
CQSIM Low-Level Design Document Ren Dongxu

 1 / 50

CQSIM

Low-Level Design Document
Ren Dongxu

1. INTRODUCTION

1.1 Goals

 An event driven job schedule
 Simulator scans the event sequence and do the operation related to every event

in time order.
 Event can be job submit/job finish, monitor event or other event added by the

user.
 An overall method invokes and initializes all the modules and the handles of

the modules will be transported into the simulator.
 The simulator should be able to support other modules and their subclasses.

 A user command line interface
 User can pass all the parameters by command line
 Advantage user interface can be used to call the command line entry automatically.
 A system parameter config file can be used to initialize the command line

parameter
 A file name config file can be used to initialize all the temp, debug and output path,

name and extension name.
 The data read from the config file are on low level, so the parameter given in the

command line will replace the same data read in config file.
 Extendable module design

 These modules should have the standard interface.
 All modules are supposed to know all the data formats. Hence, they can get

correct data from the dictionary type of parameter. And any modification in
data format should be specified clearly in the design document.

 The modules can be extended in 2 ways: subclass and new method.
 Also, new function can be added to the existed method. But this kind of

modification should be static, which is used in all extension.
 Running time interface

 Keep receiving running time information and show them in the user friendly
way.

 Result analysis and show
 Read job trace result file and do the statistics as request.
 Show the analysis result in graph.
 New graph method can be added to it easily.

CQSIM Low-Level Design Document Ren Dongxu

 2 / 50

 Input and output files
 Input raw files: Job trace and Node structure files
 Formatted files: Job trace, Node structure, Job and Node config files
 Output Result files: Job simulator result, Event log and Debug log.

2. STRUCTURE

2.1 Function Map

The program contains 5 parts:

User Interface & Overall Method
 cqsim Basic user command line interface.

 All parameters should be transferred by command line.
 Additional profile is allowed, but corresponding explain

program should be designed.

 filter Job and node filter command line interface.
 Call the filter process to read raw files and output the data

into the formatted file.
 Also provide a port to output the formatted data list.

 cqsim_ad Advanced user interface, to simplify the user input.

 Parameters are stored in a profile.
 Can be designed as a command line interface that user need

to only provide the profile file name, or a graphic user
interface.

 Call the basic command line interface cqsim with the data.

 cqsim_main Define all modules and transfer these modules to the
simulator .

 Different modules can be chosen here.
 Call the simulator Cqsim_sim, transfer the modules(in a

dictionary data) and parameters into the simulator.
 Start the simulation process.
 Import the path file Cqsim_path.py.

 cqsim_path Contain all path value

 Be invoked if the file need to access other file in some other
place

 factory_import Import all versions of modules

CQSIM Low-Level Design Document Ren Dongxu

 3 / 50

 Build a module group dictionary data. This data will be
invoked by the factory object to select module group.

 factory Factory class which “produce” modules
 Read the module group data, receive the module name and

select the corresponding modules
 Pass the income parameter to selected module and return the

module to caller

 Result_analysis Call the result analysis program to deal with the result.

Modules
 All the modules should contain: __init__(), reset() method to initialize and reset

the basic setting.
 At least one interface for other module to call it with the input running time

parameters.

 Filter_job Receive job trace file name and other parameters.
 Read the file and extract the necessary information.
 Format the data according to the parameters and store them

into a list.
 Store the data into a temp file according to the parameters.
 Store the overall job trace information into a config file.
 Provide output port to transfer the formatted data.

 Filter_node Receive node structure file name and other parameters.

 Read the file and extract the necessary information.
 Format the data according to the parameters and design and

store them into a list.
 Store the data into a temp file according to the parameters.
 Store the overall node tructure information into a config file.
 Provide output port to transfer the formatted data.

 Job_trace Receive formatted job trace file name or the formatted job

trace data.
 Read the temp file and store the data into a list.
 Provide all the job trace operations, and keep tracing the

information of every job.

 Node_struc Receive formatted node structure file name or the formatted
node structure data.

 Read the temp file and store the data into a list.
 Provide all the node structure operations, and keep tracing

CQSIM Low-Level Design Document Ren Dongxu

 4 / 50

the information of every node.
 Provide the prediction of the state of the node structure.
 Provide the function to check the prediction data.

 Backfill Receive parameters when it is initialized.

 Provide backfill operation: receive the current state of the
waiting list, make some prediction by calling the node
structure object, return the index list of the jobs which can
be backfilled now.

 Different backfill mode can be added by designing a new
backfill method and build the relationship between mode
number and backfill function in main() method

 Adapt function can be called by the simulator, to modify the
parameters in running time depend on the changing of
system state.
 Adapt config file name is transmitted into the module

in adapt parameter list.
 All the adapt parameters and the requested average

utilization interval list are get from the config file.
 Provide a method to analysis and set the adapt value in

the info_collect module
 Check the most new system information in info_collect

module to see whether it reach the adapt request. Call
the adapt method if so.

 Extend: User can also design a subclass of it if the current

backfill structure can not reach the request.
If you do so, import the right subclass in cqsim_main()
method, and modify the input running-time parameters in
backfill() method in Cqsim_sim class.
Also, you may want to modify the initial parameters in
cqsim_main() method and re-design the command line in
both Cqsim() method and Cqsim_ad() method. So does the
corresponding config files.

 Start_window Receive parameters when it is initialized.
 Provide window operation when look for the next job to

start:
Receive x job indexes with related system information which
need to be scanned in waiting list,
Change the order of the waiting jobs according to the
window function. Then return the new order.
The simulator will call the window operation again when y
job has started after the last window operation in one event

CQSIM Low-Level Design Document Ren Dongxu

 5 / 50

iteration.
Provide port to output x and y

 This module will reorder the waiting list before any job
starts in this iteration.

 Different window mode: Similar to Backfill module
 Adapt function: Similar to Backfill module
 Extend: Similar to Backfill module

 Bacis_Algorithm Receive parameters when it is initialized.

 Receive algorithm list and assemble the elements into an
algorithm string.

 Receive the information of a job and return the job score.
Also can receive a list of job information and then return the
corresponding list of scores in the same order.

 Adapt function: Similar to Backfill module
 Extend: Similar to Backfill module

 Info_collect Collect all the system information for record and analysis.

 Provide collect and read operations. Hence other methods
can check and store the information.

 Log_print Provide all the output file operation for the simulator.
 Result, running time information and debug log can be done

by invoking this module.
 Provide the basic operation on files: open, write and close.
 Changing style of log can be done by design a different

subclass of it.
 Every Log_print object can only manage a file in one time.

 Debug_log Receive the debug level:

 0: No debug
 1-3: Three debug level, 3 is the highest.
 4: Print the debug information on the screen.
 5,6: Print the method and module name.

 User should provide the debug log content with the level
number.

 The debug module will print the given content depending on
the input level number.

 Output_log Provide 3 output log print method:
 System information log
 Job result log
 Adapt information log
.

CQSIM Low-Level Design Document Ren Dongxu

 6 / 50

 System information log and Adapt information log method
are invoked in every iteration.

 Job result log is printed when all jobs are done.

Simulator
 Receive parameters and module handles.

 Contain an inside event sequence, every event information includes virtual time,
event type, event priority and event parameter list.

 The simulator can add, delete or modify the event sequence in running time.
 There are 3 kinds of event: job event(Job submit/finish), monitor event and

extend event which is specially designed for new requirement.
 Job submit events added to the sequence before all the process.

Monitor events (from time A to B) added to the sequence when a job starts at A
and finish at B. If there exist same monitor event at one time point, no new
monitor event will be added.
Job finish event added when the job start.
User designed event added depending on the design.

 In running time, simulator move its virtual time from one event to the next, and
stop when all events are done and no more new event comes.

 Simple flow of the 3 kinds of event:
 Job event - job start scan - system information collect
 Monitor event - adapt function
 Extend event - user designed function

 Call the run-time interface to show the running time state after every event
 Print system information log at every event.

Output job result file when all jobs are done.

Run-time Interface

Result Analysis

2.2 Flow Diagram

CQSIM Low-Level Design Document Ren Dongxu

 7 / 50

CQSIM Low-Level Design Document Ren Dongxu

 8 / 50

CQSIM Low-Level Design Document Ren Dongxu

 9 / 50

3. Module

3.1 Overall

This is a sample.

Name Method name
Input Parameter

Name
(type) Initial value

Comment
The parameter is necessary if it has no initial value

Output Return value
type

(type) Comment

Process Detail of the duty of the method

3.2 Filter_job

Name __init__

Input trace (string) - Path and name of the job trace file.
save (string) None Path and name of the format job trace file which the formatted job

trace data will be stored in.
config (string) None Path and name of the format job trace config file
sdate (date) None The date and time of the first selected job.

If it is None, no modification will be made.
start (float) -1 Virtual submit time of the first selected job._j
density (float) 1.0 The scale of the submit time of the job trace. The virtual submit time

will be:
[(Original submit time - first job submit time + start) * density]

anchor (int) 0 The index of the first job will be read in the job trace file.
rnum (int) 0 The number of jobs will be read.
max_node (int) dictionary max number of node structure, this is used to check whether the

node request is more than max
debug (handle) None Debug module handle

Output None - -
Process Initialize the parameters.

Name reset
Input trace (string) None -

save (string) None -
config (string) None -
sdate (date) None -

CQSIM Low-Level Design Document Ren Dongxu

 10 / 50

start (float) None -
density (float) None -
anchor (int) None -
rnum (int) None -
max_node (int) None -
debug (handle) None -

Output None - -
Process Reset the parameters.

Name show_module_info
Input None - - -
Output None - -
Process Show module information in debug file.

Name reset_config_data
Input None - - -
Output None - -
Process Reset config data

Name read_job_trace
Input None - - -
Output None - -
Process Open the job trace file with path string [trace]

 Read the job trace file and store [rnum] jobs starting at [anchor] position.
 Modify the start date of the selected job trace to [start] if it is not None.
 Modify the submit time of the jobs:

[(Original submit time - first job submit time + start) * density]
 Formatted all the selected job data and store them into a local list.
 Also get some config data from the original file.

Name input_check
Input jobInfo (dictionary) - Input job data
Output (int) (int) 1 for correct, <0 for error
Process Check the input job data.

 Correct some error if the it can be corrected simply.
 Return negative number if any error found.

Name config_set

Input None - - -
Output None - -
Process This method provide the addition change on config file.

Name get_job_data

CQSIM Low-Level Design Document Ren Dongxu

 11 / 50

Input None - - -
Output (list) (list) Return the formatted job trace data
Process Return the formatted job trace data without other additional information

Name get_job_num
Input None - - -

Output (int) (int) Return the length of the formatted job list
Process Return the length of the formatted job list.

Name output_job_data
Input None - - -
Output None - -
Process Open the formatted job data file with path [save]

 Store the list and other information in the designed format.

Name output_job_config
Input None - - -
Output None - -
Process Open the formatted job config file with path [config]

 Store the overall job config data

3.3 Filter_node

Name __init__
Input struc (string) - Path and name of the node structure file

save (string) None Path and name of the temp node structure file which the formatted
node structure data will be stored in.

config (string) None Path and name of the format node structure config file
debug (handle) None Debug module handle

Output None - -
Process Initialize the parameters.

Name reset
Input struc (string) None -

save (string) None -
config (string) None -
debug (handle) None -

Output None - -
Process Reset the parameters.

Name show_module_info
Input None - - -

CQSIM Low-Level Design Document Ren Dongxu

 12 / 50

Output None - -
Process Show module information in debug file.

Name reset_config_data
Input None - - -
Output None - -

Process Reset config data

Name read_node_struc
Input None - - -
Output None - -
Process Open the node structure file with path string [struc]

 Formatted the node structure and store them into a local list.

Name input_check
Input nodeInfo (dictionary) - Input node data
Output (int) (int) 1 for correct, <0 for error
Process Check the input node data.

 Return negative number if any error found.

Name get_node_num
Input None - - -
Output (int) (int) Return the length of the formatted node list
Process Return the length of the formatted node list.

Name get_node_data
Input None - - -
Output (list) (list) Return the formatted node structure data.
Process Return the formatted node structure data without other additional information

Name output_node_data
Input None - - -

Output None - -
Process Open the formatted node structure file with path [save]

 Store the list and other information in the designed format.

Name output_node_config
Input None - - -
Output None - -
Process Open the formatted node config file with path [config]

 Store the overall node config data

CQSIM Low-Level Design Document Ren Dongxu

 13 / 50

3.4 Job_trace
Name __init__
Input start (float) -1 Virtual submit time of the first selected job._j

num (int) 0 The number of jobs will be read.
anchor (int) 0 The index of the first job will be read in the job trace file.
density (float) 1.0 The scale of the submit time of the job trace. The virtual submit time

will be:
[(Original submit time - first job submit time + start) * density]

debug (handle) None Debug module handle

Output None - -
Process Initialize the parameters.

Name reset
Input start (float) None -

num (int) None -
anchor (int) None -
density (float) None -
debug (handle) None -

Output None - -
Process Reset the parameters.

Name show_module_info
Input None - - -
Output None - -
Process Show module information in debug file.

Name import_job_file
Input job_file (string) - Path and name of the formatted temp job data file.
Output None - -
Process Open the temp job data file with path string [job_file]

 Store the information into the local buffers.

Name import_job_config
Input config_file (string) - Path and name of the formatted job config file.

Output None - -
Process Open the job config file with path string [config_file]

 Store the config information into the local buffers.

Name import_job_data
Input job_data (list) - Formatted job trace data list.
Output None - -
Process Store the income job data into the local list.

CQSIM Low-Level Design Document Ren Dongxu

 14 / 50

Name submit_list
Input None - - -
Output (list) (list) Return the job list which have not been submitted.
Process Return the job list which have not been submitted.

Name wait_list

Input None - - -
Output (list) (list) Return the current waiting list.
Process Return the current waiting list.

Name run_list
Input None - - -
Output (list) (list) Return the current running list.
Process Return the current running list.

Name done_list
Input None - - -
Output (list) (list) Return the job list which are done.

Process Return the job list which are done.

Name wait_size
Input None - - -
Output (int) (int) Return the total size of the waiting job
Process Return the total size of the waiting job.

Name get_start_date
Input None - - -
Output (date) (date) Return the start date
Process Return the start date .

Name get_virtual_start_time
Input None - - -
Output (float) (float) Return the virtual start time
Process Return the virtual start time

Name refresh_score
Input score (float) - The new score or score list (if [job_index] is None)

job_index (int) None The index of the selected job.
Output None None -
Process Refresh the score of the selected job if index is given

 Refresh the scores of all jobs in the old order if no index is given.
 Reorder the wait list in the order of score (from high to low-)

CQSIM Low-Level Design Document Ren Dongxu

 15 / 50

Name scoreCmp
Input jobIndex_c1 (int) - -

jobIndex_c2 (int) - -
Output <cmp> <cmp> -
Process Method used to order.

Name job_info
Input job_index (int) -1 The index of the selected job.
Output (dictionary) (dictionary) Return the detail of the job indicated by the input index #.
Process Return the detail of the job.

 If job_index is -1, return the whole job trace information

Name job_submit
Input job_index (int) - The index of the selected job.

job_score (int) 0 The score of the selected job.
job_est_start (int) -1 The estimated tart time of the selected job.

Output (int) (int) 1: Success 0: Fail
Process Submit the selected job

 Move the submit pointer to the next job and add the index of the job to waiting list.
 Modify the state of the job form "not-submit" to "waiting".
 Fill other information of the job. (e.g. scores of the job)
 Return 0 if any error ocurr. Otherwise return 1.

Name job_start
Input job_index (int) - The index of the selected job.

time (float) - Start time
Output (int) (int) 1: Success 0: Fail
Process Start the selected job

 Delete the index of the job from waiting list and add the index of the job to running list.
 Modify the state of the job form " waiting " to "running".
 Fill other information of the job. (e.g. start time)
 Return 0 if any error ocurr. Otherwise return 1.

Name job_finish
Input job_index (int) - The index of the selected job.

time (float) None Finish time
Output (int) (int) 1: Success 0: Fail
Process Finish the selected job

 Delete the index of the job from running list and add the index of the job to done list.
 Modify the state of the job form "running " to "done".
 Fill other information of the job.
 Return 0 if any error ocurr. Otherwise return 1.

CQSIM Low-Level Design Document Ren Dongxu

 16 / 50

Name job_fail
Input job_index (int) - The index of the selected job.

time (float) None Finish time
Output (int) (int) 1: Success 0: Fail
Process Mark the selected job failed

 Delete the index of the job from running list and add the index of the job to fail list.
 Modify the state of the job form "running " to "fail".
 Fill other information of the job.
 Return 0 if any error ocurr. Otherwise return 1.

Name job_set_score
Input job_index (int) - The index of the selected job.

score (float) - The score of the selected job
Output (int) (int) 1: Success 0: Fail
Process Modify the score of the job

 Fill other information of the job.
 Return 0 if any error ocurr. Otherwise return 1.

3.5 Node_struc

Name __init__
Input debug (handle) None Debug module handle
Output None - -
Process Initialize the parameters.

Name reset

Input debug (handle) None -
Output None - -
Process Reset the parameters.

Name show_module_info
Input None - - -
Output None - -
Process Show module information in debug file.

Name read_list
Input source_str (string) None The string need to be analysis into a list
Output (list) (list) The list get from the string

Process Translate a string into a list of int
 The string must be like [a,b,…,z]

Name import_node_file

CQSIM Low-Level Design Document Ren Dongxu

 17 / 50

Input node_file (string) - Path and name of the formatted temp node data file.
Output None - -
Process Open the temp node data file with path string [node_file]

 Store the information into the local buffers.

Name import_node_config
Input config_file (string) - Path and name of the formatted node config file.

Output None - -
Process Open the node config file with path string [config_file]

 Store the config information into the local buffers.

Name import_node_data
Input node_data (list) - Formatted node structure data list.
Output None - -
Process Store the income node data into the local list.

Name is_available
Input node_req (dictionary) - Request node/core/process..
Output (int) (int) 1: Yes 0: No
Process Check whether the request processe is available.

 Return 1 for available, 0 for not available.

Name get_tot
Input None - - -
Output (int) (int) Return total processe number.
Process Return total processe number.

Name get_idle
Input None - - -
Output (int) (int) Return current idle processe number.
Process Return current idle processe number.

Name get_avail

Input None - - -
Output (int) (int) Return current max available idle processe number.
Process Return current max available idle processe number.

Name node_allocate
Input node_req (dictionary) - Request node/core/process..

start (float) - Current virtual time
end (float) - Job expect end time.
job_index (int) - The index of the job which requests the processe.

Output (int) (int) 1: Success 0: Fail

CQSIM Low-Level Design Document Ren Dongxu

 18 / 50

Process Find the available processe and mark them with the [job_index].
 Modify other information.
 Return 1 if every thing is OK, otherwise return 0.

Name node_release
Input job_index (int) - The index of the job which release the processe.

end (float) - Job end time.
Output (int) (int) 1: Success 0: Fail

Process Release all the processe which marked as [job_index].
 This method need at least 1 input parameter and the parameter should be identically named.
 Mark the released processe with "idle"
 Modify other related information
 Return 1 if every thing is OK, otherwise return 0.

Name pre_avail
Input node_req (dictionary) - Request node/core/process..

start (float) - Current virtual time
end (float) None Job expect end time.

Output (int) (int) 1: Yes 0: No
Process Check whether the job can run from [start] to [end] with all the prediction.

 If [end] is None, then set it to [start]
 Return 1 for available, 0 for not available.

Name reserve
Input node_req (dictionary) - Request node/core/process..

job_index (int) - The index of the job which requests the processe.
time (float) - Job expect run time.
start (float) None Current virtual time
index (int) -1 The index of the prediction list start to scan

Output (int) (int) 1: Yes 0: No
Process Reserve the job can from [start] to [end] in the prediction data.

 If [start] is None, just find a space to reserve it
 If [index] is -1, scan the prediction list from 0, otherwise scan from [index]
 Return 1 for available, 0 for not available.

Name pre_delete
Input node_req (dictionary) - Request node/core/process..

job_index (int) - The index of the job which requests the processe.
Output (int) (int) 1: Yes 0: No
Process Delete [node_num] number of processes from the reserved job whose index is [job_index]

 Return 1 for available, 0 for not available.

Name pre_modify

CQSIM Low-Level Design Document Ren Dongxu

 19 / 50

Input node_req (dictionary) - Request node/core/process..
start (float) - Current virtual time
end (float) - Job expect end time.
job_index (int) - The index of the job which requests the processe.

Output (int) (int) 1: Yes 0: No
Process Modify the reserve data of the selected job.

 Return 1 for available, 0 for not available.

Name pre_get_last
Input None - - -
Output (dictionary) (dictionary) The dictionary contain the last value of all kind of information
Process Scan the prediction job list and return the last value of start and end time

Name pre_reset
Input time (int) - Current virtual time
Output (int) (int) 1: Success 0: No
Process Reset the prediction list

 Clean the prediction list, then scan the node state and build the initial prediction list.

Name find_res_place

Input node_req (dictionary) - Request node/core/process..
index (int) - The index of prediction list start to scan
time (int) - Current virtual time

Output (int) (int) -1: Can reserve the job starting at [index]
>=0: The index not available for the reservation

Process Scan the prediction list from [index], return the index of the position in prediction list where the is not
available for the reservation. Otherwise, return -1

Name find_ place
Input node_req (dictionary) - Request node/core/process..
Output (list) (list) List of the allocated job index
Process Find the request node, return the list of node index

Name recover_place

Input node_list (list) - The node index lit need to release
Output None - -
Process Release the node whose index are in the input list.

3.6 Backfill

Name __init__
Input mode (int) 0 Backfill mode, no difference will be made if only one mode

CQSIM Low-Level Design Document Ren Dongxu

 20 / 50

designed.
ad_mode (int) 0 Adapt backfill mode
node_module (handle) None Node structure module handle
info_module (handle) None System information module handle
debug (handle) None Debug module handle
para_list (list) None Additional parameter.
ad_para_list (list) None Adapt parameter.

Output None - -
Process Initialize the parameters.

 Initialize the adapt parameters.

Name reset
Input mode (int) None -

ad_mode (int) None -
node_module (handle) None -
info_module (handle) None -
debug (handle) None -
para_list (list) None -
ad_para_list (list) None -

Output None - -
Process Reset the parameters.

 Reset the adapt parameters.

Name show_module_info
Input None - - -
Output None - -
Process Show module information in debug file.

Name backfill
Input wait_job (list) - The list of the related waiting job with the details. Each job

information is a dictionary.
para_in (dictionary) None Running time parameters in the dictionary type.

Output (list) (list) List of the backfill jobs. None for no job can be backfill.

Process This is the entry of the backfill module.
 Receive the running time information and store them into the local buffers, then invoke main method to

deal with the request.
 Get the first backfill job index(in wait list) from the main method and return it to the invoker.

Name main
Input None - - All the parameters should be stored in the local buffer.
Output (list) (list) List of the backfill jobs. None for no job can be backfill.
Process Provide the backfill function.

 Return the List of index of the backfill jobs .

CQSIM Low-Level Design Document Ren Dongxu

 21 / 50

 It select different backfill mode by the input parameter [mode], and invoke corresponding backfill
method.

Name backfill_EASY
Input None - - All the parameters should be stored in the local buffer.
Output (list) (list) List of the backfill jobs. None for no job can be backfill.
Process EASY backfill

 Return the List of index of the backfill jobs .

Name backfill_cons
Input None - - All the parameters should be stored in the local buffer.
Output (list) (list) List of the backfill jobs. None for no job can be backfill.
Process Conservative backfill

 Return the List of index of the backfill jobs .

Name adapt_reset
Input None - - -
Output None - -
Process Read the adapt config file and reset the adapt parameter

 Add average utilization interval time into Info_collect module.

Name set_adapt_data

Input None - - -
Output None - -
Process Analysis the information in the Info_collect module and add the new adapt data in the most new item in

Info_collect module.

Name get_adapt_info_name
Input None - - -
Output (string) (string) The name of the adapt data name in Info_collect module
Process Return the name of the adapt data name in Info_collect module

Name adapt_read_config
Input fileName (string) - Config file name
Output (int) (int) 1. success 0. not

Process Read the adapt config file
 Return 1 if success.

Name backfill_adapt
Input para_in (list) - Current running time parameters
Output (int) (int) 1. success 0. not
Process Call the selected adapt method depending on the adapt mode

 Return 1 if success.

CQSIM Low-Level Design Document Ren Dongxu

 22 / 50

Name adapt_1
Input None - - -
Output (int) (int) 1. success 0. not
Process Adapt method

 Return 1 if success.

Name get_list

Input inputstring (string) - Input string which need to be analysis into a list
regex (string) r”([^,]+)” Regular expression string

Output (list) (list) The result list
Process Analysis the income string and use the income regular expression sample to analysis it.

 Return the result list of string.

Name get_adapt_list
Input None - - -
Output (list) (list) The list of parameters which may be modified when adapt
Process Return the list of parameters which may be modified when adapt

3.7 Start_window

Name __init__
Input mode (int) 0 Window mode, no difference will be made if only one mode

designed.
ad_mode (int) 0 Adapt window mode
node_module (handle) None Node structure module handle
info_module (handle) None System information module handle
debug (handle) None Debug module handle
para_list (list) [5,0,0] Additional parameter list.
para_list_ad (list) None Additional parameter list for adapt function.

Output None - -
Process Initialize the parameters.

 [win_size] = [para_list[0]]
 [check_size_in] =[para_list[1]], [check_size_in] = [win_size] if [para_list[1]] is -1
 [start_max_size] =[para_list[2]], [start_max_size] = [win_size] if [para_list[1]] is -1

Name reset
Input mode (int) None -

ad_mode (int) None -
node_module (handle) None -
info_module (handle) None -
debug (handle) None -

CQSIM Low-Level Design Document Ren Dongxu

 23 / 50

para_list (list) None -
 para_list_ad (list) None -
Output None - -
Process Reset the parameters.

Name show_module_info

Input None - - -
Output None - -
Process Show module information in debug file.

Name start_window
Input wait_job (list) - The list of the related waiting job with the details. Each job

information is a dictionary.
para_in (dictionary) None Running time parameters in the dictionary type.

Output (list) (list) The reordered sequence of the input job list.
Process This is the entry of the adapt module.

 Receive the running time information and store them into the local buffers, then invoke main method to
deal with the request.

 Get the reordered job sequence from the main method and return it to the invoker.

Name main
Input None - - All the parameters should be stored in the local buffer.

Output (list) (list) The reordered sequence of the input job list.
Process Provide the adapt function.

 Return the reordered job sequence .
 It select different window mode by the input parameter [mode], and invoke corresponding window

method.

Name window_size
Input None - - -
Output (int) (int) Return the window size
Process As the window function only change the order of the first x waiting jobs, it is not necessary for the

simulator to pass the whole waiting list into the adapt module.
 Return the window size. If waiting job list is longer than that, the window module do not care about the

rest part.

Name check_size
Input None - - -
Output (int) (int) Return the check size
Process Return the check size.

Name start_num
Input None - - -

CQSIM Low-Level Design Document Ren Dongxu

 24 / 50

Output (int) (int) The number of the jobs which are started before next window.
Process Return the number of the jobs which are started before next window

Name reset_list
Input None - - -
Output None - -

Process Reset the buffers and rebuild the sequence list by calling the recursion method build_seq_list().

Name build_seq_list
Input seq_len (int) - Sequence list length

ele_pool (list) - Element pool in order
temp_index (int) - The position of the number set in this iteration.

Output None - -
Process This is a recursion method. It keep calling itself until no more element in [ele].

 In every iteration, the method takes an element out from the element pool.
 When no more element in the pool, it stop recursion and record all the elements in order, hence a new

sequence is produced and be added to the sequence list.
 This design is to make the sequence list be able to fit different check size in running time:

if check size is 3, take first 1*2*3=6 sequences in the list
if check size is 4, take first 1*2*3*4=24 sequences in the list, and so on.

Name window_check
Input None - - -
Output (list) (list) The reordered sequence of the input job list.

Process Do the window check and return the reordered sequence of the input job list.

Name adapt_reset
Input None - - -
Output None - -
Process Read the adapt config file and reset the adapt parameter

 Add average utilization interval time into Info_collect module.

Name set_adapt_data
Input None - - -
Output None - -
Process Analysis the information in the Info_collect module and add the new adapt data in the most new item in

Info_collect module.

Name get_adapt_info_name
Input None - - -
Output (string) (string) The name of the adapt data name in Info_collect module
Process Return the name of the adapt data name in Info_collect module

CQSIM Low-Level Design Document Ren Dongxu

 25 / 50

Name adapt_read_config
Input fileName (string) - Config file name
Output (int) (int) 1. success 0. not
Process Read the adapt config file

 Return 1 if success.

Name window_adapt

Input para_in (list) - Current running time parameters
Output (int) (int) 1. success 0. not
Process Call the selected adapt method depending on the adapt mode

 Return 1 if success.

Name adapt_1
Input None - - -
Output (int) (int) 1. success 0. not
Process Adapt method

 Return 1 if success.

Name get_list
Input inputstring (string) - Input string which need to be analysis into a list

regex (string) r”([^,]+)” Regular expression string

Output (list) (list) The result list
Process Analysis the income string and use the income regular expression sample to analysis it.

 Return the result list of string.

Name get_adapt_list
Input None - - -
Output (list) (list) The list of parameters which may be modified when adapt
Process Return the list of parameters which may be modified when adapt

3.8 Basic_Algorithm

Name __init__
Input ad_mode (int) 0 Adapt mode, no difference will be made if only one mode

designed.
element (list) None Element list of the algorithm.
info_module (handle) None System information module handle
debug (handle) None Debug module handle
ad_para_list (dictionary) None Adapt parameter.

Output None - -
Process Initialize the parameters.

 Assemble the element list into the algorithm string

CQSIM Low-Level Design Document Ren Dongxu

 26 / 50

Name reset
Input ad_mode (int) None -

element (list) None -
info_module (handle) None -
debug (handle) None -
ad_para_list (dictionary) None -

Output None - -
Process Reset the parameters.

 Assemble the element list into the algorithm string

Name show_module_info
Input None - - -
Output None - -
Process Show module information in debug file.

Name build_alg_str
Input None - - -
Output None - -
Process Group the algorithm elements and form the algorithm string.

Name get_score
Input wait_job (list) - The list of all waiting job with the details. Each job information is a

dictionary.
currentTime (float) - Current virtual time
para_list (dictionary) None Related system current information.

Output (list) (list) The score list of the wait job. Return None if any error ocurr.
Process Receive the job information and system information.

 Calculate the job score depending on the input information.
 Return the score list.

Name adapt_reset
Input None - - -
Output None - -
Process Read the adapt config file and reset the adapt parameter

 Add average utilization interval time into Info_collect module.

Name set_adapt_data
Input None - - -
Output None - -
Process Analysis the information in the Info_collect module and add the new adapt data in the most new item in

Info_collect module.

CQSIM Low-Level Design Document Ren Dongxu

 27 / 50

Name get_adapt_info_name
Input None - - -
Output (string) (string) The name of the adapt data name in Info_collect module
Process Return the name of the adapt data name in Info_collect module

Name adapt_read_config

Input fileName (string) - Config file name
Output (int) (int) 1. success 0. not
Process Read the adapt config file

 Return 1 if success.

Name alg_adapt
Input para_in (list) - Current running time parameters
Output (int) (int) 1. success 0. not
Process Call the selected adapt method depending on the adapt mode

 Return 1 if success.

Name adapt_1
Input None - - -
Output (int) (int) 1. success 0. not

Process Adapt method
 Return 1 if success.

Name get_list
Input inputstring (string) - Input string which need to be analysis into a list

regex (string) r”([^,]+)” Regular expression string
Output (list) (list) The result list
Process Analysis the income string and use the income regular expression sample to analysis it.

 Return the result list of string.

Name get_adapt_list
Input None - - -
Output (list) (list) The list of parameters which may be modified when adapt
Process Return the list of parameters which may be modified when adapt

3.9 Info_collect

Name __init__
Input ave_uti (list) None Average utilization interval list.

debug (handle) None Debug module handle
Output None - -
Process Initialize the parameters.

CQSIM Low-Level Design Document Ren Dongxu

 28 / 50

 Reset the output data, set the data obtain methods of job/monitor events.

Name reset
Input ave_uti (list) None -

debug (handle) None -
Output None - -

Process Reset the parameters.

Name show_module_info
Input None - - -
Output None - -
Process Show module information in debug file.

Name <User Defined Method>
Input None - - Input and output are always None
Output None - -
Process This stands for the methods user defined to get the data.

 After implementing these methods, you need to connect it to the data name you want to set.
 You can use the all the known data for calculating. And you are supposed to know them when you build

this method.

Name reset_info_data
Input None - - -
Output None - -
Process Reset the output data.

Name add_info_data
Input data_name (string) - Dictionary name of the data

j_func (method) None The method running at job event
m_func (method) None The method running at monitor event

Output None - -
Process Add the item to [info_data] which concluding dictionary name, job event method and monitor event

method.
 Create the corresponding overall buffer.
 Reset the data number.

Name reset_state_date
Input date (date) -
Output None - -
Process Reset the start date.

Name info_collect
Input time (float) - Virtual time of this information

CQSIM Low-Level Design Document Ren Dongxu

 29 / 50

event (int) - 1:Job, 2:Monitor, 3:Extend, -1:Initial
uti (float) - The utilization at this time
extend (list) None Other new characters may be added.
current_para (list) None Current parameter

Output None - -
Process Receive formatted system information and store them as a new item in the list.

 Call calculate_ave_uti() to get the required average utilization.
 Call info_analysis () to get the required data.

Name info_analysis
Input event (dictionary) - Event information
Output None - -
Process Call every data calculate method to get data

Name get_info
Input index (int) - The index of the request information.

If it is None, return the whole list.
Output (dictionary) (dictionary) Return the request system information
Process Return the request system information list.

 Return None if index is exceeded

Name get_len

Input None - - -
Output (int) (int) Return the length of the system information list.
Process Return the length of the system information list.

Name get_current_index
Input None - - -
Output (int) (int) Return the current data index.
Process Return the current data index.

Name calculate_ave_uti
Input None - - -
Output None - -

Process Calculate the average utilization for the most new system information.

Name reset_avg_interval
Input None - - -
Output None - -
Process Reset the average interval list

Name reorder_uti_interval
Input None - - -

CQSIM Low-Level Design Document Ren Dongxu

 30 / 50

Output None - -
Process Reorder the utilization interval list by reset the order list.

 The order list is for the module to calculate average utilization quicker.

3.10 Log_print

Name __init__
Input filePath (string) - file name

mode (int) 0 0: renew file 1: add log

Output None - -
Process Initialize the parameters.

 Call file_open method to open the specified

Name reset
Input filePath (string) None -

mode (int) None -
Output None - -
Process Reset the parameters.

Name file_open
Input None - - -
Output (int) (int) 1: success 0: Fail

Process Open the specified file.

Name file_close
Input None - - -
Output (int) (int) 1: success 0: Fail
Process Close the opened file if any file is opened.

 Return 1 if success, otherwise return 0

Name log_print
Input context (string) - Context to print.

isEnter (int) 1 1: print Enter after context otherwise: not print enter
Output (int) (int) 1: success 0: Fail
Process Print the log to the file specified before.

 Return 1 if success, otherwise return 0

3.11 Debug_log

Name __init__
Input lvl (int) 2 0 to 5, 0 is no debug log printed

CQSIM Low-Level Design Document Ren Dongxu

 31 / 50

show (int) 2 The lowest level which will be print on the screen.
path (string) None Debug log path and name.

Output None - -
Process Initialize the parameters.

Name reset

Input lvl (int) None -
show (int) None
path (string) None -

Output None - -
Process Reset the parameters.

Name reset_log
Input None - - -
Output None - -
Process Clean the specified debug log.

Name set_lvl

Input lvl (int) 0 0 to 4, 0 is no debug log printed, 3 is printing all debug log.
Output None - -
Process Reset the debug level.

Name debug
Input context (all type) - Debug content, will be changed into string.

lvl (int) 3 1 to 4, 0 is no debug log printed, 3 is printing all debug log.
isEnter (int) 1 1 for enter after the context, 0 for not enter.

Output None - -
Process Call the log print module to add the content to the debug log if [lvl] is smaller than the print log level.

Name line

Input lvl (int) 1 1 to 4, 0 is no debug log printed, 3 is printing all debug log.
signal (string) “-” Signal to form the line
num (int) 15 Duplication number of the signal

Output None - -
Process Call the log print module to add the content to the debug log if [lvl] is smaller than the print log level.

3.12 Output_log

Name __init__
Input output (dictionary) None Output file name dictionary
Output None - -
Process Initialize the parameters.

CQSIM Low-Level Design Document Ren Dongxu

 32 / 50

 Initialize all the output file name

Name reset
Input output (dictionary) None -
Output None - -
Process Reset the parameters.

Name reset_output
Input None - - -
Output None - -
Process Reset the output file path and name.

Name print_sys_info
Input sys_info (dictionary) - System information needed to be printed.
Output None - -
Process Print the current system information to the system information file.

Name print_adapt

Input adapt_info (dictionary) - Adapt information needed to be printed.
Output None - -
Process Print the adapt information to the adapt information file.

Name print_result
Input job_module (handle) - Job trace module
Output None - -
Process Print all the job result.

3.13 Cqsim_sim

Name __init__
Input module (dictionary) - The dictionary of the input module handle.

monitor (float) None Monitor event time interval.
mon_para (list) None Monitor parameter list
debug (handle) None Debug module handle

Output None - -
Process Initialize the parameters.

Name reset
Input module (dictionary) None -

monitor (float) None -
mon_para (list) None -
debug (handle) None -

CQSIM Low-Level Design Document Ren Dongxu

 33 / 50

Output None - -
Process Reset the parameters.

Name show_module_info
Input None - - -
Output None - -

Process Show module information in debug file.

Name cqsim_sim
Input None - - -
Output None - -
Process The main process of the simulator.

 Initialize the event sequence with the job submit event, monitor event and extend event.
 Scan the event sequence and deal with all the event in the sequence.
 Output the job result.

Name insert_event_job
Input None - - -
Output None - -
Process Read the job trace and insert the job submit event in the event sequence in time order.

 event information:
 type : 1
 time: submit time
 priority: 2
 para: [1,job index], means this is a submit event.

Name insert_event_monitor
Input start (float) - Start time of the start job

end (float) - End time of the start job
Output None - -
Process Insert the monitor event in the event sequence from [start] to [end].(Contain [start], not [end])

 event information:
 type : 2
 time: monitor time
 priority: 5
 para: [mon_para]

Name insert_event_extend
Input None - - -
Output None - -
Process Insert the extend event in the event sequence in time order.

 event information:
 type : 3

CQSIM Low-Level Design Document Ren Dongxu

 34 / 50

 time: user designed
 priority: user designed
 para: user designed

Name insert_event
Input type (int) - 1: job 2: monitor 3: extend

time (float) - Virtual time of the event
priority (int) - Priority of the job
para (list) None Parameter list of the event.
quick (index) -1 Quick insert signal,1 for just add it to the end of the queue

Output None - -
Process Insert the event in the sequence, automatically find the place by parameters [time] and [priority].

Name delete_event
Input type (int) - 1: job 2: monitor 3: extend

time (float) - Virtual time of the event
index (int) - The index of the deleting event

Output (int) (int) 1: Success 0: Fail
Process Delete the selected event which is indicated by [index] or [time & type]

 If invoker provides [index] and [time & type], the [index] parameter has higher priority.
 Return 1 if success, otherwise 0.

Name get_index_monitor
Input None - - -
Output (int) (int) Return the current monitor pointer.
Process Return the current monitor pointer.

 This helps inserting the monitor event

Name scan_event
Input None - - -
Output None - -
Process Scan the event sequence recursively.

 Call the corresponding method to deal with the current event in the sequence, then move the pointer to
the event.

 Stop when no event left in the sequence.

Name event_job
Input para_in (list) None Parameter list of the event.

Output None - -
Process Deal with the job event (submit/finish).

 Calculate the scores of the waiting job after the event is done.
 Call the start scan method group: window - start new job - backfill
 Store the system information.

CQSIM Low-Level Design Document Ren Dongxu

 35 / 50

 Insert monitor event from current time to time of the next event.
 Call the user interface module to show the current system state.

Name event_monitor
Input para_in (list) None Parameter list of the event.
Output None - -
Process Deal with the monitor event.

 Call the adapt functions.
 Call the print_adapt() method if needed.

Name event_extend
Input para_in (list) None Parameter list of the event.
Output None - -
Process Deal with the extend event.

 Call the extend process.

Name submit
Input job_index (int) - Index of the submitting job.
Output None - -
Process Submit the job by calling the corresponding method in job_trace module.

Name finish

Input job_index (int) - Index of the finish job.
Output None - -
Process Finish the job by calling the corresponding method in job_trace module.

Name start
Input job_index (int) - Index of the finish job.
Output None - -
Process Start the job by calling the corresponding method in job_trace module.

 Insert job finish event

Name score_calculate
Input None - - -
Output None - -

Process Calculate the score for all jobs in waiting list.
 Reorder the waiting list depending on the score list.

Name start_scan
Input None - - -
Output None - -
Process Scan the jobs in waiting list till no job can be start or backfill.

 Window function will be used before job start.

CQSIM Low-Level Design Document Ren Dongxu

 36 / 50

 Backfill function will be used when no job can be started.

Name start_window
Input temp_wait_B (list) - Job wait list
Output (list) (list) New list after window check
Process Call the window function to modify the order of the waiting job.

 Return the new reorder list.

Name backfill
Input temp_wait (list) - Job wait list
Output (int) (int) 1: Success 0: no
Process Call the backfill function and get the backfill job list.

 Start them if any job in the list.
 Return 1 for some jobs are backfill, 0 for no.

Name sys_collect
Input sys_info_list (dictionary) - Current system information list
Output None - -
Process Collect the current system information and call the Info_collect module to store them.

 Print the current system information.

Name interface

Input sys_info (dictionary) None Current system information need to be shown
Output None - -
Process Call the running time user interface module to show the inforamtion.

Name backfill_adapt
Input None - - -
Output (int) (int) 1: modify 0: not modify
Process Call the adapt method in backfill module to modify the parameter of backfill in the monitor event process.

Name alg_adapt
Input None - - -
Output (int) (int) 1: modify 0: not modify

Process Call the adapt method in Basic_algorithm module to modify the algorithms in the monitor event process.

Name window_adapt
Input None - - -
Output (int) (int) 1: modify 0: not modify
Process Call the adapt method in Start_window module to modify the parameter of window in the monitor event

process.

Name print_sys_info

CQSIM Low-Level Design Document Ren Dongxu

 37 / 50

Input sys_info (dictionary) - System information needed to be printed.
Output None - -
Process Print the current system information to the system information file.

Name print_adapt
Input adapt_info (dictionary) - Adapt information needed to be printed.

Output None - -
Process Print the adapt information to the adapt information file.

Name print_result
Input None - - -
Output None - -
Process Print all the job result.

4. Data

4.1 Overall

All modules are suppose to know the format of all public data although they do not really
know them. Hence, they can get the right data from the incoming dictionary.
So, any change on data format should be record clearly. This section list all public data in
every module, the corresponding format are discussed in the next section.

4.2 Public Data

White data are list or dictionary. Gray data are variable.

 Some data have not commentary, because they are not important or have been explained.
 Filter_job jobList job data list

config_data list of data information which will be
stored into the config file.

start start virtual time
sdate start date
density job submit density modification rate
anchor position of the first read job in the

original job trace file
rnum read job number
trace original job trace file name
save formatted job trace file name
config config file name
jobNum read job number
debug

CQSIM Low-Level Design Document Ren Dongxu

 38 / 50

 Filter_node nodeList node data list

config_data list of data information which will
be stored into the config file.

struc original node structure file name
save formatted node structure file name
nodeNum total node number
config config file name
debug

 Job_trace jobTrace formatted job data list

job_submit_list
job_wait_list
job_run_list
job_done_list
job_wait_size
start virtual start time
start_date start date
anchor
read_num
density
start_offset_A This is the offset time made by user

input virtual start time in job filter.
It is get from the config file.

start_offset_B This is the offset time made by user
input virtual start time in job trace.

debug

 Node_struc nodeStruc formatted node data list
nodePool idle node index pool.
temp_nodePool
job_list running job index list
predict_node predict node index
predict_job predict job index
tot total node number
idle idle node number
avail max available node number
debug

 Backfill para_list_in

ad_para_list_in
current_para
ad_ current_para

CQSIM Low-Level Design Document Ren Dongxu

 39 / 50

wait_job
para mode

ad_mode
size
ad_config

node_module
debug
adapt_data_name
adapt_data_para
check_data_name
check_data_para
ave_uti_interval
ave_uti_index
adapt_item
bound_item
adapt_info_name

 Start_window para_list

ad_para_list
current_para
seq_list
temp_list
wait_job
para mode

ad_mode
win_size window size
check_size the first x job will be

reorder to find the
quickest sequence

max_start_size The max number of
job can be start
between 2 window
function

ad_config
node_module
info_module
temp_check_len
debug
adapt_data_name
adapt_data_para
check_data_name
check_data_para
ave_uti_interval

CQSIM Low-Level Design Document Ren Dongxu

 40 / 50

ave_uti_index
adapt_item
bound_item
adapt_info_name

 Bacis_Algorithm ad_para_list

scoreList
para mode

ad_mode
element algorithm element
sign algorithm sign
ad_config

algStr algorithm string
debug
adapt_data_name
adapt_data_para
check_data_name
check_data_para
ave_uti_interval
ave_uti_index
adapt_item
bound_item
adapt_info_name

 Info_collect sys_info system information list

avg_inter_in Average interval list
order_seq The index of average utilization

interval in order.
eventType monitor ‘C’

submit ‘Q’
start ‘S’
end ‘E’

info_data Data information list
Contain all data item which need to
be store.

overall_info This provide the buffer of each
item in [info_data]

current_index current information index
start_date start date
alg_module
total_uti
data_num item number of [info_data]
debug

CQSIM Low-Level Design Document Ren Dongxu

 41 / 50

 Log_print modelist mode list (write or add)

filePath
mode mode
logFile log file object

 Debug_log debugFile

path
lvl
show

 Output_log event_seq

sys_info
adapt_info
job_result

 Cqsim_sim module contain all input module handles

mon_para monitor parameter.
event_seq event sequence list
event_pointer current event index
monitor_start next monitor event index
current_event current event
job_num total job number
currentTime current virtual time
startTime virtual start time
monitor monitor interval time
debug

5 Format

5.1 User Command Line Format

5.1 Cqsim Command Line

ID Name1 Name2 Type Default Dest Comment
1 -j --job string None job_trace job trace file name
2 -n --node string None node_struc node structure file name
3 -J --job_save string [job trace name] job_save formatted job trace data file name

4 -N --node_save string
[job trace
name]+”_node”

node_save
formatted node structure data file name

5 -f -- frac float 1 cluster_fraction job density adjust

CQSIM Low-Level Design Document Ren Dongxu

 42 / 50

6 -s --start float 0 start first job start virtual time
7 -S --start_date date None start_date first job start date
8 -r --anchor int 0 anchor first job position in job trace
9 -R --read int -1 read_num number of jobs read from the job trace

10 -p --pre string "CQSIM_" pre_name previous file name
11 -o --output string [job trace name] output simulate result file name

12 --debug string
“debug_”+[job
trace name]

debug
debug file name

13 --ext_fmt_j string ".csv" ext_fmt_j formatted job data extension type
14 --ext_fmt_n string ".csv" ext_fmt_n formatted job data extension type
15 --ext_fmt_j_c string ".con" ext_fmt_j_c temp job trace config extension type
16 --ext_fmt_n_c string ".con" ext_fmt_n_c temp job trace config extension type
17 --path_in string “InputFiles/” path_in input file path
18 --path_out string “Reults/” path_out output result file path
19 --path_tmp string “Temp/” path_tmp temp result file path
20 --path_debug string “Debug/” path_debug debug file path
21 --ext_jr string ".rst" ext_jr job result log extension type
22 --ext_si string ".ult" ext_si system information log extension type
23 --ext_ai string ".adp" ext_ai adapt information log extension type
24 --ext_d string ".log" ext _debug debug log extension type
25 -v --debug_lvl int 4 -debug_mode debug mode
26 -a --alg list None alg basic algorithm list
27 -A --sign list None alg_sign sign of the basic algorithm element
28 -b --backfill int 0 backfill backfill mode
29 -B --bf_para list None bf_para backfill parameter list
30 -w --win int- 0 win window mode
31 -W --win_para list None win_para window parameter list
32 -l --ad_bf int 0 ad_bf backfill adapt mode
33 -L --ad_bf_para list None ad_bf_para backfill adapt parameter list
34 -d --ad_win int 0 ad_win window adapt mode
35 -D --ad_win_para list None ad_win_para window adapt parameter list
36 -g --ad_alg int 0 ad_alg algorithm adapt mode
37 -G --ad_alg_ para list None ad_alg_para algorithm adapt parameter list
38 -c --config_n string "config_n.set" config_n config file - file name and path
39 -C --config_sys string "config_sys.set" config_sys system config file
40 -m --monitor int None monitor monitor interval time
41 -M --mon_para list None mon_para monitor parameter list
42 -u --uti list None ave_uti average utilization interval list
43 -e --ver string “ORG” ave_uti version name

5.2 Basis Algorithm Format

CQSIM Low-Level Design Document Ren Dongxu

 43 / 50

The basic algorithm use some simple letters to represent the different informations of a
job. The algorithm method stores the information in these buffers and then calculate the
scores with them.

s Job submit time
t Job estimated running time
n Job required nodes #
w Job waiting time
m Current idle nodes #
l Longest job estimated time (in waiting list)
z Longest job waiting time (in waiting list)

.
The structure of the algorithm string is stored as [elements of the algorithm string, the
signal of the element] pairs in a list.

element A string contain the element.
signal 1: The element will be changed in future

0:The element will not be changed in this simulator

For example the algorithm list is:
"0.75" "* w/z+" "0.25" "*l/t"
1 0 1 0

So, the algorithm string is "0.75* w/z+0.25*l/t " and the elements will be changed in
future are "0.75" and "0.25".

5.3 Job Trace Format

The type of the job trace is list of dictionary.
Dictionary

Name
Type Comment Initial

id int The id of the job -1
submit float Submit time of the job -1.0
wait float Actual waiting time -1.0
run float Actual running time 0.0
usedProc int Actual processes the job takes 0
usedAveCPU float 0.0
usedMen float Actual used memory 0
reqProc int The processes required by user 0
reqTime float The running time required by user 0.0
reqMem float Kilobytes per processor 0.0
status int Status of the job 0
userID int User ID -1
groupID int Group ID -1
num_exe int Executable number 0

CQSIM Low-Level Design Document Ren Dongxu

 44 / 50

num_queue int Queue number 0
num_part int Partition number 0
num_pre int Preceding job number 0
thinkTime int Think time from preceding job 0
start float Job start time -1.0
end float Job end time -1.0
score int Job scores, shows the priority of the job 0
state int 0: Not submit, 1:In waiting list,

2:Running, 3:Done
0

happy int 0: Not happy, 1:Happy, -1:Not care -1
estStart float Estimated start time, the time predicted to run

when the job is submitted considering no
backfill or any other modification in job order.

-1.0

extend list Other new characters may be added. None

5.4 Node Structure Format

The type of the node structure is list of dictionary.
Dictionary

Name
Type Comment Initial

id int The id of the node. -1
location list The location of the node, kind of [x,y,z] or [x,y].

Can also be None if you do not care about the
location of the node.

None

group int Group ID of the node. 1
state int -1: Idle, Other: The index of the job which

takes the node
-1

proc int Processes number in the node. 1
start float Start time of the occupy of the node. -1
end float Estimated end time of the occupy of the node. -1
extend list Other new characters may be added. None

The type of the predict node structure is list of dictionary.

Dictionary
Name

Type Comment Initial

time float Time of the event take place -
idle int Idle process number -
avail int Available process number -

The type of the predict job structure is list of dictionary.

Dictionary
Name

Type Comment Initial

job int Job index -

CQSIM Low-Level Design Document Ren Dongxu

 45 / 50

start float Job estimate start time -
end float Job estimate end time -

5.5 Event Sequence Format

The type of the node strucutre is list of dictionary.
Dictionary

Name
Type Comment Initial

type int 1:Job, 2:Monitor, 3:Extend, -1:Initial -1
time float Virtual time when the event takes place -1.0
priority int Priority of the event, higher priority will take

place earlier if there is another event at the same
time.

5

para list Parameter list which will be transferred into the
corresponding method.
Job event:
submit: [1, job index] (Q)
start: [3, job index] (S)
finish: [2, job index] (E)

None

5.6 System Information Format

The type of the system information is list of dictionary. It will make a record when an
event takes place (event here includes job start).

Dictionary
Name

Type Comment Initial

date date Date of the job trace start time
[date]+[time] suppose to be the real time when
the event happen if user did not modify any of
them.

None

time float Virtual time of this information -1.0
inter float Interval time between this information and next

one.
-1.0

uti float The utilization at this time -1.0
waitNum int Waiting job number at this time -1
waitSize int Total size of all waiting job -1
event string ‘Q’: submit ‘S’: start ‘E’: end ‘C’: monitor None
tot_ave_uti float Overall average utilization 0.0
ave_uti list Average utilization list in order. []
extend list Other new characters may be added. None

5.7 Config File Format

Every line contains a data: [data name]=[data value]

CQSIM Low-Level Design Document Ren Dongxu

 46 / 50

No rest space should appeared in the line. If there are some spaces, the regular expression
function will not take them as “useless” signal, sp some error may occur because the
system can not transform the space into a number or can not find the file because of the
addition space.
Or you may want to add some codes to ignore the additional space. But these codes are
not there now.

5.7.1 File Name And Path Config File

Name Type Comment
pre_name string previous file name
ext_fmt_j string formatted job data extension type
ext_fmt_n string formatted job data extension type
ext_fmt_j_c string formatted job trace config extension type
ext_fmt_n_c string formatted node structure config extension type
path_in string input file path
path_out string output result file path
path_tmp string temp result file path
path_debug string debug file path
ext_jr string job result log extension type
ext_si string system information log extension type
ext_ai string adapt information log extension type
ext_debug string debug log extension type

5.7.2 System Parameter Config File

Name Type Comment
cluster_fraction float job density adjust
start float first job start virtual time
start_date date first job start date
anchor int first job position in job trace
read_num int number of jobs read from the job trace
debug_lvl int debug level
alg list basic algorithm list
alg_sign list sign of the basic algorithm element
backfill int backfill mode
bf_para list backfill parameter list
win int start window mode
win_para

list
start window module parameter:
[window size],[check size],[max start size],[max window
size]

ad_win int start window adapt mode
ad_bf int backfilladapt mode
ad_alg int algorithm adapt mode
ad_win_para list adapt start window parameter list

CQSIM Low-Level Design Document Ren Dongxu

 47 / 50

It contains the config file name
ad_bf_para

list
adapt backfill parameter list
It contains the config file name

ad_alg_para
list

adapt basic algorithm parameter list
It contains the config file name

config_n string config file - file name and path
monitor float interval time of monitor event
mon_para list monitor parameter list
ave_uti

list
The interval list of the average utilization.
This parameter will be transmitted into the info_collect
module.

job_trace string job trace file name
node_struc string node structure file name
avg_uti list average utilization interval list
module_ver string average utilization interval list

5.7.3 Adapt Config File(Basic Algorithm/Backfill/Start Window)

Name Type Comment
adapt_data_name

list
Adapt data name in order:
names should not combine if they are same.
example: [name 1],[name 2],…,[name X]

adapt_data_para

list

Adapt data parameter in order:
In most time, the parameter is the index of the
corresponding data, -1 mean this data is not a list.
This is really depend on the design of the config file
reading method.
example: [para 1],[para 2],…,[para X]

check_data_name
list

The name of data need to be check when adapt.
example: [name 1],[name 2],…,[name Y]

check_data_para
list

The parameter of data need to be check when adapt.
example: [para 1],[para 2],…,[para Y]

avg_uti
list

Interval list.
This list contain all the average data need to be check

adapt_item

list

This is the main part of the adapt function.
One adapt_item can be add if you want a new adapt
choice.
For example, you can add an adapt_item to indicate that
the ith data in adapt_data_name will -1 if the data in
check_data_name is in case A. And add another
adapt_item to indicate that the ith data in
adapt_data_name will +1 if the data in check_data_name
is in case B. Hence the ith data can be modified in running
time depending on different cases of the check data.
One thing needed to be mentioned is you can add

CQSIM Low-Level Design Document Ren Dongxu

 48 / 50

conflicted case, but the function will only choose the first
one who satisfy the request.
All adapt_item should be written in the right format:
All data should be written as in a list separating by”,”
without no addition space.

0 Index of the data in adapt_data_name
1 0: change the adapt data to the next

value
1: add the next value to the adapt data

2 The new value will be set to/ad to the
corresponding adapt data.

3~(3+2*Y+1) Y is the number of check data – 1.
These data indicate the case request.
For jth check data, it can be considered
as “in the case” if
adapt_item[3+j*2]≤check_data[j]<
adapt_item[3+j*2+1]
If all the check data is in the case, then
this adapt item is the right one.

bound_item

list

This is similar to the adapt_item. It defines the bound of
all the adapt data when you add the new value in adapt
item to them.

0 Index of the data in adapt_data_name
1 Smallest value
2 Biggest value

5.8 Formatted File

2 kinds of formatted file(job/node data temp file) have the same structure:
 Each item takes a single line. For each line, the data are stored in the order

which is described in previous section(white part). Every single data in the
extend part should be store as a single data.
data 1 data 2 data 3 ...another data

 “;” is used as the separated signal in a line. "\n" are used to separate lines.

Formatted config file:

 Each value takes a single line: [data name]=[data value]
 No additional space

5.9 Parameters Format

CQSIM Low-Level Design Document Ren Dongxu

 49 / 50

5.9.1 wait_job (Method: backfill Class: Backfill)
wait_job (Method: backfill Class: Backfill)

Name Type Comment
index int Job index
proc int Request processes number
node int Request nodes number
run float Request running time
score float Job score

5.10 Output Format
The output data separated with “;”.

5.10.1 Job result

Name Comment
ID Job ID (not index)
Request process Request processes number
Request node Request nodes number
Request time Request time
Run Run time
Wait Waiting time
Submit Job submit time
Start Job start time
End Job finish time
Node list The nodes which the job take

5.10.2 Event Log

Name Comment
Start date Job trace start date

Format: %m/%d/%Y &H:%M:%S
Event type Q: submit S: job start E: job end C: monitor
Virtual event time virtual event time
Other parameter [data name 1]=[data value 1] [data name 2]=[data value 2] …

Different data separate by space

Other parameter in Event Log
Name Value

uti System ultilization
waitNum Wait job number at that time
waitSize Wait job total size

CQSIM Low-Level Design Document Ren Dongxu

 50 / 50

5.10.3 Adapt Log
Name Comment

Virtual time virtual time
Start window adapt data Start window adapt data, separated with “;”
Basic algorithm adapt data Basic algorithm adapt data, separated with “;”
Backfill adapt data Backfill adapt data, separated with “;”

5. Extension

3.1 Overall

The program is designed to be an extendable one. All module except Info_collect* can
be modified to fit new request with keeping the port same.
*In order to keep Start_window, Basic_algorithm and Backfill module independent and
efficient, they know the inside structure of the Info_collect module. So you need to
modify the three module when you modify the Info_collect module.
It can be extended in 3 ways:
1. Build new subclass of modules to fit special request. You should import the subclass in

the factory_import.py, and also add a new module group for it.
2. Add new method. All old functions remain same in this way. New function is added,

but you can choose not to use it.
3. Modify the original code. You should make this kind of modification only when it fit

all application. For example, you may want to modify the original code when you
need to trace more running time information, the additional information is useful in
most case and you can easily choose not to track them if you don’t need.

 You should make sure that all related parts know that change and call the new
function in the right way. This is easy to implement because the modules are all
highly independent.

