
	

	

A Mosiac Group Company

Integration	Testing	White	Paper	
	
Software	 applications	 are	 commonly	 composed	 of	 a	 number	 of	 individual	 modules	 or	 components.	
These	 components	 need	 to	 interact	 and	 exchange	 information.	 This	 paper	 is	 an	 introduction	 to	
Integration	Testing,	a	software	testing	discipline	that	focusses	on	testing	the	interfaces	of	the	modules	
as	well	as	their	interactions	with	each	other.	
	

From	monolithic	applications	to	compositional	systems		
	
For	some	time,	the	software	development	process	has	been	undergoing	a	
transformation	from	building	monolithic	applications,	by	writing	spaghetti	
code,	 to	 compositional	modularised	 systems	 resulting	 from	 the	 assembly	
of	 prefabricated,	 shared,	 and	 independent	 code.	 As	 a	 consequence,	
modern	 applications	 include	 a	 higher	 number	 of	 integration	 points	
between	their	components.	In	addition,	many	of	these	components	expose	
their	 interfaces	 and	 are	 available	 for	 testing	 as	 soon	 as	 they	 have	 been	
built.	
The	diagram	on	the	right	depicts	a	model	of	an	even-driven	architecture.	
The	 individual	 components	 are	 in	 turn	 composed	 of	 sub-modules	 in	 a	
hierarchical	manner.			
	

What	is	Integration	Testing?		
	
Integration	Testing	reflects	the	attitude	of	trying	to	understand	the	complexity	of	a	software	application	
and	wanting	 to	 test	 its	 individual	 components	as	well	 as	 the	 communication	of	 the	 components	with	
each	 other.	 Integration	 Testing	 is	 more	 than	 just	 testing	 the	 communications	 going	 through	 the	
Enterprise	 Service	 Bus	 or	 any	 message	 queues.	 Literature	 on	 testing	 offers	 multiple	 definitions	 of	
Integration	Testing,	it	can	be	described	as:	

• The	phase	in	software	testing	in	which	individual	software	modules	are	combined	and	tested	as	a	group.	
The	 purpose	 of	 Integration	 Testing	 is	 to	 verify	 functional,	 performance,	 and	 reliability	 requirements	
placed	 on	major	 design	 items.	 Test	 cases	 are	 constructed	 to	 test	whether	 all	 the	 components	within	
assemblages	 interact	 correctly	 –	 definition	 as	 per	 International	 Software	 Testing	Qualifications	 Board	
(ISTQB).	

• Functional	testing	of	components	/	services	at	 lower	levels	via	exposed	internal	 interfaces	to	explicitly	
test	their	behaviour	–	also	known	as	API	testing.	

At	The	Testing	Consultancy	(TTC),	we	define	 Integration	Testing	as	a	combination	of	the	two	activities	
above,	starting	with	a	breakdown	of	any	application	into	its	components,	and	functionally	testing	them,	
followed	 by	 testing	 groups	 of	 interacting	 components	 at	 an	 increasingly	 higher	 level.	 However,	 we	
distinguish	Integration	Testing	from	E2E	or	System	testing	by	the	fact	that	E2E	tests	try	to	verify	detailed	
business	requirements	whereas	integration	tests	verify	the	architectural	solution	and	technical	design	of	
the	system	under	test.	
	
	



	

	

A Mosiac Group Company

Why	do	Integration	Testing?	
	

• Premise:	if	internal	workings	are	correct	then	the	whole	system	will	work	as	intended.	
• Integration	tests	will	be	performed	to	confirm	that:	
• individual	and	assembled	items	work	as	designed;	
• higher	level	components	correctly	choreograph	usage	of	lower	level	services	(e.g.	order	of	call	sequences,	

using	tokens	etc.);	
• all	scenarios,	which	all	potential	consumers	would	use,	have	been	covered	during	API	and	component	

testing;	
• consumers	accept	and	process	the	received	information	to	display	expected	behavior;	

	
Additional	benefits	of	Integration	Testing	
• Integration	tests	are	often	easier	to	design,	build,	execute,	automate	and	maintain.	
• It	also	enables	targeted	testing	of	perceived	application	weaknesses	and	bottlenecks.	
• Tests	can	easily	be	prioritised	according	to	the	desired	strategy	(risk	based,	complexity	based	etc.).	
• With	testing	smaller	components	it	will	be	easier	to	replicate	problems	and	analyse	defects.	
• Accountability	for	single	components	usually	sits	with	individuals	rather	than	large	teams.	Therefore	defect	

turnaround	times	will	be	significantly	reduced	if	defects	are	found	earlier	and	at	lower	levels.	

How	does	Integration	Testing	fit	into	an	overall	Test	approach?	
	

	
Integration	 tests	 confirm	 workings	 of	
individual	 parts	 with	 exposed	
interfaces,	 and	of	 assembled	parts	 (i.e.	
also	 test	 the	 difference	 between	 the	
whole	and	the	sum	of	its	parts).	
API	tests	are	functional	tests	of	services	
/	procedures	/	interfaces,	utilising	white	
box	or	black	box	testing	techniques,	and	
are	based	on	technical	specifications	or	
contract	 definitions	 (tests	 are	 positive,	
negative	 and	 can	 include	 performance	
and	security	tests).	
Component	tests	are	functional	tests	of	
the	 assembled	 components,	 usually	
based	on	technical	specifications.	
For	 the	 benefit	 of	 this	 paper,	 API	 tests	

and	component	tests	are	considered	to	be	forms	of	integration	tests.	
Unit	tests	confirm	workings	of	individual	parts	without	exposed	interfaces	(APIs).	
	
	
	
	
	



	

	

A Mosiac Group Company

What	industry	trends	are	driving	the	shift	towards	performing	more	
Integration	Testing?	

	
• Moving	to	compositional	systems	or	microservice	architectural	style:	
o a	single	application	as	a	suite	of	small	services;	
o increased	number	of	individual	autonomous	components	with	exposed	and	testable	interfaces;	
o increased	integration	activities	and	integration	testing	effort;	
o components	released	and	available	as	soon	as	they	have	been	completed.	

	
• More	frequent	but	smaller	releases:	
o Continuous	delivery	(possibly	even	Continuous	deployment)	based	on	Continuous	integration	and	

facilitated	by	a	DevOps	approach;	
o because	of	the	frequent	releases,	it	is	advisable	to	focus	tests	on	integrating	the	new	parts	as	

opposed	to	running	full	system	regression	tests;	
o automated	builds,	tests	and	deployments	to	test	environments	after	changes	are	committed	to	

mainline	è	Continuous	testing;	
o feasible	only	if	most	tests	are	automated.	

	
• More	tests	at	lower	level	of	testing	pyramid:	
o unit	and	API	/	integration	tests	to	be	executed	extensively;	
o end	to	end	(E2E)	tests	will	be	rarer,	especially	automated	E2E	tests	–	they	are	costly	to	build	and	

costly	and	hard	to	maintain;	
o tests	of	UI	as	exploratory	tests	by	manual	testers	(end	user	/	client	experience	plus	selected	

functional	tests)	–	similar	to	UAT	(User	Acceptance	Testing);	
o bottom-up	integration	testing	is	applied,	i.e.	lower	level	components	are	tested	first	or	as	soon	as	

they	become	available	è	“shift	left”	(in	regards	to	time	lines)	to	test	early.	

	
Which	other	topics	are	relevant	to	facilitate	Integration	Testing?	

	
• Tight	collaboration	between	developers	and	testers:	
o tests	cases	written	(and	automated)	during	development	time	–	not	after	handover	to	QA;	
o test	driven	development	(TDD);	
o bottom-up	integration	testing:	development	and	testing	of	small	units	happen	at	the	same	time;	
o DevOps	model	applied.	

	
• Increased	levels	of	test	automation:	
o decide	what	and	when	to	automate:	API	and	integration	tests	are	easier	to	design	and	build;	
o costs	to	write	and	maintain	automated	tests;	
o test	artefacts	and	application	components	stored	together	in	version	control	system.	

	



	

	

A Mosiac Group Company

• Increased	amounts	of	technical	testing:	
o code	reviews;	
o static	code	analysis;	
o walkthroughs	with	developer;	
o reviews	of	technical	design	and	specification	documents;	
o reviews	of	architecture	solution	documentation.	

	
• Service	virtualisation:	
o Service	virtualisation	can	be	used	to	simulate	services	or	components	that	are	not	available	yet	or	to	

copy	service	production	interfaces	into	test	environments.	
o Tools	will	be	needed	to	create	virtual	services	or	virtual	service	environments.	
o Virtual	services	can	be	based	on	real	ones	or	based	on	description	of	service	(WSDL	etc.).	
o Sophisticated	service	virtualisation	tools	allow	for	different	levels	of	complexity	in	virtual	services	

(data	contents,	messaging	sequences).	

What	are	some	of	the	challenges	associated	with	Integration	Testing?	
	

• Test	coverage:	components	/	 services	are	often	over-engineered.	Therefore	 there	 is	a	need	to	 find	
the	appropriate	test	scope	-	one	that	 is	similar	to	the	superset	of	all	possible	consumers	of	the	API	
which	 exist	 in	 the	 application	under	 test.	 In	 other	words,	 there	 is	 no	need	 to	 test	 all	 theoretically	
possible	scenarios	and	scenarios	intended	for	future	proofing	of	the	service:	tests	should	only	cover	
the	functionalities	that	are	required	by	the	current	application	under	test	(unless	services	are	shared	
across	applications	–	see	below).	

• Test	case	design:	usually	no	detailed	requirements	available	at	service	/	component	level.	Therefore	
it	 is	 recommended	 to	 analyse	 solution	 architecture	 documents	 and	 technical	 specifications	 (after	
having	earlier	 confirmed	 that	 those	 reflect	 the	detailed	business	 requirements)	 to	gain	 insight	 into	
service	design	and	functionality,	and	to	be	able	to	design	appropriate	test	cases.	

• There	 is	 an	 increased	 need	 for	 QA	 personal	 to	 stay	 abreast	 of	 changes	 to	 service	 design	 and	
functionality	because	test	cases	need	to	be	added	/	updated	very	frequently:	tight	collaboration	is	a	
prerequisite.	

• Services	/	components	are	often	shared	and	used	in	multiple	applications;	therefore	changes	to	these	
services	 require	 API	 re-testing	 and	 also	 multiple	 (preferably	 automated)	 regression	 /	 integration	
tests.	

• Integration	Testing	requires	more	technical	know-how.	
	

Summary	
	
Integration	Testing	is	a	growing	area,	in	importance	and	also	in	volume.	This,	along	with	moving	to	more	
frequent	software	releases,	drives	the	need	for	integration	test	specialists	and,	even	more	so,	the	need	
to	automate	integration	tests	as	much	as	possible.	



	

	

A Mosiac Group Company

	

Resources	
	
http://istqbexamcertification.com/what-is-integration-testing/ 
https://en.wikipedia.org/wiki/Integration_testing 
http://www.soapui.org/testing-dojo/welcome-to-the-dojo/overview.html 
http://watirmelon.com/2011/06/10/yet-another-software-testing-pyramid/ 
http://smartbear.com/all-resources/articles/what-is-service-
virtualization/ 
http://katrinatester.blogspot.co.nz/2015/09/continuous-delivery-
testing-pathway.html 
http://katrinatester.blogspot.co.nz/2015/09/api-web-services-
microservices-testing.html 
http://martinfowler.com/articles/microservices.html 
https://www.sit.fraunhofer.de/fileadmin/dokumente/studien_und_technica
l_reports/SoftwareDevelopment-Fraunhofer_SIT.pdf 
 

	
	
	
	
	
	
	
	
	
	
	
	
	

	
About	The	Testing	Consultancy	
Founded	in	2004,	TTC	seeks	to	work	on	interesting	projects	across	the	Asia	Pacific	region	
with	 smart	 people	 to	 solve	 'real	 world'	 software	 quality	 problems.	 Our	 approach	 is	
grounded	and	pragmatic	which,	when	blended	with	world	class	thinking	and	experience,	
provides	 us	 with	 great	 confidence	 to	 assist	 firms	 of	 all	 sizes,	 industries	 and	 level	 of	
maturity…	
	
New	Zealand:	+64	9	948	2225	 	 	 	 								Singapore:	+65	9822	6679	
	

www.testingconsultancy.com	
	


