

Indiana Screening and Referral Tool

Screening
Technical Design Document

Version 2.0

Table of Contents
1 Introduction...4

1.1 Purpose..4
1.2 Scope...4
1.3 Document Organization..4
1.4 Audience ..5
1.5 Acronyms, Abbreviations, Terms and Definitions...5

2 Design Overview ..6

2.1 Approach..6
2.2 Architectural Goals and Constraints ...6
2.3 Guiding Principles ..6

2.3.1 Scalable 7
2.3.2 Flexible 7
2.3.3 Standards-Based 7

2.4 Design Patterns..7
2.4.1 Front Controller 7
2.4.2 Session Facade 7
2.4.3 Business Delegate 7
2.4.4 Data Access Object 8
2.4.5 Value Object 8

2.5 Design Principles ...8

3 Topology Diagram ...9

4 Application Architecture ..10

4.1 Presentation and Content Layer...10
4.1.1 Presentation Layer 11
4.1.2 Content Layer 11

4.2 Business Objects Layer..11
4.3 Data Access Layer ...12
4.4 Resource Layer..12
4.5 Common Applications Framework ...12

4.5.1 Design Principles 12
4.5.2 Reference Table Architecture 12
4.5.3 Question Engine 12
4.5.4 Rules Engine 12

4.6 Rules Engine Design..13
4.7 Screening Sequence of Events ..14

4.7.1 User 16
4.7.2 JSP 16
4.7.3 Controller Servlet 16
4.7.4 Service Controller 16
4.7.5 Session Bean 16
4.7.6 Screening Manager 16
4.7.7 Rules Engine 16

4.8 Package Structure View ...16

Conceptual Application Design Document Page 2 of 32

4.9 Object Model ..18
4.9.1 Question Engine 19
4.9.2 Rules Engine 19

5 Application Implementation ..22

6 Database Architecture ..23

6.1 Data Model...23
6.2 Tables ..24
6.3 Reporting Solution..24

7 Assumptions and Constraints ...26

Appendix A: Acronyms, Abbreviations, Terms and Definitions ..27

Appendix B: Products & Tools ...28

Appendix C: Configuration files ...29

Appendix D: Data Dictionary...30

Application Design Document Page 3 of 32

Revision History

Version Date Description Author

1.0

08/12/2005 Initial Draft Anu Penmetcha

2.0

08/28/2005 Revised Document Kellie Smithmyer

Application Design Document Page 4 of 32

1 Introduction

1.1 Purpose

The purpose of this document is to outline the technical design of the Online Screening tool and provide an
overview for the Online Screening Tool implementation.
Its main purpose is to -

• Provide the link between the Functional Specification and the detailed Technical Design documents

• Detail the functionality which will be provided by each component or group of components and show
how the various components interact in the design

• Provide a basis for the Online Screening Tool’s detailed design and development

This document is not intended to address installation and configuration details of the actual implementation.
Installation and configuration details are provided in technology guides produced during the course of project.

As is true with any high level design, this document will be updated and refined based on changing requirements.

1.2 Scope

The Application Design outlined in this document builds upon the scope defined in the Requirements phase.

1.3 Document Organization

This document is organized into the following sections:

Introduction Provides information related to this document (e.g. purpose, term
definitions etc.)

Design Overview Describes the approach, architectural goals and constraints, Guiding
principles, Java Design patterns used in design and development

Topology Diagram Describes the various system components and the integration between
them

Application Architecture Describe the application architecture in terms of different layers of
application. Description of the presentation layer, business layer, data
access layer and resource layer and their relationship to each other.

Object Model Describes the conceptual representation of the problem domain of an
application that embodies the business rules being automated and is
usually represented with Class diagram

Database Architecture Describes the overall Data model for the screening tool
Assumptions and
Constraints

Details various assumptions made during design and development of the
Online Screening tool

Appendix A Describes Acronyms, Abbreviations, Terms and Definitions
Appendix B Lists all products and tools used in design and development
Appendix C Lists all the configuration files used in implementation
Appendix D Describes the data dictionary

Application Design Document Page 5 of 32

1.4 Audience

The intended audiences for this document are FSSA Stakeholders, the project development teams, technical
architects, database designers, testers and vendors.

1.5 Acronyms, Abbreviations, Terms and Definitions

Please refer to Appendix A for a list of all acronyms and abbreviations.

Technical Design Document Page 6 of 32

2 Design Overview

2.1 Approach

This document is created and extended in multiple phases over the course of the project -

• Requirements Phase - During the Requirements Phase, the initial version of this document is created,
describing the candidate architecture to be validated in the System Design Phase.

• System Design Phase - During the System Design phase, the Evolutionary Prototype is created and this
document is finalized by establishing a sound architectural foundation for the Construction Phase.

• Construction Phase – During the Construction Phase, this document is not expected to change
radically; it is mainly updated to reflect changes in any interface definitions.

• Transition / Training Phase – During the Transition/Training Phase, no further additions or
modifications are made to this document.

2.2 Architectural Goals and Constraints

The overall architecture goals of the system is to provide a highly available and scalable online screening tool for
users of the State of Indiana, to understand what programs or services are available and to determine if they are
potentially eligible for those services.

The Online Screening Tool can be used in two ways -

 To answer questions related to Food Stamps, TANF and Health Coverage services and determine
potential eligibility for any of these programs

 To generate reports based on screening program data for stakeholders

A key Architectural goal is to leverage industry best practices for designing and developing a scalable, enterprise-
wide J2EE application. To meet this goal, the design of the Online Screening Tool will be based on core J2EE
patterns as well as the industry standard development guidelines for building the Online Screening Tool.

2.3 Guiding Principles

Guiding principles provide a foundation upon which to develop the target architecture for the screening tool, in part
by setting the standards and measures that the tool must satisfy. These in turn drive design principles that can be
used to validate the design and ensure that it is aligned with FSSA’s overall Architecture, Design Principles and
Standards.

Some of the guiding principles that will be followed during the Screening tool design and development are outlined
below.

Technical Design Document Page 7 of 32

2.3.1 Scalable
Scalability is the ability of the platform to scale both up and down to support varying numbers of users or
transaction volumes. The application should be able to scale horizontally (by adding more servers) or vertically (by
increasing hardware capacity or software efficiency).

2.3.2 Flexible

Flexibility is the ability of the application to adapt and evolve to accommodate new requirements without affecting
the existing operations. This relies on a modular architecture, which isolates the complexity of integration,
presentation, and business logic from each other in order to allow for the easy integration of new technologies and
processes within the application.

2.3.3 Standards-Based

Portal services will comply with established industry standards. The standards-compliance will not only apply to
application development but also to design, platform/infrastructure and other parts of the Online Screening
application. Examples of standards include HTML, XML, J2EE, and JSP.

2.4 Design Patterns

Design patterns are elements of reusable object oriented software. A design pattern catalog is a repository of design
patterns. Use of such patterns makes the design of an application transparent. These patterns have been used
successfully by developers in their respective fields, and therefore, the pros and cons of the pattern (as well as
implementation issues) are known beforehand. All design patterns are reusable and can be adapted to particular
contexts.

Some of the design patterns which will be used in the design and development of the Online Screening Tool are -

• Front Controller
• Session Façade
• Business Delegate
• Data Access Object
• Value Object

2.4.1 Front Controller

The Front Controller pattern helps to implement a centralized entry point that controls and manages user (screen)
request handling. The controller manages the handling of the request, including invoking security services such as
authentication and authorization, delegating business processing, managing the choice of an appropriate view,
handling errors, and managing the selection of content creation strategies.

2.4.2 Session Facade

The Session Façade pattern (using a session bean as a façade) helps to encapsulate the complexity of interactions
between the business objects participating in a workflow. It manages the business objects, and provides a uniform
coarse-grained service access layer to clients, that expose only the required interfaces.

2.4.3 Business Delegate

The Business Delegate pattern helps to reduce coupling between presentation-tier clients and business services. The
Business Delegate hides the underlying implementation details of the business service, such as lookup and access
details of the EJB architecture.

Technical Design Document Page 8 of 32

2.4.4 Data Access Object

The Data Access Object pattern helps to decouple the session EJB layer from the database thus increasing the
portability of the application.

2.4.5 Value Object

The Value Object design pattern, also known as the Data Transfer Object, efficiently transfers remote, fine-grained
data by sending a coarse-grained view of the data. This design pattern will be used for the communication between
the middle tier and the back end.

2.5 Design Principles

Best practices and design principles will be applied in two main areas –

1) Presentation Services to individual desktops should be uncoupled -

a) Presentation services are delivered to a web browser rather than to custom client software. A range of
modern browsers that support HTML, DHTML, and XML are required.

b) A common look and feel for Online Screening application.
c) Client side JavaScript should be used for validating user input and prevent round trips between the browser

and the server
d) The Online Screening Tool user interface will be designed in such a way that common user interface

functionality will be implemented in a similar manner across the board. Examples of this include –
• A consistent way of capturing date inputs
• A uniform way of displaying informational and error messages to the users
• A uniform way of displaying required and optional fields in the screens.

2) Business Rules should be encoded within the application development framework-

a) Business rules will need to be separated from the presentation and database frameworks
b) Server applications are based on event-based systems. Complex server side event cascades will need to be

supported.
c) Standard frameworks for encoding business rules and events will need to be used.
d) Adoption of a component based framework needs to be considered to promote reuse of information objects.

Technical Design Document Page 9 of 32

3 Topology Diagram

The diagram below provides a illustration of the System Architecture along with various system components that
will be used in architecting the Online Screening Tool -

Fig 1: Topology Diagram

Interaction of software components along with its responsibilities is explained below -

Web Server – Web server is responsible for serving web pages, mostly HTML pages, via the HTTP protocol to
clients. The Web server sends out web pages in response to requests from browsers. A page request is generated
when a client clicks a link on a web page in the browser.

WebSphere Application Server – Application server hosts the Online Screening application and hosts the business
logic and the business model classes of applications. It serves requests for dynamic HTTP web pages from Web
servers.

Oracle 10g Screening Database – Screening database stores the screening data, program and question information,
audit trails of screening application in relational format.

HTTP - Hyper Text Transport Protocol is the communication protocol used to connect to servers on the World
Wide Web. The primary function of HTTP is to establish a connection with a Web server and transmit HTML pages
to the user's browser.

JDBC – Java Database Connectivity is an application program interface (API) specification for connecting
programs written in Java to the data in popular databases. The application program interface lets you encode access
request statements in structured query language (SQL) that are then passed to the program that manages the
database. It returns the results through a similar interface.

XML - A programming language/specification developed by the W3C, for organizing and tagging elements of a
document so that the document can be transmitted and interpreted between applications and organizations.

Technical Design Document Page 10 of 32

4 Application Architecture

Application architecture defines the various components and their interactions in context of a whole system.
Application architecture is the critical software that bridges the architectural gap between the application server and
the application’s business logic, thereby eliminating the complexities and excessive costs of constructing, deploying
and managing distributed enterprise applications.
The Online Screening Tool will have a layered application architecture which provides some of the key features
below –

STRUCTURE: Organizing applications along business-level boundaries and not technical boundaries
SPEED & FLEXIBILITY: Making application changes through configuration and not programming
CONTROL: Modifying, extending or overwriting any architectural element.
REUSE: Achieving greater reusability and integration by loosely coupling application logic to
infrastructure.

At a conceptual level, they represent distinct and cohesive aggregations of functionality. The Online Screening Tool
design is based on a tiered approach. “A tier is a logical partition of the separation of concerns of the system. Each
tier is assigned its unique responsibility in the system. We view each tier as logically separated from one another.
Each tier is loosely coupled with the adjacent tier.” The Online Screening Tool architecture can be represented in the
following layers illustrated by the diagram below:

Fig 2: Application Architecture Overview

4.1 Presentation and Content Layer

The Client Tier represents the point at which data is consumed by the system’s users which include online users as
well as external systems.

Technical Design Document Page 11 of 32

4.1.1 Presentation Layer
A standard Internet Browser such as Internet Explorer is the primary client for the online Screening application.
HTML pages are delivered to the client browser by the Screening application upon a user request. The Web Pages
also include JavaScript functions where applicable. If JavaScript is turned-off, server-side validations are performed
to ensure all validations are met. The Web Pages of the Screening application will conform to the American
Disability Act, U.S. Section 508.

4.1.2 Content Layer

The content layer as the name signifies is the front-end information layer that the end-user interacts with. Data-to-
content conversion and Content-to-data conversion are the two primary responsibilities of this layer. Any
application that is created will use the common framework components to implement the primary responsibilities
using the technology that seem most appropriate for that application. Choice of technology for this layer would
range from plain HTML to a Java-HTML combination to a smart applet or an application.

4.2 Business Objects Layer

The Business layer will implement the business rules for the application. It will host the business service
components as well as business objects (BO). These Business Services include Enterprise Java Beans and the BO’s
include the dependent JAVA classes that will provide service API’s to the business rules and operations required by
the application. Business components are software units, and process business logic.

The business components will implement the following:

 Business rules, such as calculations and validations

 Interfaces between the user interface and the resource layer

The business logic layer will run under the “Application Server” environment. Application Servers provide support
for transaction control, thread management and other run-time services that make application development much
simpler and more reliable. Business components are generally computation-intensive. They will use Data Access
objects (DAO) to communicate with the database. The Business layer will constitute of:

 Java Beans and Java Classes: Java Beans are used to manage the data flow between the layers. Java
classes on the other hand are simple java objects that provide utilities to the application. They may also
contain business logic and provide other supporting services

 Enterprise Java Beans (EJB): Enterprise Java Beans is the server-side component architecture of the
J2EE standard. The EJB’s house the business components and reside on the application server. There
are two types of Enterprise Java Beans:

o Session EJBs: Within Session EJBs there are two sub-types – Stateful Session Beans and
Stateless Session Beans. These components are typically used to process business logic
and commonly referred to as business service components.

o Entity EJBs: are used as a persistence mechanism. Entity beans also consist of two types
– Container managed persistence or Bean managed persistence. Entity EJBs are
mentioned here only for completeness, they will however not be used in the design of the
Online Screening Tool due to performance concerns. Plain-Old-Java-Objects (POJOs)
will be used in the form of Data Access Objects (DAOs) to perform persistence and as
such is a preferred approach to persistence.

Technical Design Document Page 12 of 32

4.3 Data Access Layer

Data Access Objects using Java Database Connectivity (JDBC) will manage the interface to the database.
Persistence can be complex in large applications using protocols like JDBC. Neither the client nor the business
component needs to be aware of this complexity. Moreover there are many forms of storage from databases, to flat
files. Decoupling the persistence logic from the business components and client allows for a flexible, easy to
maintain application. The Data Access Object (DAO) pattern allows for the abstraction of the persistence from the
business component. The Data Access Object manages the connection to the data source to obtain and store data. It
encapsulates all access to the data store.

4.4 Resource Layer

The resource layer includes the underlying resources that the application uses to deliver its functionality. This
includes using a Database and file system to persist information.

4.5 Common Applications Framework

4.5.1 Design Principles

The Common Application Framework components provide utility classes that are used across the application. The
framework components provide the other application components with certain base functionality that is required for
the other components to function.

4.5.2 Reference Table Architecture

An important framework module is the Reference Table Architecture. The Reference Table Architecture allows for
easy administration of the application by allowing for simple database updates for adding new programs or
questions to the Online Screening Tool. The Reference Tables employ a generic design that allows for various data
elements to be cached at application startup. The Reference Table components provide a mechanism to access all
information stored within the Reference Tables and make it available to any component within the application.
Caching of the data at application startup allows for all the reference data to be accessible in-memory, saving
multiple trips to the database. The Reference Table Architecture enables the relatively simple process of adding new
programs and questions to the application.

4.5.3 Question Engine

The framework also consists of the Question Engine which is a key component of the Dynamic Screen Builder
discussed above. It is the question engine determines what questions should be displayed to the user depending on
the previous input provided by the user. To facilitate the dynamic generation of questions the Question Engine
determines the dependency between the questions and accordingly determines what questions are required to be
answered by the user. For example, if an individual is a female and is over ‘x’ years of age then the pregnancy
question should be displayed to the user.

4.5.4 Rules Engine

The Rules Engine is utilized for processing declarative business rules and is loaded into memory on Application
Startup. The Screening related session beans call the Rules Engine manager to process the declared business rules
based on user’s input. Any additional questions that need to be validated as part of the screening application need to
be added to the corresponding decision tables which are excel spreadsheets.

Technical Design Document Page 13 of 32

4.6 Rules Engine Design

All the business rules related to Screening application will be defined in MS-Excel spreadsheet. A conversion utility
converts the Decision Tables to XML.

Upon initialization of the system, the Decision Tables and the Entity Description Dictionaries are loaded into Java
Structures. The Decision Tables are converted into binary trees, with condition nodes defining the branches in the
trees, and Action Nodes defining the leaves. The Entity Description Dictionaries define each possible Entity by type
(Individual, Case, etc.) and their possible attributes (age, adult, edg_groups (eligibility determination groups), etc.).

In order to run the Rules Engine for the data in a particular case, an EntityFactory is acquired which allows the data
loading program to populate the Entities for that case. The XML for the Entity Description Dictionary defines these
Entities, which roughly equate to the tables in the database of cases. The EntityFactory allows the data loader to
create instances of the entities defined in the XML (like the case, each individual, the relationship objects that define
the relationships between individuals, etc.). Once all of the Entities have been created, and their attributes defined,
the main DecisionTable is executed.

Once that DecisionTable returns, the rules engine has completed its evaluations and changes. The data writer then
queries the appropriate attributes on the entities, and writes these values back to the database.

For more information regarding Rules Engine, please refer to the Rules Engine Use Case (Determine Potential
Eligibility UC-SC-06).

Technical Design Document Page 14 of 32

Fig 3: Rules Engine Design

Underlying technology for Rules Engine application are Visual basic, Java, XML parsers like Xerces and Xalan,
XML and XSLT.

Rules cannot be changed when the application is running. If Rules have to be changed, it is necessary to change
Excel spreadsheet and reload the XML file to Application server’s memory again.

4.7 Screening Sequence of Events

In this section we detail the significant interactions between the major components for the online screening module
from a user’s click to executing business rules using the rules engine. Below is a high level logical sequence
diagram depicting the significant interactions within the Screening application.

Note: The Sequence Diagram below is only a logical representation of the significant interactions of the system and
may not directly map to the physical interactions of the system.

Technical Design Document Page 15 of 32

Fig 4: Screening Sequence of events

Technical Design Document Page 16 of 32

4.7.1 User

The user is any authenticated and authorized user of the Online Screening Tool application. The user could be a
public user or an employee of an agency.

4.7.2 JSP

The Java Server Pages (JSPs) are the dynamically generated web pages that a logged-in user interacts with. On the
click of a button on the web page, a user triggers a series of actions that are executed.

4.7.3 Controller Servlet
The controller servlet is primarily responsible for receiving an HTTP request when the user clicks a button on the
web page. The servlet’s service method responds to a user’s click in the form of an HTTP request.

4.7.4 Service Controller

Since the user is completing a Screening application and does not require the user’s state to be maintained, the
controller invokes the appropriate Business Service Session Bean. The Service Controller is also responsible for
determining which page the user is forwarded to next. Since there is no dynamic scheduling of pages required based
on the user’s input the Driver is not invoked. Instead the service controller directly invokes the appropriate stateless
session bean associated with the screening module.

4.7.5 Session Bean
The Business Service Stateless Session Beans act as a session façade for the screening module and call the
underlying rules engine to process the business rules based on the user’s input.

4.7.6 Screening Manager

The screening manager invokes the Rules Engine to process the declarative business rules.

4.7.7 Rules Engine

The Rules Engine is used for processing declarative business rules. It is loaded on application startup and is invoked
in-memory by the screening manager. The Rules Engine’s executeDT() method invokes the decision tables that are
in-memory and performs the validations specified in the tables.

4.8 Package Structure View

Package structure depicts the various packages used in Screening application and relationship among them.

Technical Design Document Page 17 of 32

«integration»
messaging

«integration»
tpi

«Framework»
validator

«validation»
specialsituations

«validation»
dependency

«validation»
data

«validation»
business

«web»
jsp «web»

controller

«Framework»
driver

«Framework»
rules engine

«Framework»
referencetables

«business»
rules

«web»
customtags

«integration»
persistence

«Framework»
questionengine

«domain»
entities

«business»
services

Fig 5: Package Structure View

Above is a high-level UML component diagram highlighting the logical package dependencies between the various
components of the validation service. The package classifications depicted in the above diagram are only a logical
representation and will differ from the physical implementation. Detailed explanation of packages used in the Online
Screening Tool is explained below.

Technical Design Document Page 18 of 32

JSP: This package includes all the Java Server Pages that have developed for the online application which includes
both Screening and Intake. The JSPs form the View of the Screening tool and constitutes the primary user interface
of the application.

Custom Tags: Custom tags define declarative, modular functionality that can be reused by any JSP page. Tag
libraries reduce the necessity to embed large amounts of Java code in JSP pages by moving the functionality of the
tags into tag implementation classes. In the Screening application we have designed and developed the question tag
which given the question attributes displays a question or a set of questions on a JSP.

Controller: The controller package contains the Controller servlet among other components whose primary purpose
is to provision a dialog with the user. The components within this package determine what pages to display next
based on user interaction. This package is used by both the Screening and Intake components of the application.

Reference Table: The Reference Table package contains the components that provide the Table-driven features of
the application. For example, if new programs need to be added to screening or intake, simple additions to the
database tables is all that is required. On application startup the reference tables are cached in memory and utilized
by various application components to perform business services.

Rules Engine: The Rules Engine package contains all components that provide the Rules Engine functionality. It
contains components to transform the decision tables to validate business rules used primarily for the screening
component of the application.

Question Engine: The Question Engine package contains the components that facilitate the dependency validations.
The question Engine also determines which questions appear on the user’s screen.

Business Services: The Services package includes the actual validation service which acts as a façade that calls the
underlying validation framework to perform the requisite business validations.

Business Rules: The rules package contains the business objects, simple java objects that encapsulate the calls to
the data access objects and perform any additional business rules.

Validation: The validation package includes the validation framework which is utilized for business validations. It
includes the aforementioned business, dependency, special situations and data validators.

4.9 Object Model

Object Model is the description of the structure of the objects in a system including their identity, relationships to
other objects, attributes, and operations.

Technical Design Document Page 19 of 32

Object Model for Screening application consist of one or more classes, events, functions, interfaces, methods,
namespaces, objects, and properties. Object Model for Rules Engine and Question Engine is depicted below.
Detailed Object Model will be submitted at the end of Construction Phase.

4.9.1 Question Engine

Fig 6: Question Engine

4.9.2 Rules Engine

Technical Design Document Page 20 of 32

Debugger

Debugger()
getIgnoreBadXML()
setIgnoreBadXML()
isDebugOn()
debug()
debug()
debug()
debug()
debug()
debug()
debug()
setDebugMode()
setDebugLevel()
setTrace()
setTraceFilePath()
CloseTraceFile()
getDate()
setCaseNum()
setCaseNum()
writeToTraceFile()
setCaseToTrace()
getCasePermission()
setCaseOffForTrace()
setTraceOff()
getCaseList()
main()
setFilePart()
setExtraTraceInfo()

(from debugger)

ExternalTableLookUp

ExternalTableLookUp()
getRefTableValueBetween()
main()

(from debugger)

RulesException

INTENTIONAL : int = 0
iExceptionCategory : int

RulesException()
RulesException()
RulesException()
RulesException()

(from debug...

DecisionTableData

DecisionTableData()
getActionpfStrs()
getActions()
getActionStrs()
getActionTable()
getConditionpfStrs()
getConditions()
getConditionStrs()
getConditionTable()
newDecisionTable()
setActionpfStrs()
setActionTable()
setComments()
setConditionpfStrs()
setConditionTable()
setDescription()
setIpad_id()
setPurpose()

(from dec isiontable)

DTNode

DTNode()
execute()
getNo()
getYes()
setNo()
setYes()
verify()

(from dec isionta...)

IRList

size()
addTo()

get()
addTo()

(from interprete...)

ActionNode

ActionNode()
ActionNode()
execute()
getNo()
getYes()
setNo()
setYes()
verify()

(from decisiontable)

ConditionNode

ConditionNode()
ConditionNode()
execute()
getNo()
getYes()
setNo()
setYes()
verify()

(from dec isiontable)

yesNodenoNode

IRObject

rOperator : String
rInteger : String
rFloat : String

rBigDecimal : String
rArray : String
rString : String

rBoolean : String
rDictionary : String

rName : String
rEntity : String
rList : String

rRelation : String
rTime : String

rDecisionTable : String

booleanValue()
doubleValue()
longValue()

isExecutable()
charValue()

toUpperChar()
bigDecimalValue()

equals()
execute()

print()
rarrayValue()

getExecutable()
getNonExecutable()

stringValue()
timeValue()

RTimeValue()
toString()

type()
verify()
postfix()

(from interpre...

actions[]

condition

IRUserObject

execute()
postfix()

(from interpre...

RUserObject

RUserObject()
execute()
postfix()
toString()

(from interpreter)

uo

IEntity

getID()
getIRObject()

getEntityType()
populate()
populate()
populate()
populate()
populate()
populate()
populate()
populate()

print()
toString()
verify()

isReadOnly()
isDefined()
getType()

(from genericent...

IEntityFactory

destroy()
print()

createEntity()
dictpush()

executeDT()
getRBoolean()
getRBoolean()

getRList()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRString()
getRTime()

knownType()
getRFloat()

createRUserOP()
lookupDictStack()

setTraceFile()
setCaseNum()
getCategory()

(from genericent...

IRulesDirectory

getRulesDirectory()
getEntityFactory()
getDecisionTables()

(from genericent...

DecisionTable
(from dec isiontable)

executionTree

condtions[]actions[]conditions[]

Yytoken

sReturn : String

Yytoken()
toString()

(from genericent...

EHash

EHash()
destroy()

(from generice...)

Entity

type : String
id : int

destroy()
longValue()
isExecutable()
getID()
Entity()
Entity()
getValues()
copyValuesFrom()
equals()
getAttribute()
getAttributeType()
getIRObject()
getEntityType()
getValueList()
getExecutable()
getNonExecutable()
populate()
populate()
print()
postfix()
putAttribute()
putAttribute()
putPrimitive()
putValue()
stringValue()
timeValue()
toString()
type()
getAttributes()
verify()
setReadOnly()
isReadOnly()
isDefined()
getType()
nextEntity()
populate()
populate()
populate()
populate()
populate()
populate()
populateLookUpType()

(from genericent...

-attributes-values

next

DTstatistics

DTstatistics()
countAction()
countCondition()
getActionCnt()
getConditionCnt()
getDTCnt()
getErrorCnt()
resetStats()
setErrorcntLimit()
addUndefined()
comment()
getErrorReport()
getFileName()
report()
setFileName()

(from dec isiontable)

RulesDirectory

limit : int = 100
catagories[] : String
createDateStamps[] : String
state : int
lastkey : int
names : HashMap

RulesDirectory()
getRulesEngineState()
getCreateStamp()
getDecisionTables()
getEntityFactory()
getInstance()
getProperties()
getRulesDirectory()
initialize()
loadDecisionTables()
loadDecisionTables()
loadEDD()
lookup()
lookupAndAdd()
reset()
resetDT()
resetEDD()
setCreateStamp()

(from genericent...

dts[]

-$rd

DecisionTableLex

getQuotedNumber()
newCondition()
resetConditions()
conditionDescription()
conditionPostfix()
conditionColumn()
conditionValue()
resetActions()
newAction()
actionDescription()
actionPostfix()
actionColumn()
actionValue()
yy_unpack()
yy_refill()
yyclose()
yystate()
yybegin()
yycharat()
yylength()
yy_ScanError()
yypushback()
DecisionTableLex()
DecisionTableLex()
newDecisionTableLex()
println()
print()
getText()
getTag()
getQuotedString()
yy_unpack()
yy_unpack_cmap()
yyreset()
yytext()
yylex()

(from dec isiontable)

Engine

Engine()
getExtraEntities()
clearExtraEntities()
incExtraEntities()
setExtraEntities()
destroy()
getTimeMode()
setTimeMode()
Engine()
datapop()
datapush()
dictpop()
dictpush()
execute()
executeAction()
executeCondition()
getCalendar()
getEntityFactory()
getRListAttribute()
initialize()
reset()
setRListAttribute()
ePrint()

(from interpreter)

+datastk[]

+dictstk[]

EntityFactory

hmAllAttributes : HashMap
arrEntityName[] : String
keys[] : Object
catagory : String
currentid : int
names : HashMap
dtName : String
eddCreateTimeStamp : String

destroy()
print()
pushEntities()
EntityFactory()
EntityFactory()
buildEntities()
createEntity()
createEntity()
createEntity()
createEntity()
dictpush()
dictpush()
executeDecisionTable()
executeDT()
firstEntity()
getDTstatistics()
getEngine()
getEntities()
getEntityNames()
getNames()
getParseStringKeys()
getParseStrings()
getRBigDecimal()
getRBoolean()
getRBoolean()
getRList()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRObject()
getRString()
getRTime()
getType()
knownType()
lookup()
newEntity()
setParseStr()
getRFloat()
lookupDictStack()
createRUserOP()
setTraceCreateDate()
setTraceFile()
setCaseNum()
getCategory()
getRDecisionTable()
replaceAll()
replaceParseStr()
setCurrentDT()
getCurrentDT()
setCreateTimeStamp()
getEDDCreateTimeStamp()

(from genericent...

-entities-parseStrings

-rulesDirectory

-engine

-head

-dtstatistics

efs[]

ef

-entityFactory

IDecisionTable

clearAllMarks()
markTable()
testMark()
execute()
execute()

getTableName()
load()

lookup()
newDecisionTable()

setActionPostfixStrs()
setActions()

setActionStrs()
setActionTable()
setComments()

setConditionPostfixStrs()
setConditions()

setConditionStrs()
setConditionTable()
setExecutionTree()

setIpad_id()
setPolicyReference()

setPurpose()
setTableName()

setTableNumber()
verify()

(from dec isionta...

-decisionTable
DecisionTreeLoader

resetActions()
resetConditions()
DecisionTreeLoader()
actionDescription()
actionPostfix()
actionValue()
buildTable()
compile()
compile()
conditionDescription()
conditionPostfix()
conditionValue()
getNode()
initialize()
parseAction()
parseCondition()
setComments()
setIpad_id()
setPolicyReference()
setPurpose()
setTableNumber()

(from dec isiontable)

dtLoader

-decisionTable

Technical Design Document Page 21 of 32

Fig 7: Rules Engine

Technical Design Document Page 22 of 32

5 Application Implementation

The Application Deployment Structure is shown below. Screening application will be deployed as EAR (Enterprise
Archive) file using ANT build scripts.

Directory Structure:

 EAR
J2EE applications are packaged as an Enterprise Archive file with .ear
extension. EAR file is jar file with .ear extension. Web components and EJB
components part of an application will be packaged within an ear file.

 JAR Java Archive is used to package java libraries and EJB components

 WAR J2EE Web applications are packaged as WAR (Web ARchive) with .war
extension.

Diagrammatic layout of Screening deployment structure is shown below –

Fig 8: Screening Directory Structure for Deployment

Technical Design Document Page 23 of 32

6 Database Architecture

The Online Screening Tool will use Oracle 10g Database as its repository.

Information and data that need to be stored in Screening Relational database will be determined based on
discussions with FSSA Stakeholders and IT staff and also during Design and Development phases of the project.

6.1 Data Model

Data Model is a method for describing data structures and a set of operations used to manipulate and validate that
data. Data Model for the Online Screening application is as shown below -

Fig 9: Data Model for Screening tool

Technical Design Document Page 24 of 32

6.2 Tables

Screening Database Schema will broadly have three categories of tables -

1. Screening Tables – Tables used for screening, storing questions, possible answers and metadata
information - QUESTION, QUEST_CONSTRUCT, QUEST_VALIDATOR,
HELP_KEYWORDS, SCR_QUES_REQ, APPLICATIONPROGRAMS, SCR_GENERAL,
SCR_HOUSHOLD, SCR_INDIVIDUAL, SCR_RELATIONSHIPS, SCR_FINANCIAL, and
SCR_RESULTS.

2. Admin Tables– Tables used for the managing reference data - RT_TABLE,
RT_FIELD_DOMAIN, RT_FIELD, RT_FIELD_VALUES

3. Framework tables – Tables used for Page display – FW_PAGE, FW_PAGE_ACTIONS

Detailed Schema design along with data model and field definition will be determined during the ongoing phases.
All the table definitions will be documented in the Data Dictionary document (found in Appendix D of this
document).

6.3 Reporting Solution

The Online Screening Tool Reports will be generated off the Screening Database using SQL queries as illustrated in
the diagram below. Some of the sample reports that will be generated out of the application are number of users
using the screening application, screening application pass /fail ratio, etc. The data in the SCR_GENERAL and
SCR_RESULTS tables will be stored for each screening application.

Technical Design Document Page 25 of 32

Fig 10: Reporting Architecture

Technical Design Document Page 26 of 32

7 Assumptions and Constraints

While the guiding principles establish the general values that the target architecture should consider, a number of
assumptions were made about both the infrastructure and general direction for technology.

Assumptions and Constraints:

User Acceptance Test / System Acceptance Test Environment will be available for performing Usability
testing, User Acceptance testing, Installation & Configuration testing and Performance Testing

General Architecture principles based on past experiences and Deloitte’s Best practices & methodologies
will be used in designing the solution

The basic TCP/IP (HTTP) protocol will be the only one used to access the application

The web browser will be the primary client used by employees and public users

Technical Design Document Page 27 of 32

Appendix A: Acronyms, Abbreviations, Terms and Definitions

API Application Program Interface

BO Business Object

DAO Data Access Object

DHTML Dynamic Hypertext Markup Language
DMZ De-Militarized Zone – Term for the portion of the network between the

external Internet and the internal private network. The DMZ is
protected from the outside by a Firewall.

DSB Dynamic Screen Builder

EAR Enterprise Archive
EDG Eligibility Determination Group
EJB Enterprise JavaBeans
GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

LAN Local Area Network – Communications network confined to the same
physical building.

SMTP Simple Mail Transport Protocol – Standard method of delivering
internet email messages

J2EE Java Enterprise Edition

JAR Java Archive

JCA Java Connector Architecture

JDBC Java Database Connectivity

JRE Java Runtime Environment

JSP Java Server Pages

JVM Java Virtual Machine

POJO Plain Old Java Object

SQL Structured Query Language

UML Unified Modeling Language

WAR Web Archive

XML Extensible Markup Language

XSLT Extensible Style Language Transformation

Technical Design Document Page 28 of 32

Appendix B: Products & Tools

The following software components will be utilized in the Online Screening Tool architecture. New versions of
software may be released during the development of the system. The implementation of these new versions will be
evaluated on an individual basis in determining if and when they will be implemented. Cross compatibility issues
must be addressed before implementing any new versions of software products.

Software/Tool Version Source Description

J2SDK 1.4.2_08 http://java.sun.com Java SDK for API
J2EE 1.3 http://java.sun.com Java Enterprise Edition for

Enterprise services
Ant 1.6.5 http://www.apache.org To Build and Deploy for

Development
Oracle Driver 10g http://www.oracle.com JDBC Driver to connect to SQL

Server database
Oracle 10g Client 10g http://www.oracle.com

Oracle Server Client software

WinCVS 1.2 http://www.cvs.org Version Control client
CCD Framework 2.0 N/A J2EE application Framework

Generator for generating Cargo,
Collections and DAO

JBoss 4.0.2 http://www.jboss.org Runtime for CCD Framework

Infrastructure Software/Tool Version Source Description

Java JDK 1.4.2_08 http://java.sun.com Java Runtime for Portal and
Application Server

WebSphere Application Server 5.1.1 http://ibm.com WebSphere as Application Server
IBM HTTP Webserver 1.3.28 http://www.ibm.com Frond-end Web server
Oracle 10g 10g http://www.oracle.com Oracle Server for database

persistence
CVSNT 2.5.01 http://cvshome.org Version Control tool for

Repository
VB Rules Generator 2.0 N/A MS-Excel spreadsheet to XML

Rules Convertor

http://java.sun.com/
http://java.sun.com/
http://www.apache.org/
http://www.oracle.com/
http://www.oracle.com/
http://www.cvs.org/
http://www.jboss.org/
http://java.sun.com/
http://ibm.com/
http://www.ibm.com/
http://www.oracle.com/
http://cvshome.org/

Technical Design Document Page 29 of 32

Appendix C: Configuration files

Below are some of key configuration files used in Online Screening Tool -

Application Configuration File

Below are three key application configuration files -

a) web.xml - The Web application descriptor provides the application server with
information about the Web resources in the application.

b) application.xml - The application.xml file is the deployment descriptor for Enterprise
Application Archives. The file is located in the META-INF subdirectory of the application
archive

c) ejb-jar.xml - The EJB deployment descriptors contain structural and application assembly
information for an enterprise bean. The ejb-jar.xml file is based on the deployment
descriptors found in Sun Microsystems's ejb.jar.xml file.

Technical Design Document Page 30 of 32

Appendix D: Data Dictionary

Attached is data dictionary for the Online Screening Tool –

TABLE_NAME TABLE COMMENTS COLUMN_NAME DATA_TYPE DATA
LENGTH COLUMN COMMENTS

SCR_HOUSEHOLD Household level information SCR_ID NUMBER NBR_SCR_ID_SEQ
SCR_HOUSEHOLD Household level information RENT_AMT NUMBER 6
SCR_HOUSEHOLD Household level information SW_UTILITIES VARCHAR 1
SCR_GENERAL HH statistical information SCR_ID NUMBER NBR_SCR_ID_SEQ
SCR_GENERAL HH statistical information CDE_USER VARCHAR 3
SCR_GENERAL HH statistical information CDE_LOCATION VARCHAR 3
SCR_GENERAL HH statistical information CDE_LANGUAGE VARCHAR 2
SCR_GENERAL HH statistical information DTE_START DATETIME
SCR_GENERAL HH statistical information SCR_NUM_PPL NUMBER 2
SCR_GENERAL HH statistical information DTE_END DATETIME
SCR_INDIVIDUAL Individual information SCR_ID NUMBER NBR_SCR_ID_SEQ
SCR_INDIVIDUAL Individual information INDV_ID NUMBER NBR_INDV_ID_SEQ
SCR_INDIVIDUAL Individual information INDV_NAME VARCHAR 15
SCR_INDIVIDUAL Individual information NUM_AGE NUMBER 3
SCR_INDIVIDUAL Individual information CDE_INDV_GENDER VARCHAR 1
SCR_INDIVIDUAL Individual information SW_BLIND VARCHAR 1
SCR_INDIVIDUAL Individual information SW_DISABLED VARCHAR 1
SCR_INDIVIDUAL Individual information SW_MEDICARE_RCVD VARCHAR 1
SCR_INDIVIDUAL Individual information SW_PREGNANT VARCHAR 1
SCR_INDIVIDUAL Individual information NPCT_INDV_ID NUMBER NBR_INDV_ID_SEQ
SCR_INDIVIDUAL Individual information SW_CHILDREN NUMBER 1
SCR_FINANCIAL Financial information INDV_ID NUMBER NBR_INDV_ID_SEQ
SCR_FINANCIAL Financial information CDE_FIN_TYPE VARCHAR 3

Technical Design Document Page 31 of 32

SCR_FINANCIAL Financial information CDE_FIN_SUBTYPE VARCHAR 2
SCR_FINANCIAL Financial information FIN_AMT NUMBER 7
SCR_FINANCIAL Financial information CDE_PERIOD VARCHAR 2
SCR_RELATIONSHIPS Relationship information INDV_ID NUMBER NBR_INDV_ID_SEQ
SCR_RELATIONSHIPS Relationship information INDV_ID_REF NUMBER NBR_INDV_ID_SEQ
SCR_RELATIONSHIPS Relationship information CDE_RELATIONSHIP VARCHAR 2
SCR_RESULTS Screening Results SCR_ID NUMBER NBR_SCR_ID_SEQ
SCR_RESULTS Screening Results INDV_ID NUMBER NBR_INDV_ID_SEQ
SCR_RESULTS Screening Results CDE_PROG_TYPE VARCHAR 8
SCR_RESULTS Screening Results PROG_CATEGORY VARCHAR 5
SCR_RESULTS Screening Results SW_RESULT VARCHAR 1
SCR_RESULTS Screening Results CDE_REASON VARCHAR 5

	Revision History
	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Document Organization
	1.4 Audience
	1.5 Acronyms, Abbreviations, Terms and Definitions

	
	2 Design Overview
	2.1 Approach
	2.2 Architectural Goals and Constraints
	2.3 Guiding Principles
	2.3.1 Scalable
	2.3.2 Flexible
	2.3.3 Standards-Based

	2.4 Design Patterns
	2.4.1 Front Controller
	2.4.2 Session Facade
	2.4.3 Business Delegate
	2.4.4 Data Access Object
	2.4.5 Value Object

	2.5 Design Principles

	3 Topology Diagram
	4 Application Architecture
	4.1 Presentation and Content Layer
	4.1.1 Presentation Layer
	4.1.2 Content Layer

	4.2 Business Objects Layer
	4.3 Data Access Layer
	4.4 Resource Layer
	4.5 Common Applications Framework
	4.5.1 Design Principles
	4.5.2 Reference Table Architecture
	4.5.3 Question Engine
	4.5.4 Rules Engine

	4.6 Rules Engine Design
	4.7 Screening Sequence of Events
	4.7.1 User
	4.7.2 JSP
	4.7.3 Controller Servlet
	4.7.4 Service Controller
	4.7.5 Session Bean
	4.7.6 Screening Manager
	4.7.7 Rules Engine

	4.8 Package Structure View
	4.9 Object Model
	4.9.1 Question Engine
	4.9.2 Rules Engine

	5 Application Implementation
	6 Database Architecture
	6.1 Data Model
	6.2 Tables
	6.3 Reporting Solution

	7 Assumptions and Constraints
	Appendix A: Acronyms, Abbreviations, Terms and Definitions
	Appendix B: Products & Tools
	Appendix C: Configuration files
	
	Appendix D: Data Dictionary

