
Model-Driven Dashboards for Business Performance Reporting 
 
 

Pawan Chowdhary, Themis Palpanas, Florian Pinel, Shyh-Kwei Chen, Frederick Y. Wu 
IBM T.J. Watson Research Center 

{chowdhar, themis, pinel, skchen, fywu}@us.ibm.com 
 

 
Abstract 

Business performance modeling and model-driven 
business transformation are two research directions 
that are attracting much attention lately. In this study, 
we propose an approach for dashboard development 
that is model-driven and can be integrated with the 
business performance models. We adopt the business 
performance modeling framework, and we extend it in 
order to capture the reporting aspect of the business 
operation. We describe models that can effectively 
represent all the elements necessary for the business 
performance reporting process, and the interactions 
among them. We also demonstrate how all these 
models can be combined and automatically generate 
the final solution. 

Finally, we discuss our experience from the 
application of our technique in a real-world scenario. 
This case study shows that our technique can be 
efficiently applied to and handle changes in the 
underlying business models, delivering significant 
benefits in terms of both development time and 
flexibility. 
 
1. Introduction 

Enterprises are leveraging information technology 
solutions in order to increase their productivity and 
their business value in the marketplace by describing 
and monitoring their business operations. Nowadays, 
many vendors provide sophisticated tools to represent 
business process models [5][26] and business activity 
monitoring models [24][25]. Business Performance 
Management (BPM) [10] includes a suite of 
components that are used to monitor the health of the 
business. It delivers significant benefits to the 
businesses, by offering them the ability to react 
promptly to changes in their environment [2]. The 
integration of various systems in the business allows 
for continuous monitoring of business performance, 
using carefully selected metrics, also known as Key 
Performance Indicators (KPIs).  

The KPIs are displayed to the analyst through a 
dashboard, that is, a user interface that organizes and 

presents information in a way that is easy to read and 
interpret. Dashboards are essential elements in the day-
to-day operation of modern enterprises, as they provide 
to the analysts the view of all the critical business 
metrics that reflect the performance of the business. 

In contrast to the usefulness and ease of use that 
dashboards represent, the amount of effort that is 
required for their development can sometimes be 
daunting. User interface development in general, and 
dashboard development too, requires a considerable 
investment of time, and can often take as much as 65-
80% of the overall development time in a model-driven 
business transformation project [3]. 

In this paper, we claim that dashboard development 
can be fast and easy, while maintaining flexibility in 
the design, and without sacrificing versatility or 
performance. We propose a framework for dashboard 
design that is model-driven. This framework includes a 
number of user-customizable models that can 
effectively capture the functionality of a dashboard. 
We provide different models for modeling the data, the 
users and their data access privileges, and the 
navigation among the various data views. 

Once the user has designed the dashboard with the 
desired functionality using the provided models, our 
framework is able to automatically generate code for 
the deployment of the dashboard, leaving only minor 
customization issues for the developer. The generated 
code covers all the aspects of the dashboard, such as: 
• Management of the data to be displayed, involving 
the creation of relevant databases and access to them. 
• Design of different views of the data, and of the 
navigation among those views. 
• Assignment of access privileges to the users of the 
dashboard, so that each user can only access the data 
and views that are relevant to her. 

Our approach allows the developer to focus on the 
dashboard functionality, and relieves her from the 
burden of the user interface development experience 
[4]. The benefits of model-driven dashboard 
development include the graphical representation and 
easy manipulation of the solution, the error free code-
generation, and the ability to capture the changes in 



business reporting processes quickly and cost 
effectively. To the best of our knowledge, this is the 
first comprehensive approach for model-driven 
dashboard design, and in Section 5 we demonstrate its 
application to a real-world problem. 

The contributions of this paper can be summarized 
as follows. 
• We describe a framework for model-driven 
dashboard design. The models we employ cover the 
many facets of this process, that is, the data to be 
displayed, the users of the system, the roles and access 
privileges of each user, the content of each dashboard 
page view, and the navigation among those views. 
• The method we propose is complementary to 
business process and business performance modeling, 
and extends such models to provide a seamless 
experience. 
• Our framework enables the automated generation of 
all the code necessary for the deployment of the 
dashboard. Therefore, it removes the burden of tedious 
programming, and it significantly reduces the time 
required for delivering the solution. Furthermore, 
making changes to the dashboard design is painless, 
since these changes only have to be made in the high-
level models, and then the new code is automatically 
regenerated.  
• Finally, we validate our approach using a real-world 
scenario. We discuss our experiences from applying 
the proposed method to a real problem, and 
demonstrate the benefits of our technique with regards 
to development time and flexibility of the solution. 

The rest of this paper is organized as follows. We 
review the relevant literature in Section 2, and we 
discuss some necessary background material in Section 
3. We describe the main part of our work in Section 4, 
where we present in detail the models and the process 
we employ in our framework. In Section 5, we present 
a case study, where we apply our technique to a real-
world problem, and we conclude in Section 6. 
 
2. Related Work 

There is a growing trend in using model-driven 
methodologies [7][20] for developing large system 
software, due to their high level abstraction and code 
re-use (or regeneration). They have been widely 
applied in related areas, such as software reuse 
[12][13], reverse engineering [14][15], and user 
interface design [3]. The benefits of adopting model-
driven design include reduced software development 
time, enhanced code quality, and improved code 
maintenance [16][17]. There are also numerous related 
works about business processes. Business process 
management enables the management and analysis of 
operational business processes [18].  

Business processes can be implemented using a 
workflow or a state machine model [19]. BPEL [11] 
defines a program understandable language to 
represent business processes for web service 
environments. Yet, BPEL can only orchestrate the flow 
execution; business data are still not synchronized, 
correlated, or linked together for the auditing and 
analysis purposes. 

An approach that tries to overcome the above 
shortcomings is the Model-Driven Business 
Transformation (MDBT) [5][6]. MDBT models 
business operations from the point of view of a 
business analyst, without regard to existing or planned 
information technology solutions. In other words, an 
MDBT operation model is a truly computation 
independent model.  

There is also much interest around the concept of 
dashboards, with several companies providing relevant 
solutions, such as IBM [21], Business Objects [22], 
and Hyperion [23]. Nevertheless, these approaches do 
not integrate with the business process and business 
performance models, requiring much effort to develop 
and maintain. In contrast, we propose a method for 
dashboard design that is model-driven. The high-level 
models we define integrate seamlessly with the 
business performance models, leveraging the common 
parts of the design, and enabling an end-to-end design 
process. 

 
3. Background 

In addition to espousing a business artifact-centric 
approach to operation modeling, MDBT [5][6] offers a 
model-driven development toolkit and technique. The 
tools automatically transform an operation model into a 
platform-independent solution composition model in 
UML2.  In this stage of modeling, the solution 
architect fills in much of the IT detail that is outside the 
domain of the business analyst. These details include 
integration with external services as well as role-
players. Following the completion of the solution 
composition model, MDBT code generation tools 
automatically create J2EE components that manage the 
process and provide a simple user interface by which 
users can interact with the solution. The automated 
transformations and code generation enable rapid 
prototyping, accelerate the development cycle, and 
allow for a fast turnaround iterative development 
regimen. 

The solution composition model also provides the 
platform on which an observation model can be 
constructed. The elements of the observation model 
(e.g. events) are linked to those of the solution 
composition model (e.g. states and transitions) so as to 
define how the performance metrics will be gathered. 



Business Performance Management (BPM) [8][9] is 
an effective means of monitoring business processes. 
Model-based BPM normally includes an observation 
model that conforms to a pre-defined meta-model, such 
as the one provided by MDBT, which we discussed 
above. Entities such as input events, metrics, outbound 
events, situation detectors, and actions can be 
monitored and scheduled through the observation 
model. Using BPM, we can detect bottlenecks of 
business operations in real-time, and identify 
anomalies by correlating event sequences. Based on 
the observation model, actions triggered by the above 
situations may involve generating alerts or displaying 
statistics and aggregated information onto a dashboard.  

In previous work, we implemented a BPM solution 
based on the model driven development methodology 
[10]. There are two approaches that we adopted for 
representing a BPM solution. The first approach 
utilizes the Unified Modeling Language (UML) with 
UML2 profile extension. The second approach utilizes 
XML schemas for defining BPM entities and the 
relationships between the entities. Both approaches are 
implemented as plug-ins on IBM Rational Software 
Architecture (RSA).  

Although the work we describe in this paper fits 
under the general framework of MDBT and BPM, and 
we discuss it within this context, we stress that our 
approach is not tied to this framework in any way. As 
we explain in more detail in the next section, we have 
defined an XML interface that allows our method to 
operate with any other business process modeling 
framework. 
 
4. Model-Driven Dashboard Framework 

In Figure 1 we depict the high level architecture of 
the proposed dashboard framework. As mentioned 
earlier, the framework extends the existing BPM model 
in order to support the dashboard reporting needs. 
Specifically, we extend the BPM Observation Model 
(OM), one of the UML Models of MDBT Toolkit that 
captures the monitoring and alerting requirements of an 
enterprise. In order to visually represent these 
requirements as models, the OM makes use of the 
UML2 profiles to extend the base UML elements. The 
Dashboard Model employs similar techniques to 
represent its modeling elements, so that the solution 
designer gets to work with consistent models for the 
entire, end-to-end solution design. The models capture 
the following aspects of the BPM Dashboard. 
• Definition of metrics and related context information 
to be displayed on the dashboard. 
• Organization of information into pages, and 
definition of navigation paths among these pages.  

• Assignment of access control privileges to the 
dashboard information, depending on the user roles. 

In order to capture the UML representation of 
Dashboard Models, we used the Rational Software 
Architect (RSA) tool. Note however, that RSA can be 
interchanged with any other editor supporting the 
UML2 notations.  

 

Figure 1: Model-driven Dashboard Framework. 

Even though we use UML for all the modeling 
requirements in our framework, we also provide an 
equivalent XML representation, which serves as our 
meta-model. In fact, the representation that the 
proposed approach uses internally is the XML 
representation. Figure 2 shows part of the Dashboard 
Meta-Model XML Schema definition. The 
transformation between the UML and the XML 
representations is lossless, in the sense that all the 
modeling elements and the relationships among them 
are preserved.  

The decision to have the Dashboard XML Meta-
Model as an additional level of abstraction allows us to 
decouple the dashboard modeling process from the 
modeling of the rest of the business processes. 
Therefore, changes in the OM will not affect the 
Dashboard Framework. Moreover, we may replace the 
OM with any other business modeling approach, 
without affecting the dashboard model. This option is 
represented in Figure 1 by the box labeled “external 
modeling”. 



 
Figure 2: Dashboard meta-model (XML schema). 

When the Dashboard Model has been transformed 
into the Dashboard Meta-Model representation, we 
feed this representation to the Code Generator, which 
subsequently produces the deployable dashboard 
application (refer to lower part of Figure 1). The 
generated application consists of the Dashboard 
Application, which is the set of files that contain the 
actual code for the application, and the Dashboard 
DDL, which is the set of files that generate the 
auxiliary structures needed by the application, such as 
database tables. These tables are required to be created 
in the BPM Data warehouse.  

The Dashboard Application can be readily deployed 
on a J2EE application server. The particular choice of 
the application server is orthogonal to our solution, and 
the Code Generator can be modified to generate 
deployable components for any application server. 

Figure 3 shows the overview of the end-to-end 
dashboard-design process flow. We start by defining 
custom reports to be used by the dashboard, or by 
simply selecting some of the predefined reports from 
the template data store. As we will discuss later, the 
role of these report templates is to retrieve the 
appropriate data and handle the presentation of these 
data on the screen. Then, the solution designer models 
the dashboard elements using the Model Editor, 
transform the result into the Dashboard Meta-Model 
representation, and invoke the Code Generator to 
generate the deployable software components. Once 
deployed, the Dashboard can be accessed using a web 
browser. The details of the different Dashboard Model 
elements are discussed in the subsequent sections. 

 
Figure 3: End-to-end dashboard component flow. 

4.1 Dashboard Model Artifacts 
The dashboard model artifacts used in our approach 

can be classified into three categories. The first 
category is related to modeling the data that are 
necessary for the dashboard. It includes the data and 
the metric models. The second category corresponds to 
an abstract presentation layer, including navigation and 
the report template models. Finally, the third category 
is related to user roles and data access privileges. It 
includes models that define the dashboard access 
control, by relating user roles to data elements, as well 
as elements in the presentation layer. 

In the following paragraphs, we elaborate on the 
different model artifacts. 

 
4.1.1 Dashboard Model Definition 

As discussed earlier in the paper, we chose to use 
UML for the entire dashboard modeling requirements 
as it is widely accepted in the industry, and also 
because it provides to the solution developer a 
consistent platform to work with, across the various 
MDBT models. In order to accommodate our needs for 
the Dashboard Framework, we have extended the 
UML meta-classes and relationships by introducing 
new stereotypes using UML2 profiles to model the 
dashboard elements.  

 
4.1.1.1 Dashboard Data Model 

In our framework, we assume that all the necessary 
data can be stored in a data warehouse, using a star 
schema [28]. Therefore, we use the data model shown 
in Figure 4, where each data element is marked as 
either a dimension, or a metric.  

Even though the data model we support is simple, 
its semantics are rich enough to be able to model many 
real-life scenarios. This is because it is usual for real-
world data-modeling problems (especially the ones that 
we are targeting) to have a natural star-like 
representation. An example scenario is product sale 
information, where the metrics include number of units 
sold and revenue, and the dimensions include 
geographies and time. 



In Figure 4 we are also introducing the Metric 
Group modeling element, which is used for grouping 
of relevant metrics. Such a grouping is useful when 
modeling relationships to other artifacts, where all the 
members of the Metric Group participate. Figure 4 
depicts the Metric Group UML class that connects to 
the Metric class in an aggregation relationship.  

 

Figure 4: Dashboard Data model. 

4.1.1.2 Dashboard Navigation Model 
In Figure 5, we illustrate the GUI modeling 

Elements (stereotypes), that is, the Navigation Tree, 
Page, and Menu classes. These three classes form the 
Dashboard Navigation Model. In a typical scenario, the 
analyst starts by defining some pages, and she then 
associates these pages with menus. In the last step, she 
introduces a Navigation Tree element, in order to 
capture the navigation paths among the pages, which 
eventually form the Dashboard reports. 

 
Figure 5: Dashboard Navigation Model 

4.1.1.3 Dashboard Report Template Model 
The Report Templates are used to define the 

information content of the individual pages. Figure 6 
shows that a Report Template can be associated with a 
page, and may refer to several Metric Groups. When 
the page is displayed on the dashboard, the information 
about all the metrics corresponding to the templates is 
rendered on the screen. Note that each page can be 
associated with one or more Report Templates. 

The Report Templates also define the details for the 
visual presentation of the data they contain. By 
creating a report template, the user can choose to 
display a set of metric data as a table, as a chart, or 
using both display modes.  

 
Figure 6: Dashboard Report Template Model 

4.1.1.4 Dashboard Access Control Model 
This model defines all the access control properties 

relevant to the dashboard. Using the various modeling 
elements, we can specify for each user role the access 
privileges to different parts of the data, as well to 
different pages of the dashboard. Thus, the dashboard 
users, according to their assigned roles, only have 
access to a subset of the dashboard reports.  

Figure 7 illustrates how we model the above 
requirements in our framework. The business analyst 
can model the access privileges to the reporting data 
according to User Role (such as manager, data 
administrator, etc.), and by Metric Group and 
Dimension. We now explain in detail the relationships 
between user roles and metrics, and user roles and 
dimensions. 

 
Figure 7: UserRole to Metric and Dimension model. 

• UserRole-MetricGroup: This relationship 
specifies the access privileges of User Role to 
Metric Group. When the analyst creates an 
aggregation link between the above two modeling 
elements, all the users assigned to User Role gain 
access to all the metrics described by Metric 
Group. This lets the model capture the role based 
access to metrics. At runtime, based on this model, 
the system can determine what metrics to show on 
the dashboard based on the User Role (i.e., only 
those metrics for which the user has access are 
displayed on the dashboard). 

• UserRole-DimensionScope: This relationship 
defines the User Role access privileges to various 
dimensions, as well as to the dimension levels in 
each dimension. This lets the business analyst 
define fine grained access control at the metric 
context.  



When the dashboard has been deployed and is ready 
for use, the administrator has the ability to further 
refine the data access control by the specific data 
values. The details of such access privileges are 
defined later in the paper (see Section 4.2.3). 

Access by Report Template is another aspect of 
dashboard-report access-control modeling. A User 
Role may have access to one or more Report 
Templates, and the business analyst may select a set of 
(already defined) templates and associate them to the 
User Role elements. This lets the dashboard framework 
filter the templates that are shown to the user of the 
dashboard. Figure 8 shows the User Role to Report 
Template relationship. 

 

Figure 8: UserRole to report Template model. 

Finally, our framework allows the business analyst 
to define access control based on the Navigation Trees 
(Figure 9). We expect that a single Dashboard Model 
will involve several Navigation Trees. In this case, the 
business analyst may wish to provide different access 
privileges to each one of the navigation trees, 
according to User Role.  

 

Figure 9: User Role to Navigation Tree model. 

All the access control models discussed in the 
previous paragraphs comprise a powerful and flexible 
toolset. Not only do they provide coarse- and fine-grain 
access control to the data, but they also allow the 
business analyst to design a small set of pages, which 
at run-time will display different information, 
according to the access privileges of the user accessing 
the dashboard. 

 
4.2 Dashboard Model Solution Methodology 

We now turn our attention to the solution 
methodology we have in place for our Dashboard 
Framework, and describe the required steps for 
developing a solution. Even though the model-driven 
approach brings efficiency to BPM solutions 
development, there is a need to understand and follow 
a specific methodology that can lead to a successful 
and efficient solution.  

The Dashboard modeling methodology can be 
divided in the following three main activities. 

1. Pre-modeling activity. 
2. Modeling activity. 
3. Post-modeling activity. 
In the next paragraphs, we discuss in detail each one 

of these activities. 
 

4.2.1 Pre-Modeling Activity 
Before starting to create models in order to capture 

the dashboard requirements, the business analyst is 
required to understand the predefined components and 
templates that are included in the Dashboard 
Framework tool. These components can aid in quickly 
and efficiently designing the solution. 

Figure 10 depicts the components that are relevant 
to this activity. One of the important parts of this 
framework is the predefined data templates (data 
structures). Since the data model is only comprised of a 
well-defined, limited set of data elements (that is, 
metrics and dimensions), the framework publishes 
predefined sets of data structures as part of the tool. 
Then, each report template may choose the data 
structures that are suitable for its reporting purposes. 

 

 
Figure 10: Pre-modeling activity. 

The framework provides another software 
component, the view component, which is responsible 
for connecting the data layer with the presentation 
layer of the dashboard. The view component uses the 
data structure and User Role elements to connect to the 
data sources, and to generate an instance of the data 
structure, which during runtime is passed to the Report 
Template instance (discussed below) that renders the 
visual widgets. In order to achieve seamless 
integration, the view components need to be embedded 
in the Report Templates. In our implementation, they 
are included as JSP tag libraries.  

Finally, we also provide a set of predefined Report 
Templates. In the current version of our tool, we offer 



a table and a chart component. As illustrated by the 
box at the bottom of Figure 10, our framework can also 
support user-defined Report Templates. The only 
restriction is that the new template has to support the 
data templates in its input. 

 
4.2.2 Modeling Activity 

After the custom Report Templates have been 
defined, the next step is to model the reporting 
requirements. During this step, the user may need to 
perform the following tasks. 
• Identify the metrics that will become part of the 
dashboard views, and create Metric Groups by 
grouping together similar metrics. 
• Create report templates for all the different types of 
information that are to be displayed on the dashboard. 
• Create page elements, and associate them to one or 
more of the report templates defined earlier. 
• Create the menu elements for the dashboard portal, 
and link the menu items with the corresponding pages. 
Finally, introduce navigation tree elements in order to 
define the navigation flow of the portal. 
• Define the different user roles that need access to the 
dashboard portal. Individual users are assigned a role 
by the portal administrator during the portal 
configuration time.  
• Associate each user role with Metric Groups, 
Dimensions, Report Templates, and Navigation-Trees, 
so as to specify the access control privileges.  

Once the Dashboard Model is ready, it is 
automatically transformed into our intermediate XML 
representation, which is independent of the tool used to 
build the Dashboard Model. Subsequently, this model 
is processed by the Code Generator that produces all 
the required deployable software components. 
 
4.2.3 Post-Modeling Activity 

We now discuss the artifacts related to the post-
modeling phase. The Code Generator produces two 
deployable software components, namely, the 
Dashboard DDL and the Dashboard Application. The 
Dashboard DDL contains the definitions for all the 
tables that need to be created in the BPM Data 
Warehouse. It also contains the necessary SQL scripts 
for reading data from and inserting data in those tables. 

The Dashboard Application is a J2EE application 
that needs to be deployed on a J2EE Application 
Server. It contains the web module that consists of the 
chosen report templates along with other supporting 
software components provided by the framework.  

As the final step in the dashboard deployment 
procedure, the user has the ability to define fine-grain 
data access control, according to specific data values of 
the warehouse. When we discussed access control in 

the Dashboard Model (see Section 4.1.1.4), we 
described how the model allows to define access 
privileges based on the data dimensions. For example, 
we may allow a particular user role to roll-up and drill-
down on the geography dimension. Even though the 
above kind of access control is very useful, in some 
cases it may not be enough. Consider the situation 
where two different managers are responsible for the 
Europe and America geographies. In this case we may 
want to restrict the access of each manager to the 
geography for which she is responsible. 

In order to achieve this fine-level access control, we 
augment the User Role to Dimension model with 
special annotations that specify the levels of each 
dimension that can be accessed by the User Role. Note 
that we cannot perform this step of access control 
during the modeling phase, because it depends on the 
specific data of the application, which are only 
available in the warehouse after the application has 
been deployed. 
 
5. Case Study 

In order to assess the feasibility and effectiveness of 
the proposed approach, we applied it to a real-world 
problem. In this case, the objective was to develop a 
dashboard to support the business operation of the 
TeleSale Representatives (TSRs) of IBM that are 
responsible for the sales of the entire range of xSeries 
products across the globe. The TSRs are responsible 
for the entire life-cycle of a sale. Initially, a customer 
expresses an interest to buy, to which the TSR 
responds with a quote. If the customer decides to close 
the deal, then the quote is turned into an order.  

In their day-to-day operations, the TSRs need to 
have a concise view of their business, so as to plan 
their actions accordingly.  The dashboard has to 
display information on both, the quotes and the orders, 
capturing various metrics related to these activities, 
such as number of quotes and orders, revenue, and 
others. These metrics may be organized according to 
several dimensions, such as time, geography, product 
type, customer type, and others. Furthermore, access 
restrictions should be in place, limiting the views of the 
data offered to the TSRs and the region managers. 

We now describe the steps we went through during 
the solution development process, using the Dashboard 
Framework. 
5.1 Dashboard Solution Model 

We start by presenting the models we created for 
the dashboard. Note that for brevity, in all the 
following diagrams, we only depict part of the models 
that form the complete solution. 

As mentioned in Section 4.2, we first identify the 
Report Templates that are needed. If the existing, 



predefined templates are not suitable, then we define 
custom Report Templates. For this case study, we are 
using pre-defined summary templates (e.g., 
OrderSummaryTemplate), as well as some custom-
made templates (e.g., OrderDetailTemplate). 

Subsequently, we identify similar metrics and group 
them together as MetricGroups. As shown in Figure 
11, Revenue and average revenue for orders are 
grouped into OrderMetricGroup, while average 
number of quotes and average quote value are grouped 
into QuoteMetricGroup. (Section 4.1.1 discusses the 
benefits of such groupings.) 

 
Figure 11: Metric group definition. 

The relationships among metrics and dimensions 
are captured by the data model, shown in Figure 12. 
This diagram contains relationships that connect 
dimensions to metrics, as well as metric groups. The 
latter case is translated as a relationship between the 
dimension and each one of the metrics under the 
Metric Group. A link between a metric and a 
dimension means that the metric can be aggregated 
along this dimension. 

In order to organize the information into different 
views (or pages), we use the Report Template model. 
Figure 13 shows this model for a summary view we 
have defined, which will display data relevant to orders 
and quotes. More specifically, this summary page will 
contain data for orders revenue and average revenue 
(represented by OrderMetricGroup), and average 
number and value of quotes (represented by 
QuoteMetricGroup). 

Once we have defined all the pages and menus that 
we are going to use in our dashboard, we proceed to 
model the Navigation Trees. The Navigation Trees 
represent the paths that the dashboard user can follow 
when navigating from page to page. As Figure 14 
shows, we can define several Navigation Trees, and 
each page may belong to more than one Navigation 
Tree. 

 
Figure 12: Data model. 

 
Figure 13: Report template. 

Subsequently, we define all the data access 
privileges for our dashboard. Figure 15 depicts the 
assigned privileges for the Telesales and Manager user 
roles, with respect to metrics and dimensions. The 
model we created allows Telesales users to access 
quote metrics and aggregate them along the brand 
dimension. In addition to the above, Manager users can 
also access order metrics and aggregate these metrics 
along the geography dimension. 

Figure 15 also illustrates how we model fine-grain 
data access control using the dimension levels. In this 
example, we limit the access on the Brand and 
Geography data. A Telesales user will only be able to 
aggregate data up to the sub brand level (i.e., level 2) 



in the Brand dimension hierarchy. (The “own member” 
annotation only instructs the tool that fine-grain access 
control is required to be applied. 

 
Figure 14: Navigation tree model. 

 
Figure 15: Role to data access mapping. 

Figure 16 and Figure 17 show the User Role access 
privileges in terms of Navigation Trees and Report 
Templates, respectively. For our dashboard, we specify 
that Telesales and Manager users access different 
Navigation Trees, which translates to a different 
experience, both visually and content-wise. We also 
specify that Manager users can access the summary 
templates for the orders and the quotes, while Telesales 
users only have access to the quote summary template.   

 
Figure 16: Role to navigation tree access mapping. 

When we complete the modeling phase, we initiate 
the deployment of the different software components, 
described in the following section. 
5.2 Dashboard Deployment 

There are two deployable components generated as 
a result of the modeling activity. The Dashboard DDL 

component is the data warehouse schema script that 
supports the dashboard functionality. This schema 
stores and manages all the information relating to 
metrics, and maintains the fine grained access control 
to this information by user role.  

The Dashboard Application component is an 
Enterprise Application that must be deployed on a 
J2EE application server, and can subsequently be 
accessed using a web browser. In our implementation, 
the generated application is deployed on WebSphere 
Portal Server, and uses Alphablox [21] for rendering 
the reports (the framework provides a tag-library that 
allows the report template to connect to Alphablox; we 
provide similar tag-libraries for other commercial data 
visualization tools, as well). 

In Figure 18, we show a screen-capture from the 
deployed dashboard application. This particular 
example illustrates a page that uses tables to display 
two different types of data regarding quotes (left side 
of the picture), and a graph to visualize these data 
(right side of the picture). 

 
Figure 17: Role to report template access mapping. 

  

 
Figure 18: Generated dashboard page. 

5.3 Discussion 
Our experience with the model-driven approach for 

dashboard development shows that we can achieve 
significant savings in terms of time and cost. A project 
that would normally require more than three months, 
we were able to complete it in just three weeks using 
the proposed framework. Moreover, the benefits of our 
approach extend to the future as well, since our 



framework makes it very easy to introduce changes in 
the dashboard. Changes in metrics, dimensions, 
navigation paths, and access control are as simple as 
updating the corresponding models, making the 
maintenance of the dashboard an easy and manageable 
task. 

In addition, the dashboard developers do not need to 
have any in-depth knowledge of databases and data 
warehouses, or access control mechanisms. All these 
aspects of the dashboard are completely hidden from 
the developer, and managed by the proposed 
framework. 

 
6. Conclusion 

In this study, we propose an efficient and effective 
model-driven dashboard design technique. We extend 
the business performance modeling framework by 
providing a number of new models that enable the 
process of dashboard design. Our model-driven 
approach renders the dashboard design and deployment 
process less time-consuming and less cumbersome. It 
leads to automated code generation, and allows fast 
and easy integration of design changes in the final 
solution. 

We applied the proposed technique for designing 
and deploying a dashboard for a real-world business, 
and the results of this experiment demonstrate the 
feasibility and effectiveness of our approach. We 
observed a significant reduction in terms of required 
development time when compared to a more traditional 
dashboard deployment process. 
 
References 
[1] Wei Zhao, Barrett R. Bryant, Fei Cao, Kamal 

Bhattacharya, Rainer Hauser: Transforming Business 
Process Models: Enabling Programming at a Higher 
Level. IEEE SCC 2005: 173-180. 

[2] K. Bhattacharya, R. Guttman, K. Lyman, I. F. F. Heath, 
S. Kumaran, P. Nandi, F. Wu, P. Athma, C. Freiberg, 
L. Johannsen, and A. Staudt. A Model-Driven 
Approach to Industrializing Discovery Processes in 
Pharmaceutial Research. IBM Sys Journal 44(1), 2005. 

[3] Noi Sukaviriya, Santhosh Kumaran, Prabir Nandi, 
Terry Heath. Integrate Model-driven UI with Business 
Transformations. MDDAUI, 2005. 

[4] Myers, B.; Hudson, S.E., Pausch, R. Past, Present, and 
Future of User Interface Software Tools.  ACM ToCHI 
7, (2000). 

[5] Kumaran, S.  Model-Driven Enterprise. Proc of  Global 
Enterprise Architecture Integration Summit. (2004). 

[6] Kumaran, S., Nandi, P.; Adaptive Business Objects: A 
New Component Model for Business Integration.  Proc 
of ICEIS (2005). 

[7] Kleppe, A., Warmer, J., Bast, W.  MDA Explained: 
The Model Driven Architecture – Practice and 
Promise.  Addison-Wesley, Reading, MA (2003). 

[8] S.-K. Chen, H. Lei, M.Wahler, H. Chang, K. 
Bhaskaran, and J. Frank. A model driven XML 
transformation framework for business performance 
management model creation. IJEB, 2006. 

[9] P. Chowdhary, L. An, J.-J. Jeng, and S.-K. Chen, 
“Enterprise Integration and Monitoring Solution Using 
Active Shared Space,” ICEBE 2005. 

[10] L. Zeng, H. Lei, M. Dikun, H. Chang, K. Bhaskaran, 
and J. Frank. “Model-Driven Business Performance 
Management,” ICEBE 2005. 

[11] Business Process Execution Language for Web 
Services http://www-
128.ibm.com/developerworks/library/ specification/ws-
bpel 

[12] W. B. Frakes and K. Kang, “Software Reuse Research: 
Status and Future,” IEEE TSE 31, No. 7, 2005. 

[13] J. Greenfield, K. Short, S. Cook, and S. Kent, 
“Software Factories Assembling Applications with 
Patterns, Models, Frameworks and Tools,” 18th 
Annual ACM OOPSLA, 2003. 

[14] S. Rugaber and K. Stirewalt, “Model-Driven Reverse 
Engineering,” IEEE Software 21, No. 4, 2004. 

[15] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. 
Lapouchnian, J.Cesar Sampaio do Prado Leite: Reverse 
Engineering Goal Models from Legacy Code. ICRE, 
2005. 

[16] A. Kleppe, J. Warmer, and W. Bast, MDA Explained, 
The Model Driven Architecture: Practice and Promise, 
Addison-Wesley, Boston, MA, 2003. 

[17] K. Czarnecki and S. Helsen, “Classification of Model 
Transformation Approaches,” OOPSLA Workshop on 
Generative Techniques in the Context of Model-Driven 
Architecture, Anaheim, CA, 2003. 

[18] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. 
Weske, “Business Process Management: A Survey,” 
BPM, Eindhoven, The Netherlands, 2003. 

[19] J. Koehler, G. Tirenni, S. Kumaran: From Business 
Process Model to Consistent Implementation: A Case 
for Formal Verification Methods, EDOC, 2002. 

[20] Miller, J., Mukerji, J. (ed.): MDA Guide Version 1.0.1. 
Object Management Group (2003) 
http://www.omg.org/docs/omg/03-06-01.pdf. 

[21] AlphaBlox. http://www.alphablox.com/  
[22] Business Objects. http://www.businessobjects.com/  
[23] Hyperion. http://www.hyperion.com/  
[24] J.J. Jeng, S. Buckley, H. Chang, J.Y. Chung, S. 

Kapoor, J. Kearney, H. Li, and J. Schiefer, BAM: An 
Adaptive Platform for Managing Business Process 
Solutions. ICECR, 2002. 

[25] J.J. Jeng, J. Schiefer, and H. Chang, An Agent-based 
Architecture for Analyzing Business Processes of Real-
Time Enterprises. EDOC, 2003. 

[26] C. McGowan, L. Bohmer, Model-based business 
process improvement, ICSE, 1993. 

[27] Object Management Group (2005) ‘XML metadata 
interchange (XMI) specification version 2.0.’, 
http://www.omg.org/docs/formal/03-05-02.pdf. 

[28] J. Gray, A. Bosworth, A. Layman, H. Pirahesh: Data 
Cube: A Relational Aggregation Operator Generalizing 
Group-By, Cross-Tab, and Sub-Total. ICDE 1996. 


