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I work in logic and computation. My research in logic has involved formalizing finite combina-
torics in the logical theory of Bounded Arithmetic (a weak subtheory of Peano Arithmetic). Within
computation I have focused on computability over the real numbers, in particular on Computable
Analysis and its relationship to analog models of computation. In addition, I have a strong interest
in combinatorics, and plan to work in this area. I now discuss these 3 areas (preprints of my papers
are available at my web site: http://www.math.ist.utl.pt/∼ojakian/).

Real Computation

My work in real computation (joint with Manuel Campagnolo) has involved showing that functions
of Computable Analysis can be characterized by alternative analog-time models of computation.
Numerous models of computability for functions on the real numbers have been developed, each
one making a claim to which set of functions over the real numbers are computable. In Computable
Analysis a standard discrete Turing Machine is used to define a notion of computation: A function
over the reals is computable (in the sense of Computable Analysis) if from rational approximations
to the real number inputs, a rational approximation to the output can be computed using a Turing
Machine (see Grzegorczyk [10], Ko [11] and Weihrauch [19]). In Computable Analysis standard
Turing Machines are used and so time proceeds in a discrete step by step manner. In the analog
models, time proceeds in a continuous (or analog) manner. The analog model we have focused
on is Moore’s Real Recursive Functions [13]. These classes of functions are defined analogously to
the recursive functions over the naturals: The recursive functions are a function algebra defined
by presenting some simple basic functions, and closing the functions under some operations, one
of which is primitive recursion. In the case of the Real Recursive Functions, we begin with basic
functions over the reals and replace the primitive recursion operation by an operation which allows
us to solve a differential equation. There are a number of goals motivating our research. On the
one hand, these kinds of results are interesting because they show that two different approaches
to computation (discrete-time versus analog-time) can be made equivalent. More broadly, these
results can be seen as part of a search for a Church-Turing thesis in the context of real computation.
For computation on the natural numbers there is an agreed upon notion of what it means to be
computable, in a large part due to the impressive fact that a number of different models of com-
putation yield the same set of functions. Developing similar correspondences for real computation
should be significant. A final motivation for this work is the possibility of shedding light on the
questions of classic discrete computational complexity theory. Costa and Mycka [9] have work that
provides an analytic condition (e.g. a statement about differential equations) that is equivalent to
P = NP. One of our hopes is to obtain useful analytic conditions equivalent to classic complexity
questions; then techniques from analysis could conceivably be used to answer questions in discrete
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complexity theory.
There has been significant recent work relating analog models to Computable Analysis. Bournez

and Hainry [1] characterized the C2 (twice continuously differentiable) elementary computable func-
tions of Computable Analysis with a function algebra (i.e. using the model of Real Recursive Func-
tions). This work was extended to the computable functions of Computable Analysis in Bournez
and Hainry [2]. We have extended the work on the elementary computable functions, obtaining
alternative proofs, removing the restriction to C2, and showing that fewer basic functions suffice
(see our papers [7] and [5]). We have also proved a variant of their result for the computable func-
tions of Computable Analysis, providing what we believe is a simpler function algebra. We replace
two of their operations by the single natural operation allowing us to solve an ordinary differential
equation (see our paper [6]).

Significantly, our work introduces new general techniques which we call approximation and
lifting (see our papers [4] and [7]). Suppose CA is the set of functions of Computable Analysis
and FA is some set of functions given by a function algebra; our goal is to show CA = FA. In
the previous work of others, a central part of the proof involved showing that a Turing Machine
computing a function in CA can be simulated in the class FA. We avoid such a simulation, by
starting with a classic result on the naturals that says something analogous to CA = FA. Then
through a somewhat involved lifting process, we show how the result on the naturals can be lifted up
to the rationals and eventually up to the reals. A fundamental aspect of this approach is the notion
of an approximate equality, a property that can hold between classes of functions. Supposing
A and B are classes of functions, we define an approximate equality, writing it as A ≈ B; it
means (roughly) that any function from one class can be approximated by some function from
the other class. Our proof roughly proceeds as follows: First we show a sequence of approximate
equalities CA ≈ H1 ≈ . . . ≈ Hk ≈ FA, for some well-chosen intermediary classes of functions Hi,
then by transitivity of the approximate equality we conclude CA ≈ FA, and finally, because the
approximation is sufficiently strong, we obtain our goal of CA = FA.

The advantages of our approach are that on the one hand it provides a method of proof which
avoids a Turing Machine simulation, while on the other hand it should be much more amenable
to generalization and broader application. A number of the lemmas used in our proof about
the elementary computable functions are general (i.e. not pertaining specifically to elementary
computability), and others should be generalizable. The approximation notions provide a unifying
language for discussing various results in the area (see our paper [5]). Under the right conditions,
the approximate equality is transitive, thus allowing us to break down one approximate equality
into a series of smaller and more natural tasks (as was illustrated above in showing CA ≈ FA).

Real Computation: Future Work and Work in Progress

We have work in progress that improves our results in [6], which characterized the C2 functions of
Computable Analysis. We believe we can remove the restriction to the C2 functions. We also hope
to simplify the set of basic functions.

A big goal for us and others working in this area is to pursue the characterization of weaker
complexity classes of Computable Analysis, since the work to date has only pertained to elementary
computability or stronger. We have work in progress on the counting hierarchy. It would also be
interesting to consider classes such as the the polynomial-space functions, and of course, eventually
the polynomial-time functions.
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In all our work, we intend to use our techniques of approximation and lifting, but we would like
to push this even further by working out a general theory. In our work to date, parts have been
general and other parts of it have been specific to the various applications. Though we claim it is
amenable to generalization, a general theory has not yet been worked out. We have begun to work
in this direction, expecting it to facilitate future work of this sort, at least being a very useful tool,
and possibly providing a deep connection between computability on the naturals and computability
on the reals.

Bounded Arithmetic

My work in Bounded Arithmetic (concerning Bounded Arithmetic see Buss [3] and Kraj́ıček [12])
has involved formalizing various probabilistic methods and linear algebra methods (with a focus on
applications to Ramsey theory); by formalizing I mean to carry out a proof formally in some logical
theory (my work appears in my paper [15] and my thesis [14]). My work is a kind of Reverse
Mathematics for finite combinatorics. The goal of Reverse Mathematics is to categorize mathe-
matical theorems according to the axioms needed to prove them (see Simpson [17]). Theories of
Bounded Arithmetic are of just the right strength for the formalization of much of finite combi-
natorics due to the connection between Bounded Arithmetic and the polynomial-time hierarchy.
Typically, what combinatorialists call constructive proofs exhibit the object explicitly (for example,
explicitly giving the coloring of the edges of a graph) and can be formalized with polynomial-time
reasoning, i.e. in a particular weak subtheory of Bounded Arithmetic. What are referred to as
non-constructive proofs, such as probabilistic arguments, often naturally formalize in a stronger
subtheory of Bounded Arithmetic, i.e. corresponding to reasoning higher up in the polynomial-
time hierarchy. Thus, Bounded Arithmetic provides a hierarchy of theories of the correct strength
to make formal the distinctions sometimes made informally by combinatorialists.

Combinatorics using probabilistic and linear algebra methods typically cannot formalize into
Bounded Arithmetic in a direct manner because the objects used in the proof are “too large.” My
formalizations have involved coming up with alternative proofs. Often we can then isolate some
particular axiom, say A, as being of particular importance in proving formally some theorem T, or
in other words, we can say that axiom A implies theorem T. In some cases I have shown that A is
necessary to prove T by showing a reversal, namely, that the theorem T implies the axiom A.

A linear algebraic proof typically works by associating the combinatorial objects in question
with vectors and then extracting information from the fact that the vectors are linearly independent.
A question asked by combinatorialists is whether certain claims proved using linear algebra can
be proved without it. I have begun to answer this kind of question, introducing a linear algebra
axiom related to linear independence (related to the work of Soltys and Cook [18] on theories of
feasible linear algebra). I show that some results formalize in a weak theory of Bounded Arithmetic,
along with this axiom, while other results can be formalized with alternative proofs that avoid this
axiom. In these latter cases, I show that instead, a simpler axiom called the weak pigeonhole
principle (WPHP) suffices (it essentially states that there does not exist an injective function from
a set of size 2n to a set of size n). Furthermore I show that the WPHP is necessary, since I can
obtain reversals, namely that not only are the combinatorial facts implied by the WPHP, but the
facts also implies the WPHP.

A probabilistic method proof works by considering an appropriate probability space and ex-
tracting combinatorial information (usually the existence of some object, like a graph coloring)
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from a probabilistic property. A probabilistic method proof, such as lower bounds on Ramsey
numbers, cannot be formalized directly in Bounded Arithmetic because it refers to exponentially
large sets like the sample space. My work in formalizing various arguments of this kind has avoided
the direct argument, instead using the WPHP to simulate the argument. For the case of lower
bounds on Ramsey numbers I have not obtained reversals (and I expect this would be difficult).
However, in the case of upper bounds on Ramsey numbers, Pudlák [16] essentially showed that
the WPHP implies a Ramsey upper bound, while I obtained a reversal, showing that the Ramsey
upper bound implies the WPHP. I observed a similar equivalence between a stronger Ramsey upper
bound statement and the axiom stating that the exponential function is defined everywhere.

Bounded Arithmetic: Future Work and Work in Progress

I intend to develop more fully the programme of Reverse Mathematics for finite combinatorics in
Bounded Arithmetic, formalizing proofs and proving reversals. To facilitate this programme, I have
work in progress on a type theory for Bounded Arithmetic (with a different motivation than Cook
and Urquhart’s feasible type theory [8]; e.g. while my functions are intended to be finite, and thus
more typical for Bounded Arithmetic, their functions are intended to be infinite). When working
in a first-order Bounded Arithmetic, the objects of the theory are natural numbers, thus forcing us
to code all our mathematical objects as numbers. Once completed, my type theory should allow us
to avoid these cumbersome codings of combinatorial objects (such as an edge coloring of a graph),
letting us work more directly with the objects in question. This should be particularly useful
in very weak subtheories of Bounded Arithmetic where the coding becomes non-trivial. Another
motivation for my type theory is an attempt to unify the various theories of Bounded Arithmetic
(i.e. there are first, second, and third order theories), so that rather than proving similar results in
each system (such as the polynomial witnessing claim), the result could be proven once and for all
in the type theory, with the analogous results in the other theories following as relatively simple
corollaries.

Combinatorics

Though I do not have research directly in combinatorics, my work in logic (as discussed in the
previous section) touches on Ramsey theory, probabilistic methods, and linear algebra methods. I
am very interested in complementing this work in logic with work which lies more directly within
combinatorics. During my short post-doc in Prague, I worked on constructive Ramsey lower bounds,
though I stopped this research when I moved to a new post-doc position in Lisbon. I am now very
serious about getting back into combinatorics. While I generally like all areas of combinatorics, I
have begun reading in Ramsey theory and in design theory.
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