peers, 
with no single coordinator or point of failure and with no special 
configuration required at any of the hosts. Because there is 
only one executable all peers know how to coordinate even 
when playing separate roles. By default, all peers are mutually 
authenticated using SRP6  and communicate over encrypted 
channels.

Transaction Engines accept SQL client connections, parsing 

6 Wu, T., “The SRP Authentication and Key Exchange System”, RFC 2945, 
September 2000.

Figure 1: The architecture is made up of three independent tiers.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

6

and running SQL queries against cached data. SMs and TEs 
communicate with each other over a simple peer-to-peer 
coordination protocol. When a TE takes a miss on its local cache 
it can get the data it needs from any of its peers (either another 
TE that has the data in-cache or an SM that has access to the 
durable store). By regularly running a simple cost function, the 
TE knows which peers are most responsive and therefore how to 
populate its cache the fastest.

This simple, flexible model makes bootstrapping, on demand 
scale-out and live migration very easy. Starting and then scaling 
a database is simply a matter of choosing how many processes 
to run, where, and in which roles. The minimum ACID NuoDB 
database consists of two processes, one TE and one SM, running 
on the same host.

Starting with this minimal database, running a second TE on 
a second host doubles transactional throughput and provides 
an independent point of failure. When the new TE starts up it 
mutually authenticates with the running processes, populates 
a few root objects in its cache and then is available to take on 
transactional load. The whole process takes less than 100ms on 
typical systems. The two TEs have the same capabilities and are 
both active participants in the database.

Similarly, maintaining multiple, independent, durable copies of a 
database is done by starting more than one SM. A new SM can be 
started at any point, and will automatically synchronize7 with the 
running database before taking on an active role. Once started 
the new SM will maintain an active, consistent archive of the 
complete database.

7 See the section below on Database Backup and Provisioning for how to 
optimize this process.

Figure 2: Running across four hosts provides a fully redundant deployment that 
can survive any host failing.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

7

In this manner NuoDB supports on-demand scale-out8 and 
migration. For instance, the above example started with a TE and 
SM running on the same host. Separating these processes (e.g., 
for redundancy) is done by starting a new TE on a new host, and 
then shutting down the original TE process. This demonstrates 
NuoDB’s support for live migration with no loss of availability.

This simple set of steps demonstrates how NuoDB supports 
on-demand scale-out efficiently. The lightweight, process-based 
peer-to-peer and on-demand caching models are what enable 
this. The other key to making this model scale is how the data is 
cached and shared within the database processes.

Atoms: Internal Object Structure

The front-end of the transactional tier supports SQL. Beneath 
that layer, all data is stored in and managed through objects 
called Atoms. Atoms are self-coordinating objects that represent 
specific types of information (such as data, indexes or schemas). 
All data associated with a database, including the internal meta-
data is represented through an Atom.

The rules of Atomicity, Consistency and Isolation are applied 
to Atom interaction with no specific knowledge that the Atom 
contains SQL structure. The front-end of a TE is responsible for 
mapping SQL content to the associated Atoms, and likewise part 
of the optimizer’s responsibility is to understand this mapping 
and which Atoms are most immediately available. One strong 
side-effect of this design is that replacing the SQL front-end with 
a different dialect or programming model would have no impact 
on the ability of the system to provide ACID semantics.

8 As of this paper’s publication, NuoDB has been tested scaling up to over 100 
hosts. See the section below on Scale-out Performance for specific data about 
scaling a single database.

Figure 3: A Transaction Engine has a client-facing layer supporting SQL, but 
internally drives transactions and communicated with its peers in a language-
neutral form.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

8

Atoms are arbitrary chunks of the database, but unlike pages or 
other traditional on-disk structures Atoms are active. In a way, 
Atoms represent the network peers, self-coordinating between 
cached instances and marshaling or un-marshaling at the storage 
layer. The size of an Atom is chosen to help maximize efficiency 
of communication, minimize the number of objects tracked in-
cache and simplify the complexity of tracking changes.

In addition to database content, there are Catalog Atoms, which 
are used to resolve other Atoms across the running processes. 
This provides a distributed and self-bootstrapping lookup service 
and ensures that it’s efficient and always consistent to resolve any 
given Atom in the system.

When a TE first starts, it needs to populate exactly one object 
in its cache: the root Catalog Atom named the Master Catalog. 
From this Atom all other elements of the database can be 
discovered. This is how a TE starts participating quickly, and from 
this structure a TE knows whether a needed object is available in 
the cache of another TE or whether it has to be requested from a 
Storage Manager’s durable state.

This bootstrapping is part of why NuoDB uses an on-demand 
cache. Only required objects are pulled into a cache so startup is 
fast but so too is object resolution. Once an object is no longer 
needed it can be dropped from the cache and the catalog will 
be updated accordingly. At any time a TE can find cached copies 
of the data it needs, but as long as it doesn’t have an Atom in its 
cache it doesn’t need to participate in update protocols.

Structuring data as Atoms also ensures consistency of the 
database as a whole. Because meta-data and catalog data are 
both stored in the same Atom structure as database data, all 
changes are happening in the context of a transaction, and are 
treated equally. There is no chance to update one class of data 
while failing to update the other.

Multi-Version Concurrency Control

Central to providing ACID semantics is having a clear consistency 
model. Part of the challenge in scaling a transactional system is 
providing strong consistency while mediating conflict. Traditional 
approaches like deadlock detection or explicit lock management 
become very expensive when scaled beyond a few hosts and 
without a synchronized clock, order isn’t meaningful. To address 



A Technical Whitepaper

The Architecture & Motivation for NuoDB

9

all of these issues, NuoDB uses MVCC9, 10,  to handle conflict and 
provide a clear model for consistency.

MVCC works by treating all data as versioned, and all updates or 
deletes as operations that are simply creating a new version of 
the data. Transaction Engines are caches, and those caches hold 
multiple versions of any given object: the canonical version and 
any number of pending or historical versions that may need to be 
visible to the current transactions. A version is pending until the 
associated transaction commits successfully.

A side effect of being able to hold separate versions in-cache 
is that nothing is ever changed in-place, so updates can be 
communicated optimistically, because a rollback is done by 
simply dropping a pending update from the cache. In NuoDB 
these messages are also sent asynchronously, allowing a 
transaction to proceed assuming that an update will succeed. 
Asynchrony within a transaction can mask network round-trip 
time, a particularly important optimization for environments with 
unpredictable or high-latency networks. If a transaction gets to 
the point of committing and doesn’t know whether an update has 
been allowed (see below) then of course it must block.

MVCC also defines a clear visibility model for NuoDB. While 
modes like Read-Committed are supported, by default NuoDB 
runs with a Snapshot Isolation11 model. This provides a consistent 
view of the database from the moment that a transaction started. 
Multiple transactions may see overlapping views based on when 
they were started and what pending versions were known. In 
a distributed system with no single clock to coordinate events, 
using snapshot isolation guarantees a clear isolation model and 
visibility that matches what can actually be observed in reality. A 
nice benefit of this approach is that it also minimizes the number 
of messages required to coordinate the database.

In this mode one transaction can read a value at the same time 
another transaction is updating that value and there is no conflict. 
What still needs to be mediated is the case of two transactions 
both trying to update the same value. On update or delete 
NuoDB chooses a Transaction Engine where the Atom resides 
to act as tiebreaker. This TE is called the Chairman, and for each 
Atom there is a known TE playing this role. Only TEs that have a 
given object in their cache can act as Chairman for that object, so 

9 Reed, D.P., “Naming and Synchronization in a Decentralized Computer 
System”, Doctoral Dissertation, September 1978

10 Bernstein, P.A. and Goodman, N., “Concurrency Control in Distributed 
Database Systems”, ACM Computing Surveys Volume 13 Issue 2, June 1981

11 http://en.wikipedia.org/wiki/Snapshot_isolation

“This investment 
demonstrates our strong 
interest and belief in 
NuoDB’s strategy and 
technologies for next 
generation cloud based 
services. NuoDB delivers a 
lot of the features required 
to address the market needs 
in terms of usages in the 
new world of experiences.”

Dominique Florack
Senior Executive Vice 
President, Products-R&D
Dassault Systèmes



A Technical Whitepaper

The Architecture & Motivation for NuoDB

10

in the case where an object is only cached in one TE all mediation 
is local. When a TE shuts down, fails or drops an object from its 
cache there’s a known way to pick the next Chairman with no 
communications overhead.

Note that versioning is done on records within Atoms, not on 
Atoms themselves. Atoms could contain many records and would 
be too coarse-grained to effectively minimize conflict. The goal 
of picking a Chairman is to spread out the role of mediation but 
keep it cache-coherent.

Data Durability

Abstracting all data into Atoms is done in part to simplify the 
durability model. All access and caching in the architecture is 
on the Atom-level, and all Atoms have some unique identifier, so 
Atoms are stored as key-value pairs. By design, durability can be 
done with any service that supports a CRUD12 interface and can 
hold a full archive of the database13.

12 http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

13 See the section below on Partitioned Storage for how this model will change 
in future versions.

Figure 4: Bernstein, P.A. and Goodman, N., “Concurrency Control in Distributed 
Database Systems”, ACM Computing Surveys Volume 13 Issue 2, June 1981



A Technical Whitepaper

The Architecture & Motivation for NuoDB

11

Each Storage Manager addresses its own full archive of the 
database. Within a single database, however, different SMs can be 
addressing different storage services. For instance, on Amazon 
Web Services a database could use two SMs, one writing to an 
EBS volume and a second storing in S3. This kind of mixed-mode 
storage provides higher performance from the EBS service but 
higher durability from S3. As was discussed above, TEs and SMs 
are running a cost function to track the responsiveness of their 
peers. Because of this, when a TE needs some Atom from durable 
store they know which SMs are more responsive than others, and 
that could in part be a function of how fast the backing store is 
for that SM.

In addition to tracking the canonical database state in its archive, 
Storage Managers can optionally maintain a journal of all updates. 
It’s a best practice to always be running with journaling enabled. 
Because NuoDB uses MVCC, the journal is simply an append-
only set of diffs, which in practice are quite small. Writing to and 
replaying from the journal is efficient.

A Tunable Commit Protocol

To acknowledge successful commit to an SQL client, NuoDB 
must ensure that all properties of an ACID transaction have been 
met. To ensure durability, the TE running the transaction must 
coordinate with the storage tier. This is referred to as the commit 
protocol.

Figure 5: A single database can use multiple Storage Managers, each with a 
different backing store. If each SM uses a journal then it hides the latency of the 
backing store.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

12

In NuoDB the commit protocol enables a user to tradeoff 
performance and durability concerns. When any change is 
happening in the context of a transaction it gets sent to all peers 
that need to know about the change. As discussed above, that 
means any TE with the associated Atoms in-cache and all SMs. So 
a base line for acknowledging commit is that reliable messages 
have been sent to all interested peers.

As long as all of the Storage Managers don’t fail simultaneously 
at this moment, then this ensures the data will made durable. 
Regardless, data will always be correct and consistent. For 
some applications this kind of k-safety14 at the transaction tier 
and eventual durability at the storage tier is sufficient. Many 
applications, however, want to know that data has been made 
durable on at least one Storage Manager before acknowledging 
commit to the client. This is tunable by running with a Remote:N 
setting.

In this context, N is the number of Storage Managers that must 
acknowledge data has been made durable before commit 
can be considered successful. For instance, Remote:2 requires 
acknowledgement from at least 2 Storage Managers15. Because 
updates are sent asynchronously, it’s possible that the response 
arrives before the transaction is ready to commit, so there is no 
round-trip cost. 

If a Storage Manager is running with journaling enabled then it 
can acknowledge an update as soon as the change has been 
written to the journal. Typically this can be done much faster 
than actually writing the change to the archive. This means that 
running with a journal not only helps with recovery on failure 
(and therefore improves durability guarantees) but it improves 
performance of transactions.

The NuoDB Architecture: Examples

This section provides a few concrete examples of the architectural 
issues discussed in the previous section. These examples use the 
smallest, fully redundant database (2 Transaction Engines and 2 
Storage Managers) for illustration. From there it should be simple 
to extrapolate to how interaction works on larger deployments.

14 Stonebraker M. and Abadi, D. J. and Batkin, A. and Chen, X. and Cherniack, 
M. and Ferreira, M. and Lau, E. and Lin, A. and Madden, S. and O’Neil, E. and 
O’Neil, P. and Rasin, A. and Tran, N. and Zdonik, S., “C-Store: A Column-Oriented 
DBMS”, VLDB ‘05, pages 553–564, 2005

15 See the section below on Geographic Distribution for other options to 
consider when configuring commit.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

13

Cache Population

The caching tier in NuoDB is an on-demand cache where each 
Transaction Engine maintains a set of Atoms based on access 
patterns. There are two ways that this data could be populated 
in a given TE’s cache. In both cases, assume an SQL client 
connected to TE1.

First, as part of an SQL transaction data could be created (e.g., 
performing an INSERT into a table). In the scope of the active 
transaction a pending record now exists in-cache and messages 
are sent to the Storage Managers immediately. Once the 
transaction successfully commits the change is now visible in the 
TE’s cache for any other transactions to use. This new value is 
also now part of the durable state of the database.

The second way a cache is populated is when there’s a cache-
miss on some required Atom. For instance, assume some Atom 
has been created but isn’t currently in-cache at any Transaction 
Engine. The TE uses its Catalog Atoms to discover this and then 
goes to any Storage Manager to fetch the Atom. This has the 
effect of both populating it in the TE’s cache and updating the 
Catalog to reflect this change. Note that because this is the only 
TE with this Atom in its cache, the TE also becomes the Chairman 
for its data.

Now suppose that a client on TE2 starts a transaction that needs 
the same Atom. The Catalog shows that the required Atom 
is available from TE1 in addition to any SM. TE2 may choose 
where to get the Atom, but in practice is likely to fetch it from 
TE1 because this will be much faster than retrieving it from the 
durable store.

The Atom is now in-cache at both TE1 and TE2, and the Catalog 
reflects this fact. In this way caches are built-up based on where 
data is created or accessed. Either Transaction Engine is free 
to drop an Atom at any time, as long as no active transaction 
requires it. If an Atom is no longer in-cache at any TE it is always 
available from a Storage Manager. Note that because each Data 
Atom is likely to contain several rows of data, populating an 
Atom typically has the side effect of pre-fetching that will also be 
needed at the TE.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

14

Data Update

Assume the above example where an Atom was first cached at 
TE1 and then replicated to TE2, and now some data it contains is 
modified (e.g., performing an UPDATE on a row that is contained 
within a Data Atom). This requires (at least) two messages: 
permission from the Chairman and pending updates to any peer 
with a copy of this Atom. The former is to verify the update 
may proceed and in this example if the update is happening 
on TE1, the Chairman, then the check is handled locally with no 
communications. The latter is then sent asynchronously to both 
the SM and TE2 to notify them that an update is occurring.

Had transactions been running on both Transaction Engines 
trying to update the same data (i.e., the same row in the 
table, not the same Atom) a conflict will occur. In this case the 
Chairman acts as a tiebreaker: whichever transaction got its 
update message to the Chairman first will “win”. 

Figure 7: When an update is made to some Atom in a TE the change is sent to all 
peers tracking that Atom.

Figure 6: The on-demand cache puts the Atom in-cache at TE1 when created, 
and replicates it to TE2 only when needed.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

15

Commit Protocol

In the previous example the pending update messages were sent 
asynchronously (over reliable channels) with no requirement that 
any Storage Manager acknowledge the change before reporting 
commit back to the SQL client. This is the default behavior of 
NuoDB, ensuring that all changes are always consistent, and 
that any change is made durable as long as at least one Storage 
Manager is active. In this case, the update is replicated to three 
hosts, all of which have to fail to lose the update. The tunable 
Commit Protocol is what provides flexibility on commit.

If the same update is run, but now the Remote:1 option is 
used, the Transaction Engine will wait to hear from at least one 
Storage Manager before acknowledging commit back to the SQL 
client. Running with Remote:2 will require acknowledgement 
from both SMs. Recall that each SM can use a Journal, so the 
acknowledgement is sent as soon as the diff is captured there.

Figure 8: With Remote:1 the TE waits for one response. In this picture the slower 
service (S3) also uses a journal, so it can actually respond faster than a disk-
based archive with no journal.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

16

Management and Operations Model

Above the two database layers is a management tier. As with 
databases, the management tier is a collection of peer processes. 
These processes are called Agents, and one runs on every host 
where a database could be active. Starting a management agent 
on a host is a provisioning step: it makes the host available to run 
database processes and visible to the management environment. 
This collection of provisioned hosts is called a Management 
Domain.

A Domain is a management boundary. It defines the pool of 
resources available to run databases and the set of users with 
permission to manage those resources. In traditional terms, a 
DBA focuses on a given database and a systems administrator 
works at the management domain level.

Each Agent is responsible for the host it runs on (i.e. the local 
host). An Agent can start and stop Transaction Engine and 
Storage Manager processes, monitor those processes and the 
local host’s resources, query and configure the running processes 
and perform other host-local tasks. Any Agent may be run with 
the additional role of Broker. A Broker is a Agent that has global 
view of all Agents in the Domain, and therefore all processes, 
databases and events that are useful from a monitoring point of 
view.

All connection brokers have the same view of the Domain and the 
same management capabilities. So, like a database, there is no 
single point of failure at the management level as long as multiple 
Brokers are deployed. Provisioning a new host for a Domain 
is done by starting a new Agent peered to one of the existing 
Brokers.

When an SQL client wants to communicate with a Transaction 
Engine it starts by connecting to a Broker. The Broker tells the 
client a TE to use and the client disconnects before connecting 
directly to the Transaction Engine. This connection brokering is 
one of the key roles of a Broker, and means that a Broker is also a 
load-balancing point. Load-balancing policies are pluggable and 
can be implemented to support optimizations around key factors 
like resource utilization or locality.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

17

Logical Administration and Templates

Just as an SQL programmer addresses a NuoDB database as a 
single, logical entity even though it’s distributed across many 
processes, a systems administrator addresses a Domain as a 
single, logical point of management. This is done through any of 
the Brokers. They provide a single place to connect to a Domain, 
manage and monitor databases and ensure that the system is 
running as expected.

Using this single point of management or administration, 
databases can be started from Templates. A Template is a 
recipe for how to solve specific problems like maintaining full 
redundancy, scaling out on-demand, running in multiple locations 
or simply testing on a local system. Templates are written using 
a simple declarative language that captures deployment and 
service-level requirements16. Databases started from a Template 
will report whether or not they are currently meeting their 
expected requirements.

Database Backup and Provisioning

Taken together, this simple administrative model and the Storage 
Manager architecture support a non-intrusive approach to full 
and incremental database backup. You can run a redundant SM 
as part of the database, or on-demand when backup should be 
performed. To perform a full backup first issue a clean shutdown 
of that SM so that the underlying archive can be copied. When 
the copy is done restart the SM, which automatically synchronizes 

16 See the section below on Automation for more details on how Templates are 
used to automate the process of managing active databases.

Figure 9: An admin client sends a single management message to a Broker to 
start a process on some host. Once the TE is started management messages 
flow back to all Brokers.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

18

with the running database and then continues active 
participation. The database itself is never taken down. Note that if 
you deploy against a file system or storage service that supports 
atomic snapshots (e.g., ZFS) you can capture a full, consistent 
backup instantly without shutting down any SM.

This model for backup works in part because an SM can be 
started against any arbitrary archive, so any copy of an archive 
lets you roll back to the point in time represented by that archive. 
This same model makes database provisioning simple. Start a 
single TE and SM and populate the database with the content 
needed for all other databases. The resulting archive can be used 
as the starting-point for any other databases, simply by copying 
it to a new location for use by a new database.

Benefits of the Architecture

The unique nature of NuoDB’s architecture makes it well suited to 
address a number of typically challenging and mutually exclusive 
problems. This section covers a few of these problems, and 
highlights which aspects of the architecture are key in addressing 
them.

Single, Logical Database

NuoDB is a distributed database, composed of an arbitrary 
process deployment across an arbitrary set of hosts. 
Programming models like JDBC, however, are designed to access 
a single database. One explicit challenge introduced by using 
shards or an active-passive scale-out model is that burden is 
put on the application to understand and build against that 
deployment.

As has been suggested throughout this paper, one of the 

Figure 10: After issuing a stable shutdown command to any SM the archive 
is usable as a point-in-time backup or as a way of starting an independent 
database provisioned with the archive content.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

19

key benefits offered by NuoDB is the view of a single, logical 
database. The deployment model can change to support 
scaling, provisioning and availability needs without any effect 
on the application; an SQL client addresses what looks like a 
single database. Likewise, management of any database is also 
simplified by this logical view. This is a key building block for 
many of the other benefits offered by the architecture.

Geographical Distribution

NuoDB provides the model of a single, logical database that is 
always active and consistent both within a single data center and 
across data centers. This supports running a database across 
physically separate geographic regions (for instance, running a 
database across servers in Sydney, Singapore, Virginia, and so 
on). Common reasons for running a geo-distributed database are 
to achieve higher availability and fault-tolerance or to support 
applications and users that are geographically distributed 
themselves: for instance, a financial institution with offices at the 
major finance hubs around the world.

In memory Atoms in NuoDB TEs are partially replicated so 
only the objects needed are held in transactional caches, and 
if an object isn’t in-cache then a TE won’t participate in any 
coordination messages. This means that if data has reasonable 
locality relative to a physical region most caching and 
coordination will also be local to that region. When some object 
is needed in another region, however, it’s always available and 
always consistent.

Update messages are sent asynchronously from TEs to SMs. It 
is up to the commit protocol to decide if a response is needed 
to acknowledge commit to an SQL client. As long as the system 
continues to run, however, all SMs will make a given change 

Figure 11: Geo-distributed databases can run with full access to the database in 
all regions, but clients talk with local TEs, and commit can be set as synchronous 
only locally to minimize latency.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

20

durable, and if an SM does crash it automatically re-synchronizes 
on restart. Configuring a durable database that scales across 
distributed regions, therefore, is supported by running with a 
commit protocol that only requires acknowledgement from a 
local SM.

Flexible Schemas

NuoDB is a relational database, which means that developers 
give structure to their data by defining schemas. This is a useful 
way to think about data, but often developers want to evolve 
schemas, either during development or after a database has been 
deployed. For instance, new fields need to be added to a table or 
existing fields need to be removed, renamed or retyped.

Often in relational databases making these kinds of changes 
is expensive, sometimes requiring downtime, because all data 
in a table must be traversed to apply changes or to check that 
constraints are still being met correctly. This has led developers 
to adopt a schema-free model where data is stored without 
structure so the burden is put on the application to either enforce 
some known structure or interpret stored data at runtime and 
resolve incompatibilities then.

Within NuoDB all data is stored in Atoms that are SQL-agnostic. 
Applying the rules of a schema is done at the SQL layer as 
Atoms are read or written, using the applicable schema Atom(s). 
Because of this, operations like adding, renaming or removing a 
column or dropping a table are done in constant time.

Operational and Analytic Mixed Workloads

NuoDB is a transactional system, meaning that it’s well suited 
to support both Online Transaction Processing (OLTP) tasks 
and operational workloads like account management or session 
tracking. The operational model is typical of scale-out web 
applications, which need a database that can support many 
concurrent clients doing regular, small, localized updates. While 
techniques like sharding or replication are hard to apply to OLTP 
they can be used for operational workloads that have strong 
locality. The problem is that these approaches make it hard to do 
real-time analysis of the data.

Supporting Online Analytical Processing (OLAP) requires the 
database to handle longer-running transactions that span large 
regions of the data. Often the solution is to dump data from the 
operational database(s) into a separate service that is used only 
for doing analysis. NuoDB provides a scale-out architecture, 
supporting transactions that need to read large quantities of the 



A Technical Whitepaper

The Architecture & Motivation for NuoDB

21

database. Because MVCC is used to enforce consistency, those 
long-running transactions can execute without causing conflict 
with the many short-running updates happening across the 
database. In this way NuoDB supports scale-out operational data 
deployments where online analytics operations need to be run on 
the same data set.

Because NuoDB has a flexible load-balancing policy, it’s also 
possible to dedicate specific Transaction Engines to specific roles. 
For instance, a single database can be scaled out across smaller 
systems for typical operational access patterns. One or a few 
larger systems (with more memory and processing power) can be 
dedicated to running analytic transactions. The application is still 
viewing a single, logical database that is always consistent across 
all the hosts but with appropriate resources dedicated to specific 
tasks.

Multi-Tenancy and Resource Efficiency

NuoDB has a formal management tier that supports the scale-
out use cases discussed earlier. In a cloud environment, however, 
managing many smaller databases may be more important than 
scaling out a single, large database: for instance, hosting sites 
that provide blogs or software as-a-service. Often these are 
supported by running one or a small number of large databases, 
which provide separation through schemas or views.  These or 
other mechanisms may require the application to understand how 
isolation should be enforced.

The management tier in NuoDB that supports scale-out also 
supports running multiple databases on a single host, or across 
shared hosts. Because a database is simply a collection of 
processes, supporting a multi-tenant deployment can be done by 
running separate processes for separate databases on the same 
host. Unlike traditional approaches these databases have process-
level isolation, use different credentials to establish separate, 
secure channels and store their durable archives in physically 
separate locations. The same management routines that support 
on-demand scale-out make it easy to scale and re-allocate 
individual tenant databases as needed to manage resources more 
efficiently.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

22

Part of the advantage to running a multi-tenant deployment 
as separate databases is better efficiency. For instance, 
many applications were not written to support deployment 
against shared databases, so this multi-tenant model enables 
consolidation from separate database deployments down to one 
or a small number of hosts. It’s also common that some databases 
will be active while others are idle. In this case, it’s better to focus 
the system resources on the databases that need them.

Because database processes can be started so quickly in NuoDB, 
when a given database is inactive its processes can be shut 
down completely and re-started on-demand as needed. This 
capability is called Database Hibernation. Hibernation supports 
deployments where very large numbers of databases need to be 
available but only a subset of these databases are active at any 
moment in time. This functionality has been shown to support 
tens of thousands of databases under real-world load on small 
quantities of inexpensive hardware17.

Live Upgrade and On-Demand Migration

NuoDB has a scale-out model that supports heterogeneous 
combinations of hardware and operating systems. In such a 
distributed environment it’s important to maintain systems and 
be able to upgrade regularly. Cloud environments are typically 
virtualized, which means that it’s also important to allow 
migration between containers and servers. These requirements 
typically conflict with the need for high uptime.

The simple process model and on-demand cache work together 
to make it easy to bring new processes online. As mentioned 
earlier, this makes it simple to support upgrades with no 
downtime. New Transaction Engines are started on new hosts 
to meet capacity requirements and then existing TEs can be 
shut down to perform upgrade. In this way a rolling upgrade of 

17 http://www.nuodb.com/techblog/2013/04/09/extreme-density-on-hps-
project-moonshot/

Figure 12: Three databases are hosted across five hosts. Database 1 (DB1) has 
Host 1 dedicated to it, DB2 is a smaller deployment with no redundancy and DB3 
shares resources.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

23

software or hardware is supported with no downtime or loss of 
availability.

Using the same model, if a new TE is left running and the 
existing TE is shut down permanently the database migrates 
resources with no loss of availability. Because NuoDB provides 
monitoring data, just as a database could be hibernated when 
not active it could also be migrated when different resources are 
needed. In NuoDB this is called Database Bursting, and naturally 
complements the Database Hibernation described above. The 
previously cited density example used low-power systems to be 
as efficient as possible but when a single database needed more 
capacity it was migrated to a more capable server until activity 
slowed down.

Reactive HA

NuoDB provides traditional, proactive approaches to High 
Availability by running with additional Transaction Engines, 
Storage Managers and Connection Brokers. This model extends 
beyond a single data center, and supports upgrade and migration. 
In any deployment model, however, there’s a trade-off between 
the required availability and resources allocated to take-over on 
failure. For example, some sites may want to sacrifice a small 
amount of availability on failure for applications that aren’t as 
critical or are less likely to fail. In these cases the cost of pre-
provisioning resources may outweigh the cost of potential lost 
availability.

Because NuoDB is dynamic, and able to react to resource 
availability changes, it is also able to bring new resources online 
on-demand to take over for any that have failed. When one host 
fails a new host can be started to join the running the domain, 
and the Transaction Engines that were running on the original 
host can quickly be re-started on the new host. If Storage 
Managers were running on the failed host and their archives 
are still reachable (for instance, on a remote volume or in some 
network service) then those SMs can also be re-started. As long 
as all databases were run in a fully redundant deployment (on 
multiple hosts) there is no downtime for the database as a whole, 
only decreased capacity while the new host is brought online.

Similarly, a host can be run as part of a domain for the sole 
purpose of being available to pickup work when another host 
fails. In this way the window for reduced availability is cut to the 
time it takes to observe failure and re-start the processes (often 
measured on the order of seconds or less). In a multi-tenant 
deployment the cost of running this host is amortized over the 
total number of databases making it much more cost-effective.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

24

Scale-Out Performance

A cloud-scale database should be able to handle both 
traditional and modern transactional workloads. The latter 
is probably obvious. Supporting traditional applications that 
weren’t designed with sharding, passive replicas or scale-out 
architectures, however, provides a migration path and simplifies 
the number of databases that a company needs to maintain.
In either case, a scale-out database needs to provide increasing 
throughput as hosts are added. Because NuoDB operates as 
an in-memory database, and because that tier of the system 
uses an on-demand caching scheme, any application can see 
this throughput improvement without the use of an additional 
data cache (for instance Memcached) or any changes to the 
application logic itself. These requirements can be shown in the 
context of two specific benchmarks.

The first benchmark is the Yahoo Cloud Serving Benchmark 
(YCSB)18, designed to simulate modern web-facing workloads 
on back-end databases. It can be tuned along factors like 
dataset size, read/write bias, volume of queries and number 
of servers. The second benchmark is DBT-219, an open source 
implementation of the TPC-C20 benchmark. It simulates 
warehouse management, but generally models applications with 
heavily localized sets of data that are accessed both locally and 
globally by different types of simulated users. Together, these 
represent (respectively) modern and legacy, real-world workloads 
that benefit from scale-out architectures.

In both cases, the benchmarks are run with no modifications to 
the code except for minor changes to support the NuoDB SQL 
dialect and, in the case of DBT-2, the NuoDB stored procedure 
language. The latest published results are available online21. 
While the benchmark tests themselves are unchanged, what is 
interesting is the deployment model used to run the tests.

These tests are run to show scale-out behavior. To ensure that 
the load driver itself doesn’t become a bottleneck, it must also 
be scaled out to drive increasing load to the database as more 

18 Cooper, B. F. and Silberstein A. and Tam E. and Ramakrishnan R. and Sears 
R., “Benchmarking Cloud Serving Systems with YCSB”, ACM SoCC ‘10, June 2010

19 http://sourceforge.net/apps/mediawiki/osdldbt/index.php?title=Main_
Page#dbt2

20  Transaction Processing Performance Council, “TPC Benchmark™ C”, 
February 2010

21 http://dev.nuodb.com/tags/benchmark

“NuoDB enables us to 
add capacity seamlessly 
when we need it, and 
just as seamlessly scale 
back when demand shifts. 
That’s extremely critical to 
managing costs.”

Scott Lemon
CTO
DropShip Commerce



A Technical Whitepaper

The Architecture & Motivation for NuoDB

25

Transaction Engines are added. While YCSB was designed with 
scale-out in mind, TPC-C was not. It was, however, designed 
to simulate both local access and global access in a real-
world manner. Both of these benchmarks can be used to show 
horizontal scale by scaling out Transaction Engines paired with 
the clients that drive testing load.

This is consistent with typical web application deployment 
models, and is one of the reasons that NuoDB’s architecture 
works so naturally with modern applications. Conventionally in a 
scale-out web deployment there is often a single web container 
on each host paired with a local caching process, or layered 
on top of some scale-out cache22. This helps minimize latency 
and centralize database management. It also means that extra 
coordination is needed to either keep the distributed cache 
consistent, shard the application logic or do both. As with the 
previous footnote, caches are typically transient and key-value 
oriented which requires the application to work specifically with 
these constraints.

NuoDB supports a similar deployment strategy where a 
single Transaction Engine can be run on each web host. This 
affinity model provides the same low-latency and in-memory 
performance of something like Memcached.  This approach 
ensures that the cache is always consistent even when there 
is contention between multiple web containers. It puts no 
requirements on the application to be aware that there is any 
caching layer or to support any explicit sharding or hashing 

22 http://dev.mysql.com/doc/refman/5.7/en/ha-memcached.html

Figure 13: Depicted on the left is a common web-scale deployment pattern. On 
the right, the same pattern using Transaction Engines as local cache and scale-
out components.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

26

model. In the case of DBT-2, this means that each client (which 
represents a Terminal) is co-located with a TE. Because of the 
standard TPC-C behavior, 95% of the client’s work is local to a 
Warehouse, and therefore most transactions are dealing with 
locally cached data and with a local Chairman for that data. This 
is a side effect of how the test models real-world workloads, not a 
modification to any standard behavior.

In the case of YCSB, benchmarks can be run with several different 
access patterns. For instance, with uniform access of all data 
across all hosts, as more clients are added NuoDB shows scale-
out behavior even with a small number of Transaction Engines 
on separate hosts. To model a more realistic workload, where a 
subset of the database is more active and then there is a trail-off 
pattern, Transaction Engines are co-located with the YCSB client 
drivers and paired using simple affinity. This deployment shows 
near-linear scale and low-latency as hosts are added during the 
test. Again, results are available online, and are updated as new 
tests are run.

Beyond these popular benchmarks other tests are being run, 
and a new benchmark is available. Named “Storefront” its goal 
is to combine behaviors from both DBT-2 and YCSB to model 
a modern shopping site running in multiple data centers. It 
demonstrates aspects of scale, low-latency and the importance of 
simultaneously maintaining high availability.

Future Directions

This paper captures the current architecture of NuoDB, and 
makes the argument that by starting with a flexible, composable 
model the same implementation can be used to address very 
different problems. In that same spirit, the architecture continues 
to evolve to support new use-cases. Without covering all of the 
ways that NuoDB is evolving, here are a few key architectural 
elements that are currently in development for future versions.

Partitioned Storage

In the current implementation, each Storage Manager represents 
a complete, independent copy of the database. This makes it very 
simple to manage redundant replicas, supporting highly available 
deployments, non-intrusive backup and low-latency access across 
multiple data-centers. It also simplifies the operations model.

There are, however, several valid use cases that require each 
Storage Manager to contain only a subset of the total database. 
Some have to do with performance, like applications with 



A Technical Whitepaper

The Architecture & Motivation for NuoDB

27

high insert rates, or with large databases that cannot easily be 
contained by a single storage device or service (note that for 
this latter case, storage level distribution can be handled today 
with NuoDB by the underlying KV-store used by an SM). Others 
are focused on explicit choices about where to store data, for 
example minimizing coordination between geo-distributed sites 
or defining provenance and policy requirements. In a distributed 
system there are also advantages to segmenting data sets to 
support more graceful failure modes (see below).

Because all SQL access to a database is through Transaction 
Engines the durable state of the database can be partitioned 
without any change to the programming model. In other words, 
automatic data partitioning at the durability level doesn’t affect 
the client view of a single, logical database. This evolution will 
give NuoDB users the choice to continue with the existing 
operations model or let a database store subsets of the total 
durable state at different Storage Managers.

Distributed Queries

Today, each open SQL transaction is executed on a single 
Transaction Engine. This leads to caches forming around access 
patterns and makes conflict management extremely efficient 
when a given object is only in one cache. It also makes failure 
handling simpler, and minimizes the number of messages required 
for a given transaction.

As was previously discussed, part of the internal Atom structure 
is the directory for where other Atoms are available in-cache. This 
means that one use for distributing transactions across TEs is to 
move work to caches instead of moving cached objects, which 
is particularly effective for queries that can be parallelized. A 
more powerful use is applying Map-Reduce behavior to analytic 
queries.
By supporting a transaction model where execution is shared 
across TEs analytic queries can be run in parallel on the hosts 
that already have as many as possible of the required objects 
in-cache. This model will provide support for operational analysis 
that takes advantage of the total memory-space of all hosts.

Automation

This paper has already covered how NuoDB makes database 
provisioning, monitoring and management simple. The Brokers 
are a single place to monitor running databases, and the 
administration tier supports on-demand scale-out, scale-back or 
migration. This can all be scripted for automatic behavior, so that 
systems administrators can maintain control of how and where 



A Technical Whitepaper

The Architecture & Motivation for NuoDB

28

database processes are run.

NuoDB knows about the running processes and available 
resources on each host, and databases can be started based 
on some template that defines operational requirements 
and configuration rules. Taken together, the software can 
automatically administer itself meeting those requirements. For 
instance automatically starting a TE on a new host when some 
existing host fails, or auto-scaling a database when it needs more 
capacity.

An automation model provides high availability with low 
administrative overhead. It is also the basis for supporting multi-
tenant deployments where processes will be moved dynamically 
to make the best use possible of available resources. This 
direction simplifies administration. It also will lower total costs by 
maximizing resource utilization across arbitrary deployments.

Commit Protocol and Consistency

The flexible commit protocol, discussed earlier, gives users 
choices around durability of data and latency on commit. 
By defining where data must be durable before commit is 
acknowledged a deployment can be optimized for its expected 
workloads. This is especially important for databases that span 
multiple geographic regions. Requiring commit acknowledgement 
in only the local region guarantees that data is always durable 
with only a local synchronous message gating the response.

Running with this commit mode has another advantage: it 
provides guarantees in the case of network partition about where 
the most recent version of every object must be available. Paired 
with the rules about chairmanship, and building on the previous 
discussion of storage partitioning, NuoDB can support a model 
where strict disjoint partition can be sustained and the database 
can continue to run (supporting a known subset of SQL). This 
will give users the option to continue running the full database, 
even on network partition, in a mode that is guaranteed to be 
consistent and reconcilable when the network re-connects.



A Technical Whitepaper

The Architecture & Motivation for NuoDB

29

Conclusion

This paper has covered the key architectural elements of NuoDB, 
and shown how that architecture is flexible enough to address a 
wide variety of use-cases. It has also shown how that architecture 
and its simple, peer-to-peer model are capable of evolving to 
solve new challenges. It is this flexibility that will allow NuoDB 
to continue evolving to solve the next generation of cloud-scale 
database problems.

For more details of the protocols there is the Green Book23, a 
deeper-dive into the internals of the system. There is also an 
active engineering blog24 that covers details of many specific 
parts of the architecture, from MVCC and caching to data 
durability to the user-experience.

23 http://go.nuodb.com/the-green-book-request.html

24 http://dev.nuodb.com/techblog



A Technical Whitepaper

The Architecture & Motivation For NuoDB

30

About NuoDB

Everyday businesses face challenges with application 
deployments, maintaining business continuity and providing 
outstanding application performance. NuoDB leads the industry 
with a cloud database management system to solve these 
problems.

NuoDB provides scale-out performance, continuous availability 
and active/active operation. It’s a single, logical database easily 
deployed in multiple locations simultaneously. This unique 
capability is unavailable in any other SQL product.

Launched in 2010 by industry-renowned database architect 
Jim Starkey and accomplished software CEO Barry Morris, the 
company is based in Cambridge, MA.

Used by thousands of developers worldwide, NuoDB’s 
customers include automotive after-market giant AutoZone, 
Dassault Systèmes, DropShip Commerce, and other innovative 
organizations. NuoDB was one of only nineteen vendors cited on 
the Gartner Magic Quadrant for Operational DBMS.

Try NuoDB yourself. For a free download: www.nuodb.com/
download

30



Version 1 – 10/1/2013

© 2013 NuoDB, Inc., all rights reserved. 

The following are trademarks of NuoDB, Inc.: NuoDB, The Elastically 
Scalable Database, NewSQL Without Compromise, Nuo, and NuoConnect.

215 First Street
Cambridge, MA 02142
+1 (617) 500-0001
www.nuodb.com

http://www.nuodb.com

