08

Summer

Java Performance Tuning

Michael Finocchiaro

This white paper presents the basics of Java Performance Tuning for large Application Servers.

http://mfinocchiaro.wordpress.com

Table of Contents

Java Performance TUNING ... ssnns
O D g 0T Ve 00T | LT ot () o
Memory Management, Java and Impact on Application SErvers ...
Java Virtual Machines ... cccccrcsecsersrsescnses s sssssessssssssssssssssssssssnssessssssssessessesssssessessssnssnssnssnssnssnssnssnnses
The JAVA HEAP tiuiinreismssrsmssmsmsassmsassmssmssismssismssiss sesss sesss sessssssassssassssansssssssssnsns snnasssnnssnnanss
5 (01 Y 0101 Y

Java Heap DeSCriPLION ..cuciiimiemsmsmssmsssssnssssssssssssssssssssassssssssssssssssssssssssssssssssssssasssssassnssnssssssssssssnasens
B 0101 T 1 1) o Ut () o
L0110 Q0= 1T 1= U 0)
Permanent GeNeratioN ... e s

Default Garbage Collection AlgOrithms ... —————
Scavenge Garbage ColleCtion...... s
Full Garbage ColleCtion ... s s sas s s s

Alternative Garbage COlleCtors ... ————————————
Paralle] COPY GC..uuiimrumsmmemsmsemsmssmsnssissssssssssssssssssssssssssssssss ssnssssssssssssssssssssssssssesss sassesss sesss sesss snssssesassnsssssssnssssnnes
Concurrent Mark-and-SWEeEP ...ummmmsmsmmsmsmssmssismssissssissnssssssassssassssassssassns

Summary of Javal.4 and Java5 Command Line Optionscummmmsmmsmsmssmsssssssssssssssssssnss
R A0 (7o 1 L T
Monitoring Garbage Collection Duration & FrequUency ...
Java CommaANd LiNE ... sssssssssssssssssssssssssssssssssssnssassassassassnsssssassssssnssass

Managing SyStem MEeIMOTY ... ssssssssssssssssss
Balancing SYSteIN MEMOTYcccuimsmsmsmssssssmssassssssssssssesssssassssssssssssssseses

Java Performance Tuning

Garbage Collection

The Java programming language is object-oriented and includes automatic garbage collection. Garbage
collection is the process of reclaiming memory taken up by unreferenced objects.

A comprehensive discussion on Garbage Collection can be found at:

http://java.sun.com/docs/hotspot/gc5.0/gc tuning 5.html

The following sections will try to resume some of the concepts from this document and their impact on
Application Server performance.

Memory Management, Java and Impact on Application Servers

The task of memory management that was always challenging with compiled object-oriented languages
such as C++. On the other hand, Java is an interpretive language that takes this memory management
out of the hands of developers and gives it directly to the virtual machine where the code will be run.
This means that for best performance and stability, it is critical that the Java parameters for the virtual
machine be understood and managed by the Application Server deployment team. This section will
describe the various parts of the Java heap and then list some useful parameters and tuning tips for
ensuring correct runtime stability and performance of Application Servers.

Java Virtual Machines

The Java specification as to what is “standard” for a given release is written and maintained by the
JavaSoft division of Sun Microsystems. This specification is then delivered to other JVM providers (IBM,
HP, etc). JavaSoft provides the standard implementation on Windows, Solaris, and LINUX. Other
platforms are required to deliver the code functionality but their JVM options can be different. Java
options that are preceded with “-X” or “-XX” are typically platform-specific. That being said, many
options are used on all platforms. One must read in detail the README notes from the various releases
on various platforms to be kept up-to-date with the variations. This guide will mention the most critical
ones and distinguish between those which are implemented on most platforms and those which are
platform-specific.

The Java Heap

The Java heap is divided into three main sections: Young Generation, Old Generation and the Permanent
Generation as shown in the figure below.

HotSpot™ VM Heap Layout

Survivor Ratio

(2Mb default) —_— | — (64Kb default)
From To

Eden Space Space Space
Young Generation I

v

Tenured Space

Old Generation (5Mb min, 44Mb max default)

Permanent Space

Permanent Generation (4Mb default)

Also, not shown here, is another area called the Code Cache which is typically about 50Mb in Size.

HotSpot VM

The HotSpot VM is the garbage collector that comes with the JavaSoft virtual machine. Its specification
is delivered to all JVM providers (HP, IBM, BEA, etc) and the standard implementation is deployed by
JavaSoft on Solaris, Windows and LINUX.

Java Heap Description

Young Generation

The Eden Space of the Young Generation holds all the newly created objects. When this generation fills,
the Scavenge Garbage Collector clears out of memory all objects that are unreferenced. Objects that
survive this scavenge moved to the “From” Survivor Space. The Survivor Space is a section of the Young
Generation for these intermediate-life objects. It has two equally-sized subspaces “To” and “From”
which are used by its algorithm for fast switching and cleanup. Once the Scavange GC is complete, the
pointers on the two spaces are reversed: “To” becomes “From” and “From” becomes “To”.

The Young Generation is sized with the -Xmn option on the Java command line. It should never exceed
half of the entire heap and is typically set to 1/2 of the heap for JVMs less than 1.5Gb and to 1/3 of the
heap for JVMs larger than 1.5Gb. Note that the argument to the -Xm{n,s,x} options can be suffixed with
“m” or “M” for megabytes and “g” or “G” for gigabytes. For example, a 256Mb Young Generation is
specified by -Xmn256m. As a further example, a 1Gb Young Generation is specified with -Xmn1g or -

Xmn1000m.

The Survivor Space in the Young Generation is sized as a ratio of one of the sub-spaces to the Eden
Space — this is called the SurvivorRatio. For example, if -Xmn is set to 400m and -XX:SurvivorRatio is set

to 4, then the total Survivor Space will be 133.2Mb with “To” and “From” each being 66.6Mb and the
Eden Space being 266.8Mb. The survivor ratio = 266.8 (Eden) / 66.6 (To) = 4.

Old Generation

Once an object survives a given number of Scavenge GCs, it is promoted (or tenured) from the “To”
Space to the Old Generation. Objects in this space are never garbage collected except in the two cases:
Full Garbage Collection or Concurrent Mark-and-Sweep Garbage Collection. If the Old Generation is full
and there is no way for the heap to expand, an Out-of-Memory error (OOME) is thrown and the JVM will
crash.

The Old Generation is sized with the -Xms and -Xmx parameters, where -Xms is the initial heap size
allocated at startup and -Xmx is the maximum heap size reserved by the JVM at startup. If the heap size
exceeds free memory on the system, swapping will occur and performance will be seriously degraded.

The maximum value for -Xmx is architecture-dependent.

Architecture -Xmx limit (for total JVM size add ~200Mb)
~1300m (no /3Gb flag)*

32-bit Windows (XP, Server 2003) ~1500m (/3Gb flag in boot.ini)

AIX 5.3L on POWER ~3200m

HP-UX 11iV1 on PA-RISC ~2200m (with chatr +q3p enabled)?

HP-UX 11iV2 on |IA-64 ~3200m (with chatr +as mpas)3

Solaris on UltraSPARC or T1 or T2 ~3200m

Notes:

1. The /3Gb flag can be added to the boot.ini flag on a Windows XP SP2 or Windows 2003 Server machine in order to expand
the lower memory range to allow 32-bit executables to address slightly more memory than without this flag. Note that the two
values given are approximate and depend on the device drivers loaded by the operating system. For more information from
Microsoft on the /3Gb switch, please see Microsoft Knowledge Base articles 291988 and 833721. For more information on
memory addressability on the Windows platform, please see the white paper on this site:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/dw3gbswitch3.pdf

Note also that with Java6, the /3Gb flag on Windows will NOT be supported by the JVM.

2. The PA-RISC architecture is being phased out and is not currently recommended for new deployments. On PA-RISC, one
must, as root, execute the following command on the java executeable in the /opt/javal.5/bin/PA-RISC2.0/ directory with both
Application Server and Tomcat shutdown:

chatr +q3p enable java

This will enable approximately 2.0 to 2.2 Gb of space for the -Xms/-Xmx parameters depending on loaded device drivers, etc.

3. The IA-64 architecture is recommended for new deployments. On IA-64, one must, as root, execute the following command
on the java executable in /opt/javal.5/bin/IA64N/ directory with both Application Server and Tomcat shutdown:

chatr +as mpas java

This will enable approximately 3.2 to 3.4 Gb of space for the -Xms/-Xmx parameters depending on loaded device drivers, etc.

The JVM is also distributed in a 64-bit version. It is enabled on most platforms via the -d64 flag. This
allows for larger heaps but in most cases due to the larger memory spaces, longer sweep times, and
larger pointers, it can cause a 5 to 20% performance penalty. It also naturally requires a 64-bit operating
system. It is not recommended to use a 64-bit JVM unless all other methods of reducing OOME
frequency have been attempted and proven ineffective.

Permanent Generation

The Permanent Generation is where class files are kept. These are the result of compiled classes and jsp
pages. If this space is full, it triggers a Full Garbage Collection. If the Full Garbage Collection cannot clean
out old unreferenced classes and there is no room left to expand the Permanent Space, an Out-of-
Memory error (OOME) is thrown and the JVM will crash.

The Permanent Generation is sized with the -XX:PermSize and -XX:MaxPermSize parameters. For
example, to specify a startup Permanent Generation of 48Mb and a maximum Permanent Generation of
128Mb, use the parameters: -XX:PermSize=48m -XX:MaxPermSize=128. It is exceedingly rare that more
than 128 Mb of memory is required for the Permanent Generation.

Note also that the Permanent Generation is tacked onto the end of the Old Generation. There is also a
small code cache of 50Mb for internal JVM memory management. This means that the total initial heap
size = -Xms + -XX:PermSize + ~50Mb and that the maximum total heap size = -Xmx + -XX:+MaxPermSize
+~50Mb. For example, if =Xms/—Xmx are set to 512m and —XX:PermSize/MaxPermSize are set to 128m,
the total VM will actually about 700 Mb in size.

Default Garbage Collection Algorithms

Scavenge Garbage Collection

Scavenge Garbage Collection (also known as a Minor Collection) occurs when the Eden Space is full. By
default, it is single-threaded but does not interrupt the other threads working on objects. It can be
parallelized starting at Java 1.4 but if too more ParallelGCThreads are specified than CPU cores where
the JVM is running, this can cause bottlenecks. For this reason, it is suggested to be careful in when and
where to use the parallel options. These will be discussed further on.

Full Garbage Collection
A Full Garbage Collection (FullGC) occurs under these conditions:
The Java application explicitly calls System.gc(). This can be avoided by implementing the -

XX:+DisableExplicitGC parameter in the startup command for all Application Server JVMs (Tomcat,
Application Server JVM, etc.)

The RMI protocol explicitly calls System.gc() on a regular basis under normal operation. This can be
avoided by implementing the -XX:+DisableExplicitGC parameter in the startup command for all
Application Server JVMs.

A memory space, either Old or Permanent, is full and to accommodate new objects or classes, it needs
to be expanded towards its max size, if the relevant parameters have different values. In other words, if
-Xms and -Xmx have different values and if the size of Old needs be increased from -Xms towards -Xmx
to accommodate more objects, a FullGC is called. Similarly, if -XX:PermSize and -XX:MaxPermSize have
different values and the Permanent Space needs to be increased towards -XX:MaxPermSize to
accommodate new java classes, a FullGC is called. This can be avoided by always setting -Xms and -Xmx
as well as -XX:PermSize and -XX:MaxPermSize to the same value.

The Tenured Space is full and the Old Generation is already at the capacity defined by -Xmx. This can be
avoided by tuning the Young Generation so that more objects are filtered out before being promoted to
the Old Generation, by increasing the -Xmx value and/or by implementing the Concurrent Mark-and-
Sweep (CMS) collector. CMS will be discussed below.

The Permanent Space is full and the Permanent Generation is already at the capacity defined by -
XX:MaxPermSize. This can be avoided ensuring that the Permanent Space is large enough and that the -
Xnoclassgc option is enabled.

The HotSpot VM thinks there is not free space in the heap to collect all the objects in Eden in case of an
emergency collection. This can be avoided by using the -XX:MaxLiveObjectEvacuationRatio=30 option on
JVMs prior to 1.4.2_13, and by the -XX:+HandlePromotionFailure option on JVMs from 1.4.2_14 and
higher as well as Java5 JVMs.

A Concurrent Mark and Sweep (CMS) GC operation does not have enough space in Old to complete.
CMS will be discussed below.

A Full Garbage collection is disruptive in the sense that all working threads are stopped and one JVM
thread then will scan the entire heap twice trying to clean out unreferenced objects. At the same time,
objects with finalizer clauses are processed. Once the second scan is complete, if some objects on the
finalizer stack have not yet been processed, they are left on the queue for the next Full GC. This is an
expensive process which causes delays in response time. The goal of tuning the JVM is to minimize the
FullGCs while ensuring that an OOME does not occur.

Alternative Garbage Collectors

Parallel Copy GC

The -XX:+UseParNewGC turns on a multi-threaded collector for the Eden space. Idle threads are used for
routine garbage collection tasks. The number of threads available is defined by -
XX:ParallelGCThreads=#. This can drastically reduce the amount of time spent in Scavenge GC but needs
to be used with precaution. The sum of ParallelGCThreads in the JVMs being run on the machine should

not exceed the available number of CPU cores on the machine. This can result is thread contention
inside the JVM and reduced performance.

Default Copying Collector FParallel Collector

Y vy

- Stop-the-world pause

-t
-+
-
e

ot
i
at
v
-
g

Y

The figure above demonstrates the difference between the default Scavenge collector (also called here

the default Copying Collector) and the Parallel Collector where the two pauses are now shorter due to
the multiple threads deployed during the pauses.

Note that the default value of ParallelGCThreads is the number of CPU cores. Since Application Server
uses at least three and usually four or more JVMs, particular attention should be taken to specify
ParallelGCThreads explicitly and ensure that the sum across all the JVMs on a particular machine is equal
to or less than the number of CPU cores.

Concurrent Mark-and-Sweep

The Concurrent Mark-and-Sweep Collector is a parallel collector for the Old Generation. It breaks the
garbage collection into an initial marking pause, a concurrent marking phase, a second remarking clause,
and a concurrent sweeping phase . This has the positive impact of avoiding FullGC and OOME. It has the
negative side-effect of being very expensive as one or more CPU cores will be dedicated to CMS
throughout the entire concurrent marking phase and one CPU will be dedicated to CMS throughout the
entire concurrent sweeping phase.

Serial Mark-Sweep-Compact Concurrent Mark-Sweep
Collector Collector

||

e StoOp-the-world pause g e [ntial Mark

e CONCUITENt Mark

YYvvyy
Stop-the-world pause mps S a— TV FTY
e CONCUITENE SWVEEP

\AAAAA

The figure above demonstrates the difference between the single-threaded (here called Serial) Mark-
Sweep Compact Collector and the Concurrent Mark-Sweep collector where the pauses shorter and
many of the phases are done with multiple threads.

The CMS collector is enabled using the -XX:+UseConcMarkSweepGC flag. It is also suggested to use the -
XX:+CMSParallelRemarkEnabled flag so that the Remarking phase happens with multiple threads as
illustrated above.

CMS should be used only on relatively large systems (more than 4 CPU cores) where OOME is
experienced regularly due to the CPU cost discussed earlier. Heaps need to at their maximum size with
the -Xmn at 1/4 of the total heap for the algorithm to function efficiently.

Note that turning on CMS also implicitly turns on -XX:+UseParNewGC. For this reason, whenever CMS is
activated, the ParallelGCThreads option must always be explicitly set to limit the number of threads as
discussed above in the section on ParallelCopyGC.

Summary of Javal.4 and Java5 Command Line Options

Option Description Recommended

-Xmn<x><m|g> Young Generation Size, suffixed | <1.5Gb heap: 1/2 of -Xmx
with m (Mb) or g (Gb). It is
recommended that

>1.5Gb heap: 1/3 of -Xmx CMS:

1/4 of -Xmx

-Xms<x><m|g>

Initial size of Young Generation
+ Old Generation.

same as -Xmx unless server
memory is <4Gb

-Xmx<x><m | g>

Maximum size of Young
Generation + Old Generation

As large as possible given
installed memory, number of
JVMs, and server architecture

-XX:SurvivorRatio=<x> Ratio of one Survivor Space to 4
the Eden space.

-XX:PermSize=<x><m or g> Initial Permanent Generation 128m
size

-XX:MaxPermSize=<x><m or g> Maximum Permanent 128m

Generation size

-XX:+DisableExplicitGC

Ignore all calls to System.gc()

Deployed in all IVMs

-Xloggc:<filename>

Log gc activity to <filename>

Deployed in all JVMs

-XX:+PrintGC

Turn on GC logging

Deployed in all JVMs

-XX:+PrintGCDetails

Turn on detailed GC logging

Deployed in all IVMs

-XX:+PrintGCTimeStamps

Turn on timestamps in GC
logging

Deployed in all JVMs

-XX:+JavaMonitorsinStackTrace

Monitor details when a stack
trace is called for thread and
monitor lock analysis

Deployed in all IVMs

-XX:+UseTLAB

Use a thread-local address
block to reduce contention in
eden for new allocations

Deployed in all JVMs

-XX:TLABSize

Initial TLAB Size

32k

-XX:+ResizeTLAB

Allow dynamic resizingof TLAB

Deployed in all JVMs

-XX:+UseParNewGC

Use ParallelCopy Collector

Use on systems with >4 CPU
cores

-XX:ParallelGCThreads=<x>

Number of threads dedicated to

Start at 2 but ensure that sum

ParallelCopy GC

of ParallelGCThreads across all
JVMs is less than number of
available CPU cores. Always
explicitly specify when using
CMS.

-XX:+UseConcMarkSweepGC

Enable CMS algorithm

Use on systems with >4 CPU
cores ONLY if other methods of
eliminating OOME have been
exhausted

-XX:+CMSParallelRemarkEnabled

Enable Parallel Remarking in
CMS

Always specify when using CMS

-XX:MaxLiveObjectEvacuationRatio

Percentage of Old used before
the HotSpot collector throws an
OldFull exception and causes a
Full GC

Only use with JVMs up to
1.4.2_12.

-XX:+HandlePromotionFailure

Fix for issue mentioned above.

Use with all JVMs over 1.4.2_13
and with Java5.

XX:SoftRefLRUPolicyMSPerMB=<x>

Frequency for removing soft
references in milliseconds per
megabyte

1 Use if OOME is experienced.

Sizing the JVMs

The default values of the basic Java parameters:

-Xms=3670k
-Xmx=64m

-XX:SurvivorRatio=32 (on Solaris, 8 on HP-UX, 32 on Windows)

-XX:NewSize=2228k
-XX:MaxNewSize=unlimited

-XX:NewRatio=2 (on Solaris, default is 8 on Windows)

-XX:PermSize=16m
-XX:MaxPermSize=64m

The Application Server and servlet engine experience two problems with these default VM default heap

parameters:

* One is slow startup, because the default initial heap is small and must be resized over many major
collections. The default initial heap size for an Application Server has been increased to 128MB.

¢ A more pressing problem is that the default maximum heap size is typically unreasonably small.

It is highly recommended that the maximum heap size be further increased based on the available RAM
of your application server by adjusting the appropriate parameters in your particular Application Server.

Monitoring Garbage Collection Duration & Frequency

Each vendor provides its own tools for monitoring garbage collection. This section describes some tools
available for Windows and Solaris platforms. For additional information on garbage collection, see the
following sites:

Sun:

http://java.sun.com/docs/hotspot/gc5.0/gc tuning 5.html

HP-UX:

http://www.hp.com/productsl/unix/java/infolibrary/prog guide/hotspot.html

AIX

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/

HPjtune

HP-UX provides a garbage collection log analysis tool called HPjtune that plots garbage collection activity
graphically. It is primarily used for the HP-UX JVM but, when only —verbose:gc or —Xloggc are present in
the Solaris or Windows JVMs, it can be used to read those as well.

jps
From the Java5 command line, run the jps command to obtain a list of running JVM processes that may
be monitored. The process identifier (pid) and main class are displayed for each such process.

jstat

Jstat is part of the standard Java5 distribution and is capable or printing out statistics in real time on a
running JVM. For example, specifying the -gc option:

SoC S1C SOU Siu EC EU oC ou PC PU YGC YGCT FGC FGCT GCT
136512.0 136512.0 0.0 28820.6 546176.0 508081.8 1277952.0 121102.8 98304.0 45056.9 235
60.181 0 0.000 60.181

where: SO and S1 are the two survivor spaces, E is the Eden Space, O is the Old Generation, P is the
Permanent Generation, YGC is a ScavengeGC, FGC is a FullGC, the suffix C means “Capacity”, the suffix U
means “Used” and the suffix “T” means Time.

visualgc

The visualgc tool is available at java.sun.com (http://java.sun.com/performance/jvmstat/)

The same information that you can get from jstat is available graphically using the visualgc tool. For
example, enter the following for a visual display:

D:\jvmstat\bat>visualgc 9040

The following picture shows a sample application display taken at a different point in time from the
previous example: The left window shows the current sizes of the Perm, Old, Eden and survivor spaces
(SO and S1) in the heap. The right window also shows timings for significant JVM events such as garbage
collections. The right window shows sizes of these same spaces in the heap as strip charts. Through the
strip charts, some history is available for spotting trends. Unfortunately, the visualgc tool does not
support logging of garbage collection activity to file.

Java Command Line

The java command accepts the directive -Xloggc that specifies a file name where the garbage collection
diagnostic data is written. Details about the garbage collection activity, such as size of the young and old
generation before and after garbage collection, size of total heap, elapsed time it takes for a garbage
collection to happen in young and old generation, and size of objects promoted at every garbage
collection, and other data, can be recorded by using the both the -XX:+PrintGCDetails and -
XX:+PrintGCTimeStamps argument. Even more detail (but not recommended for production
environments) can be obtained with the -XX:+PrintTenuringDistribution.

Managing System Memory

An integral part of optimizing Application Server performance is proper memory management. The
frequency and duration of Java garbage collection (heap management) is greatly influenced by
transaction load and available memory.

Both the Application Server and the database server can efficiently cache persistent data in memory to
minimize disk reads and thus increase transaction throughput. In addition, the Web server, servlet
engine and operating system require significant amounts of memory. The goal is to balance all memory
requirements with physical memory and avoid excessive virtual memory paging.

Balancing System Memory

Use this section as a starting point when determining memory allocation on your initial installation of
the Application Server. The information provided assumes that the servers involved are dedicated to

running your Application Server solution. The information should not be taken as fixed rules that must
be followed; there can be many site specific reasons to use a different allocation scheme.

Note: After you have your production system running, use the performance analysis techniques
described in this guide to arrive at the memory allocation scheme that best meets your production
system. Use the information in the following Memory Allocation Guidelines table as a set of guidelines
for memory allocation. The first column lists the types of processes needed in a Application Server
installation and columns two through four indicate the percentage of total memory to be allocated for
the type of process.

The second column of the table gives percentages for a single server system (Application Server, Oracle,
Web server, and servlet engine all on one system). The third and fourth columns give percentages for a
split Application Server server / Oracle server configuration.

Split S
Application / Database . Pl . erYers/ Split Servers /
Single Server Application
Process Type Oracle Server
Server
Application Server | 21.00% 30.00%
Oracle | 21.00% 70.00%
Servlet Engine | 21.00% 30.00%
Web Server | 5.00% 5.00%
Search Engine | 5.00% 5.00%
Total Used Memory 73.0% 70.0% 70.0%

Note: The memory allocated to the various processes should never exceed 75%. This allows memory for
other processes that are a part of normal system operation including about 15% on average for the
operating system itself and 5-10% for other applications.

