
 Introduction

Copyright © 1994, 1995 Sun Microsystems The Java Language: A White Paper 1 of 8

The Java Language:
A White Paper

Introduction The Java programming language and environment is designed to solve a
number of problems in modern programming practice. It started as a part of a
larger project to develop advanced software for consumer electronics. These
devices are small, reliable, portable, distributed, real-time embedded systems.
When we started the project, we intended to use C++, but we encountered a
number of problems. Initially these were just compiler technology problems,
but as time passed we encountered a set of problems that were best solved by
changing the language.

The companion paper, The HotJava Browser: A White Paper, describes a powerful
application that demonstrates the power of the Java language.

Java Java: A simple, object-oriented, distributed, interpreted, robust, secure,
architecture neutral, portable, high-performance, multithreaded, and
dynamic language.

One way to characterize a system is with a set of buzzwords. We use a standard
set of them in describing Java. The rest of this section is an explanation of what
we mean by those buzzwords and the problems that we were trying to solve.

❧ Archimedes Inc. is a fictitious software company that produces software to
teach about basic physics. This software is designed to interact with the
user, providing not only text and illustrations in the manner of a
traditional textbook, but also providing a set of software lab benches on
which experiments can be set up and their behavior simulated. For
example, the most basic one allows students to put together levers and
pulleys and see how they act. The italicized narrative of the trials and
tribulations of the Archimedes’ designers is used here to provide examples
of the language concepts presented.

Simple We wanted to build a system that could be programmed easily without a lot of
esoteric training and which leveraged today’s standard practice. Most
programmers working these days use C, and most programmers doing object-
oriented programming use C++. So even though we found that C++ was

TM

 Java

2 of 8 The Java Language: A White Paper Copyright © 1994, 1995 Sun Microsystems

unsuitable, we designed Java as closely to C++ as possible in order to make the
system more comprehensible.

Java omits many rarely used, poorly understood, confusing features of C++ that
in our experience bring more grief than benefit. These omitted features
primarily consist of operator overloading (although the Java language does
have method overloading), multiple inheritance, and extensive automatic
coercions.

We added auto garbage collection thereby simplifying the task of Java
programming but making the system somewhat more complicated. A good
example of a common source of complexity in many C and C++ applications is
storage management: the allocation and freeing of memory. By virtue of having
automatic garbage collection the Java language not only makes the
programming task easier, it also dramatically cuts down on bugs.

❧ The folks at Archimedes wanted to spend their time thinking about levers
and pulleys, but instead spent a lot of time on mundane programming
tasks. Their central expertise was teaching, not programming. One of the
most complicated of these programming tasks was figuring out where
memory was being wasted across their 20K lines of code.

Another aspect of being simple is being small. One of the goals of Java is to
enable the construction of software that can run stand-alone in small machines.
The size of the basic interpreter and class support is about 40K bytes; adding the
basic standard libraries and thread support (essentially a self-contained
microkernel) adds an additional 175K.

Object-Oriented This is, unfortunately, one of the most overused buzzwords in the industry. But
object-oriented design is very powerful because it facilitates the clean definition
of interfaces and makes it possible to provide reusable “software ICs.”

Simply stated, object-oriented design is a technique that focuses design on the
data (=objects) and on the interfaces to it. To make an analogy with carpentry,
an “object-oriented” carpenter would be mostly concerned with the chair he
was building, and secondarily with the tools used to make it; a “non-object-
oriented” carpenter would think primarily of his tools. Object-oriented design
is also the mechanism for defining how modules “plug and play.”

The object-oriented facilities of Java are essentially those of C++, with
extensions from Objective C for more dynamic method resolution.

❧ The folks at Archimedes had lots of things in their simulation, among
them, ropes and elastic bands. In their initial C version of the product,
they ended up with a pretty big system because they had to write separate
software for describing ropes versus elastic bands. When they rewrote
their application in an object-oriented style, they found they could define
one basic object that represented the common aspects of ropes and elastic
bands, and then ropes and elastic bands were defined as variation s
(subclasses) of the basic type. When it came time to add chains, it was a
snap because they could build on what had been written before, rather
than writing a whole new object simulation.

 Java

Copyright © 1994, 1995 Sun Microsystems The Java Language: A White Paper 3 of 8

Distributed Java has an extensive library of routines for coping easily with TCP/IP
protocols like HTTP and FTP. Java applications can open and access objects
across the net via URLs with the same ease that programmers are used to when
accessing a local file system.

❧ The folks at Archimedes initially built their stuff for CD ROM. But they
had some ideas for interactive learning games that they wanted to try out
for their next product. For example, they wanted to allow students on
different computers to cooperate in building a machine to be simulated.
But all the networking systems they’d seen were complicated and required
esoteric software specialists. So they gave up.

Robust Java is intended for writing programs that must be reliable in a variety of ways.
Java puts a lot of emphasis on early checking for possible problems, later
dynamic (runtime) checking, and eliminating situations that are error prone.

One of the advantages of a strongly typed language (like C++) is that it allows
extensive compile-time checking so bugs can be found early. Unfortunately,
C++ inherits a number of loopholes in compile-time checking from C, which is
relatively lax (particularly method/procedure declarations). In Java, we require
declarations and do not support C-style implicit declarations.

The linker understands the type system and repeats many of the type checks
done by the compiler to guard against version mismatch problems.

The single biggest difference between Java and C/C++ is that Java has a pointer
model that eliminates the possibility of overwriting memory and corrupting
data. Instead of pointer arithmetic, Java has true arrays. This allows subscript
checking to be performed. In addition, it is not possible to turn an arbitrary
integer into a pointer by casting.

❧ The folks at Archimedes had their application basically working in C
pretty quickly. But their schedule kept slipping because of all the small
bugs that kept slipping through. They had lots of trouble with memory
corruption, versions out-of-sync and interface mismatches. What they
gained because C let them pull strange tricks in their code, they paid for in
quality assurance time. They also had to reissue their software after the
first release because of all the bugs that slipped through.

While Java doesn’t make the QA problem go away, it does make it significantly
easier.

Very dynamic languages like Lisp, TCL and Smalltalk are often used for
prototyping. One of the reasons for their success at this is that they are very
robust: you don’t have to worry about freeing or corrupting memory.
Programmers can be relatively fearless about dealing with memory because
they don’t have to worry about it getting corrupted. Java has this property and
it has been found to be very liberating.

One reason that dynamic languages are good for prototyping is that they don’t
require you to pin down decisions early on. Java has exactly the opposite
property; it forces you to make choices explicitly. Along with these choices

 Java

4 of 8 The Java Language: A White Paper Copyright © 1994, 1995 Sun Microsystems

come a lot of assistance: you can write method invocations and if you get
something wrong, you are informed about it at compile time. You don’t have to
worry about method invocation error. You can also get a lot of flexibility by
using interfaces instead of classes.

Secure Java is intended to be used in networked/distributed environments. Toward
that end, a lot of emphasis has been placed on security. Java enables the
construction of virus-free, tamper-free systems. The authentication technique s
are based on public-key encryption.

There is a strong interplay between “robust” and “secure.” For example, the
changes to the semantics of pointers make it impossible for applications to forge
access to data structures or to access private data in objects that they do have
access to. This closes the door on most activities of viruses.

❧ Someone wrote an interesting “patch” to the PC version of the
Archimedes system. They posted this patch to one of the major bulletin
boards. Since it was easily available and added some interesting features to
the system, lots of people downloaded it. It hadn’t been checked out by the
folks at Archimedes, but it seemed to work. Until the next April 1st, when
thousands of folks discovered rude pictures popping up in their children’s
lessons. Needless to say, even though they were in no way responsible for
the incident, the folks at Archimedes still had a lot of damage to control.

Architecture Neutral Java was designed to support applications on networks. In general, networks
are composed of a variety of systems with a variety of CPU and operating
system architectures. To enable a Java application to execute anywhere on the
network, the compiler generates an architecture neutral object file format -- the
compiled code is executable on many processors, given the presence of the Java
runtime system.

This is useful not only for networks but also for single system software
distribution. In the present personal computer market, application writers have
to produce versions of their application that are compatible with the IBM PC
and with the Apple Macintosh. With the PC market (through Windows/NT)
diversifying into many CPU architectures, and Apple moving off the 68000
towards the PowerPC, this makes the production of software that runs on all
platforms almost impossible. With Java, the same version of the application
runs on all platforms.

The Java compiler does this by generating bytecode instructions which have
nothing to do with a particular computer architecture. Rather, they are designed
to be both easy to interpret on any machine and easily translated into native
machine code on the fly.

❧ Archimedes is a small company. They started out producing their software
for the PC since that was the largest market. After a while, they were a
large enough company that they could afford to do a port to the
Macintosh, but it was a pretty big effort and didn’t really pay off. They
couldn’t afford to port to the PowerPC Macintosh or MIPS NT machine.

 Java

Copyright © 1994, 1995 Sun Microsystems The Java Language: A White Paper 5 of 8

They couldn’t “catch the new wave” as it was happening, and a
competitor jumped in ...

Portable Being architecture neutral is a big chunk of being portable, but there’s more to it
than that. Unlike C and C++, there are no “implementation dependent” aspects
of the specification. The sizes of the primitive data types are specified, as is the
behavior of arithmetic on them. For example, “int” always means a signed
two’s complement 32 bit integer, and “float” always means a 32-bit IEEE 754
floating point number. Making these choices is feasible in this day and age
because essentially all interesting CPU’s share these characteristics.

The libraries that are a part of the system define portable interfaces. For
example, there is an abstract Window class and implementations of it for Unix,
Windows and the Macintosh.†

The Java system itself is quite portable. The new compiler is written in Java and
the runtime is written in ANSI C with a clean portability boundary. The
portability boundary is essentially POSIX.

Interpreted The Java interpreter can execute Java bytecodes directly on any machine to
which the interpreter has been ported. And since linking is a more incremental
and lightweight process, the development process can be much more rapid and
exploratory.

As a part of the bytecode stream, more compile-time information is carried over
and available at runtime. This is what the linker’s type checks are based on, and
what the RPC protocol derivation is based on. It also makes programs more
amenable to debugging.

❧ The programmers at Archimedes spent a lot of time waiting for programs
to compile and link. They also spent a lot of time tracking down senseless
bugs because some changed source files didn’t get compiled (despite using
a fancy “make” facility), which caused version mismatches; and they had
to track down procedures that were declared inconsistently in various
parts of their programs. Another couple of months lost in the schedule.

High Performance While the performance of interpreted bytecodes is usually more than adequate,
there are situations where higher performance is required. The bytecodes can be
translated on the fly (at runtime) into machine code for the particular CPU the
application is running on. For those accustomed to the normal design of a
compiler and dynamic loader, this is somewhat like putting the final machine
code generator in the dynamic loader.

The bytecode format was designed with generating machine codes in mind, so
the actual process of generating machine code is generally simple. Reasonably

† The Windows and Macintosh versions aren’t complete yet.

 Java

6 of 8 The Java Language: A White Paper Copyright © 1994, 1995 Sun Microsystems

good code is produced: it does automatic register allocation and the compiler
does some optimization when it produces the bytecodes.

In interpreted code we’re getting about 300,000 method calls per second on an
Sun Microsystems SPARCStation 10. The performance of bytecodes converted
to machine code is almost indistinguishable from native C or C++.

❧ When Archimedes was starting up, they did a prototype in Smalltalk. This
impressed the investors enough that they got funded, but it didn’t really
help them produce their product: in order to make their simulations fast
enough and the system small enough, it had to be rewritten in C.

Multithreaded There are many things going on at the same time in the world around us.
Multithreading is a way of building applications with multiple threads†

Unfortunately, writing programs that deal with many things happening at once
can be much more difficult than writing in the conventional single-threaded C
and C++ style.

Java has a sophisticated set of synchronization primitives that are based on the
widely used monitor and condition variable paradigm that was introduced by
C.A.R.Hoare‡. By integrating these concepts into the language they become
much easier to use and are more robust. Much of the style of this integration
came from Xerox’s Cedar/Mesa system.

Other benefits of multithreading are better interactive responsiveness and real-
time behavior. This is limited, however, by the underlying platform: stand-
alone Java runtime environments have good real-time behavior. Running on
top of other systems like Unix, Windows, the Macintosh, or Windows NT limits
the real-time responsiveness to that of the underlying system.

❧ Lots of things were going on at once in their simulations. Ropes were
being pulled, wheels were turning, levers were rocking, and input from the
user was being tracked. Because they had to write all this in a single
threaded form, all the things that happen at the same time, even though
they had nothing to do with each other, had to be manually intermixed.
Using an “event loop” made things a little cleaner, but it was still a mess.
The system became fragile and hard to understand. They were pulling in
data from all over the net. But originally they were doing it one chunk at a
time. This serialized network communication was very slow. When they
converted to a multithreaded style, it was trivial to overlap all of their
network communication.

Dynamic In a number of ways, Java is a more dynamic language than C or C++. It was
designed to adapt to an evolving environment.

† Threads are sometimes also called lightweight processes or execution contexts.

‡ 1974. Hoare, C.A.R. Monitors: An Operating System Structuring Concept, Comm. ACM 17,
10:549-557 (October)

 Java

Copyright © 1994, 1995 Sun Microsystems The Java Language: A White Paper 7 of 8

For example, one major problem with using C++ in a production environment
is a side-effect of the way that code is always implemented. If company A
produces a class library (a library of plug and play components) and company
B buys it and uses it in their product, then if A changes it’s library and
distributes a new release, B will almost certainly have to recompile and
redistribute their own software. In an environment where the end user gets A
and B’s software independently (say A is an OS vendor and B is an application
vendor) problems can result.

For example, if A distributes an upgrade to its libraries then all of the software
from B will break. It is possible to avoid this problem in C++, but it is
extraordinarily difficult and it effectively means not using any of the language’s
OO features directly.

❧ Archimedes built their product using the object-oriented graphics library
from 3DPC Inc. 3DPC released a new version of the graphics library
which several computer manufacturers bundled with their new machines.
Customers of Archimedes that bought these new machines discovered to
their dismay that their old software no longer worked. (In real life, this
only happens on Unix systems. In the PC world, 3DPC would never have
released such a library: their ability to change their product and use C++’s
object oriented features is severely hindered.)

By making these interconnections between modules later, Java completely
avoids these problems and makes the use of the object-oriented paradigm much
more straightforward. Libraries can freely add new methods and instance
variables without any effect on their clients.

Java understands interfaces— a concept borrowed from Objective C which is
similar to a class. An interface is simply a specification of a set of methods that
an object responds to. It does not include any instance variables or
implementations. Interfaces can be multiply-inherited (unlike classes) and they
can be used in a more flexible way than the usual rigid class inheritance
structure.

Classes have a runtime representation: there is a class named Class, instances of
which contain runtime class definitions. If, in a C or C++ program, you have a
pointer to an object but you don’t know what type of object it is, there is no way
to find out. However, in Java, finding out based on the runtime type
information is straightforward. Because casts are checked at both compile-time
and runtime, you can trust a cast in Java On the other hand in C and C++, the
compiler just trusts that you’re doing the right thing.

It is also possible to look up the definition of a class given a string containing its
name. This means that you can compute a data type name and have it easily
dynamically-linked into the running system.

❧ To expand their revenue stream, the folks at Archimedes wanted to
architect their product so that new aftermarket plug-in modules could be
added to extend the system. This was possible on the PC, but just barely.
They had to hire a couple of new programmers because it was so
complicated. This also added problems when debugging.

 Summary

8 of 8 The Java Language: A White Paper Copyright © 1994, 1995 Sun Microsystems

Summary The Java language provides a powerful addition to the tools that programmers
have at their disposal. Java makes programming easier because it is object-
oriented and has automatic garbage collection. In addition, because compiled
Java code is architecture-neutral, Java applications are ideal for a diverse
environment like the Internet. For more information send mail to
HotJava@java.sun.com.

