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ABSTRACT  It is common in psychiatric epidemiologic studies of childhood psychopathology to 

have multiple informant reports of mental health outcomes. The key challenge in analyzing multiple 

informant data concerns how they should best be represented in statistical models.  Here we 

propose multivariate linear regression as the preferred method when the multiple informant 

outcome data are continuous. This approach permits the informant-specific information about 

mental health outcomes to be included in a single regression analysis, at the same time adjusting 

for the correlation between informant responses.  The advantages of using a multivariate model 

include the ability to: (1) test for informant differences in outcome and assess if the effect of a risk 

factor on the outcome varies by informant; (2) estimate separate effects for each informant where 

necessary, or common effects where appropriate; (3) estimate the correlation between informant 

reports; (4) appropriately handle missing data by including data from all subjects with at least one 

informant report.  To illustrate the application of this approach an example from the Connecticut 

Child Study is presented, examining risk factors for ``Internalizing'' behavior using parent and 

teacher informants. 

 

Key words:  bivariate linear regression, multivariate analysis, child behavior disorders, 

psychometrics, risk factors 
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Introduction 

The use of multiple informant reports of mental health has become standard practice in psychiatric 

epidemiologic studies. This is especially true in studies of child psychopathology in which parents, 

teachers, and peers are traditional informants.  Psychological constructs are often elusive and, 

therefore, prone to measurement error.  Multiple informant reporting is a common method for 

reducing the measurement error inherent in assessing psychopathology (Achenbach, McConaughy, 

Howell, 1987).  The need for appropriate methods to analyze multiple informant data is even more 

pronounced in the study of child psychopathology, where children are assumed to lack the 

cognitive maturity needed for accurate self-reporting.  In addition, psychopathology may be 

situation-specific or vary greatly by environment, in which case using multiple informant reports 

can lead to an understanding of the nature of the psychopathology not possible with only one 

informant response (Achenbach, 1993).   

 

The central issue in analyzing multiple informant data is how to represent multiple outcomes for a 

subject from different informants in a statistical model.  There are several traditional approaches for 

analyzing multiple informant data in psychiatric research that are not completely satisfactory. One 

approach is to conduct separate regression analyses for each of the informants and to report the 

results separately.  This approach has a number of distinct drawbacks: (1) separate analyses yield 

multiple and often differing sets of results for the different informants; (2) separate analyses 

provide no formal statistical means of evaluating how similar or different the results are across the 

various informants; (3) in cases where the separate analyses yield results that are sufficiently 

similar, this approach provides no formal means of summarizing effects in a single set of results; 
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(4) separate analyses may be based on different subsets of the data if some subjects are missing one 

informant report and others are missing another. 

 

The other main alternative is to use some sort of ``pooling'' strategy. There are three common 

pooling strategies which produce a summary measure from informant ratings to be used as the 

single outcome variable.  When the outcome is dichotomous, e.g. presence or absence of 

psychopathology, the ``And'' rule dictates that the subject has psychopathology if all informants 

agree. In contrast, the ``Or'' rule indicates psychopathology if at least one informant reports its 

presence. Depending on which of these two rules is used, under or over-estimation of the 

prevalence of psychopathology may arise. A third strategy that can be used for both continuous and 

dichotomous outcomes is consensus pooling.  Implemented during the data collection phase, a 

consensus procedure brings the discordant informants together to arrive at an agreement (Horton, 

Laird, Zahner, 1999). Practical considerations of the study make the consensus strategy difficult to 

use. Finally, for the continuous outcome case, another pooling strategy is to take the arithmetic 

mean of the multiple informant reports. We will return to discuss this strategy in the Discussion 

section.   

 

Major disadvantages of these pooling strategies include: (1) the optimal algorithm for combining 

outcomes depends upon the type of measurement error present; although the measurement error in 

informant reports of psychopathology is believed to be substantial and also complex, there have 

been few studies that would support the use of one pooling strategy over another; (2) pooling 

informant reports does not permit the assessment of potential differences in risk factor effects 
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across the various informants; (3) many of the pooling algorithms are not clearly defined in the 

presence of missing informant reports. 

 

For the special case where the outcome variable is dichotomous, Fitzmaurice et al. (Fitzmaurice, 

Laird, Zahner, Daskalakis, 1995) suggest handling multiple informant data by using multivariate 

logistic regression. This approach permits the informant-specific information about case status to 

be included in a single multivariate regression analysis, at the same time adjusting for the 

correlation between informant responses. The advantages of such an approach include the ability 

to: (1) test for informant differences in outcome and assess whether the effect of a risk factor on the 

outcome varies by informant; (2) estimate a common risk factor effect if it does not; (3) obtain 

measures of prevalence based on each informant or based on combined data from all informants 

(where appropriate); (4) handle missing data appropriately by including data from all subjects with 

at least one informant report; (5) assess informant agreement. 

 

The current article extends the approach described in Fitzmaurice et al. to consider the setting 

where the outcome variable is continuous rather than dichotomous.  Multivariate linear regression 

is proposed in place of multivariate logistic regression.  A detailed description of the methodology 

behind this approach is presented in the next section, followed by an example from the Connecticut 

Child Study to illustrate how the method can be applied. An analysis of risk factors for 

``Internalizing'' behaviors of 6- to 11-year-old children in Connecticut reported by parent and 

teacher informants is carried out using bivariate linear regression.  Note that the use of the term 

``bivariate'' here refers to the number of outcomes and not the number of predictors.    
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Multivariate Linear Regression Model 

Similar to the use of multivariate logistic regression in the paper by Fitzmaurice et al., a 

multivariate linear regression model is proposed for the case of continuous outcome variables.  

Multivariate linear regression allows us to fit a single model for all informants, taking into 

consideration the (usually positive) correlation among informant reports on a given subject. 

Specifically, the multivariate linear regression model is comprised of multiple informant outcomes 

or responses for each subject, in addition to a set of covariates or predictor variables.  Covariates in 

the model may include risk factors and their interactions, indicator variables for informant status, 

and informant-risk factor interactions. Informant-risk factor interactions are included in the model 

to allow the effect of risk factors on the outcome to differ by informant.  

 

To illustrate these ideas consider a simple bivariate example: let 1Y  and 2Y  denote the responses 

from the two informants.  Let 1X  be a risk factor and 2X  be the informant indicator (i.e. 12 =X  if  

the response comes from the second informant and 02 =X  if it comes from the first informant). 

Then the bivariate model for the mean response from the jth informant, as it relates to the risk 

factor is  

 2,121322110)( =+++= jj XXXXYE ββββ  

With the interaction present, this model allows for different intercepts and slopes for the 2 different 

informants. Therefore, the mean response for each informant follows as 

 1101 )( XYE ββ +=  

 131202 )()()( XYE ββββ +++=  
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Formal statistical tests of 2β  and 3β  equal to zero are tests of informant differences, where 2β   

represents an informant difference in the intercept and 3β  represents an informant difference in the 

effect of the risk factor.  Therefore, inclusion in the model of a statistically significant informant-

risk factor interaction indicates the effect of a risk factor on the outcome depends upon the 

informant.  In the absence of a significant informant-risk factor interaction the 213 XXβ  term may 

be dropped; an overall informant effect can still be retained in the model by including the 22 Xβ  

term.  A significant test of 2β  equal to zero then indicates that overall one informant is more or less 

likely to report symptoms than another.  In general, the decision to estimate common or separate 

effects for each informant should not be based solely on a mechanistic use of significance tests.  

Rather, where a statistically discernible difference among the effects has been found, it should then 

be judged on the basis of subject-matter considerations.  While small differences among effects 

may be statistically significant, these differences may be substantively unimportant.  This will be 

especially true with large data sets.  

 

Note that the methods proposed in this paper can be applied to the multivariate case where there are 

more than two informants.  If, for instance, there were 3 informants then the model would include 2 

indicator variables for the informant factor (e.g. representing contrasts of parent vs. peer and 

teacher vs. peer) and interactions between each informant variable and the risk factors.  Interactions 

between clinically meaningful risk factors and other risk factors could also be included.  

 

In summary, in the multivariate model the multiple informant outcomes are modeled 

simultaneously, thereby allowing the formal comparison of results across informants.  In addition, 

in the multivariate model the correlation between informants is accounted for in the estimation of 
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the regression coefficients and their standard errors.  In the presence of missing data, use of 

likelihood-based methods of estimation exploit the correlation among informant reports and allow 

for information on all subjects for whom there is at least one response to be included in the 

regression analysis, thereby increasing precision and potentially reducing selection bias. 

 

Unlike the logistic regression scenario presented in Fitzmaurice et al., the regression coefficients 

here are not log odds ratios, but rather have the standard linear regression interpretation. The 

regression coefficients, their standard errors, and the within-subject covariance matrix can be 

estimated using standard software for general linear models for correlated data.  Where there are 

missing data and the missingness mechanism is assumed to be missing at random (Rubin, 1976), 

related only to other observed responses, then likelihood methods lead to consistent and 

asymptotically normally distributed estimators.  Assuming that the multiple informant outcomes 

have a multivariate normal distribution, likelihood based inference can be conducted using, for 

example, SAS Proc Mixed. Alternatively, where there are no missing data or the missingness 

mechanism is assumed to be missing completely at random, related only to covariates in the model, 

then a multivariate normal distribution need not necessarily be assumed, and a Generalized 

Estimating Equations (GEE) approach could be used instead (e.g., using SAS Proc Genmod).  The 

GEE approach only requires correct specification of the model for the conditional mean of the 

outcome vector.  No additional assumptions or restrictions on the error distribution are required.   

 

Example: Connecticut Child Study 

Sample and measures 
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The Connecticut Child Study consists of data collected on children age 6-11 years from two 

Connecticut children's mental health surveys.  The New Haven Child Survey, conducted in 1986-

1987, drew a random sample from 54 public and private schools serving New Haven, Connecticut.  

Using the same procedures as the New Haven Child Survey, the Eastern Connecticut Child Survey, 

conducted in 1988-1989, drew a stratified, two-stage cluster sample from 83 public, private and 

institutional schools nested within strata consisting of small cities, suburban areas, or rural areas 

(Zahner, Jacobs, Freeman, 1993; Zahner, Pawelkiewicz, DeFrancesco, 1992).  Parent 

questionnaires were distributed through schools with follow-up of non-responders.  One parent per 

household completed the survey for one randomly selected child.  70% and 72% of parents with 

valid addresses completed surveys in New Haven and Eastern Connecticut, respectively.  Teacher 

surveys were then distributed with parental and schoolboard consent.  Missing teacher surveys were 

the result of either permission refused by parents/schools or failure of the teacher to return the 

questionnaire.  In addition, unscorable questionnaire data were obtained for 1% of parents and 2% 

of teachers. The analyses reported here are based on responses of 2,501 parents and 1,428 teachers. 

 

The child psychopathology of interest here is ``internalization,'' a continuous outcome variable 

measuring withdrawn, somatic, and anxious-depressed problems.  Internalizing behaviors were 

measured using the Internalizing Scale with parent ratings of the Child Behavior Checklist 

(Achenbach, 1991a) and with teacher ratings of the Teacher's Report Form (Achenbach, 1991b). 

The Child Behavior Checklist and the Teacher's Report Form are parallel versions of the same test.  

Using national norms of non-referred children, the raw scores were standardized to t scores with a 

mean of 50 and standard deviation of 10.  Internalizing scores ranged from 33-93 for parents and 

36-90 for teachers.  Eight clinically significant categorical variables were included as study factors: 



 

 10

area of residence, social class, single parent status, maternal distress, child's health, grade 

repetition, child's gender, and family stress.  It is important to note that all eight study factors are 

based on parental report.  Table 1 summarizes the coding and distributional information for the 

outcome and independent variables.  Details of missing responses and full descriptions of the study 

factors can be found elsewhere (Fitzmaurice et al., 1995; Zahner et al. 1992; Zahner et al. 1993). 

Marginally, the distributions of the dependent variable for parent and teacher informants appear to 

be very similar.  However, this does not imply that their associations with the eight study factors 

will necessarily be the same. 

 

Insert Table 1 about here 

 

Methods 

All analyses were conducted using the Proc Mixed procedure in SAS, exploiting that procedure's 

capability for analyzing data from repeated measures designs (here, informant represents the 

repeated measures factor).  The Proc Mixed procedure is based on the general linear mixed model, 

and allows a variety of parametric structures for the covariance matrix.  Sample syntax for 

undertaking the analysis is given in Appendix A.  An ``unstructured'' covariance matrix was 

assumed in the current analyses.  Note that, in general, choosing an ``unstructured'' covariance 

matrix allows the variances to depend on informant and places no restrictions on any of the 

pairwise correlations between informants.  The current analysis uses Restricted Maximum 

Likelihood (REML) estimation of the covariances.  The REML estimates of the covariances were 

used, in turn, to obtain the Generalized Least Squares (GLS) estimates of the regression coefficients 

and their standard errors.  The nonresponse mechanism was assumed to be missing at random.  
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That is, the analysis presented here is valid provided that teachers' missing responses depend only 

on parents' evaluations and/or on the covariates in the model, but not on the missing teacher 

observations themselves.  

 

In choosing a final model the strategy undertaken was to identify potential informant-study factor 

interactions first.  Only after these were chosen were interactions between other study factors 

considered.  The initial model included all 8 study factors, which have been shown to have 

epidemiologic significance in studies of childhood psychopathology, plus an indicator variable for 

informant status.  After an overall test of all informant-study factor interactions was found to be 

statistically significant (Likelihood Ratio Test 0001.,11,56.722 <= pdfχ ), stepwise model-

selection with Wald test statisics and a significance criterion of  p=.05 was conducted. The 

stepwise technique alternates between forward selection and backward elimination steps, ending 

when none of the variables outside the model and every variable in the model has an F statistic 

significant at the significance criterion.  The resulting model includes 4 interactions of informant 

with child's health ( 0001.<p ), maternal distress ( 0006.≈p ), family stress ( 0012.≈p ), and SES 

( 0543.≈p ).  The interaction of informant with SES was retained since it was on the borderline of 

the criterion p-value.  Recall that significant informant-study factor interactions indicate significant 

differences between the regression coefficients for parent and teacher reports. 

 

Because predictors of psychopathology in children are often gender specific, only the interactions 

between child's gender and the 7 other study factors were considered.  Before considering 

individual interactions of child's gender with other study factors, omnibus Likelihood Ratio tests of 

three-way, and then two-way interactions with child's gender were performed to control partially 
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for multiple testing. Because neither of these overall tests was statistically significant ( 20.>p  and  

13.>p , respectively), no further interactions with child's gender were considered.  Therefore, the 

final model contains the 8 study factors, an indicator of informant status, and the 4 interactions of 

informant with child's health, maternal distress, family stress, and SES. 

 

Results 

Histograms (not shown here) of the parent and teacher reported internalization scores indicate that 

they are approximately normally distributed, lending support to the assumption that the parent and 

teacher reports have a multivariate normal distribution.  In addition, a plot of parent versus teacher 

residuals (based on the bivariate model) indicates no departures from a linear association.  

Although there are no formal regression diagnostics available to test the adequacy of our model, 

separate residual plots for the parent and teacher reports indicate no systematic patterns, and 

therefore, seem to support the usual regression assumptions. 

 

The estimated variances of the parent and teacher reports are 93.12 and 101.27 respectively, with 

an estimated correlation of .1632.  Table 2 shows the regression coefficients and standard errors for 

the final model.  A common estimate for parent and teacher indicates that there are no statistically 

discernible differences among the effects of the study factor on the parent and teacher reports of 

internalization.  Separate estimates are reported when there are statistically discernible differences 

among the parent and teacher regression coefficients (at 05.=α ), that is, when there is a 

significant informant-study factor interaction.  As can be seen in Table 2, the effects of SES, 

maternal distress, child's health, and family stress on internalizing behaviors all differ by informant.  

Area of residence, single parent status, grade repetition, and child's gender do not depend on 
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informant.  These results are quite similar to those reported in Fitzmaurice et al. based on the same 

data but with internalizing scores dichotomized at the cut-point for clinical psychopathology (t 

score > 60); the only exception being that SES was not found to differ by informant in the results 

presented by Fitzmaurice et al., while here the informant by SES interaction is marginally 

significant ( 0543.=p ).  In addition, Fitzmaurice et al. reported a significant interaction of child's 

gender with family stress.  Along with different model selection criteria, the main differences in the 

two sets of analyses appear to be the result of a gain in statistical power from allowing the outcome 

variable to remain continuous, rather than dichotomizing it at a somewhat arbitrary cut-point. 

However, a more direct comparison of the logistic and linear regression coefficients is not 

meaningful since they have different interpretations. 

 

Insert Table 2 about here 

 

Study factor effects are generally in the expected direction.  For instance, we would expect a 

decrease in SES to be associated with an increase in Internalizing score, whereas the unexpected 

negative association observed for single parent status (yes vs. no) is small and not statistically 

significant.  The effects of maternal distress, child's health, and family stress are reported as 

separate effects, found to be significantly greater for parents than teachers.  In particular, child's 

health and family stress are only significant predictors for the parent reports; maternal distress is 

significantly related to both parent and teacher reports, though it is more pronounced for the 

parents.  One explanation for these parent-teacher differences is that these 3 study factors may be 

more salient for parents than teachers, keeping in mind that all factors are based on parental report.  
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The effects of maternal distress and child's health for parents represent a 4.68 and 4.21 respective 

change in Internalizing score, nearly half a standard deviation on the t score scale. 

 

The effect of socioeconomic status was also found to differ significantly by informant, and separate 

effects are reported.  Low socioeconomic status is significantly related to both the parent and 

teacher reports, though the effect is more pronounced for teachers.  Middle socioeconomic status 

appears to have a significant effect only for parents.  Of the 4 common effects for parents and 

teachers reported in Table 2, only grade repetition is significant, associated with a 2.13 increase in 

Internalizing score.  Area of residence, single parent status, and child's gender do not appear to be 

significantly related to Internalizing score. 

 

A caveat of the results reported here is that they have neglected to take into account selection 

probabilities or to make variance adjustments for stratified, multi-stage cluster sampling.  Ignoring 

the complex sample design will generally result in overly optimistic estimates of precision.  

However, in a previous paper that examined the validity of results that did not take into account the 

complex sample design (Fitzmaurice et al., 1995), the average design effects obtained for separate 

regressions of the parent and teacher reports of internalization were 1.4 and 1.6, respectively.  As a 

result, we conjecture that neglecting to account for the complex sample design has led to only a 

modest underestimation of the sampling variance of the regression estimates.  That is, because the 

design effects are relatively small, accounting for the complex sample design would most likely 

lead to an inflation of the reported standard errors by a factor of 1.18 to 1.26 (the square-root of the 

design effects).  This would not have any substantial impact on the overall substantive conclusions 

of the analyses reported here.  Finally, we note that, in principle, it is possible to incorporate 
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sampling design adjustments into likelihood-based multivariate regression models.  However, the 

statistical software to conduct such adjusted analyses does not currently exist.  Extending the 

proposed method to incorporate sampling design adjustments is a topic that will be explored in 

future research.  

 

Discussion 

In this paper we propose an extension of the approach outlined by Fitzmaurice et al. to analyze 

multiple informant data that are continuous.  Often it is more desirable both clinically and 

statistically to work with a continuous outcome variable, rather than imposing an arbitrary 

dichotomy.  By using a continuous outcome variable there is more information available, thus 

producing a gain in both precision and power.  The application of this new approach to dealing with 

multiple informant data follows directly from the dichotomous to the continuous case.  Multivariate 

linear regression, accounting for the correlation among repeated measures, replaces multivariate 

logistic regression, but the structure of the model for the mean remains the same; in both cases 

there is a ``linear predictor'' that includes indicator variables representing informant status and their 

interactions with risk factors.  The association between the repeated responses is modeled in 

multivariate logistic regression using the odds ratio; in multivariate linear regression the covariance 

is a natural metric for association.  In either case, the estimated regression coefficients and their 

standard errors are adjusted for the effect of the correlations among informant reports.   

 

One of the key features of the multivariate regression approach to handling multiple informant 

mental health data is that it allows us to test for informant differences in outcome and for 

differences in risk factor effects.  When the effects of risk factors depend on informant, separate 
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estimates can be reported; when informant differences are not statistically significant, common 

estimates of risk factor effects can be reported.   An advantage of the multivariate approach over 

traditional methods is that it takes into consideration the correlated nature of the data.  By modeling 

the covariance structure between informants, estimated standard errors of informant-specific 

regression coefficients in the multivariate regression analysis will, in general, be smaller than their 

counterparts in univariate regressions for each informant.  Furthermore, when the agreement among 

informant reports is also of scientific interest, the correlation between informant reports can be 

estimated.  The multivariate approach is especially important in the handling of missing data where 

use of all available information on both informants may produce a gain in precision and a reduction 

in bias (when missing reports are missing at random).  

 

In the earlier discussion of the disadvantages of traditional approaches for handling multiple 

informant data, it was briefly mentioned that one pooling strategy is to take the arithmetic mean of 

the multiple informant reports.  It should be noted that this pooling strategy is encompassed within 

the proposed approach.  Under a set of strong assumptions, the univariate regression coefficients 

estimated using the arithmetic mean of the multiple informant reports as the outcome will be 

identical to those estimated under the multivariate regression model proposed here (a proof is 

outlined in Appendix B).  The two approaches will be equivalent when there are no missing data 

and under the assumptions of compound symmetry (a covariance matrix structure indicating equal 

variances among informants and equal correlations between informants) and no informant effects.  

The proposed approach allows these assumptions to be tested; informant effects can be tested as 

previously described, and the assumption of compound symmetry can be assessed by constructing a 

likelihood ratio test that compares compound symmetry with the unstructured covariance.  The 
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arithmetic mean pooling approach, on the other hand, makes these assumptions a priori.  In 

addition, when there are missing informant reports the arithmetic mean pooling approach uses a 

form of ``mean imputation,'' and thus can yield biased estimates of the regression coefficients and 

standard errors when data are missing at random.  As a result, the arithmetic mean pooling 

approach should be implemented, when appropriate, using the multivariate regression method 

proposed here. 

 

In conclusion, the ability to compare and formally test informant differences is a major advantage 

of the multivariate regression approach with potentially important consequences.  Differences 

between informants may reflect reporting biases or may point to situation-specific psychopathology 

that would otherwise be overlooked.  Thus, in the absence of a gold standard, using multivariate 

linear regression to identify risk factor effects for multiple informants may lead to advances in our 

understanding of the nature of childhood psychopathology. 
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Table 1:  Coding and distribution of the dependent and independent variables 
 
 

Internalizing (dependent variable)   
 Parent informant  n=2501  
 mean  50.72  
 std. dev.  10.28  
 median  51  
 75th% 58  
 25th% 43  
 Teacher informant  n=1428  
 mean  49.77  
 std. dev.  10.21  
 median  49  
 75th% 57  
 25th%  43  
Independent Variables  # % 
 Area   
 1=rural 874 35 
 2=suburban 428 17 
 3=small city 386 15 
 4=large city 813 33 
 Social Class   
 1=high 1240 50 
 2=middle 949 38 
 3=low 312 12 
 Single Parent   
 1=yes 519 21 
 0=no 1982 79 
 Maternal Distress   
 1=yes 391 16 
 0=no 2110 84 
 Child's Health   
 1=poor health 1172 47 
 0=good health 1329 53 
 Grade Repetition   
 1=yes 466 19 
 0=no 2035 81 
 Child's Sex   
 1=boy 1207 48 
 2=girl 1294 52 
 Family Stress   
 1=yes 1596 64 
 0=no 905 36 
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Table 2:  Estimated regression coefficients ±±±± standard errors for the Internalization Model 
 
   

 Bivariate Linear Regression* 
 Teacher Parent 
Intercept 47.6896 ± 0.5954 45.4168 ± 0.4651 
Area   
 large city -0.7133 ± 0.4529 
 small city -0.1529 ± 0.5116 
 suburban -0.9233 ± 0.4873 
Social Class   
 low 3.524 ± 0.8965** 1.3664 ± 0.6861** 
 middle 0.9156 ± 0.5887   1.1190 ± 0.4305** 
Single Parent (yes) -0.2901 ± 0.4790 
Maternal Distress (yes) 1.7604 ± 0.7349** 4.6795 ± 0.5450** 
Child's Health (poor) 0.6951 ± 0.5372   4.2069 ± 0.3912** 
Grade Repetition (yes)     2.1273 ± 0.4381** 
Child's Sex (boy) 0.6064 ± 0.3310 
Family Stress (yes) 0.6924 ± 0.5617 2.8081 ± 0.4094** 

 
* Single estimates indicate common effects for teachers and parents; separate estimates indicate 
effects that are significantly different between informants at 05.=α . 
** Statistically significant ( 05.=α ) risk factors for Internalizing score. 
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Appendix A: Sample SAS Commands 
 
Sample Data 
  
        ID PARENT TEACHER GENDER SES 
         1 51 53 1 1 
         2 43 . 0 1 
         3 70 57 0 2      
 
Above is an example of 3 subjects from the data analysis presented in the paper, with only Gender 
and SES included as covariates. Subject 2 has a missing teacher response, represented by a period. 
Note that Proc Mixed requires the data to be in a univariate form, with as many records as there are 
informant reports. Below is the SAS code for carrying out the data transformation, followed by the 
resulting SAS output.  The ``intern'' and ``inf'' variables, representing internalizing score and the 
corresponding informant, are created in the SAS code. It can be seen in the output that there are two 
entries per subject, one row or record for parent report and one for teacher report.     
 
 
SAS Code and Output - transformation to univariate form 
 
data internal; 
    input id parent teacher gender ses; 
    intern=parent;inf=0; output; 
    intern=teacher;inf=1; output; 
    drop parent teacher; 
run; 
 
     
             G         i  
                 E  n 
                  N         t 
                  D    S e i  
 I   E    E r n 
 D  R S n f 
 
 1  1    1 51 0 
 1  1    1 53 1 
 2  0    1 43 0 
 2  0    1 . 1 
 3 0    2 70 0 
 3  0    2 57 1 
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SAS Code - Proc Mixed 
 
proc mixed data=internal noclprint; 
     class id inf ses; 
     model intern=inf gender ses inf*gender inf*ses/s; 
     repeated inf/type=un subject=id; 
run; 
 
The multivariate linear regression analysis is carried out using the SAS Proc Mixed code presented 
above. The Model statement specifies the regression of internalizing score onto an indicator of 
informant status, the Gender and SES risk factors, and their interactions with informant. The 
Repeated statement in Proc Mixed is used to identify observations that are correlated and to model 
the covariance structure. Informant (``inf'') represents the repeated measures factor, and in this 
example ensures that missing informant reports are handled correctly.  An unstructured covariance 
matrix is specified with the ``type=un'' option.   
 
 
Appendix B: Proof of Equivalence of Mean Pooling Approach and Multivariate Linear 
Regression 
 
Arithmetic Mean Pooling Approach - Ordinary Least Squares (OLS) Regression 
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Then the OLS estimate of β is ZXXX ')'(� 1−=β . 
 
Multivariate Linear Regression Approach 

Assume no missing data, compound symmetry covariance matrix, no informant effects, and  
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Note, as seen in iX above, a subject�s covariates do not change across informant since we have 
assumed no informant effects. 
 
Using Generalized Least Squares (GLS) estimation, the estimate of β is  
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Substitution of the above yields: 
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Finally, combining the results above, the GLS estimate can be rewritten as 
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This is identical to the OLS estimate, β� , from the arithmetic mean pooling approach. 
 


