

SOFTWARE
ENGINEERING

 Key Enabler for Innovation

NESSI White Paper
Networked European Software and Services Initiative

July 2014

NESSI – Software Engineering White Paper

2

Executive Summary

Economy and industry is experiencing a transformation towards software- and services-
based businesses. Modern products and services increasingly embed software, or are cus-
tomized, optimized or managed using software (examples include health, transportation, and
utilities). Software engineering is thus playing an increasingly important key role in the re-
sponsiveness, quality and security of many industries. Mastering software challenges
through advanced software engineering techniques, methods and tools is a must for all soft-
ware-intensive industry sectors to stay competitive with their products and services. As an
example, using cloud environments and applying big data approaches in the software devel-
opment and software lifecycle is needed to keep pace with the accelerating market de-
mands. As another example, being able to deal with the increasing complexity of software
systems as triggered by cyber-physical systems or large scale distributed services requires
fundamentally new models and approaches in software engineering.

In this white paper, the European Technology Platform NESSI (Networked European Soft-
ware and Services Initiative) seeks to raise awareness for the continued and even increased
need for EU software engineering research and innovation programmes in order for
Europe to remain competitive and innovative. To this end, this white paper reflects NESSI’s
input to the forthcoming Horizon 2020 work programme (ICT/LEIT WP2016-2017). Specifi-
cally, it describes NESSI’s view on software engineering research and innovation by identify-
ing important research challenges and recommendations.

This white paper identifies relevant software engineering research challenges faced in
software engineering for future software-intensive systems in three major technology areas:

 Software engineering in and for the Cloud

 Software engineering for Cyber-Physical Systems

 Software engineering for and with Big Data

This white paper also provides recommendations on how the specifics software should be
addressed during product and service innovation. In addition, the paper provides recom-
mendations on skill and competency building needed for a well-trained industry work-
force. Finally, it delivers recommendations for maximizing the impact of software engineer-
ing research and innovation projects based on lessons learned from past FP7 projects.

As analysed and demonstrated throughout this white paper, software engineering principles,
techniques, methods and tools need to evolve and novel ones need to be devised in order to
keep up with fast-paced technology and societal changes and therefore being able to cope
with the new challenges. Due to the growing complexity and multi-disciplinarity, software
engineering solutions cannot be devised by companies and research organisations in isola-
tion. Similar to other engineering disciplines, software engineering research and innovation
requires concerted efforts of industry and academia to deliver practically relevant and
significant solutions. This requires performing industry-near research exploiting real-world
software engineering cases.

For Europe to remain competitive, this means that the opportunity and specific needs for
such joint research and innovation efforts should be sustained; ideally, even increased. In
addition, Europe should strive to better reuse, exploit and leverage already existing out-
comes of past research projects. Together such activities will reduce the risk that Europe
might lose the competitive ground on software and software-intensive systems and, as a
result, will strongly depend on software technology and skills from non-European countries
to a higher degree than advisable. NESSI considers the software engineering funding avail-
able in the current work programme (WP2014-2015 – LEIT/ICT-9) a modest starting point at
best. Software engineering research and innovation programmes need to be strength-
ened if Europe wants to meet and leverage the opportunities of future ICT trends.

NESSI – Software Engineering White Paper

3

Contents

1. Introduction .. 4

1.1. Relevance of Software .. 4

1.2. Importance of Software Engineering ... 4

1.3. Major ICT Trends and Impact on Software Engineering .. 6

1.4. White paper Contributions ... 7

2. Software Engineering in and for the Cloud ... 8

3. Software Engineering of Cyber-Physical Systems .. 11

4. Software Engineering for and with Big Data ... 13

5. Complementary Recommendations .. 14

5.1. Software Engineering for Product and Service Innovation..................................... 14

5.2. Software Engineering Skills and Competencies .. 16

5.3. Best Practices for Software Engineering Research & Innovation 17

6. Conclusions .. 19

Authors and Contributors .. 21

References ... 22

NESSI – Software Engineering White Paper

4

1. Introduction

1.1. Relevance of Software

Software has become ubiquitous in today’s digital world. Software is embedded in almost all
kinds of modern products and services of our surroundings [1] [2] [3] [4] [5].

From a societal point of view, software provides flexibility, intelligence and security to all the
complex systems and equipment that support and control the different key infrastructures of
our society: transportation, communication, energy, industry, business, government,
healthcare, entertainment, etc. Software also has profound impact on our social life, most
visible in the way how it changed the way in which we communicate, interact, interoperate
and collaborate both in our professional and private digital lives. Software will also enable
the public sector to transform and manage the new and growing challenging societal de-
mands, e.g., in its service provisioning within healthcare, towards meeting an increasingly
ageing population, building a 24/7 public sector service provisioning and educating children.

From an economic point of view, software is one of the main drivers of the European econ-
omy [1]. Software increases productivity and competitiveness in all business activities: indus-
try, commerce, services, finance, etc. Software enables, for instance, competitive industry
sectors to innovate and grow, and software fosters disruptive ideas leading to software-
intensive products and services to become dominant in the market place. Software plays an
instrumental role in the digital economy. Furthermore, software is embedded within the ma-
jority of products we use today and a key enabler for innovation, growth and employment in
almost all sectors of the economy. Software has become the nerve centre of all modern so-
cieties [4]

From a technologic point of view, the traditional split into software and hardware and thus
their respective business models will disappear. There is a strong shift from hardware to
software, as value creation is moving up on the technology stack. This means we will see a
transition of vertical industry sectors from being very hardware intensive and product-based
with respect to development costs to industries where innovations and development costs
are much more software-driven, and where the notion of service has become a dominant
factor in market offerings. Software will be increasingly provided by services accessed from
a wide range of terminals (personal or collective, fixed or mobile) and the computer will be
progressively replaced by the network. This means we will see the availability and usability
of software-based solutions and services, both on single platforms (e.g., smartphones) and
through the Internet (e.g., cloud-based services), going from stationary and stand-alone to
mobile and interconnected usage patterns – anywhere and anytime.

In summary, software has had a predominant role over the last 15 to 20 years in our digital
world and will remain a driving force for its continued transformation. Software is the key
enabler for innovation [6]. It allows delivering differentiating features and services, and
doing so with short turnaround times and high speed to market. As a result, software has
become the prime industrial differentiator and basis for innovation [3]. It is not simply there in
its own right, but serves as a key enabler that needs to be developed in close cooperation
with other R&D units and domains: Software is what makes most of our modern products
and services work.

1.2. Importance of Software Engineering

As Commissioner Viviane Reding has already rightly pointed out in her speech at the Truf-
fles 100 meeting in November 2007, “the ability to produce software is a strategic economic
capability” [1]. This means that the key role of a “systematic approach to the development,

NESSI – Software Engineering White Paper

5

operation, maintenance, and retirement of software” [7], i.e., software engineering, on a
European level is well understood. Since then, this view has been emphasized by many dif-
ferent groups (e.g., see [3] [1] [4]). The importance of software engineering will remain and
even grow and thus needs to be sustained and strengthened also in forthcoming research
and innovation efforts beyond the current EU work programme.

It must be emphasized that software engineering is not just programming: Metaphorically
speaking, software engineering is related to programming in a way that building design is
related to laying bricks. “Software engineering is the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software, and the
study of these approaches; that is, the application of engineering to software.” [7]. Software
engineering thus constitutes an essential capability for European industry, and high quality of
software can turn into a competitive advantage.

Software engineering research and innovation delivers new methods, techniques, mecha-
nisms, languages and tooling which advance software production and engineering in itself.
Software engineering research thus delivers principles, techniques, methods and tools that
explain how to efficiently and effectively build software systems with reliable quality guaran-
tees (such as security, safety, privacy, performance and trust) and fulfilment of the expecta-
tions of the users and business owners. Software engineering research and innovation en-
sures that European industry will remain skilled, capable and competitive in delivering soft-
ware and software-based products to their customers and markets.

In contrast to other engineering disciplines, software engineering needs to account for spe-
cific properties due to the unique characteristics of software as artefacts. Those characteris-
tics include:

 Immateriality: Software is everywhere today. But even though we can find software
in most of today’s products and services, it is usually not visible. Because software is
so ubiquitous and not directly visible, its significance to Europe is not always easy to
identify or appreciate [4]. Due to this immateriality of software it may appear to be
easily and arbitrarily changeable, which – in industrial reality – may imply significant
quality problems and significant effort for identifying defects in software.

 Servicification: Immateriality of software is further amplified by virtualisation of soft-
ware assets (such as middleware, tools and whole applications), which can in turn be
offered as services. A service represents functionality with associated quality charac-
teristics (typically defined in a service-level agreement) offered by a service provider
via a service interface [8]. The service itself may change as long as the functionality
and the service-level agreement remain the same, thereby providing an increased
level of flexibility.

 No manufacturing: The main cost drivers for software are personnel costs. Software
can be easily copied, distributed and deployed with basically no costs. Hence, soft-
ware engineering costs are determined by the effort and time invested in terms of
human resources. Industrial value creation is progressively shifting upwards the
technology stack since the effort invested in software development and engineering
is continuously increasing. This leads to an increased need for efficient and effective
software engineering methods, techniques and tools.

 Dedicated skill set: The success of software engineering projects to a large degree
depends on the quality of personnel and their skills and education. Sound software
engineering principles, techniques and methods are essential elements of these
peoples’ skill set and significantly go beyond what can be expected from an ordinary
programmer.

NESSI – Software Engineering White Paper

6

1.3. Major ICT Trends and Impact on Software Engineering

Even though software engineering research has produced impressive results over the past
years, new major trends in information technology lead to an amplification of existing chal-
lenges as well as the emergence of previously unknown novel challenges (see Figure 1 for
an overview).

This white paper looks into the following three mega trends in information technology to clus-
ter the discussion of software engineering challenges:

 Software Engineering in and for the Cloud: Cloud computing is an important inno-
vation driver of the current and the next decade, affecting not only the software and
services sector, but all software-intensive sectors that benefit from software innova-
tions. Clouds will increasingly become the paradigm for delivering all kinds of ser-
vices, from IT services to full business services, and they will constitute collaboration
hubs for all types of business networks [2].

 Software Engineering of Cyber-Physical Systems: Cyber-physical Systems (CPS)
enable new kinds of embedded system services by integrating networked embedded
systems with services of the information systems infrastructure, thereby being able to
interact with and expand the capabilities of the physical world through computation,
communication and control. Cyber-physical Systems thus form an important basis for
the development of innovative products and services [9].

 Software Engineering for and with Big Data: Big Data is about extracting valuable
information from data to use it in intelligent ways such as to revolutionize decision-
making in businesses, science and society, thereby enhancing the companies’ com-
petitiveness and leading to new industries, jobs and services [10] [11].

Figure 1: Software engineering challenges arising from trends in information technology

These technology trends and the resulting requirements influence how software systems are
built and thus lead to challenges that need to be addressed with novel software engineering
principles, methods and practises. As an example, only one or two decades ago, software
development was all about stand-alone, monolithic systems, i.e., a closed and controlled
world. Today it's about loosely coupled, interconnected, interoperable, adaptive and auton-
omous components, where we cannot assume to grasp the total as the sum of its parts. In

NESSI – Software Engineering White Paper

7

such an open world, one part has no or only partial control of its surroundings, i.e., of the
other parts.

What is important to stress is that two kinds of research challenges emerge from those tech-
nology developments as indicated in Figure 1.

 On the one hand, there are many existing software engineering challenges that are
now amplified due to complexity, scale or dynamicity implied by novel information
technology. Examples for such challenges include the efficient and effective migra-
tion of legacy code to the cloud, the question of how to cope with increasingly com-
plex and dynamic networks of systems of systems and the effective testing of Big Da-
ta applications in order to ensure their quality.

 On the other hand, novel information technology offers new opportunities that can
be leveraged to address problems from a new angle. As a result, this leads to new
challenges on how to leverage those opportunities. Examples include questions of
how to use cloud computing to deliver energy efficient software, how to use immedi-
ate feedback from cloud applications to better understand customer needs or how to
use Big Data analytics to systematically determine trends in open source software
communities and thus better manage a company’s open source asset base.

1.4. White paper Contributions

NESSI aims to have an impact on the technological future by identifying strategic research
directions and proposing corresponding actions. NESSI gathers representatives from indus-
try (large and small), academia and research organisations, and public administration and is
a European Technology Platform (ETP) active at an international level (see
http://www.nessi-europe.eu/). NESSI closely monitors technology and policy developments
in the software and services domain.

The importance of software engineering has been emphasized by many different groups as
mentioned above (e.g., see [3] [1] [4]). Many of the claims and recommendations of previous
papers on software and software engineering remain valid. This paper provides an update to
reflect on recent technology developments and trends. In addition, it provides detailed and
operational recommendations concerning software engineering – and not only for the gen-
eral topic of software (see the differentiation in Section 1.2). To this end, this white paper
makes two major contributions:

As a first major contribution, the white paper identifies relevant software engineering re-
search challenges

 in and for the Cloud (Section 2),

 for Cyber-physical Systems (Section 3) and

 for and with Big Data (Section 4).

As a second major contribution, the white paper provides recommendations concerning
software engineering for product and service innovation, software engineering skills and
competencies and best practices for organising software engineering research and inno-
vation projects (Section 5).

In order to identify the software engineering challenges, NESSI partners provided pressing
industry cases that show the limitations of current software engineering. These industry cas-
es served both as examples for concrete challenges as well as a basis for discussing and
identifying more general challenges. After an initial set of challenges was identified, NESSI
members have been consulted and invited to confirm the relevance of the challenges and
provide additional aspects and perspectives on software engineering research and innova-
tion.

http://www.nessi-europe.eu/

NESSI – Software Engineering White Paper

8

As a result, the challenges and recommendations presented in this white paper reflect rele-
vant areas for software engineering research and innovation identified by NESSI partners
and members. These challenges and recommendations may thus be instrumental in shaping
future research and innovation investments and funding actions.

2. Software Engineering in and for the Cloud

From the end users’ viewpoint, telematics systems in the 80s were the first occurrence of
services “in the cloud” available to a large portion of the population in some countries, intro-
ducing them to online services (banking, travel, information databases, text communications,
administration, and so forth). From a technology viewpoint, research on distributed systems
and their principles paved the way to grid computing and utility computing in the late 90s.
Today, the most commonly adopted definition for Cloud states that “Cloud computing is a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources, such as networks, servers, storage, applications, and
services that can be rapidly provisioned and released with minimal management effort or
service provider interaction.” [2].

Originally, cloud computing was a way to mitigate costs and replace capital expenditures
with operation expenditures by the IT department of big companies, whereas cloud services
now increasingly become an agility, productivity and performance driver for a large number
of companies (impacting their processes and organisation) and, associated with the broad-
band networks and smart devices, a digitalisation driver for the mass market users.

Cloud is a powerful accessibility and innovation trigger: it allows for a progressive and
streamline use of a given service, lowering the setup cost; a newly available technology,
integrated into a cloud infrastructure can be directly exposed to a large community of
adopters, even those with limited resources; data analysis on a large scale and agility of
service modification allows for a better adaptation to socio-economic and usages trends,
platform-based innovation is natively supported by the cloud.

The use of virtualisation to isolate software from hardware specificities together with the
availability of high performance networks led to a shift of most of the design of IT and tele-
communications systems from an equipment focus to a software focus: from the operating
system and databases to the interactions performed by the users, software brings an unpar-
alleled flexibility for the services, to address both functional concerns (adaptation to the us-
ers’ needs, to the business requirements, to laws, markets or usages) and non-functional
concerns (scalability, performance, optimisation, security, etc.). Software engineering is now
at the core of the creation and evolution of a huge number of cloud services, spreading in all
corners of society (health, security, education, industry, services, utilities and so forth), rep-
resenting a new step in the digitalisation of the world.

One can differentiate two kinds of areas for software engineering: the ones focussing more
on infrastructure concerns (including Infrastructure- and Platform-as-a-Service), and the
ones focussing more on application and process concerns (including Software-as-a-Service
and Business-Process-as-a-Service). Figure 2 visualizes those two areas. Considering in-
frastructure concerns allows enterprises and administration to mutualise and optimise their
investment on IT infrastructures and to create value by improving the quality, security, avail-
ability and scalability of their products and services. Considering application and process
concerns allows industry to be reactive, to stay competitive and to closely follow the needs of
their users while allowing them to complement their offers in interconnected ecosystems.

NESSI – Software Engineering White Paper

9

Figure 2: Two main concerns for software engineering in the Cloud (adapted from [2])

Software engineering challenges focussing on infrastructure concerns include:

Challenge Cloud-1: Reliable distributed middleware for decentralised computing
and data storage to ensure predictable behaviour and quality. How to ensure predict-
able behaviour and quality taking into account failure recovery, migration, transactions or
dynamic reconfiguration? How to foster the integrated management of cloud and network
infrastructures?

Challenge Cloud-2: Languages and APIs for transparency. How to provide software
applications with native support for transparency, e.g., about distribution, failures, hetero-
geneity, adaptation and elasticity of the cloud infrastructure, leading to the notion of Moni-
toring-as-a-Service? What are suitable, powerful language primitives for cloud applica-
tions, e.g., in order to support database queries, event processing and reactive frame-
works?

Challenge Cloud-3: Large scale optimisation concepts and heuristics for the de-
ployment of applications and services. How to optimise deployment of applications and
services, while taking into account global energy consumption, trade-offs between net-
work/compute/storage, as well as infrastructure management?

Challenge Cloud-4: Model-driven deployment for non-homogenous clouds. How to
make use of model-driven approaches for the cloud; e.g., in the form of application “blue-
prints” from which the deployment of cloud elements is automatically generated? How to
ensure that software can be deployed efficiently on heterogeneous computing elements
such as CPUs and GPUs? How to adapt software to different devices along the compute
continuum, including M2M and IoT devices?

The development of applications and processes as cloud services focusses on the require-
ments from the users’ perspective and from the software owners’ perspective. This requires
agile adaptation of software to the highly dynamic evolution of markets and usages, requiring
very fast (within days and minutes and not weeks or months) adaptation of applications (e.g.,
see [12]), integration and orchestration of services built from various sources, possibly using
internal and external cloud services through standard or specific APIs, real-time monitoring
of applications and infrastructure to allow for adaptation or optimisation, possibly using
knowledge acquired from Big Data systems, easy provisioning of software as a service
available to the largest range of platforms and devices, using simple interfaces and APIs and

NESSI – Software Engineering White Paper

10

taking care of business key factors such as security, accounting, billing, management, priva-
cy and so forth. Agile development is one key approach towards shortened development
cycles. However, in many relevant industrial settings the tension between upfront investment
and planning of a stable software core and the increased agility fostered by instantaneous
feedback and continuous deployment must be reconciled [13].

As a result, Software engineering challenges focussing on application and process
concerns include:

Challenge Cloud-5: Software engineering for cross cutting concerns of cloud appli-
cations. How to address quality concerns, such as privacy, security and portability be-
tween clouds? How to adequately monitor and control data migration, thereby fostering
privacy enforcement and compliance to legal constraints?

Challenge Cloud-6: Software engineering for cloud services on personal and em-
bedded devices. How to design responsive user interfaces? How to handle the distribu-
tion of processing and data between the cloud and the local devices? What are the right
frameworks and formats reducing the cost of employing multi-device services and applica-
tions?

Challenge Cloud-7: Methods and tools for agile life cycle support of cloud applica-
tions including the development, testing, deployment and management of cloud
applications. What are the right methods and tools for development, testing, deployment
and management of cloud applications? How to design tools that drastically reduce the
cost of domain- and application-specific software development and maintenance through
high-level frameworks, platforms and languages?

Challenge Cloud-8: Global cloud application frameworks including effective lan-
guages and reliable architectural patterns. How to adapt application frameworks to the
cloud, thereby natively supporting – among others – processes and data migration, as
well as reactive programming (triggered by API calls, user actions or infrastructure notifi-
cations)? Will this be possible by extensions of existing languages or do we need specific
languages? How to capitalise on proven and reliable architectural patterns and how to
adapt them for specific types of applications, while ensuring scalability, fault tolerance,
and data redundancy? How to link those application frameworks with software platforms
supporting SaaS ecosystems, including service provisioning, billing, and operations?

Challenge Cloud-9: Developing on-demand (cloud) and on-premise software appli-
cations. How to deliver applications both in the Cloud (on-demand) as well as on premis-
es in order to address customer needs? Can we (jointly) develop software for both mod-
els?

Challenge Cloud-10: Cloudification of Legacy. How to support the cloudification of
software elements that may not be ready for virtualisation? For instance, how to cloudify
data bases? Or, how to make a software component scalable that has not been initially
built for elastic infrastructures?

The ultimate goal of software engineering for the cloud could be to make the dream “the
cloud is the computer” come true: being able to program a service on a large number of dis-
tributed resources as simply as it were a single-processor computer, with nearly infinite
power and memory and resilience to failures, a true “virtual machine”.

NESSI – Software Engineering White Paper

11

3. Software Engineering of Cyber-Physical Systems

Embedded Systems provide intelligence to physical objects of everyday life (i.e., products
artefacts and systems such as cars, aircraft, trains, personal devices, medical devices, in-
dustrial plants, power plants, etc.), making them smart objects. In the coming years, embed-
ded systems will increase the intelligence, control and communication capabilities of a wide
range of objects, enabling their interaction and cooperation with people and organisations
also in the physical world thanks to their actuation capabilities. Such smart objects will be
joined together to create highly distributed systems, called Cyber-Physical Systems (CPS),
by bringing a wealth of opportunities and innovations in technology, applications and busi-
ness models [3].

The emergence of highly distributed and large-scale CPS means that software has to live in
an open and highly dynamic world. Traditionally, software development was based on the
closed world assumption, which means that the boundary between the system and its envi-
ronment is known during design-time and that the environment does not change while the
system is executing. In contrast, open world systems cannot be specified completely during
design-time due to incomplete knowledge about, for instance, services and their actual quali-
ty at provisioning time, sensors available during system operation to obtain contextual infor-
mation, the availability of other systems to interact and cooperate with, the amount and
quality of data obtained, as well as context changes faced during operation. In addition, this
world is at the same time “cyber” (e.g., monitoring/sensing cyber activities and actuating op-
erations in the virtual world, such as adapting Web-based services or generating posts over
social networks) and “physical” (e.g., monitoring/sensing environmental indicators and actu-
ating response operations in the real world, which cannot always be cancelled or rolled back
without tangible effects, such as commanding Heating, Ventilation and Air Conditioning
(HVAC) systems or opening doors in home automation scenarios). The development of CPS
thus has to live inherently with uncertainty in the specifications [14]: during operation, such
systems must frequently adapt to the executing environment changes faced at run-time and
must be able to continue to behave in a controlled and safe way, thus posing novel technical
challenges for the software engineering of services and applications for CPS [13].

Given the unique and challenging aspects of Cyber-Physical Systems (CPS) sketched
above, the realisation and market-adoption of CPS services and applications calls for ad-
dressing the following key challenges on software engineering for Cyber-Physical Sys-
tems:

Important quality aspects for Cyber-Physical Systems include scalability, e.g., ensuring that
CPS applications can scale to urban-wide deployment environments. CPS solutions call for
capabilities to monitor, control and manage the quality/performance constraints at provision-
ing time in open and dynamic executing environments, possibly via prioritised operations in
response to the growing distance from expected and allowed behaviour.

Challenge CPS-1: Handling quality and performance requirements in large-scale,
open environments. How can we address stringent quality and performance require-
ments in software engineering methodologies and solutions for CPS? How can we handle
situations when dealing with large-scale open environments such as smart cities, where
sensing quality may be extremely differentiated and tasks to actuate are subject to many
different sources of uncertainty? How can we extend testing and formal verification to deal
with uncertainty and variability at the same time?

Given the potential complexity and hard technical challenges associated with the inherent
nature of Cyber-Physical Systems, leaving the whole burden of context monitoring, integra-
tion and adaptation to application developers will not be sustainable.

NESSI – Software Engineering White Paper

12

Challenge CPS-2: Principles, methods and tools supporting the software life-cycle
of Cyber-Physical Systems. What are adequate principles, methods and tools to signifi-
cantly reduce development costs and time-to-market for Cyber-Physical Systems? How
can we leverage continuous integration, testing and certification to this end? How can we
provide life-cycle support for millions of decentralised system instances?

Many kinds of Cyber-Physical Systems, especially the ones involving wide-scale deployment
environments, call for the integration with a relatively large amount of server-side (Cloud)
processing/storage resources. Examples include systems where trend identification analytics
or final user applications are run.

Challenge CPS-3: Integration of Cyber-Physical Systems with Cloud and Big Data
solutions. How can we integrate Cyber-Physical Systems with Cloud and Big Data infra-
structures? How can we bring the processing of data closer to the data sources in order to
properly and innovatively manage the flow of information? How can we model application
and sensor profiles to reduce inefficient continuous interaction between CPS and server-
side resources?

In cockpits and control towers, human operators are involved to interpret data, to judge the
criticality of a given situation and to decide on the adaption of an application during run-time
as a reaction to foreseeable and unforeseeable changes and exceptions. Also, smart spaces
often involve human actors, e.g., users who can perform actuation operations based on CPS
application suggestions (persuasive computing), thus dynamically modifying the execution
environment and context with the uncertainties connected to human participation and in-
volvement.

Challenge CPS-4: Considering human-in-the-loop aspects and adaptation in Cyber-
Physical Systems. How can we provide software system operators with dedicated adap-
tation mechanisms to leverage human decision making for adapting Cyber-Physical Sys-
tems to unforeseeable situations? For instance, can we adopt human-in-the-loop princi-
ples, such as cockpits and control towers? May such principles provide a path for devel-
oping systems for which the closed world assumption does not hold anymore? From a dif-
ferent angle, How can we consider user characteristics and behaviour during the design of
(adaptive) Cyber-Physical Systems? User incentives, “punishments” and user-operated
actuation may provide novel ways of adapting the environment of CPS. How can we lev-
erage those for continuous observation-analysis-adaptation loops to significantly change
the way CPS services and applications are designed and put into execution?

Challenge CPS-5: Middleware and platforms for dynamic choreography and adapta-
tion of Cyber-Physical Systems. How to deliver novel Cyber-Physical System-oriented
support platforms with cross-layer visibility of both application requirements and low-layer
context information? How can we engineer for run-time adaptation based on this visibility?
To which extent can we separate the implementation details of the adaptation mecha-
nisms from the business logic of cyber-physical applications? How can we support the
choreography of autonomous sub-systems and handle the large number of sub-systems
in dynamic environments? How to balance the capabilities of the platforms with needs to-
wards resource efficiency; e.g., using big and powerful frameworks (“bloat-ware”) vs. us-
ing specific “hand optimised” programs? Can we optimise or prune unused code and
components?

Challenge CPS-6: Novel, powerful programming abstractions for implementing
Cyber-Physical Systems. What are the right abstractions that are easy to understand
and use, but at the same time sufficiently expressive to be mapped efficiently and ideally
automatically to executable code? What would be adequate abstractions (models) and in-

NESSI – Software Engineering White Paper

13

formation-hiding principles (interfaces)? How can we use those abstractions to address
unexpected conditions and sensing/actuation component faults and to define safe opera-
tional areas? How can those abstractions be used to support deployment on diverse de-
vices and hardware configurations?

4. Software Engineering for and with Big Data

The continuous and tremendous growth of data volume, the better accessibility of data, and
the availability of powerful IT systems have led to intensified activities around Big Data [11].
The volume, velocity, variety and need for veracity of data has exploded in the past years
because of new social behaviours, societal transformations as well as the vast spread of
software systems and Cyber-Physical Systems [10].

One important aspect of software engineering when it comes to Big Data is related to the
design of software systems. Using Big Data technologies to design and build large scalable
data systems creates a significant software architecture challenge for software architects.
The challenge is posed primarily by the scale factor where software architects must explicitly
deal with issues typically appearing in distributed systems. Problems like data replication,
data consistency, temporary failures, communications latencies and concurrent processing
need to be explicitly addressed in the system design. Such issues are amplified in a Big Da-
ta context, where systems need to dynamically grow to utilize data geographically distribut-
ed.

Overall, the following software engineering challenges for and with Big Data arise:

Today, NoSQL and MapReduce are predominant for the efficient storage, representation
and query of Big Data. However, apart from large, long-standing batch jobs, many Big Data
queries involve small, short and increasingly interactive jobs.

Challenge BigData-1: Scalable software architectures for Big Data. How to address
the fundamental issues of scalability, performance, and availability that become necessary
when dealing with Big Data systems and applications that have to cope with unprecedent-
ed size, speed, diversity and noise of data? How to support such kinds of jobs and deliver
new architectures that, for instance, combine classical RDBMS techniques for storage and
querying on top of NoSQL and MapReduce paradigms? This will lead to a new generation
of software designs that optimise Big Data querying and retrieval.

Due to the large quantities of data, possibly very heterogeneous, it becomes challenging to
create comprehensive test suites and environments to sufficiently cover and validate the
software before it is deployed in production environments.

Challenge BigData-2: Leveraging software engineering techniques for quality as-
surance of data-intensive software. How can we ensure the quality of Big Data software
through adopting and extending proven quality assurance techniques from software engi-
neering? Can we generate (for instance by means of simulation) sufficient and repre-
sentative test data (e.g., covering extreme cases) in order to ensure resilience and ro-
bustness of Big Data applications? Can we complement testing with (formal) verification
techniques for Big Data? How can we leverage fast prototyping to test the quality of Big
Data applications early on during development; e.g., by using interpreted languages for
fast feature deployment and debugging?

Challenge BigData-3: Online diagnosis of data-intensive software. How can we moni-
tor and thus ensure the quality of Big Data systems during their operation? The analysis of
monitoring logs may itself be considered a Big Data problem as logs for complex systems

NESSI – Software Engineering White Paper

14

can easily reach a large size in small periods of time. How can we use Big Data tech-
niques to analyse Big Data systems in operation? Can we identify undesired patterns and
deviations by analysing the massive amount of “meta-data” being collected?

Despite the abundance of storage at relatively low cost, the storage and query of data at a
large scale will continue to remain challenging. Cloud storage services usually are not ade-
quate as they lack range query support, and support for transactional semantics for opera-
tions spanning multiple keys.

Challenge BigData-4: New and improved software algorithms for data streams and
storage. How can we build novel algorithms that store and cluster data objects – in dy-
namic data stream mode – and subsequently facilitate searching and retrieving infor-
mation, as well as presenting it in a useful manner? How can we leverage efficient storage
techniques to greatly decrease the processing time of data? Could we optimize storage
across many nodes in a cluster in order to leverage more efficient designs?

Challenge BigData-5: Big Data engineering methods and frameworks. How can we
support the engineering of Big Data applications through targeted methods and platforms?
How can we pave the way from online analytical processing (OLAP) systems to full-
fledged Big Data analysis frameworks that bring Big Data technology into a systems per-
spective? As a foundation for such frameworks, we need new data organisations that bet-
ter fit the intrinsic data cube model of n-dimensional data. These would include the parti-
tioning and distribution of data in several tables to enable parallelism, whereas indexing,
replication and data management hierarchies could improve execution efficiency and
throughput.

Even now, data mining of forums, forges, blogs and social networks allows detecting usage
trends of application frameworks, open source components, etc. Also, analysing the data
collected from Cloud applications (e.g., Software-as-Service offerings) can be used to detect
user trends, preferences, as well as the needs to evolve and adapt applications.

Challenge BigData-6: Using Big Data analytics during software engineering. How
can we employ Big Data analytics to address current software engineering problems (e.g.,
to better understand user needs; to identify the points in an application that should or
should not be adapted to context changes; to perform root cause analysis of software fail-
ures by mining memory dumps of complex software systems)? What other novel uses of
Big Data analytics for addressing software engineering problems may become possible?

5. Complementary Recommendations

Where the above sections have elaborated on concrete software engineering challenges,
this section provides complementary recommendations on innovation, skills and project or-
ganisation.

5.1. Software Engineering for Product and Service Innovation

Software engineering today extends beyond mere development. It is rather an end-to-end
process from inspiration and ideation in the early stage to product sunset. Key questions
along this end-to-end creation process comprise ensuring the desirability, viability and feasi-
bility of the software product or service, which means being innovative according to Tim
Brown’s definition [15].

NESSI – Software Engineering White Paper

15

With current technology trends including Cloud, Big Data, Agile Development and DevOps,
software engineering is becoming smoother and faster than ever. There was a time when
the development of the information system often was a limiting factor. Today, software sys-
tems and services are an accelerator and they have major impact on all processes of com-
panies. This includes processes in the front and the back office, in the “production lines”, and
in support. It affects marketing and the technical teams, as well as managers. All of this
places software engineering at the focal point of business development and creates new
challenges, such as adopting agile development, fostering short development and release
cycles, running continuous integration, involving distributed communities, as well as exploit-
ing and managing open APIs and open source (see Sections 2–4).

Leveraging the accelerating capability of software engineering to foster innovation is current-
ly addressed by combining contemporary approaches like agile development, often in the
form of Scrum, design-thinking, as well as business model development. Customer centricity
and customer co-innovation is at the heart of these approaches as a common denominator
and a touch point (cf. [16] [17]).

One key obstacle that needs to be overcome for customer-centred product and service inno-
vation is to make the transition from traditional, standard software development via first co-
innovation with customers and initial target markets to a broader scale in terms of market
segments and global adoption. In order to shape the next generation of software companies
and customer-driven innovations it is thus essential to identify required organisational set-
ups, team compositions, professions and job functions to support this.

To truly leverage software as an accelerator for innovation, the following recommendations
may ensure the transitioning from research outcomes to innovation.

Software development or software creation comprises the overall process from early inspira-
tion and ideation to prototyping and testing to implementation and early adoption. In terms of
customer-centred product innovation, the focus is on desirability and viability and to a lesser
extent on feasibility. It is mainly about engaging customers and end users closely into the
product creation process.

Recommendation Innov-1: Leveraging software creation as key enabler for innova-
tion creation. It is crucial to understand and practice customer co-innovation and validate
assumptions and prototypes with end users while clarifying related questions about intel-
lectual property. The viability discussion usually starts with understanding the customer
value in terms of what they are willing to invest and pay for. Therefore, the product man-
agers, developers and designers and their interplay are required and need to be com-
bined with an agile, iterative and feedback-driven development approach. In the context of
desirability the role of designers is increasingly important and hence the profession of de-
signers is currently redefined.

With the internationalisation of software development, companies are increasingly facing
challenges in various areas that require new approaches. In general, larger software com-
panies have to manage global development setups and global product delivery with major
issues regarding dependency and version management, for instance.

Recommendation Innov-2: Optimising software development resource allocation.
To optimise resources (e.g., software designers and support personnel, as well as cross
functions) in a global environment, the setting up of shared service centres for develop-
ment projects should be investigated. Novel mechanisms (including organisational struc-
tures, as well as novel methods and software tools) are required to cope with the com-
plexity of handling such global resource sharing. Complementary, systematic reuse of
software components needs to be considered as a further means to optimise resource
usage and thus productivity, ideally based on platforms and standards.

NESSI – Software Engineering White Paper

16

The most critical phase for most new products, services and start-ups is after they acquired
their first customers. This is due to the challenge of expanding beyond the initial target mar-
ket and achieving global adoption. The latter especially requires globalisation in terms of
multi-language support for products and required translations. Today’s focus on mobile ap-
plications (“responsive designs”) puts special emphasis on language characteristics during
software design and documentation.

Recommendation Innov-3: Globally scaling software product and service success-
es. To scale initial local innovation and market success globally, new approaches based
on machine translation and new business models that, e.g., leverage crowd authoring and
editing, are required in order to ensure multi-lingual offerings and thus foster adoption.
Complementarily, new concepts for product documentation, e.g., based on video and mul-
ti-media material can become a key differentiator in terms of usability and thus adoption.
Moreover, in order to cater to the upcoming need for responsive design and cloud-based
applications, software companies need to manage continuous delivery and updates of
documentation and training content as well.

5.2. Software Engineering Skills and Competencies

Throughout this white paper, the importance of software technology and software engineer-
ing as the key driver for European economy and innovation has become apparent. Software
enables us to transform business models and enterprises and even whole sectors of our
society, and to become more efficient, cost effective and sustainable [4] [3].

Not only is software everywhere, but everyone should have knowledge of its potential and
power for change. Software is in many respects the tool of our time as were pencil and pa-
per in former times. Hence, software literacy should become a basic skill that we need to
educate our children in.

What impact does software have on the skills and competences of our citizens? The most
revealed impact is that software development may be carried out by people of a very broad
range of backgrounds: From teenagers or young entrepreneurs who have set up an app
business in their parents' home to professionals from a wide range of disciplines, many of
which have primarily learned programming, and then software engineering, by doing, mean-
ing by trial and error. Even though they may not have a formal educational background in
software engineering, some may have had one or two (undergraduate) courses in program-
ming. Hence, a vast amount of (often safety-critical) software is developed by people with no
formal software engineering background. Is this situation for the good or for the bad?

In autumn 1968, the NATO Software Engineering Conference [18] defined software engi-
neering with the long term goal of solving the problem of a “software crisis”, which 25 years
later was coined by W.W. Gibbs as a chronic crisis [19]. Even today, software engineering is
far from as mature as we would like it to be. This is of course a function of the rapid ICT de-
velopment, the massive penetration of ICT, the pressing reliance on software to solve social
and business problems and so forth. But software engineering is also much about context
such as social, communicative and psychological to mention a few, and even criticism
against software engineering as engineering per se (e.g., [20]).

As most European industries are highly software intensive, software engineering became
(explicitly or implicitly) an integral part of other engineering disciplines and technology fields.

The Graduate School Directory [21] shows that software engineering is offered in Bachelor,
Master and PhD programmes. However, a closer look into these programmes shows that
software engineering modules are mostly offered as part of existing, traditional programmes

NESSI – Software Engineering White Paper

17

of computer science or informatics. Dedicated software engineering programs where the
required engineering skills and competencies are explicitly addressed exist only to a smaller
extent.

Based on what has been described above, the following two recommendations are made
to strengthen software engineering capacity and the number of skilled software engi-
neers in Europe:

Recommendation Skills-1: Fostering software engineering skill building during re-
search and innovations activities. Research and innovation projects where academia
and industry meet should be understood as an excellent, complementary way to deliver
and educate well-trained graduates. Projects foster learning and education by providing
multiple opportunities for joint research and development work, including trainings and
summer school. Hence, research and innovation projects should strengthen their activities
in order to leverage these opportunities for education and skill building in software engi-
neering.

Recommendation Skills-2: Modernising software engineering curricula. The Europe-
an University system has to be modernised to meet the demands for basic and advanced
software engineering skills and competencies. Based on a solid foundation of software
engineering principles, software engineering curricula need to address emerging technol-
ogy trends, including cloud-based, data-intensive, CPS-oriented and/or service-oriented
systems. In addition, certification programmes for experts in these areas will help to build
a well-trained work-force.

To strengthen fostering innovation, those curricula should also be built from the understand-
ing of the potential of software for creativity and thus learn from and collaborate with social
sciences and humanities. One important angle of such curricula may also include generalis-
ing work on open source projects during education, constituting a win-win situation for the
students and the community.

The long term impact of software relies on educating our future generation(s). In many re-
spects, Europe has been foresighted in taking on ICT as part of programmes, e.g., in both
primary and secondary schools. However, an understanding of software goes far beyond
goals such as a digitally competent population and digital divide (cf. the Digital Agenda for
Europe). Unfortunately, Europe lacks skilled and competent teachers on these levels of edu-
cation, leading to the following recommendation:

Recommendation Skills-3: Building out software literacy. The European education
and school system would significantly benefit from strengthening its ICT training, on all
levels and in particular in software. Designing and programming software as a basic skill
will profit individuals, businesses/industry and society. In a sense, software literacy must
become a key literacy skill to make Europe innovative and competitive and thus serve as
a primary foundation for the job creation of this century.

5.3. Best Practices for Software Engineering Research & Innovation

Software’s specific characteristics (cf. Section 1.2) need to be considered when planning
and executing successful software engineering research and innovation projects. To this
end, this section provides a set of best practices from the analysis of past software engineer-
ing projects.

To identify best practices for successful software engineering research and innovation pro-
jects, NESSI analysed the public outcomes and reports of past FP7 projects funded under

NESSI – Software Engineering White Paper

18

Objective 1.21, i.e., calls ICT-2007-1.2 (“Software & Services Architectures, Infrastructures
and Engineering”), ICT-2009-1.2 (“Internet of Services, Software and Virtualisation”), and
ICT-2011-1.2 (“Cloud Computing, Internet of Services and Advanced Software Engineer-
ing”).

Not all software engineering projects funded under Objective 1.2 provided a public explicit
self-assessment and a discussion of lessons learned about their overall approach, strategy
and methodology. The ones that did included BIGFOOT, CHOReOS, CLOUD-TM, COM-
PAS, DEPLOY, PERSIST, Q-IMPRESS, REMCIS, ROMULUS, S-Cube, SEQUOIA,
SERENOA, ServiceWeb3.0, SLA@SOI. They have been considered when distilling the be-
low recommendations.

Overall, the analysis of past FP7 projects revealed the following main best practices of
relevance for software engineering projects. These best practices should thus be consid-
ered when soliciting future research and innovation projects on software engineering and
related topics, including Cloud, CPS and Big Data.

Recommendation BestPr-1: Perform industry-near research exploiting real-world
software engineering cases. Addressing concrete (industry-near) problems clearly facili-
tates the exploitation and uptake of project outcomes. Real-world use cases (of realistic
size and complexity) stimulate problem understanding and evaluation. Rigorous and rele-
vant empirical studies in industry are very important for the future of software engineering.
Real world cases and data are crucial for such empirical work, which contributes to under-
standing the applicability of software engineering techniques methods in practice. In addi-
tion, addressing industry-near problems may lead to new research challenges to be ad-
dressed in order to overcome the “trench” between theory and practice.

Recommendation BestPr-2: Deliver well-documented, working software tools and
pilots to make project outcomes more accessible. As far as possible, projects should
develop and ensure sustainability of (pre-industrial) tools to make the project outcomes
attractive to industry. In order to foster the understanding of these tools by users, existing
technology may serve as basis, and novel features should be introduced progressively as
they become available in the project. Ideally, these tools are linked to strategy areas of
project partners to foster exploitation. In addition, tool development should be comple-
mented by (virtual) training sessions that make it easy to understand how to work with the
project tools. To be accessible for practice, outcomes should be well documented and
ideally use well-justified standards for such documentation.

Research publications alone might not be the right way to make the results accessible to
practitioners [22]. Thus developing the aforementioned tools, even though it requires signifi-
cant resources and time, is an important, complementary means to stimulate uptake of re-
sults. Often it is not necessary that the code itself is industry quality and still these tools may
serve as “pilots” for developing them further into commercial offerings (possibly even as part
of innovation actions).

As indicated, implementing many of the above recommendations may require complement-
ing short projects with longer term and adequately sized research and innovation projects (a
perspective that is also shared in [3]), which leads to one final recommendation:

1
 See http://cordis.europa.eu/fp7/ict/ssai/projects_en.html

http://cordis.europa.eu/fp7/ict/ssai/projects_en.html

NESSI – Software Engineering White Paper

19

Recommendation BestPr-3: Larger-scale, integrated projects – in addition to small
ones – important for software engineering research. The current work programme on-
ly foresees funding for small research and innovation projects on software engineering.
However, large, integrated projects should be funded in addition to small ones due to the
fact that software engineering research and innovation requires concerted efforts of indus-
try and research, as well as needs to consider various angles and aspects at the same
time in order to deliver practically relevant and significant solutions. Developing and vali-
dating novel software engineering techniques, methods and tools to tackle the cognitive
complexity, scale and unprecedented dynamicity of future software systems requires larg-
er-scale and longer-term collaborative efforts.

As an open form of knowledge exchange and management applied to software (ideas, de-
sign, code, errors, documentation), open source can improve cooperation and sharing and
greatly impact quality, roadmap, standardisation, dissemination of software components or
solutions. However, the use of OSS also implies the need for a managing of OSS licences
and communities. Especially, this requires a structured approach towards managing the evo-
lution and the complexity of OSS libraries and modules.

Recommendation BestPr-4: If pursuing an open source strategy, it needs to be
done early on and by leveraging existing ecosystems. To ensure sustainability and
adoption of open source project outcomes, projects have to develop an open source
community early on in the projects. Ideally, projects would join an existing open source
community (and don’t start their own) in order to exploit existing ecosystems. To ensure
uptake, projects should strive to remain as API compatible as possible with existing open
source implementations and integrate their results into the open source reference imple-
mentations. An interesting direction inspired by open source is to develop open models
and open interfaces. Open models can serve as basis for standards and thus foster easy
access to standards. Open interfaces foster easy implementation by multiple vendors.

Introducing open source to a project requires a learning process. It starts from open source
awareness, culture and coordination among project participants, thus it may take some time
to develop.

Recommendation BestPr-5: Pursue a systems approach to software delivery. Ideal-
ly, technology resulting from software engineering projects should be made available in
“packaged” form, i.e., in the form of frameworks, toolboxes or integrated models. To this
end, projects should bring their individual solution “components” into a systems perspec-
tive in order to foster adoption in practice.

Such integration, of course, requires significant resources, time (i.e., longer duration pro-
jects) and strong governance. In turn, this means that these aspects have to be duly planned
and considered during project preparation and execution in order to be realistic and success-
ful.

6. Conclusions

As analysed and demonstrated throughout this white paper, software engineering principles,
techniques, methods and tools need to evolve and novel ones need to be devised in order to
keep up with fast-paced technology and societal changes, thus being able to cope with the
new challenges. Due to the growing complexity and multi-disciplinarity, software engineering
solutions cannot be devised by companies and research organisations in isolation. Similar to
other engineering disciplines, software engineering research and innovation requires con-
certed efforts of industry and research to deliver practically relevant and significant solu-

NESSI – Software Engineering White Paper

20

tions. Novel software engineering techniques, methods and tools must tackle the cognitive
complexity, scale and unprecedented dynamicity of future software systems.

In order for Europe to remain competitive, this means that the opportunity and specific needs
for such joint research and innovation efforts should be sustained – ideally, even increased.
Otherwise, Europe might run the risk of losing the competitive ground on software and soft-
ware-intensive systems and, as a result, will strongly depend on software technology and
skills from non-European countries to a higher degree than advisable.

NESSI considers the software engineering funding available in the current work programme
(WP2014-2015 – LEIT/ICT-9) a modest starting point at best. Software engineering re-
search and innovation programmes need to be strengthened if Europe wants to meet
and leverage the opportunities of future ICT trends.

NESSI – Software Engineering White Paper

21

Authors and Contributors

Paolo Bellavista, CINI

Joe Butler, Intel

Marquart Franz, SIEMENS

Juan Garbajosa, UPM

Yosu Gorroñogoitia, ATOS

Thomas Hahn, SIEMENS

Tobias Hildenbrand, SAP

Nicole Ignaciuk, paluno – University of Duisburg-Essen

Norbert Kraft, NOKIA

Julie Marguerite, Thales

Andreas Metzger, paluno – University of Duisburg-Essen (editor)

Klaus Pohl, paluno – University of Duisburg-Essen

Klaus-Dieter Platte, SAP / Platte Consult

Valére Robin, Orange

Dumitru (Titi) Roman, SINTEF

Nikos Sarris, ATC

Bjorn Skjellaug, SINTEF

Jesús Angel García Sánchez, INDRA

Arnor Solberg, SINTEF

Hans-Jörg Stotz, SAP

Josef Urban, NOKIA

Jan Patrzalek, SAP

Jennifer Perez, UPM

NESSI – Software Engineering White Paper

22

References

[1] NESSI, „European Software Strategy,“ NESSI Position Paper, June 2008. [Online].
Available: http://www.nessi-
europe.eu/files/PositionPapers/NESSI%20Position%20Paper%20on%20European%2
0Software%20Strategy%20.pdf.

[2] NESSI, “A Software & Service Perspective on the Future of Cloud in Europe,” NESSI
Whitepaper, July 2012. [Online]. Available: http://www.nessi-
europe.eu/Files/Private/NESSI_Cloud_WhitePaper.pdf.

[3] ISTAG, „Software Technologies: The Missing Key Enabling Technology - Toward a
Strategic Agenda for Software Technologies in Europe,“ July 2012. [Online]. Available:
http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf.

[4] "Playing to Win in the New Software Market: Software 2.0 – Winning for Europe,"
Report of an Industry Expert Group on a European Software Strategy, June 2009,
Version 3.5. [Online]. Available:
ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/ssai/European_Software_Strategy.pdf.

[5] ITEA, ARTEMIS-IA, „High Level Vision 2030,“ 2013. [Online]. Available:
http://www.artemis-ia.eu/publications.

[6] A. Arora, L. G. Branstetter and M. Drev, Going Soft: How the Rise of Software-Based
Innovation Led to the Decline of Japan's IT Industry and the Resurgence of Silicon
Valley, MIT Press Journals, July 2013.

[7] IEEE, Standard Glossary of Software Engineering Terminology, 1990.

[8] E. Di Nitto, C. Ghezzi, A. Metzger, M. P. Papazoglou and K. Pohl, “A Journey to Highly
Dynamic, Self-adaptive Service-based Applications,” Automated Software
Engineering, vol. 15, no. 3-4, pp. 313-341, 15(3-4) 2008.

[9] ECSEL Joint Undertaking, „MultiAnnual Strategic Research and Innovation Agenda
(MASRIA 2014),“ 2014. [Online]. Available: http://www.smart-systems-
integration.org/public/documents/publications/2014_ecsel_masria_partc.pdf.

[10] NESSI, “Big Data: A New World of Opportunities,” NESSI Whitepaper, December
2012. [Online]. Available: http://www.nessi-
europe.com/Files/Private/NESSI_WhitePaper_BigData.pdf.

[11] B. NESSI, “DRAFT European Big Data Value Strategic Research & Innovation
Agenda, Version 0.7,” Version 0.7, April 2014. [Online]. Available:
http://www.bigdatavalue.eu/index.php/downloads/finish/3-big-data-value/14-big-data-
value-strategic-research-and-innovation-agenda/0.

[12] TiViT, „Strategic Research Agenda: Need for Speed,“ April 2013. [Online]. Available:
http://www.digile.fi/file_attachment/get/SRA Need4Speed 4.pdf?attachment_id=438.

[13] A. Metzger and K. Pohl, “Software Product Line Engineering and Variability
Management: Research Achievements and Challenges,” in Future of Software
Engineering Track, International Conference on Software Engineering, Hyderabad,
India, June 2014.

NESSI – Software Engineering White Paper

23

[14] P. Bellavista, G. Cardone, L. Foschini, A. Corradi, C. Borcea, M. Talasila and R.
Curtmola, “Fostering Participaction in Smart Cities: a Geo-social Crowdsensing
Platform,” IEEE Communications Magazine, no. Vol. 51, No. 6, pp. 112-119, pp. 112-
119, June June 2013.

[15] T. Brown, Change by Design: How Design Thinking Transforms Organizations and
Inspires Innovation, New York: HarperCollins, 2009.

[16] H. Plattner, A. Back, W. Brenner, R. Jung, H. Österle and R. Winter, Jumpstarting
Scrum with Design Thinking, St. Gallen: University of St. Gallen - HSG, 2013.

[17] T. Hildenbrand and J. Meyer, Intertwining Lean and Design Thinking: Software
Product Development - From Empathy to Shipment, Berlin, Heidelberg: Springer ,
2009.

[18] P. Naur and B. Randell, Software Engineering: Report on a Conference sponsored by
the NATO Science Committee, Garmisch, Germany: Brussels, Scientific Affairs
Division, NATO, 1968.

[19] W. W. Gibbs, “Software's Chronic Crisis,” Scientific American, no. pp.72—81,
September 1994.

[20] A. Cockburn, “The End of Software Engineering and the Start of Economic-
Cooperative Gaming,” Computer Science and Information Systems, pp. 1-32,
February 2004.

[21] Graduate School Directory, http://www.gradschools.com/.

[22] S. Beecham, P. O'Leary, S. Baker, I. Richardson and J. Noll, "Making Software
Engineering Research Relevant," IEEE Computer, vol. 47, no. 4, pp. 80-83, 2014.

