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Abstract—Analyzing the changes in volatility is an important
aspect in financial data analysis leading to effective estimation
of risk and discovering underlying causes of such changes.
While there is a rich literature in estimating implied and
stochastic volatility in financial time series using traditional
econometric methods, the application of machine learning
methods such as sparse regression with temporal smoothness
constraints is still in its infancy. In this paper, we propose a
sparse, smooth regularized regression model to infer the volatil-
ity of the data while explicitly accounting for dependencies
between different companies. Using real stock market data, we
construct dynamic time varying graphs for different sectors of
companies to further analyze how the volatility dependency
between companies within sectors vary over time. We also
show how our model captures the fluctuations in volatility over
different economic conditions such as financial crisis periods.
Further, based on these regression estimates we show how the
proposed model assists in discovering useful correlations with
external factors such as oil price, inflation, S&P500 index and
also with various domestic trend indices.

Keywords-Sparse Regression; Temporal Causal Graphs;
Stock Market Analysis

I. INTRODUCTION

Volatility based modeling has been widely used in fi-
nancial data analysis since volatility is a major indicator
of market stability. During periods of financial turbulence,
the volatility of the stocks rises and thus indicates an
anomaly to the common behavior. Analysis of causality
between different stocks has also played an important role
in identifying major market players and finding the cause
and effect relationships among stocks, leading to insights in
market dependency structure. Observing how these causal
structures change over time could offer an alternative view
of the underlying dynamics of stock price movements.

Tests of Granger causality [1], [2] have been used as a
standard in analyzing linear systems of time series. Given
two time series, Granger causality asserts whether one of the
sequences is helpful in predicting the other by comparing the
variance of the residuals of the linear predictive model. This
model is based on the principle of time series forecasting
that, cause must precede its effect in time. Later, it was also
brought in to light that analyzing second order causality or
causality in variance is more applicable to understanding
the dynamics of the financial time series.The introduction
of Auto Regressive Conditional Heteroskedasticity (ARCH)

models by Engle in1982 [3] became pre-dominant in mod-
eling such variance in financial time series. There have been
various tests for causality such as Cross Correlation Function
(CCF) Test, which estimates the cross-correlations between
standardized (squared) residuals estimated for Generalized
Auto Regressive Conditional Heteroskedasticity (GARCH)
models [4]. When moving from univariate to multivariate
GARCH models the number of parameters to be learnt
begins to increase thus adding to the complexity of the
estimation. In order to mitigate this problem, there have
been attempts to develop regularization techniques based
on penalized likelihood, which achieve sparse parameter
estimation for multivariate GARCH model [5]. While these
sparse models produce more succinct representation of de-
pendencies they typically do not take into account their
global structure. To address this problem, network-based
methods such as Exponential Random Graph Models with
smoothness constraints [6] and hidden Markov Random
Field regression framework to model causal graph structures
between multiple multivariate time series [7] have been
proposed.

In this paper, we propose to infer causality of the fi-
nancial time series using a sparse linear regression model
with temporal smoothness, which can find the relationships
between multiple variables based on the estimated volatility
of the time series. By conducting this analysis over a
period of time, we can discover how the causality structures
change and hypothesize and assert their dependence on
external events such as periods of financial crisis, economic
booms, changes in sources such as oil price fluctuation and
other economic indices. Although our proposed model also
estimates the sparse regression coefficients based on the
GARCH volatilities as proposed by Sun and Lin [5], unlike
them we seek to induce temporal smoothness of sparse de-
pendency estimates, while removing within-company local
trends. We also analyze how the estimated causal struc-
tures relate to standard sector categories (e.g., Consumer
Durables, Financials, Information technology) based on the
US Global Industry Classification Standard, often used in
financial decision making processes.

The rest of the paper is organized as follows. Section 2
provides the methods and learning framework of our model
with GARCH based modeling and sparse regression based



causality analysis. In addition we describe the dynamic
graph generation over time based on the regression esti-
mates, which leads to analysis of causality structure changes
within standard sectors. Section 3 describes the experimental
settings and the results of our proposed model for real
world stock market data on US based companies. Finally,
we conclude our paper by discussing the advantages of our
proposed model and summarizing the findings of causality
from the real stock market data based analysis.

II. CAUSALITY MODELING

We propose to use a traditional Autoregressive Condi-
tional Heteroskedasticity Model with a modification to its
noise generating process combined with sparse regression
to model the causality between different time series as
explained in detail in the following sections.

A. Modified Auto Regressive Conditional Heteroskedasticity
Model

In traditional econometric models, conditioning is often
stated as regressions of the future values of the variables on
the present and past values of the same variable. Using this
generic model for autoregressive processes, the future value
of a variable is regressed on the past and present values of
the same variable where the noise is considered as Gaussian
noise. Then the errors are modeled as a stochastic process
where the variance is forecast as a moving average of past
error terms.
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In equation 1, xwk,t refers to the normalized log return at
time point t for a stock for company k inside a time window
w. Time window w is the sliding interval [ts, ts + ∆T − 1]
where ts = 1 + (w − 1) ∗ Ts, w = 0, 1, 2, .....,W , ∆T
is the window length and Ts is the offset step between
successive windows. We typically set ∆T to span one month
and choose the offset Ts = 1. The autoregressive terms are
defined as awk,i for each lag i and each past observation of
the normalized log returns for company k within that time
window w is defined as xk,t−i. An important aspect of model
(1) is the fact that the noise variance (σwk,t)

2 is not stationary
but, being modeled as the moving average of all errors, εwk,t
from the model for each company k for time window w.

Instead of the above formulation for modeling noise vari-
ance, we want to estimate the noise variance of a company
to be dependent not only on its own past volatilities, but
also on past volatilities of the other companies. The intuition
behind this modification is to find how well the volatility of
a single company could be explained by the volatility of

other companies combined together. Therefore, we extend
the volatility term estimated in model (1) to depend on other
companies volatilities as shown in equation 2.
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Equation 3, is the same formulation of equation 2 expressed
with a concise set of variables, where βwk corresponds to
the the vector of all bwkj and bwlj coefficient terms and V w

k

represents the concatenated error terms defined in equation
2. Then we use sparse regression based method which is
explained in the section which follows, to model these
volatility based dependencies.

B. Sparse Linear Regression with smoothness constraint

Traditional Granger causality estimates the dependency
between a pair of time series using linear regression although
it does not facilitate sparsity in the dependency structure.
Another way to find the dependency between different data
points is to use sparse linear regression. Linear regression is
an approach to modeling the relationship between a scalar
dependent variable and one or more explanatory variables,
which in this case are one stock’s volatility and all other
stocks’ volatilities respectively. By introducing the sparsity
constraint as in Lasso regression [8], we are ensuring that
the coefficients of some of the explanatory variables are
turned to zero, resulting in a sparse estimation. We are also
imposing a smoothness constraint which ensures that the
changes in coefficients between consecutive time windows
is minimal, which enables smooth transition between con-
secutive time windows of estimation between w and w− 1.

The constrained optimization problem of the training
model for the sparse regression with smoothness constraints
is shown in 4. The following optimization process has to be
repeated independently for each company k ∈ S in order
to learn the total dependency structure for each company’s
volatility based on the other companies’ volatilities.
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C. Estimation and Learning

To estimate and learn the βwk coefficients for each com-
pany k for time window w specified in equation 4, Algorithm
1 is used and it defines how we tune the regularization terms
(λsp)

w and (λsm)w that corresponds to sparsity regulariza-
tion term and smoothness regularization term respectively.
This learning process has to be repeated independently for
each company k ∈ S to learn the total model for all
companies in the data set, S. It should be noted that in



order to avoid over-fitting, we use cross validation. For a
given window w, we separate the data points in to n equal
sub windows and use 75% of the sub windows as training
data and 25% of the sub windows as validation data.

Algorithm 1 Estimation and Learning
1: for w = 1 to W do
2: if w == 1 then
3: Set (Λsp)wk = [λ1, λ2, .., .., .., .., λm]
4: else if w == 2 then
5: Set (Λsm)wk = [γ1, γ2, .., .., .., .., γn]
6: else
7: Set (Λsp)wk = [(λsp)

(w−1)∗
k ±∆d]

8: Set (Λsm)wk = [(λsm)
(w−1)∗
k ±∆e]

9: end if
10: for m = 1 to length(Λsp)wk do
11: for n = 1 to length(Λsm)wk do
12: Estimate βwk,(m,n) for all possible (λsp)

w
k and

(λsm)wk based on the training sub windows
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w
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13: end for
14: end for
15: For the validation sub window inside large window
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16: Set βwk = (βwk,(m,n))
∗

17: Set (λsp)
w
k = (Λsp)wk [m])∗

18: Set (λsm)wk = (Λsm)wk [n])∗

19: end for

Initially, we set the (Λsp)
w
k and (Λsm)wk as a vector of

possible equidistant (λwsp)k sparsity regularization parame-
ter values and (λwsm)k smoothness regularization parameter
values respectively as shown in lines 2 - 5 in the algorithm
1. Then we estimate the corresponding βwk,(m,n) for each
window w for each company k for each pair of sparseness
and smoothness values for the training sub windows using
the proposed model, as shown in lines 10-14. Then using
the validation sub window we find which pair of sparseness
and smoothness regularization values best fit the validation
data which minimizing the residual of the proposed model
as depicted in line 5. Then we set the current best estimated
coefficients from the proposed model and the best pair of
regularization parameters as the final estimations for the
current window w (lines 16-18 in Algorithm 1). Although
the learning is independently done for each company k
for each window w, we need to ensure that smoothness
is preserved in the estimated coefficients from the sparse
regression model within consecutive windows w and w− 1
for each company k. In order to facilitate this, we ensure the

range of the best smoothness regularization term estimated
at the previous window (λw−1sm )∗ is close to the smoothness
regularization term estimated for the current window (λwsm)∗

, by only varying the latter value centered around the previ-
ous value in close proximity as shown in line 8 of algorithm
1. We are also ensuring that the estimated coefficients in
consecutive time windows have a close sparsity constraint by
varying the best estimated (λw−1sp )∗ at the previous window
only by a small margin as shown in line 7 of the Algorithm
1. We continue this estimation and learning model until we
have covered all the windows, w ∈W for each company k.

D. Dynamic Graph Construction

Once we estimate the lasso coefficients for each time
window for each company βwk , we use those to construct
the adjacency matrix for all companies for each window
w, Aw

k×k, where each entry in the matrix corresponds to
Aw
k,∗ = |βwk |. For each time window, the graph nodes

represent the companies and the edges between two nodes
represent the magnitude of the coefficients estimated by the
above model. The directionality of the edges correspond to
which company’s volatility is influencing the other com-
pany’s volatility. All the coefficient weights with magnitude
≥ η (where η is typically set to 10−5) are considered as
edge weights in the graph and any coefficient value below
this threshold is set to zero.

III. EXPERIMENTAL RESULTS

In this section, we provide a detailed experimental analy-
sis of real world stock market data using the proposed model.

A. Data

We use the historical stock market data for 990 publicly
listed companies from the US Stock Exchange. For this
analysis we are focusing on historical log returns of the
stocks for the period of November 2006 to August 2009.
We also obtain US Global Industry Classification Standard
(US GICS) to categorize the companies into different sectors
in order to provide sector wide analysis. The US GICS
sectors used in this analysis are Consumer Durables (CD),
Consumer Staples (CS), Energy (EN), Financials (FN),
Health Care (HC), Industrials (IN), Information Technology
(IT), Materials (MT), Telecommunications (TS) and Utilities
(UT).

B. Within Sector Analysis

In this analysis, we perform dependency analysis within
each sector based on the US GICS categorization. Then we
construct month-long windows of daily log returns of each
company. Using a sliding window approach, the time win-
dows are lagged by 1 trading day at each iteration. For each
company a GARCH model is estimated for each window and
the volatilities are estimated. Then we model the dependency
between each stock’s volatility with respect to other stocks’
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Figure 1. The sum of estimated residuals Rw
k for all companies within

each sector over the time horizon of Nov 2006 - Aug 2009

volatility within the same sector using the proposed sparse,
smooth regression model. We use sparse regression weights
to construct time-varying dependency graphs, which we use
to visualize the changing interactions among companies. In
order to estimate the proposed sparse, smooth regression
model, we used the SLEP: Sparse Learning Package [9].

To avoid over-fitting, we use cross validation in our
learning process as mentioned in section 2 under the learning
algorithm. For a given window w (a monthly-long window
comprising of volatilities estimated for each trading day
within that month), we separate the data points in to 4
equal sub windows, where each sub window corresponds to
one week’s volatilities estimated from the GARCH model.
Then we use the first 3 sub windows as training data and
the final sub window as the validation data. We set initial
(Λsp)

w
k = [0.001, ...., 0.01], 50 equally spaced values and at

each subsequent window set the (λsp)
w
k to 5 equally spaced

values centered around the best (λsp)
w−1
k estimated from

the previous iteration. The same process is followed for
smoothness parameter, (λsm)wk after the second time win-
dow. This ensures that our smoothness regularization term
and the sparsity regularization term are smoothly changed
within consecutive time windows (as shown in lines 7 and
8 in algorithm 1). Residual value in volatility estimation
of company k, Rwk is defined as the predictive error of
that company’s volatility in terms of other companies’
volatilities, Rwk = ||(σwk,t)2 − β

w
k (V wk )||22. These residual

values provide an insight to how and when our proposed
model finds it hard to estimate the dependency between each
company’s volatility between each sector. After summing
up the residual values estimated for all the companies from
each sector for each time point, we analyzed those plots as

shown in Figure 1. We noticed across all sectors that within
the period of June 2008 to January 2009, the residuals of
the estimation was higher compared to other months during
the period of late 2006 to late 2009. This phenomena is
inline with the high fluctuations of volatilities in the stock
market due to the financial crisis that occurred in the US in
mid 2008. This increase in residual values estimated based
on our proposed model, show that within such periods of
economic turmoil, it is hard to predict the volatility of a
company given other companies volatilities which is inline
with the stock market behavior at that period. Figure 2 shows
directed causal graphs estimated for all 10 sectors over the
full 3 year period. The graph edges, E(k, l) correspond to
the total influence between two companies, k and l over
the entire time span w ∈ W , i.e. E(k, l) =

∑
w |βwk,l|.

Darker edges indicate high weights/dependencies between
those node pairs whereas, lighter edges suggest weaker
interactions. The size of node corresponds to the sum of
all estimated residual values over the entire 3 years. The
directionality represent the influence from node to node. It
can be observed that the estimated graphs are sparse and
certain companies in the sector are highly influenced by a
typically small subset of the other companies in each sector.

C. Influence of External Factors

It is also interesting to analyze how the external economic
factors such as the inflation rate, oil price affect the volatility
of the stock market. Our analysis of within sector residual
graphs in the previous section shown in Figure 1 highlighted
their co-occurence with events such as the crisis in June
2008 to January 2009. This gives us an indication that
this change in estimation might be due to other external
influences that drive the stock market volatility to be higher
within this period of economic downturn. Therefore, we
collected daily/monthly data for oil prices, US inflation rate
and S&P 500 index as external economic factors for the
period in concern from 2006-2009. We also analyze how
the search trends based on Google domestic trend indices
(www.google.com/finance/domestic trends) would have an
impact on our estimations.

We summed up the residual values estimated from our
proposed model for each month and whitened the data. We
applied the same process to external factors related data
to make both sequences comparable (since some of the
external factors were available as monthly data). Since the
external factor time sequences and the volatility estimated
time sequences are not aligned, we aligned them using
Dynamic Time Warping (DTW) method. We then calculated
the correlation between each pair of aligned sequences.
Figure 3 shows the estimated correlation weights for each
corresponding pair of sector volatilities vs. the external fac-
tors in consideration. We find that all the sectors’ volatilities
are highly positively correlated with the oil prices and the
US inflation rate, while most of the sectors show low or
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Figure 2. All sector residual value based graphs - First row (from left to right): Consumer Durables (CD), Consumer Staples (CS), Energy (EN),
Financials (FN), Health Care (HC). Second row (from left to right): Industrials (IN), Information Technology (IT), Materials (MT), Telecommunications
(TS), Utilities(UT).

Figure 3. Correlation Coefficient between each sector’s residuals estimated from the proposed model (in y-axis) and each external factor(27 Google
Domestic trend indices, Oil price, US Inflation rate and S&P 500 index values are along x-axis)

Figure 4. Leading and Lagging sequences for each sector’s residuals estimated from the proposed model (in y-axis) and each external factor(27 Google
Domestic trend indices, Oil price, US Inflation rate and S&P 500 index values are along x-axis). Here the positive values depicted by the range of colors
from yellow to red means that the sector’s volatility residual sequences are lagging and the external factor’s sequences are leading while the negative values
shown in colors ranging from blue to green show that the external factor sequences are lagging the sector residual sequences are leading.
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Figure 5. Top: Monthly Residuals for sector CD and Inflation rate, Bottom:
Alignment path from DTW for the two sequences.

moderate positive correlation between S&P 500 index. Since
inflation rate and oil prices are major economic indicators
that affect stock market behavior it can be argued that when
the rates of inflation and oil prices rise, the volatility of the
stock market also increases since most of the companies
operations would be influenced by those factors. Major con-
stituents of S&P 500 index are coming from sectors such as
Consumer Staples (CS), Energy (EN), Financials (FN) and
Information Technology (IT) for 500 selected companies.
We can observe that our volatility fluctuations are moder-
ately positively correlated with S&P 500 index in sectors
such as Energy (EN) and Consumer Durables (CD). When
considering the correlations with Google’s domestic trend
indices, we observe that the trends such as Airline Travel
(AT), Business and Industrials (BI), Financial Planning (FP)
and Unemployment (UN) are highly correlated with most
of the sector volatilities. This shows that people tend to
search for terms belonging to those trend categories online,
which correlate with the economic condition of the country
within a period where the volatility of the stock market is
high. This implies that when the domestic trend indices in
the areas such as those mentioned above are searched more
frequently, that particular time period would be followed by
a stock market instability and higher volatility.

In addition to asserting the level of correlation between
within sector dependencies and external indicators, it is
also important to discover the temporal causal relationships
among those factors. By analyzing whether an external factor
precedes or lags the sector behavior we can assert the
direction of causal dependency. For example, when we look
at the normalized monthly inflation rate and the normalized
monthly sector residuals we can observe which sequence is
leading and how the leading/lagging sequences change over
time. Such an example of leading/lagging sequences are il-
lustrated in Figure 5 for one sector, Consumer Durables (CD)
and the monthly inflation rate, along with the alignment path
after using DTW method. Further, we provide analysis of
leading and lagging sequences based on estimating the total

distance from the DTW aligned paths to the diagonal path
for each pair of sequences and illustrate this in Figure 4.
The red squares indicate positive sum of distances between
volatility of a sector and the corresponding external factor
alignment path which implies that the volatility of sectors
are lagging and the external factors are leading. Areas with
blue squares imply that the volatility of sectors are leading
and the external factors are lagging. Discovering that oil
price, inflation rate and unemployment (UN) are leading the
volatility sequences for almost all sectors show that these
economic indicators and trends would be useful in predicting
that the volatility of stock market is going to rise in the
future.

IV. CONCLUSION

We have proposed a sparse, smooth regression framework
and learning algorithm to estimate the dependency structure
between volatility of a time series model. We have applied
this framework to real world stock market data and have
shown that one could discover meaningful insights about the
volatility structure and how it changes over time for different
sectors of companies. We have also analyzed the influence
of external economic factors and user search query trends
on the stock market behavior.
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