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If someone separated the art of counting and measuring and weighing from all the 
other arts, what was left of each of the others would be, so to speak, insignificant.  

 -Plato

Many years ago I was struggling with trying to adapt to a new market and a new time frame. I 
had opened a brokerage account with a friend of mine who was a former floor trader on the 

Chicago Board of Trade (CBOT), and we spent many hours on the phone discussing philosophy, 
life, and markets. Doug once said to me, “You know what your problem is? The way you’re trying to 
trade … markets don’t move like that.” I said yes, I could see how that could be a problem, and then 
I asked the critical question: “How do markets move?” After a few seconds’ reflection, he replied, “I 
guess I don’t know, but not like that”—and that was that. I returned to this question often over the 
next decade—in many ways it shaped my entire thought process and approach to trading. Everything 
became part of the quest to answer the all-important question: how do markets really move?

Many old-school traders have a deep-seated distrust of quantitative techniques, probably feeling 
that numbers and analysis can never replace hard-won intuition. There is certainly some truth to that, 
but traders can use a rigorous statistical framework to support the growth of real market intuition. 
Quantitative techniques allow us to peer deeply into the data and to see relationships and factors that 
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might otherwise escape our notice. These are powerful techniques that can give us profound insight 
into the inner workings of markets. However, in the wrong hands or with the wrong application, they 
may do more harm than good. Statistical techniques can give misleading answers, and sometimes can 
create apparent relationships where none exist. I will try to point out some of the limitations and 
pitfalls of these tools as we go along, but do not accept anything at face value. 

Some Market Math
It may be difficult to get excited about market math, but these are the tools of the trade. If you 

want to compete in any field, you must have the right skills and the right tools; for traders, these core 
skills involve a deep understanding of probabilities and market structure. Though some traders do 
develop this sense through the school of hard knocks, a much more direct path is through quantify-
ing and understanding the relevant probabilities. It is impossible to do this without the right tools. 
This will not be an encyclopedic presentation of mathematical techniques, nor will we cover every 
topic in exhaustive detail. This is an introduction; I have attempted a fairly in-depth examination of a 
few simple techniques that most traders will find to be immediately useful. If you are interested, take 
this as a starting point and explore further. For some readers, much of what follows may be review, 
but even these readers may see some of these concepts in a slightly different light. 

The Need to Standardize
It’s pop-quiz time. Here are two numbers, both of which are changes in the prices of two assets. 

Which is bigger: 675 or 0.01603? As you probably guessed, it’s a trick question, and the best answer 
is: “What do you mean by bigger?” There are tens of thousands of assets trading around the world, at 
price levels ranging from fractions of pennies to many millions of dollars, so it is not possible to com-
pare changes across different assets if we consider only the nominal amount of the change. Changes 
must at least be standardized for price levels; one common solution is to use percentages to adjust for 
the starting price difference between each asset. 

When we do research on price patterns, the first task is usually to convert the raw prices into a 
return series, which may be a simple percentage return calculated according to this formula:

Percent return 1today

yesterday

price
price

= −

In academic research, it is more common to use logarithmic returns, which are also equivalent to 
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continuously compounded returns. 
 

Logarithmic return log( )today

yesterday

price
price

=

For our purposes, we can treat the two more or less interchangeably. In most of our work, the 
returns we deal with are very small; percentage and log returns are very close for small values, but 
become significantly different as the sizes of the returns increase. For instance, a 1% simple return 
= 0.995% log return, but a 10% simple return = 9.5% continuously compounded return. Academic 
work tends to favor log returns because they have some mathematical qualities that make them a bit 
easier to work with in many contexts, but the most important thing is not to mix percents and log 
returns. 

It is also worth mentioning that percentages are not additive. In other words, a $10 loss followed 
by a $10 gain is a net zero change, but a 10% loss followed by a 10% gain is a net loss. (However, 
logarithmic returns are additive.)

Standardizing for Volatility
Using percentages is obviously preferable to using raw changes, but even percent returns (from 

this point forward, simply “returns”) may not tell the whole story. Some assets tend to move more, 
on average, than others. For instance, it is possible to have two currency rates, one of which moves an 
average of 0.5% a day, while the other moves 2.0% on an average day. Imagine they both move 1.5% in 
the same trading session. For the first currency, this is a very large move, three times its average daily 
change. For the second, this is actually a small move, slightly under the average. 

It is possible to construct a simple average return measure, and to compare each day’s return to 
that average. (Note that if we do this, we must calculate the average of the absolute values of returns 
so that positive and negative values do not cancel each other out.) This method of average absolute 
returns is not a commonly used method of measuring volatility because there are better tools, but this 
is a simple concept that shows the basic ideas behind many of the other measures. 

Average True Range
One of the most common ways traders measure volatility is in terms of the average range or Av-

erage True Range (ATR) of a trading session, bar, or candle on a chart. Range is a simple calculation: 
subtract the low of the bar (or candle) from the high to find the total range of prices covered in the 
trading session. The true range is the same as range if the previous bar’s close is within the range of 
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the current bar. However, suppose there is a gap between the previous close and the high or low of the 
current bar; if the previous close is higher than the current bar’s high or lower than the current bar’s 
low, that gap is added to the range calculation—true range is simply the range plus any gap from the 
previous close. The logic behind this is that even though the space shows as a gap on a chart, an in-
vestor holding over that period would have been exposed to the price change; the market did actually 
trade through those prices. Either of these values may be averaged to get average range or ATR for the 
asset. The choice of average length is, to some extent, a personal choice and depends on the goals of 
the analysis, but for most purposes, values between 20 and 90 are probably most useful.

To standardize for volatility, we could express each day’s change as a percentage of the ATR. For 
instance, if a stock has a 1.0% change and normally trades with an ATR of 2.0%, we can say that the 
day’s change was a 0.5 ATR% move. We could create a series of ATR% measures for each day and 
average them (more properly, average their absolute values) to create an average ATR% measure. 
However, there is a logical inconsistency because we are comparing close-to-close changes to a mea-
sure based primarily on the range of the session, which is derived from the high and the low. This may 
or may not be a problem, but it is something that must be considered.

Historical Volatility
Historical volatility (which may also be called either statistical or realized volatility) is a good 

alternative for most assets, and has the added advantage that it is a measure that may be useful for 
options traders. Historical volatility (Hvol) is an important calculation. For daily returns:

1

StandardDeviation ln * ,

252

t

t

pHvol annualizationfactor
p

annualizationfactor
−

  
=   

  

=

where p = price, t = this time period, t – 1 = previous time period, and the standard deviation is 
calculated over a specific window of time. Annualization factor is the square root of the ratio of the 
time period being measured to a year. The equation above is for daily data and there are 252 trading 
days in a year, so the correct annualization factor is the square root of 252. For weekly and month 
data, the annualization factors are the square roots of 52 and 12, respectively.

For instance, using a 20-period standard deviation will give a 20-bar Hvol. Conceptually, histor-
ical volatility is an annualized one standard deviation move for the asset based on the current volatil-
ity. If an asset is trading with a 25% historical volatility, we could expect to see prices within +/–25% 
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of today’s price one year from now, if returns follow a zero-mean normal distribution (which they 
do not.)

Standard Deviation Spike Tool
The standardized measure I use most commonly in my day-to-day work is measuring each day’s 

return as a standard deviation of the past 20 days’ returns. I call this a standard deviation spike (or 
SigmaSpike™), and use it both visually on charts and in quantitative screens. Here is the four-step 
procedure for creating this measure:

1. Calculate returns for the price series.
2. Calculate the 20-day standard deviation of the returns.
3. BaseVariation = 20-day standard deviation × Closing price.
4. Spike = (Today’s close – Yesterday’s close) × Yesterday’s BaseVariation.

If you have a background in statistics, you will find that your intuitions about standard devia-
tions do not apply here, because this tools looks at volatility over a short time window; very large 
standard deviation moves are common. Even large, stable stocks will have a few five or six standard 
deviation moves by this measure in a single year, which would be essentially impossible if these were 
true standard deviations (and if returns were normally distributed.) The value is in being able to stan-
dardize price changes for easy comparison across different assets.

The way I use this tool is mainly to quantify surprise moves. Anything over about 2.5σ or 3.0σ 
would stand out visually as a large move on a price chart. After spending many years experimenting 
with many other volatility-adjusted measures and algorithms, this is the one that I have settled on 
in my day-to-day work. Note also that implied volatility usually tends to track 20-day historical vol-
atility fairly well in most options markets. Therefore, a move that surprises this indicator will also 
usually surprise the options market unless there has been a ramp-up of implied volatility before an 
anticipated event. Options traders may find some utility in this tool as part of their daily analytical 
process as well.

Some Useful Statistical Measures
The market works in the language of probability and chance; though we deal with single out-

comes, they are really meaningful only across large sample sizes. An entire branch of mathematics has 
been developed to deal with many of these problems, and the language of statistics contains powerful 
tools to summarize data and to understand hidden relationships. Here are a few that you will find 
useful.



• Adam Grimes

—6—

Probability Distributions
Information on virtually any subject can be collected and quantified in a numerical format, but 

one of the major challenges is how to present that information in a meaningful and easy-to-com-
prehend format. There is always an unavoidable trade-off: any summary will lose details that may 
be important, but it becomes easier to gain a sense of the data set as a whole. The challenge is to 
strike a balance between preserving an appropriate level of detail while creating that useful summary. 
Imagine, for instance, collecting the ages of every person in a large city. If we simply printed the list 
out and loaded it onto a tractor trailer, it would be difficult to say anything much more meaningful 
than “That’s a lot of numbers you have there.” It is the job of descriptive statistics to say things about 
groups of numbers that give us some more insight. To do this successfully, we must organize and strip 
the data set down to its important elements.

One very useful tool is the histogram chart. To create a histogram, we take the raw data and sort 
it into categories (bins) that are evenly spaced throughout the data set. The more bins we use, the 
finer the resolution, but the choice of how many bins to use usually depends on what we are trying to 
illustrate. Figure 1 shows histograms for the daily percent changes of LULU, a volatile momentum 
stock, and SPY, the S&P 500 index. As traders, one of the key things we are interested in is the num-
ber of events near the edges of the distribution, in the tails, because they represent both exceptional 
opportunities and risks. The histogram charts show that the distribution for LULU has a much wider 
spread, with many more days showing large upward and downward price changes than SPY. To a 
trader, this suggests that LULU might be much more volatile, a much crazier stock to trade.

The Normal Distribution
Most people are familiar, at least in passing, with a special distribution called the normal distri-

bution or, less formally, the bell curve. This distribution is used in many applications for a few good 
reasons. First, it describes an astonishingly wide range of phenomena in the natural world, from 
physics to astronomy to sociology. If we collect data on people’s heights, speeds of water currents, or 
income distributions in neighborhoods, there is a very good chance that the data will fit normal dis-
tribution well. Second, it has some qualities that make it very easy to use in simulations and models. 
This is a double-edged sword because it is so easy to use that we are tempted to use it in places where it 
might not apply so well. Last, it is used in the field of statistics because of something called the central 
limit theorem, which is slightly outside the scope of this book. (If you’re wondering, the central limit 
theorem says that the means of random samples from populations with any distribution will tend to 
follow the normal distribution, providing the population has a finite mean and variance. Most of the 
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assumptions of inferential statistics rest on this concept. If you are interested in digging deeper, see 
Snedecor and Cochran’s Statistical Methods [1989].)

Figure 2 shows several different normal distribution curves, all with a mean of zero but with 
different standard deviations. The standard deviation, which we will investigate in more detail short-
ly, simply describes the spread of the distribution. In the LULU/SPY example, LULU had a much 
larger standard deviation than SPY, so the histogram was spread further across the x-axis. Two final 
points on the normal distribution before moving on: Do not focus too much on what the graph of 
the normal curve looks like, because many other distributions have essentially the same shape; do 
not automatically assume that anything that looks like a bell curve is normally distributed. Last, and 
this is very important, normal distributions do an exceptionally poor job of describing financial data. 
If we were to rely on assumptions of normality in trading and market-related situations, we would 
dramatically underestimate the risks involved. This, in fact, has been a contributing factor in several 
recent financial crises over the past two decades, as models and risk management frameworks relying 
on normal distributions failed.

Figure 1 Return distributions for LULU and SPY, 1 June 2009 - 31 December 2010
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Measures of Central Tendency
Looking at a graph can give us some ideas about the characteristics of the data set, but looking 

at a graph is not actual analysis. A few simple calculations can summarize and describe the data set in 
useful ways. First, we can look at measures of central tendency, which describe how the data clusters 
around a specific value or values. Each of the distributions in Figure 2 has identical central tenden-
cy; this is why they are all centered vertically around the same point on the graph. One of the most 
commonly used measures of central tendency is the mean, which is simply the sum of all the values 
divided by the number of values. The mean is sometimes simply called the average, but this is an 
imprecise term as there are actually several different kinds of averages that are used to summarize the 
data in different ways.

For instance, imagine that we have five people in a room, ages 18, 22, 25, 33, and 38. The mean 
age of this group of people is 27.2 years. Ask yourself: How good a representation is this mean? 

Figure 2 Three Normal Distributions with Different Standard Deviations
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Does it describe those data well? In this case, it seems to do a pretty good job. There are about as 
many people on either side of the mean, and the mean is roughly in the middle of the data set. Even 
though there is no one person who is exactly 27.2 years old, if you have to guess the age of a person in 
the group, 27.2 years would actually be a pretty good guess. In this example, the mean “works”, and 
describes the data set well.

Another important measure of central tendency is the median, which is found by ranking the 
values from smallest to largest and taking the middle value in the set. If there is an even number of 
data points, then there is no middle value, and in this case the median is calculated as the mean of the 
two middle data points. (This is usually not important except in small data sets.) In our example, the 
median age is 25, which at first glance also seems to explain the data well. If you had to guess the age 
of any random person in the group, both 25 and 27.2 would be reasonable guesses.

Why do we have two different measures of central tendency? One reason is that they handle 
outliers, which are extreme values in the tails of distributions, differently. Imagine that a 3,000-year-
old mummy is brought into the room. (It sometimes helps to consider absurd situations when trying 
to build intuition about these things.) If we include the mummy in the group, the mean age jumps to 
522.7 years. However, the median (now between 25 and 33) only increases four years to 29. Means 
tend to be very responsive to large values in the tails, while medians are little affected. The mean is 
now a poor description of the average age of the people in the room—no one alive is close to 522.7 
years old! The mummy is far older and everyone else is far younger, so the mean is now a bad guess 
for anyone’s age. 

The median of 29 is more likely to get us closer to someone’s age if we are guessing, but, as in 
all things, there is a trade-off: The median is completely blind to the outlier. If we add a single value 
and see the mean jump nearly 500 years, we certainly know that a large value has been added to the 
data set, but we do not get this information from the median. Depending on what you are trying to 
accomplish, one measure might be better than the other.

If the mummy’s age in our example were actually 3,000,000 years, the median age would still be 
29 years, and the mean age would now be a little over 500,000 years. The number 500,000 in this case 
does not really say anything meaningful about the data at all. It is nearly irrelevant to the five original 
people, and vastly understates the age of the (extraterrestrial?) mummy. In market data, we often deal 
with data sets that feature a handful of extreme events, so we will often need to look at both median 
and mean values in our examples. Again, this is not idle theory; these are important concepts with 
real-world application and meaning.
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Measures of Dispersion
Measures of dispersion are used to describe how far the data points are spread from the central 

values. A commonly used measure is the standard deviation, which is calculated by first finding the 
mean for the data set, and then squaring the differences between each individual point and the mean. 
Taking the mean of those squared differences gives the variance of the set, which is not useful for 
most market applications because it is in units of price squared. One more operation, taking the 
square root of the variance, yields the standard deviation. If we were to simply add the differences 
without squaring them, some would be negative and some positive, which would have a canceling 
effect. Squaring them makes them all positive and also greatly magnifies the effect of outliers. It is 
important to understand this because, again, this may or may not be a good thing. Also, remember 
that the standard deviation depends on the mean in its calculation. If the data set is one for which 
the mean is not meaningful (or is undefined), then the standard deviation is also not meaningful.

Market data and trading data often have large outliers, so this magnification effect may not be de-
sirable. Another useful measure of dispersion is the interquartile range (IQR), which is calculated by 
first ranking the data set from largest to smallest, and then identifying the 25th and 75th percentiles. 
Subtracting the 25th from the 75th (the first and third quartiles) gives the range within which half 
the values in the data set fall—another name for the IQR is the “middle 50”, the range of the middle 
50 percent of the values. Where standard deviation is extremely sensitive to outliers, the IQR is al-
most completely blind to them. Using the two together can give more insight into the characteristics 
of complex distributions generated from analysis of trading problems. Table 1 compares measures of 
central tendency and dispersions for the three age-related scenarios. Notice especially how the mean 
and the standard deviation both react to the addition of the large outliers in examples 2 and 3, while 
the median and the IQR are virtually unchanged.
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Table 1 Comparison of Summary Statistics for the Age Problem
Example 1 Example 2 Example 3

Person 1 18 18 18
Person 2 22 22 22
Person 3 25 25 25
Person 4 33 33 33
Person 5 38 38 38
The Mummy Not present 3,000 3,000,000
Mean 27.2 522.7 500,022.7
Median 25.0 29.0 29.0
Standard Deviation 7.3 1,107.9 1,118,023.9
IQR 3.0 6.3 6.3

Inferential Statistics
Though a complete review of inferential statistics is beyond the scope of this brief introduction, 

it is worthwhile to review some basic concepts and to think about how they apply to market prob-
lems. Broadly, inferential statistics is the discipline of drawing conclusions about a population based 
on a sample from that population, or, more immediately relevant to markets, drawing conclusions 
about data sets that are subject to some kind of random process. As a simple example, imagine we 
wanted to know the average weight of all the apples in an orchard. Given enough time, we might well 
collect every single apple, weigh each of them, and find the average. This approach is impractical in 
most situations because we cannot, or do not care to, collect every member of the population (the 
statistical term to refer to every member of the set). More commonly, we will draw a small sample, 
calculate statistics for the sample, and make some well-educated guesses about the population based 
on the qualities of the sample. 

This is not as simple as it might seem at first. In the case of the orchard example, what if there 
were several varieties of trees planted in the orchard that gave different sizes of apples? Where and 
how we pick up the sample apples will make a big difference, so this must be carefully considered. 
How many sample apples are needed to get a good idea about the population statistics? What does 
the distribution of the population look like? What is the average of that population? How sure can 
we be of our guesses based on our sample? An entire school of statistics has evolved to answer ques-
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tions like this, and a solid background in these methods is very helpful for the market researcher.
For instance, assume in the apple problem that the weight of an average apple in the orchard 

is 4.5 ounces and that the weights of apples in the orchard follow a normal bell curve distribution 
with a standard deviation of 3 ounces. (Note that this is information that you would not know at the 
beginning of the experiment; otherwise, there would be no reason to do any measurements at all.) 
Assume we pick up two apples from the orchard, average their weights, and record the value; then we 
pick up one more, average the weights of all three, and so on, until we have collected 20 apples. (For 
the following discussion, the weights really were generated randomly, and we were actually pretty un-
lucky—the very first apple we picked up was a small one and weighed only 1.07 ounces. Furthermore, 
the apple discussion is only an illustration. These numbers were actually generated with a random 
number generator so some negative numbers are included in the sample. Obviously, negative weight 
apples are not possible in the real world, but were necessary for the latter part of this example using 
Cauchy distributions. (No example is perfect!)) If we graph the running average of the weights for 
these first 20 apples, we get a line that looks like Figure 3.

What guesses might we make about all the apples in the orchard based on this sample so far? 
Well, we might reasonably be a little confused because we would expect the line to be settling in on 

Figure 3 Running Mean of the First 20 Apples Picked Up
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an average value, but, in this case, it actually seems to be trending higher, not converging. Though 
we would not know it at the time, this effect is due to the impact of the unlucky first apple; similar 
issues sometimes arise in real-world applications. Perhaps a sample of 20 apples is not enough to re-
ally understand the population; Figure 4 shows what happens if we continue, eventually picking up 
100 apples.

At this point, the line seems to be settling in on a value, and maybe we are starting to be a little 
more confident about the average apple. Based on the graph, we still might guess that the value is 
actually closer to 4 than to 4.5, but this is just a result of the random sample process—the sample is 
not yet large enough to assure that the sample mean converges on the actual mean. We have picked 
up some small apples that have skewed the overall sample, which can also happen in the real world. 
(Actually, remember that “apples” is only a convenient label and that these values do include some 
negative numbers, which would not be possible with real apples.) If we pick up many more, the sam-
ple average eventually does converge on the population average of 4.5 very closely. Figure 5 shows 
what the running total might look like after a sample of 2,500 apples.

With apples, the problem seems trivial, but in application to market data there are some thorny 
issues to consider. One critical question that needs to be considered first is so simple it is often over-

Figure 4 Running Mean of the First 100 Apples Picked Up
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looked: what is the population and what is the sample? When we have a long data history on an asset 
(consider the Dow Jones Industrial Average, which began its history in 1896, or some commodities 
for which we have spotty price data going back to the 1400s), we might assume that full history 
represents the population, but I think this is a mistake. It is probably more correct to assume that 
the population is the set of all possible returns, both observed and as yet unobserved, for that spe-
cific market. The population is everything that has happened, everything that will happen, and also 
everything that could happen—a daunting concept. All market history—in fact, all market history 
that will ever be in the future—is only a sample of that much larger population. The question, for risk 
managers and traders alike, is: what does that unobservable population look like? 

In the simple apple problem, we assumed the weights of apples would follow the normal bell 
curve distribution, but the real world is not always so polite. There are other possible distributions, 
and some of them contain nasty surprises. For instance, there are families of distributions that have 
such strange characteristics that the distribution actually has no mean value. Though this might seem 
counterintuitive and you might ask the question “How can there be no average?” consider the ad-
mittedly silly case earlier that included the 3,000,000-year-old mummy. How useful was the mean 
in describing that data set? Extend that concept to consider what would happen if there were a large 

Figure 5 Running Mean After 2,500 Apples Have Been Picked Up (Y-Axis Truncated)
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number of ages that could be infinitely large or small in the set? The mean would move constantly in 
response to these very large and small values, and would be an essentially useless concept.

The Cauchy family of distributions is a set of probability distributions that have such extreme 
outliers that the mean for the distribution is undefined, and the variance is infinite. If this is the way 
the financial world works, if these types of distributions really describe the population of all possible 
price changes, then, as one of my colleagues who is a risk manager so eloquently put it, “we’re all 
screwed in the long run.” If the apples were actually Cauchy-distributed (obviously not a possibility 
in the physical world of apples, but play along for a minute), then the running mean of a sample of 
100 apples might look like Figure 6.

It is difficult to make a good guess about the average based on this graph, but more data usually 
results in a better estimate. Usually, the more data we collect, the more certain we are of the outcome, 
and the more likely our values will converge on the theoretical targets. Alas, in this case, more data ac-
tually adds to the confusion. Based on Figure 6, it would have been reasonable to assume that some-
thing strange was going on, but, if we had to guess, somewhere in the middle of graph, maybe around 
2.0, might have been a reasonable guess for the mean. Figure 7 shows what might happen if we decide 
to collect 10,000 Cauchy-distributed numbers in an effort to increase our confidence in the estimate.

Figure 6 Running Mean for 100 Cauchy-Distributed Random Numbers
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Ouch—maybe we should have stopped at 100. As the sample gets larger, we pick up more very 
large events from the tails of the distribution, and it starts to become obvious that we have no idea 
what the actual, underlying average might be. (Remember, there actually is no mean for this distri-
bution.) Here, at a sample size of 10,000, it looks like the average will simply never settle down—it 
is always in danger of being influenced by another very large outlier at any point in the future. As a 
final word on this subject, Cauchy distributions have undefined means, but the median is defined. 
In this case, the median of the distribution was 4.5—Figure 8 shows what would have happened had 
we tried to find the median instead of the mean. Now maybe the reason we look at both means and 
medians in market data is a little clearer.

Figure 7 Running Mean for 10,000 Random Numbers Drawn from a Cauchy Distribution
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Three Statistical Tools
The previous discussion may have been a bit abstract, but it is important to think deeply about 

fundamental concepts. Here is some good news: some of the best tools for market analysis are simple. 
It is tempting to use complex techniques, but it is easy to get lost in statistical intricacies and to lose 
sight of what is really important. In addition, many complex statistical tools bring their own set of 
potential complications and issues to the table. A good example is data mining, which is perfectly 
capable of finding nonexistent patterns—even if there are no patterns in the data, data mining tech-
niques can still find them! It is fair to say that nearly all of your market analysis can probably be done 
with basic arithmetic and with concepts no more complicated than measures of central tendency and 
dispersion. This section introduces three simple tools that should be part of every trader’s tool kit: 
bin analysis, linear regression, and Monte Carlo modeling.

Statistical Bin Analysis
Statistical bin analysis is by far the simplest and most useful of the three techniques in this sec-

tion. If we can clearly define a condition we are interested in testing, we can divide the data set into 

Figure 8 Running Median for 10,000 Cauchy-Distributed Random Numbers
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groups that contain the condition, called the signal group, and those that do not, called the control 
group. We can then calculate simple statistics for these groups and compare them. One very simple 
test would be to see if the signal group has a higher mean and median return compared to the control 
group, but we could also consider other attributes of the two groups. For instance, some traders be-
lieve that there are reliable tendencies for some days of the week to be stronger or weaker than others 
in the stock market. Table 2 shows one way to investigate that idea by separating the returns for the 
Dow Jones Industrial Average in 2010 by weekdays. The table shows both the mean return for each 
weekday as well as the percentage of days that close higher than the previous day.

Table 2 Day-of-Week Stats for the DJIA, 2010
Weekday % Close Up Mean Return
Monday 59.57% 0.22% 
Tuesday 53.85% (0.05%)
Wednesday 61.54% 0.18% 
Thursday 54.90% (0.00%)
Friday 54.00% (0.14%)
All 56.75% 0.04%

Each weekday’s statistics are significant only in comparison to the larger group. The mean daily return 
was very small, but 56.75% of all days closed higher than the previous day. Practically, if we were to 
randomly sample a group of days from this year, we would probably find that about 56.75% of them 
closed higher than the previous day, and the mean return for the days in our sample would be very 
close to zero. Of course, we might get unlucky in the sample and find that it has very large or small 
values, but, if we took a large enough sample or many small samples, the values would probably (very 
probably) converge on these numbers. The table shows that Wednesday and Monday both have a 
higher percentage of days that closed up than did the baseline. In addition, the mean return for both 
of these days is quite a bit higher than the baseline 0.04%. Based on this sample, it appears that Mon-
day and Wednesday are strong days for the stock market, and Friday appears to be prone to sell-offs.

Are we done? Can the book just end here with the message that you should buy on Friday, sell on 
Monday, and then buy on Tuesday’s close and sell on Wednesday’s close? Well, one thing to remem-
ber is that, no matter how accurate our math is, it describes only the data set we examine. In this case, 
we are looking at only one year of market data, which might not be enough; perhaps some things 
change year to year and we need to look at more data. Before executing any idea in the market, it is 
important to see if it has been stable over time and to think about whether there is a reason it should 
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persist in the future. Table 3 examines the same day-of-week tendencies for the year 2009.

Table 3 Day-of-Week Stats for the DJIA, 2009
Weekday % Close Up Mean Return
Monday 56.25% 0.02% 
Tuesday 48.08% (0.03%)
Wednesday 53.85% 0.16% 
Thursday 58.82% 0.19% 
Friday 53.06% (0.00%)
All 53.97% 0.07%

Well, if we expected to find a simple trading system, it looks like we may be disappointed. In the 
2009 data set, Mondays still seem to have a higher probability of closing up, but Mondays actually 
have a lower than average return. Wednesdays still have a mean return more than twice the average 
for all days, but, in this sample, Wednesdays are more likely to close down than the average day is. 
Based on 2010, Friday was identified as a potentially soft day for the market, but in the 2009 data, it 
is absolutely in line with the average for all days. We could continue the analysis by considering other 
measures and using more advanced statistical tests, but this example suffices to illustrate the concept. 
(In practice, a year is probably not enough data to analyze for a tendency like this.) Sometimes just 
dividing the data and comparing summary statistics are enough to answer many questions, or at least 
to flag ideas that are worthy of further analysis.

Significance Testing
This discussion is not complete without some brief consideration of significance testing, but 

this is a complex topic that even creates dissension among many mathematicians and statisticians. 
The basic concept in significance testing is that the random variation in data sets must be considered 
when the results of any test are evaluated, because interesting results sometimes appear by random 
chance. As a simplified example, imagine that we have large bags of numbers, and we are only allowed 
to pull numbers out one at a time to examine them. We cannot simply open the bags and look in-
side; we have to pull samples of numbers out of the bags, examine the samples, and make educated 
guesses about what the populations inside the bag might look like. Now imagine that you have two 
samples of numbers and the question you are interested in is: “Did these samples come from the same 
bag (population)?” If you examine one sample and find that it consists of all 2s, 3s, and 4s, and you 
compare that with another sample that includes numbers from 20 to 40, it is probably reasonable to 
conclude that they came from different bags. 
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This is a pretty clear-cut example, but it is not always this simple. What if you have a sample that 
has the same number of 2s, 3s, and 4s, so that the average of this group is 3, and you are comparing it 
to another group that has a few more 4s, so the average of that group is 3.2? How likely is it that you 
simply got unlucky and pulled some extra 4s out of the same bag as the first sample, or is it more likely 
that the group with extra 4s actually did come from a separate bag? The answer depends on many 
factors, but one of the most important in this case would be the sample size, or how many numbers 
we drew. The larger the sample, the more certain we can be that small variations like this probably 
represent real differences in the population.

Significance testing provides a formalized way to ask and answer questions like this. Most sta-
tistical tests approach questions in a specific, scientific way that can be a little cumbersome if you 
haven’t seen it before. In nearly all significance testing, the initial assumption is that the two samples 
being compared did in fact come from the same population, that there is no real difference between 
the two groups. This assumption is called the null hypothesis. We assume that the two groups are the 
same, and then look for evidence that contradicts that assumption. Most significance tests consider 
measures of central tendency, dispersion, and the sample sizes for both groups, but the key is that 
the burden of proof lies in the data that would contradict the assumption. If we are not able to find 
sufficient evidence to contradict the initial assumption, the null hypothesis is accepted as true, and 
we assume that there is no difference between the two groups. Of course, it is possible that they ac-
tually are different and our experiment simply failed to find sufficient evidence. For this reason, we 
are careful to say something like “We were unable to find sufficient evidence to contradict the null 
hypothesis,” rather than “We have proven that there is no difference between the two groups.” This is 
a subtle but extremely important distinction.

Most significance tests report a p-value, which is the probability that a result at least as extreme 
as the observed result would have occurred if the null hypothesis were true. This might be slightly 
confusing, but it is done this way for a reason; it is very important to think about the test precisely. 
A low p-value might say that, for instance, there would be less than a 0.1% chance of seeing a result 
at least this extreme if the samples came from the same population, if the null hypothesis were true. 
It could happen, but it is unlikely, so, in this case, we say we reject the null hypothesis, and assume 
that the samples came from different populations. On the other hand, if the p-value says there is a 
50% chance that the observed results could have appeared if the null hypothesis were true, that is 
not very convincing evidence against it. In this case, we would say that we have not found significant 
evidence to reject the null hypothesis, so we cannot say with any confidence that the samples came 
from different populations. In actual practice, the researcher has to pick a cutoff level for the p-value 
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(.05 and .01 are common thresholds, but this is only due to convention.) There are trade-offs to both 
high and low p-values, so the chosen significance level should be carefully considered in the context 
of the data and the experiment design. 

These examples have focused on the case of determining whether two samples came from dif-
ferent populations, but it is also possible to examine other hypotheses. For instance, we could use a 
significance test to determine whether the mean of a group is higher than zero. Consider one sample 
that has a mean return of 2% and a standard deviation of 0.5%, compared to another that has a mean 
return of 2% and a standard deviation of 5%. The first sample has a mean that is 4 standard deviations 
above zero, which is very likely to be significant, while the second has so much more variation that 
the mean is well within one standard deviation of zero. This, and other questions, can be formally 
examined through significance tests. Return to the case of Mondays in 2010 (Table 15.2), which 
have a mean return of 0.22% versus a mean of 0.04% for all days. This might appear to be a large dif-
ference, but the standard deviation of returns for all days is larger than 1.0%. With this information, 
Monday’s outperformance is seen to be less than one-fifth of a standard deviation—well within the 
noise level and not statistically significant.

Significance testing is not a substitute for common sense and can be misleading if the experiment 
design is not carefully considered. (Technical note: The t-test is a commonly used significance test, 
but be aware that market data usually violates the t-test’s assumptions of normality and indepen-
dence. Nonparametric alternatives may provide more reliable results.) One other issue to consider 
is that we may find edges that are statistically significant (i.e., they pass significance tests), but they 
may not be economically significant because the effects are too small to capture reliably. In the case 
of Mondays in 2010, the outperformance was only 0.18%, which is equal to $0.18 on a $100 stock. 
Is this a large enough edge to exploit? The answer will depend on the individual trader’s execution 
ability and cost structure, but this is a question that must be considered.

Linear Regression
Linear regression is a tool that can help us understand the magnitude, direction, and strength of 

relationships between markets. This is not a statistics textbook; many of the details and subtleties of 
linear regression are outside the scope of this book. Any mathematical tool has limitations, potential 
pitfalls, and blind spots, and most make assumptions about the data being used as inputs. If these 
assumptions are violated, the procedure can give misleading or false results, or, in some cases, some 
assumptions may be violated with impunity and the results may not be much affected. If you are 
interested in doing analytical work to augment your own trading, then it is probably worthwhile to 
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spend some time educating yourself on the finer points of using this tool. Miles and Shevlin (2000) 
provide a good introduction that is both accessible and thorough—a rare combination in the liter-
ature. 

Linear Equations and Error Factors
Before we can dig into the technique of using linear equations and error factors, we need to re-

view some math. You may remember that the equation for a straight line on a graph is:
y = mx + b
This equation gives a value for y, to be plotted on the vertical axis, as a function of x, the number 

on the horizontal axis; x is multiplied by m, which is the slope of the line; higher values of m pro-
duce a more steeply sloping line. If m = 0, the line will be flat on the x-axis, because every value of 
x multiplied by 0 is 0. If m is negative, the line will slope downward. Figure 9 shows three different 
lines with different slopes. The variable b in the equation moves the whole line up and down on the 
y-axis. Formally, it defines the point at which the line will intersect the y-axis where x = 0, because the 
value of the line at that point will be only b. (Any number multiplied by x when x = 0 is 0.) We can 
safely ignore b for this discussion, and Figure 9 sets b = 0 for each of the lines. Your intuition needs 
to be clear on one point: the slope of the line is steeper with higher values for m; it slopes upward for 
positive values and downward for negative values.

One more piece of information can make this simple, idealized equation much more useful. In 
the real world, relationships do not fall along perfect, simple lines. The real world is messy—noise 
and measurement error obfuscate the real underlying relationships, sometimes even hiding them 
completely. Look at the equation for a line one more time, but with one added variable:

y = mx + b + ε
ε ~ i.i.d. N(0, σ)

The new variable is the Greek letter epsilon, which is commonly used to describe error measurements 
in time series and other processes. The second line of the equation (which can be ignored if the 
notation is unfamiliar) says that ε is a random variable whose values are drawn from (formally, are 
“independent and identically distributed [i.i.d.] according to”) the normal distribution with a mean 
of zero and a standard deviation of sigma. If we graph this, it will produce a line with jitter, as the 
points will be randomly distributed above and below the actual line because a different, random ε is 
added to each data point. The magnitude of the jitter, or how far above and below the line the points 
are scattered, will be determined by the value of the standard deviation chosen for σ. Bigger values 
will result in more spread, as the distribution for the error component has more extreme values (see 
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Figure 2 for a reminder.) Every time we draw this line it will be different, because ε is a random vari-
able that takes on different values; this is a big step if you are used to thinking of equations only in a 
deterministic way. With the addition of this one term, the simple equation for a line now becomes a 
random process; this one step is actually a big leap forward because we are now dealing with uncer-
tainty and stochastic (random) processes. 

Figure 10 shows two sets of points calculated from this equation. The slope for both sets is the 
same, m = 1, but the standard deviation of the error term is different. The solid dots were plotted 

with a standard deviation of 0.5, and they all lie very close to the true, underlying line; the empty 
circles were plotted with a standard deviation of 4.0, and they scatter much farther from the line. 
More variability hides the underlying line, which is the same in both cases—this type of variability is 

Figure 9 Three Lines with Different Slopes



• Adam Grimes

—24—

common in real market data, and can complicate any analysis.

Regression

With this background, we now have the knowledge needed to understand regression. Here is an 
example of a question that might be explored through regression: Barrick Gold Corporation (NYSE: 
ABX) is a company that explores for, mines, produces, and sells gold. A trader might be interested in 
knowing if, and how much, the price of physical gold influences the price of this stock. Upon further 
reflection, the trader might also be interested in knowing what, if any, influence the U.S. Dollar Index 
and the overall stock market (using the S&P 500 index again as a proxy for the entire market) have 

Figure 10 Two Lines with Different Standard Deviations for the Error Terms
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on ABX. We collect weekly prices from January 2, 2009, to December 31, 2010, and, just like in the 
earlier example, create a return series for each asset. It is always a good idea to start any analysis by 
examining summary statistics for each series. (See Table 4.)

Table 4 Summary Statistics for Weekly Returns, 2009–2010
Ticker N= Mean StDev Min Max
ABX 104 0.4% 5.8% (20.0%) 16.0% 
SPX 104 0.3% 3.0% (7.3%) 10.2% 
Gold 104 0.4% 2.3% (5.4%) 6.2% 
USD 104 0.0% 1.3% (4.2%) 3.1%

At a glance, we can see that ABX, the S&P 500 (SPX), and Gold all have nearly the same mean 
return. ABX is considerably more volatile, having at least one instance where it lost 20 percent of its 
value in a single week. Any data series with this much variation, measured by a comparison of the 
standard deviation to the mean return, has a lot of noise. It is important to notice this, because this 
noise may hinder the usefulness of any analysis.

A good next step would be to create scatterplots of each of these inputs against ABX, or perhaps 
a matrix of all possible scatterplots as in Figure 11. The question to ask is which, if any, of these rela-
tionships looks like it might be hiding a straight line inside it; which lines suggest a linear relation-
ship? There are several potentially interesting relationships in this table: the Gold/ABX box actually 
appears to be a very clean fit to a straight line, but the ABX/SPX box also suggests some slight hint 
of an upward-sloping line. Though it is difficult to say with certainty, the USD boxes seem to sug-
gest slightly downward-sloping lines, while the SPX/Gold box appears to be a cloud with no clear 
relationship. Based on this initial analysis, it seems likely that we will find the strongest relationships 
between ABX and Gold and between ABX and the S&P. We also should check the ABX and U.S. 
Dollar relationship, though there does not seem to be as clear an influence there.

Regression basically works by taking a scatterplot and drawing a best-fit line through it. You do 
not need to worry about the details of the mathematical process; no one does this by hand, because 
it could take weeks to months to do a single large regression that a computer could do in a fraction 
of a second. Conceptually, think of it like this: a line is drawn on the graph through the middle of 
the cloud of points, and then the distance from each point to the line is measured. (Remember the 
ε’s that we generated in Figure 11? This is the reverse of that process: we draw a line through preex-
isting points and then measure the ε’s (often called the errors).) These measurements are squared, by 
the same logic that leads us to square the errors in the standard deviation formula, and then the sum 
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of all the squared errors is calculated. Another line is drawn on the chart, and the measuring and 
squaring processes are repeated. (This is not precisely correct. Some types of regression are done by 
a trial-and-error process, but the particular type described here has a closed-form solution that does 
not require an iterative process.) The line that minimizes the sum of the squared errors is kept as the 
best fit, which is why this method is also called a least-squares model. Figure 12 shows this best-fit 
line on a scatterplot of ABX versus Gold.

Let’s look at a simplified regression output, focusing on the three most important elements. The 

first is the slope of the regression line (m), which explains the strength and direction of the influence. 
If this number is greater than zero, then the dependent variable increases with increasing values of the 
independent variable. If it is negative, the reverse is true. Second, the regression also reports a p-value 
for this slope, which is important. We should approach any analysis expecting to find no relationship; 
in the case of a best-fit line, a line that shows no relationship would be flat because the dependent 
variable on the y-axis would neither increase nor decrease as we move along the values of the inde-
pendent variable on the x-axis. Though we have a slope for the regression line, there is usually also a 

Figure 11 Scatterplot Matrix (Weekly Returns, 2009–2010)
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lot of random variation around it, and the apparent slope could simply be due to random chance. The 
p-value quantifies that chance, essentially saying what the probability of seeing this slope would be if 
there were actually no relationship between the two variables.

The third important measure is R2 (or R-squared), which is a measure of how much of the varia-
tion in the dependent variable is explained by the independent variable. Another way to think about 
R2 is that it measures how well the line fits the scatterplot of points, or how well the regression anal-
ysis fits the data. In financial data, it is common to see R2 values well below 0.20 (20%), but even a 
model that explains only a small part of the variation could elucidate an important relationship. A 
simple linear regression assumes that the independent variable is the only factor, other than random 
noise, that influences the values of the independent variable—this is an unrealistic assumption. Fi-
nancial markets vary in response to a multitude of influences, some of which we can never quantify 
or even understand. R2 gives us a good idea of how much of the change we have been able to explain 
with our regression model. Table 5 shows the regression output for regressing the S&P 500, Gold, 
and the U.S. Dollar on the returns for ABX.

Figure 12 Best-Fit Line on Scatterplot of ABX (Y-Axis) and Gold
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Table 5 Regression Results for ABX (Weekly Returns, 2009–2010)
Slope R2 p-Value

SPX 0.75 0.15 0.00
Gold 1.79 0.53 0.00
USD (1.53) 0.11 0.00

In this case, our intuition based on the graphs was correct. The regression model for Gold shows an 
R2 value of 0.53, meaning the 53% of ABX’s weekly variation can be explained by changes in the 
price of gold. This is an exceptionally high value for a simple financial model like this, and suggests a 
very strong relationship. The slope of this line is positive, meaning that the line slopes upward to the 
right—higher gold prices should accompany higher prices for ABX stock, which is what we would 
expect intuitively. We see a similar positive relationship to the S&P 500, though it has a much weaker 
influence on the stock price, as evidenced by the significantly lower R2 and slope. The U.S. dollar has 
a weaker influence still (R2 of 0.11), but it is also important to note that the slope is negative—higher 
values for the U.S. Dollar Index lead to lower ABX prices. Note that p-values for all of these slopes 
are less than zero (they are not actually 0.00 as in the table; the values are just truncated to 0.00 in this 
output), meaning that these slopes are statistically significant. 

One last thing to keep in mind is that this tool shows relationships between data series; it will 
tell you when, if, and how two markets move together. It cannot explain or quantify the causative 
link, if there is one at all—this is a much more complicated question. If you know how to use linear 
regression, you will never have to trust anyone’s opinion or ideas about market relationships. You can 
go directly to the data, and ask it yourself.

Monte Carlo Simulation
So far, we have looked at a handful of fairly simple examples and a few that are more complex. In 

the real world, we encounter many problems in finance and trading that are surprisingly complex. If 
there are many possible scenarios, and multiple choices can be made at many steps, it is very easy to 
end up with a situation that has tens of thousands of possible branches. In addition, seemingly small 
decisions at one step can have very large consequences later on; sometimes effects seem to be out of 
proportion to the causes. Last, the market is extremely random and mostly unpredictable, even in the 
best circumstances, so it very difficult to create deterministic equations that capture every possibility. 
Fortunately, the rapid rise in computing power has given us a good alternative—when faced with an 
exceptionally complex problem, sometimes the simplest solution is to build a simulation that tries to 
capture most of the important factors in the real world, run it, and just see what happens.
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One of the most commonly used simulation techniques is Monte Carlo modeling or simulation, 
a term coined by the physicists at Los Alamos in the 1940s in honor of the famous casino. Though 
there are many variations of Monte Carlo techniques, a basic pattern is:

•	 Define a number of choices or inputs.
•	 Define a probability distribution for each input.
•	 Run many trials with different sets of random numbers for the inputs.
•	 Collect and analyze the results.

Monte Carlo techniques offer a good alternative to deterministic techniques, and may be espe-
cially attractive when problems have many moving pieces or are very path-dependent. Consider this 
an advanced tool to be used when you need it, but a good understanding of Monte Carlo methods is 
very useful for traders working in all markets and all time frames.

Be Careful of Sloppy Statistics
Applying quantitative tools to market data is not simple. There are many ways to go wrong; some 

are obvious, but some are not obvious at all. The first point is so simple it is often overlooked—think 
carefully before doing anything. Define the problem, and be precise in the questions you are asking. 
Many mistakes are made because people just launch into number crunching without really thinking 
through the process, and sometimes having more advanced tools at your disposal may make you more 
vulnerable to this error. There is no substitute for thinking carefully. 

The second thing is to make sure you understand the tools you are using. Modern statistical soft-
ware packages offer a veritable smörgåsbord of statistical techniques, but avoid the temptation to try 
six new techniques that you don’t really understand. This is asking for trouble. Here are some other 
mistakes that are commonly made in market analysis. Guard against them in your own work, and be 
on the lookout for them in the work of others. 

Not Considering Limitations of the Tools
Whatever tools or analytical methodology we use, they have one thing in common: none of 

them are perfect—they all have limitations. Most tools will do the jobs they are designed for very well 
most of the time, but can give biased and misleading results in other situations. Market data tend to 
have many extreme values and a high degree of randomness, so these special situations actually are 
not that rare. 

Most statistical tools begin with a set of assumptions about the data you will be feeding them; 
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the results from those tools are considerably less reliable if these assumptions are violated. For in-
stance, linear regression assumes that there is a relationship between the variables, that this relation-
ship can be described by a straight line (is linear), and that the error terms are distributed i.i.d. N(0, 
σ). It is certainly possible that the relationship between two variables might be better explained by a 
curve than a straight line, or that a single extreme value (outlier) could have a large effect on the slope 
of the line. If any of these are true, the results of the regression will be biased at best, and seriously 
misleading at worst.

 It is also important to realize that any result truly applies to only the specific sample examined. 
For instance, if we find a pattern that holds in 50 stocks over a five-year period, we might assume that 
it will also work in other stocks and, hopefully, outside of the five-year period. In the interest of being 
precise, rather than saying, “This experiment proves … ,” better language would be something like 
“We find, in the sample examined, evidence that …” 

Some of the questions we deal with as traders are epistemological. Epistemology is the branch of 
philosophy that deals with questions surrounding knowledge about knowledge: What do we really 
know? How do we really know that we know it? How do we acquire new knowledge? These are 
profound questions that might not seem important to traders who are simply looking for patterns 
to trade. Spend some time thinking about questions like this, and meditating on the limitations of 
our market knowledge. We never know as much as we think we do, and we are never as good as we 
think we are. When we forget that, the market will remind us. Approach this work with a sense of 
humility, realizing that however much we learn and however much we know, much more remains 
undiscovered.

Not Considering Actual Sample Size
In general, most statistical tools give us better answers with larger sample sizes. If we define a set 

of conditions that are extremely specific, we might find only one or two events that satisfy all of those 
conditions. (This, for instance, is the problem with studies that try to relate current market condi-
tions to specific years in the past: sample size = 1.) Another thing to consider is that many markets 
are tightly correlated, and this can dramatically reduce the effective sample size. If the stock market is 
up, most stocks will tend to move up on that day as well. If the U.S. dollar is strong, then most major 
currencies trading against the dollar will probably be weak. Most statistical tools assume that events 
are independent of each other, and, for instance, if we’re examining opening gaps in stocks and find 
that 60 percent of the stocks we are looking at gapped down on the same day, how independent are 
those events? (Answer: not independent.) When we examine patterns in hundreds of stocks, we 
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should expect many of the events to be highly correlated, so our sample sizes could be hundreds of 
times smaller than expected. These are important issues to consider.

Not Accounting for Variability
Though this has been said several times, it is important enough that it bears repeating: It is never 

enough to notice that two things are different; it is also important to notice how much variation each 
set contains. A difference of 2% between two means might be significant if the standard deviation 
of each were half a percent, but is probably completely meaningless if the standard deviation of each 
is 5%. If two sets of data appear to be different but they both have a very large random component, 
there is a good chance that what we see is simply a result of that random chance. Always include some 
consideration of the variability in your analyses, perhaps formalized into a significance test.

Assuming That Correlation Equals Causation
Students of statistics are familiar with the story of the Dutch town where early statisticians ob-

served a strong correlation between storks nesting on the roofs of houses and the presence of new-
born babies in those houses. It should be obvious (to anyone who does not believe that babies come 
from storks) that the birds did not cause the babies, but this kind of flimsy logic creeps into much 
of our thinking about markets. Mathematical tools and data analysis are no substitute for common 
sense and deep thought. Do not assume that just because two things seem to be related or seem to 
move together that one actually causes the other. There may very well be a real relationship, or there 
may not be. The relationship could be complex and two-way, or there may be an unaccounted-for 
and unseen third variable. In the case of the storks, heat was the missing link—homes that had new-
borns were much more likely to have fires in their hearths, and the birds were drawn to the warmth 
in the bitter cold of winter. 

Especially in financial markets, do not assume that, because two things seem to happen together, 
they are related in some simple way. These relationships are complex, causation usually flows both 
ways, and we can rarely account for all the possible influences. Unaccounted-for third variables are 
the norm, not the exception, in market analysis. Always think deeply about the links that could exist 
between markets, and do not take any analysis at face value.

Too Many Cuts Through the Same Data
Most people who do any backtesting or system development are familiar with the dangers of 

overoptimization. Imagine you came up with an idea for a trading system that said you would buy 
when a set of conditions is fulfilled and sell based on another set of criteria. You test that system on 
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historical data and find that it doesn’t really make money. Next, you try different values for the buy 
and sell conditions, experimenting until some set produces good results. If you try enough combi-
nations, you are almost certain to find some that work well, but these results are completely useless 
going forward because they are only the result of random chance. 

Overoptimization is the bane of the system developer’s existence, but discretionary traders and 
market analysts can fall into the same trap. The more times the same set of data is evaluated with more 
qualifying conditions, the more likely it is that any results may be influenced by this subtle overopti-
mization. For instance, imagine we are interested in knowing what happens when the market closes 
down four days in a row. We collect the data, do an analysis, and get an answer. Then we continue to 
think, and ask if it matters which side of a 50-day moving average it is on. We get an answer, but then 
think to also check 100- and 200-day moving averages as well. Then we wonder if it makes any dif-
ference if the fourth day is in the second half of the week, and so on. With each cut, we are removing 
observations, reducing sample size, and basically selecting the ones that fit our theory best. Maybe 
we started with 4,000 events, then narrowed it down to 2,500, then 800, and ended with 200 that 
really support our point. These evaluations are made with the best possible intentions of clarifying 
the observed relationship, but the end result is that we may have fit the question to the data very well 
and the answer is much less powerful than it seems.

How do we defend against this? Well, first of all, every analysis should start with careful thought 
about what might be happening and what influences we might reasonably expect to see. Do not just 
test a thousand patterns in the hope of finding something, and then do more tests on the promising 
patterns. It is far better to start with an idea or a theory, think it through, structure a question and a 
test, and then test it. It is reasonable to add maybe one or two qualifying conditions, but stop there. 

Out-of-sample testing
In addition, holding some of the data set for out-of-sample testing is a powerful tool. For in-

stance, if you have five years of data, do the analysis on four of them and hold a year back. Keep the 
out-of-sample set absolutely pristine. Do not touch it, look at it, or otherwise consider it in any of 
your analysis—for all practical purposes, it doesn’t even exist.

Once you are comfortable with your results, run the same analysis on the out-of-sample set. If 
the results are similar to what you observed in the sample, you may have an idea that is robust and 
could hold up going forward. If not, either the observed quality was not stable across time (in which 
case it would not have been profitable to trade on it) or you overoptimized the question. Either way, 
it is cheaper to find problems with the out-of-sample test than by actually losing money in the mar-
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ket. Remember, the out-of-sample set is good for one shot only—once it is touched or examined in 
any way, it is no longer truly out-of-sample and should now be considered part of the test set for any 
future runs. Be very confident in your results before you go to the out-of-sample set, because you get 
only one chance with it.

Multiple Markets on One Chart
Some traders love to plot multiple markets on the same charts, looking at turning points in one 

to confirm or explain the other. Perhaps a stock is graphed against an index, interest rates against 
commodities, or any other combination imaginable. It is easy to find examples of this practice in the 
major media, on blogs, and even in professionally published research in an effort to add an appear-
ance of quantitative support to a theory. 

Figure 13 Harley-Davidson (Black) versus XLF (Gray)
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This type of analysis nearly always looks convincing, and is also usually worthless. Any two finan-
cial markets put on the same graph are likely to have two or three turning points on the graph, and it 
is almost always possible to find convincing examples where one seems to lead the other. Some traders 
will do this with the justification that it is “just to get an idea,” but this is sloppy thinking—what if it 
gives you the wrong idea? We have far better techniques for understanding the relationships between 
markets, so there is no need to resort to techniques like this. Consider Figure 13, which shows the 
stock of Harley-Davidson, Inc. (NYSE: HOG) plotted against the Financial Sector Index (NYSE: 
XLF). The two seem to track each other nearly perfectly, with only minor deviations that are quickly 
corrected. Furthermore, there are a few very visible turning points on the chart, and both stocks seem 
to put in tops and bottoms simultaneously, seemingly confirming the tightness of the relationship. 

For comparison, now look at Figure 14, which shows Bank of America (NYSE: BAC) again 

Figure 14 Bank of America (Black) versus XLF (Gray)
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plotted against the XLF over the same time period. A trader who was casually inspecting charts to try 
to understand correlations would be forgiven for assuming that HOG is more correlated to the XLF 
than is BAC, but the trader would be completely mistaken. In reality, the BAC/XLF correlation is 
0.88 over the period of the chart whereas HOG/XLF is only 0.67. There is a logical link that explains 
why BAC should be more tightly correlated—the stock price of BAC is a major component of the 
XLF’s calculation, so the two are strongly linked. The visual relationship is completely misleading in 
this case.

Percentages for Small Sample Sizes
Last, be suspicious of any analysis that uses percentages for a very small sample size. For instance, 

in a sample size of three, it would be silly to say that “67% show positive signs,” but the same princi-
ple applies to slightly larger samples as well. It is difficult to set an exact break point, but, in general, 
results from sample sizes smaller than 20 should probably be presented in “X out of Y” format rather 
than as a percentage. In addition, it is a good practice to look at small sample sizes in a case study for-
mat. With a small number of results to examine, we usually have the luxury of digging a little deeper, 
considering other influences and the context of each example, and, in general, trying to understand 
the story behind the data a little better.

It is also probably obvious that we must be careful about conclusions drawn from such very small 
samples. At the very least, they may have been extremely unusual situations, and it may not be pos-
sible to extrapolate any useful information for the future from them. In the worst case, it is possible 
that the small sample size is the result of a selection process involving too many cuts through data, 
leaving only the examples that fit the desired results. Drawing conclusions from tests like this can be 
dangerous.

Summary
Quantitative analysis of market data is a rigorous discipline with one goal in mind—to under-

stand the market better. Though it may be possible to make money in the market, at least at times, 
without understanding the math and probabilities behind the market’s movements, a deeper under-
standing will lead to enduring success. It is my hope that this little book may challenge you to see the 
market differently, and may point you in some exciting new directions for discovery.
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