AMDZ

TABLE OF CONTENTS

INTRODUCTION ...ttt ettt ettt ettt ehe et e e st b sb e eheeae e st ea b e sb ek e saeeb e eaeeaeea s e s e b e sbeeb e e bt eaeem s e s enbesbeebeeneenaensensenbeneeas 1
DESIGN PHILOSOPHY ...ttt ettt ettt ettt e ettt e s sttt e e sttt e e e saba e e s e abee e e sabaeeesnsbaeesaaseeeesasbeeessbaeesansaeessnsaaeesnssaeesnnsees 1
IBY COMEBPTES .ttt a e s e a e b e b e b e b b s ae e st sa e e a e b s a e e e reesre e 1
Q0T T L Y ST 2
BENEFITS OF MANTLEeei ittt sttt ettt ettt e sttt e e sttt e e e st e e s e abte e e sataeeeensbaeesaaseeeesasbeeeesbaeesaasaeessseeeesnssaeesnnsees 2
MAXIMIZING PERFORMANCE ..ottt ettt sttt ettt st b e bt ae ettt s b b e sbeeh et et et e sbeebesbeeae et ensenneneennes 4
The SMall Bateh ProBIBMI...c.c ettt s b s bt ettt e b sb e e bt e e s e nbenbesaea 4
MU ERIBAING ettt st b ettt e e b s bt bt et et e e e s b e b sbeeb e eae e e et e e e ne e 5
MMEBIMIOIY USAEE .ottt ettt ettt e sttt e e e bt e e e bttt e s ab e e e e aa bt e e e e sttt e subteeesabbeee e nbaeesansbeeesabbeeesnbaeesansaaaesanbeaenn 5
[T <ot A] U I e 51 o | O SRTRRURRRPPRSIN 5
MANTLE CORE FEATURES . ..ottt ettt e ettt e ettt e s et e e s tae e e e st e e e s aasaeeesasbeeeeansaeesansaeessnsseeesnsseeesnnsees 6
EXECULION MOTEI ..ttt sb et ettt e bt e b e b e e b e e b e et e saeesaeesbeenbee bt enbeeneenbeenbeens 6
GENEIALIZEA RESOUITEScuteiieitieiteeie et ettt ettt et s e st e s et e s bt e sae e bt estesateeaeesb e et eenbeenbeeasesaeesatesaeasseenseenseensesatensnens 6
MemMOry ManageImMENt........ooiiii e a e bbb s b s eb e 7
MONOTIERIC PIPEIINES ettt st ettt e s h e e sttt e s bt e e s ateesabeesabeesabeesaseesabaesaseesasaesaseesns 8
Pipeline Saving and LOOINGcoviiiiiierieiineeeee sttt s ettt a e 8
RESOUICE BINING MOGEI ...ciiiiiiiiiiiieciis ettt ettt sat e et e e st e e s aa e e s et e e saeesabeesabeesateesaseesabaesaseesnsaesnseesns 8
LT o W (o= o (=T =T 1 [0 o T U PRORTUTRRRRPE 9
MANTLE EXTENDED FEATURES.......ooitieiteet sttt sttt sttt sttt st st sa e s bt e st e s bt e sabaeeneesabaesneesanes 10
Advanced Anti-Alasing FUNCLIONSiiiiiiiecit ettt sa e et e e sta e e bb e s saaeebaeesbeeebeeenaneenses 10
AdVANCE FIOW CONEIOL ..ttt s e bbbttt et st bt sbe bt et e e enenre b e 10
TN WL =T] o PSPPI 10
DEBUGGING AND DEVELOPMENT TOOLS ...ttt sttt et ettt bt bttt et et sbesbesaeeste s etenbeseen 11

CONCLUSION ..ttt bbb bbb e s h e b s b bbb e b sa e sb s b b e b b e b e 11

INTRODUCTION

Mantle is an initiative from AMD to create a new programming model that can fully exploit the capabilities of
modern GPUs. In collaboration with leading cross-platform game developers, AMD has created an API
specification and graphics driver that enable this model on PCs with graphics hardware based on the Graphics Core
Next (GCN) architecture. Mantle is all about removing the obstacles that constrain game developers today and
allowing them to unleash the full power of modern GPUs.

This white paper describes the motivation behind the creation of Mantle and provides a high-level overview of its
most important features and benefits.

DESIGN PHILOSOPHY

The Mantle API has been designed to provide just the
right level of abstraction for GPU hardware, striking a
better balance between lower level control and higher
level ease-of-use than existing programming models.
At its foundation, Mantle strives to achieve a balance

between simplicity and feature enablement, carefully Simplicity
selected to improve graphics rendering performance.

Simplicity does not necessarily mean that important features need to be sacrificed, but rather that the API should
be easy to understand and provide predictable results. The goal is to avoid sources of complexity that don’t
provide any useful functionality in return.

Key Concepts

This design philosophy was translated into the fundamental concepts that underlie the Mantle API:
4 Pre-building and re-use of data

It's more efficient to do something just once ahead of time and re-use the results than to repeat that same
process over and over again. Mantle utilizes that approach and encourages developers to do the same in their
applications.

4 Control over memory management

Mantle lets applications manage GPU memory directly, providing opportunities to lower the memory
footprint of their applications and significantly reduce driver overhead.

4 Control over command generation and execution

Mantle allows applications to directly control GPU execution in both single- and multi-threaded
environments. This makes it possible to optimize performance, reduce latency, deliver more consistent frame
rates, and more.

MARCH, 2014 WHITE PAPER | MANTLE | 1

These concepts are applicable to a range of modern GPU architectures, and are not specifically tied to GCN.
Mantle is intended to provide a thin hardware abstraction layer that can be broadly compatible with both current
and future architectures, while allowing architecture-specific and platform-specific features to be exposed
through an extension mechanism.

Why a New API?

While Mantle is far from the first attempt to create an API that achieves these goals, there are a number of
reasons why AMD took the approach of designing something new instead of adapting or modifying existing APIs:

4 Success of the GCN architecture

Graphics Core Next is the first GPU architecture that provides a unified development platform across game
console, PC gaming, and professional graphics ecosystems. This makes it a great baseline on which to
establish a new programming model.

4 Developer demand

Mantle was designed in direct response to requests from developers of games and other applications who felt
limited by existing graphics APIs. These developers did not believe that tweaks to existing programming
models would be sufficient to solve the problems they were facing, but rather that more fundamental
changes were required.

4 Performance and control

Getting the most out of today’s hardware necessitated a fresh look at how existing programming interfaces
were designed, along with a careful re-evaluation of what functionality was truly necessary. In some cases,
maintenance of legacy API features that were no longer used by modern applications resulted in increased
complexity and sapped performance. In other cases, abstraction layers designed to accommodate older and
less functional hardware ended up placing unnecessary constraints on developers and limited their ability to
control the GPU directly.

4 Excitement and innovation

Encouraging innovation means getting the development community excited about something new and
different, and applying a series tweaks and patches to existing programming models isn’t always the best
way to capture attention. Mantle aims to kick-start a new round of 3D design and experimentation by
offering a fresh approach to GPU programming, a wide array of new features, and unprecedented
performance.

BENEFITS OF MANTLE

Mantle is designed to address real-world problems based on the guidance of game developers. This offers some
compelling benefits to both developers and end-users, including:

MARCH, 2014 WHITE PAPER | MANTLE | 2

4 Empowering lower spec systems

Mantle allows cutting edge graphics capabilities to be enabled on less powerful systems than ever before.
This expands the range of devices that a developer can target with their applications, and reduces the number
of image quality trade-offs they need to make. As low power devices continue to gain in popularity and get
more attention from developers of graphics-intensive applications, the need for a more efficient
programming model like Mantle will only increase.

4 Delivering more predictable performance and behavior

Mantle provides developers of PC applications with unprecedented control over the GPU through a very thin
and efficient driver layer. This makes it uniquely positioned to deliver the best gaming experiences by
enabling better frame rate consistency, in addition to higher throughput.

4 Sharing optimizations between PCs and game consoles

With the GCN architecture powering the new generation of game consoles and a significant portion of the PC
market, Mantle finally provides a convenient path for developers to share optimizations and advanced
rendering techniques between consoles and PCs.

By giving developers more direct access to PC graphics hardware, Mantle shifts much of the burden for ensuring
optimal performance and stability away from the graphics driver and into their hands. This level of control may
not be suitable for everyone, though those who have experience programming for game consoles or designing
cross-platform game engines will already be accustomed to this level of additional responsibility. For those that
care about maximizing performance, unlocking the full feature set of modern GPUs, or easily porting apps
between consoles and PCs, Mantle is an ideal solution.

BATTLEFIELD 4

Figure 1: As the first title to support Mantle, Battlefield 4 from EA DICE unlocks new levels of performance
for PC gamers, with stunning graphics to match.

MARCH, 2014 WHITE PAPER | MANTLE | 3

MAXIMIZING PERFORMANCE

Mantle is engineered to be the fastest graphics API ever designed. It achieves this by improving GPU efficiency,
reducing CPU overhead, providing more direct access to GPU hardware, and introducing an array of new
performance-oriented features.

The Small Batch Problem

Mantle finally provides a solution to an issue that has bedeviled game developers for years, known as the “small
batch problem.” This refers to the situation where an application’s performance becomes CPU-limited when a
certain number of draw calls are generated per frame, leaving the GPU under-utilized. Developers have historically
tried to deal with this problem by rendering larger batches of objects in a single draw call, which adds complexity
to their code and places constraints on the artists responsible for developing game content.

With today’s PC CPUs and industry standard APIs, most recent games can average 3,000-5,000 draw calls or
objects per frame before hitting this limit. With careful optimization and high-end hardware, some developers
have been able to get this number as high as 10,000 objects per frame.

With Mantle, the number of objects that can be drawn per frame can be increased by an order of magnitude,
reaching 100,000 or even higher. This opens up many new possibilities for delivering richer and more compelling
3D graphics.

Figure 2: The Star Swarm demo from Oxide Games features massive space battles with tens of thousands
of unique, dynamic 3D objects rendered at interactive frame rates. Based on the Nitrous game engine, it
uses Mantle to dramatically reduce CPU draw call overhead.

MARCH, 2014 WHITE PAPER | MANTLE | 4

Multi-threading

Reducing API overhead for draw calls still isn't enough to deliver all the performance improvements developers
were asking for. Taking advantage of today’s multi-core CPUs with effective multi-threading is also very
important. CPUs with four, six, or eight cores are now commonplace, yet most of these cores are not accessible for
driving GPUs. Mantle aims to unlock the potential of these multi-threaded processors and deliver near-linear
scaling of draw call throughput as more cores become available.

Memory Usage

Efficient management of GPU memory is often a challenge on PCs. In contrast, past game consoles have been
able to deliver great visuals using much less memory than PC graphics cards. With the latest game consoles
including much larger amounts of graphics memory, this discrepancy puts more pressure on developers trying to
maintain similar quality and performance levels in the PC versions of their games. By providing more control over
memory allocations and more flexible access to the data they contain, Mantle finally makes these kinds of
memory optimizations possible on PCs.

Direct GPU Control

Lack of direct GPU control sacrifices both CPU and GPU efficiency. It also makes latency more difficult to manage,
and often results in unpredictable performance and behavior. Today’s graphics drivers are very large and complex
pieces of software, responsible for handling many things going on under the hood and hidden from developers.
Mantle provides a more efficient path to translate APl commands into the commands that GPUs understand.

Figure 3: Thief, a game developed by Eidos Montreal and Nixxes Software, takes advantage of Mantle to
efficiently render its detailed and atmospheric 3D environments.

MARCH, 2014 WHITE PAPER | MANTLE | 5

MANTLE CORE FEATURES

Execution Model

A fundamental feature of Mantle’s operation is its execution model. A typical GPU has a number of different
engines that execute in parallel - graphics, compute, DMA, multimedia, etc. The basic building block for GPU
work is the command buffer, which contains rendering and compute commands targeting one of the GPU’s
engines. Command buffers are generated by driver software and added to an execution queue. When the GPU is
ready, it pulls command buffers from the queue and begins to execute them.

Application

Figure 4: Mantle Execution Model

Mantle provides applications with a new level of control that allows them to make full use of the GPU’s execution
capabilities. It no longer leaves the graphics driver responsible for deciding which engine should execute which API
commands, dividing work into command buffers, and managing synchronization between command queues.
Most importantly, it enables multiple application threads to independently construct command buffers in
parallel. This concept is fundamental to enabling very high API performance on modern CPUs.

Generalized Resources

Existing graphics APIs have a lot of semantics
attached to resources (index buffers vs. constant
buffers vs. vertex buffers, normal vs. staging
resources, etc.). Many of these exist to provide hints
to the graphics driver about preferred memory
location for resources, or in some cases to allow
compatibility with older GPU architectures. Mantle
simplifies resource management and makes it more
convenient.

MARCH, 2014

Other APIs Mantle
Index buffers
Memory
Images

Figure 5: Generalized Resources

WHITE PAPER | MANTLE | 6

Memory Management

Mantle has been designed around the virtual memory capabilities present in modern GPU hardware. This provides
a more general and flexible solution for memory management, and also provides a solid foundation for the future
evolution of the PC platform.

In existing APIs, many data objects (such as Other APIs Mantle
“images” or “buffer objects”) are directly tied to
memory allocated by the graphics driver when they

are created. This mechanism has several drawbacks, Memory Memory
including the inability to efficiently recycle memory, . State

a larger total memory footprint, expensive resource APl object APl object

creation, and a general lack of efficiency stemming

from the need to manage a large number of objects. Figure 6: Decoupled GPU Memory

With Mantle, most objects are decoupled from GPU memory, and are instead treated as lightweight CPU-side
data objects. This helps solve the problem of GPU memory management efficiency.

Explicit control of GPU memory gives developers the opportunity to better optimize usage of that limited
resource. Mantle gives developers the option of controlling CPU memory allocated by the graphics driver as well,
which can be critical for ensuring efficient multi-threaded operation.

Another interesting new feature of Mantle is the ability to re-map or “patch” process page tables for virtual GPU
memory allocations. This functionality serves as the foundation for partially resident textures or tiled resources,
and could be leveraged for many other interesting scenarios as well (such as flexible content streaming).

GPU Virtual Address space

Remapping table

>

“Virtual”
allocation

>

bq

“Real”

allocation

Page 0

Figure 7: GPU Page Table Remapping

MARCH, 2014 WHITE PAPER | MANTLE | 7

Monolithic Pipelines

Mantle introduces the concept of a monolithic pipeline object, which defines a large part of the state associated
with a 3D pipeline using a single bind point. This includes all of the shaders in the pipeline, as well as certain
fixed-function state that impacts shader execution.

Figure 8: Graphics Pipeline Example

There are numerous benefits to this approach. The state and shader management model in existing APIs has
proven to be a common CPU bottleneck in modern games, and Mantle's pipeline objects allow a reduction in API
overhead by enabling up-front shader optimization at compile-time. They also make the CPU performance of the
Mantle driver more predictable, since shader compilation will no longer get kicked off by the driver at draw time
outside of the application’s control.

Besides providing improved performance and predictability today, the pipeline abstraction creates a solid
foundation for future development of Mantle. We expect a lot of innovation will be coming in that area in the
future, enabling rendering techniques never before possible in real-time graphics.

Pipeline Saving and Loading

With Mantle, applications don’t have to compile their shaders every time they are started up. Shader compilation
is an expensive operation that can have a significant impact on load times, and can often be responsible for frame
rate hitches if it takes place during gameplay. Mantle makes it possible to save and load complete pipelines with
pre-compiled shaders quickly and easily, bypassing run-time shader compilation and avoiding unnecessary CPU
overhead.

Resource Binding Model

Binding resources for shader pipeline access is another area where Mantle presents an improvement on existing
programming models. The traditional resource binding model, where an application binds resources to fixed
“slots” has created a CPU bottleneck in many modern games.

Alternative methods have been proposed, in particular a “bindless” model where resources are referenced from
shaders via unique names or pointers instead of pre-defined slots. This method has some weaknesses of its own
though, since tracking of the various pointers increases shader complexity and can result in behavior that is less
GPU cache-friendly.

MARCH, 2014 WHITE PAPER | MANTLE | 8

Mantle uses a new hybrid binding model that provides the best of both worlds. Descriptor sets can be created
once and then re-used across multiple shaders and/or pipelines, which can often remove a substantial amount of
CPU overhead. It is also possible to change specific resources within a set without having to re-bind the whole
set, or bind pointers to resource subsets that can be updated independently. These capabilities enable fast
resource updates and simplify resource management.

@
Pipeline

{

.T ..T

Figure 9: Mantle Resource Binding Model

Resource Preparation

A major source of driver overhead and unpredictability in existing graphics APIs is resource tracking. Graphics
drivers need to understand resource usage to ensure that writes to a resource have completed before reads start
from that resource, so that race conditions and data hazards can be avoided. They might need to flush GPU
caches, decompress images, or perform other operations as well, all outside of the application’s control.

This tracking is expensive in terms of CPU time, and in most cases redundant since most multi-platform game
engines already do this on their own. Applications are in a much better position to handle this anyway, since the
developer has an understanding of the complete rendering process and what stages are being executed at any
given time.

With Mantle, the driver performs no automatic resource tracking. Instead, the application is required to explicitly
report state changes to the Mantle driver. The performance costs of these actions are made very explicit, allowing
developers to avoid unexpected frame rate drops and hitches.

As an example, when drawing to a color render target, the GPU may use some form of compression to reduce
memory bandwidth. It may also leave behind portions of the image’s pixels in some of the GPU’s caches. If
another shader wants to read the rendered image, it first needs to wait for the rendering of that image to be fully
completed. It may also need to wait for the GPU to decompress the image into a native format that can be
understood by the shader, and it may be necessary to flush out some cache lines to ensure they do not contain
any leftover data from previous operations.

With existing APIs, all of these considerations would need to be handled by a graphics driver that must make
assumptions about when and if they needed to occur. With Mantle, this process would be handled by an
application through an explicit state transition operation. Since the developer explicitly controls when that occurs,
they can optimize resource preparation to enable efficient rendering of large numbers of objects.

MARCH, 2014 WHITE PAPER | MANTLE | 9

MANTLE EXTENDED FEATURES

In keeping with the philosophy of encouraging innovation, the Mantle API has been designed to support feature
extensions that go beyond the core functionality. Some of the extended features provided with the initial release
of Mantle are described here.

Advanced Anti-Aliasing Functions

The GCN architecture supports a range of advanced multi-sample anti-aliasing controls that allow games to
enhance image quality and performance. Mantle includes extensions that expose these capabilities, enabling
programmable sample patterns, independent control over color/coverage/depth samples per pixel, and direct
shader access to MSAA surfaces.

Advanced Flow Control

Mantle includes innovative features that provide control over task scheduling and execution, enabling the
implementation of algorithms previously impossible on GPUs.

Command buffers can be constructed with multiple monolithic and/or compute pipelines and conditional
execution. Dynamic control flow between operations within a command buffer can be handled by the GPU
without CPU intervention. This includes loops and “if-then-else” conditional statements, which can be nested to
simulate case statements and limited recursion.

> Draw

—)0

N R - o R

—)T—)_—) Draw T
Command Buffer

Figure 10: Mantle Command Buffer Example with Advanced Flow Control

Multi-Device Support

Existing API's provide limited support for multi-device rendering, which aims to scale up performance by splitting
the workload across two or more GPUs. AMD CrossFire and other similar technologies allow this workload
splitting to take place in the graphics driver without giving explicit control to the application or the graphics API.
They typically do this by assigning alternating frames to each GPU for rendering, then compositing the outputs
before sending them to a display device.

MARCH, 2014 WHITE PAPER | MANTLE | 10

Mantle treats multi-GPU operation as a natural extension of the native single GPU execution model, scaled up to
support multiple devices. Applications can control all of the GPUs and engine queues in a system in
fundamentally the same way as they do for a single GPU. Mantle also includes support for hardware compositing,
efficient data sharing or transfers between GPUs, and other features required to enable efficient multi-GPU
solutions.

DMA

DMA

GPUO Queues —__/ Queues GPU 1
Application

Figure 11: Mantle Multi-Device Execution Model

This multi-device execution model provides opportunities to achieve better performance scaling than is possible
with current multi-GPU technologies that rely on alternate frame rendering techniques, along with much better
control of latency and frame pacing. This is especially important for modern games that use more GPU compute
functionality and other complex processing with frame-to-frame dependence. Mantle also enables games to take
full advantage of asymmetric GPU configurations, including combinations of integrated APU graphics with one or
more discrete GPUs.

DEBUGGING AND DEVELOPMENT TOOLS

Effective tools are very important to developers, particularly when dealing with an API that provides low-level
access to GPU hardware. To this end, many debugging and validation features have been built directly into the
Mantle APl and driver. The extensive infrastructure includes many controls to make it less intrusive and
performance-impacting when it’s not needed. This means that in many cases, building tools simply involves
building a user interface on top of capabilities already included in the API. This all translates into a better
development experience.

CONCLUSION

Mantle offers new and exciting ways to unleash the full capabilities of the latest GPUs. It was designed to
improve today’s graphics applications by providing higher frame rates and more consistent performance, and also
to pave the way for future industry standards. It will benefit both the most powerful hardware by enabling new
levels of performance and graphical fidelity, as well as low power hardware by eliminating unnecessary processing
overhead. And it opens the door for developing entirely new kinds of 3D rendering techniques that previously
existed only in the dreams of developers.

MARCH, 2014 WHITE PAPER | MANTLE | 1

DISCLAIMER

THE INFORMATION PRESENTED IN THIS DOCUMENT IS FOR INFORMATIONAL PURPOSES ONLY AND MAY CONTAIN TECHNICAL INACCURACIES, OMISSIONS
AND TYPOGRAPHICAL ERRORS. AMD RESERVES THE RIGHT TO REVISE THIS INFORMATION AND TO MAKE CHANGES FROM TIME TO TIME TO THE CONTENT
HEREOF WITHOUT OBLIGATION OF AMD TO NOTIFY ANY PERSON OF SUCH REVISIONS OR CHANGES.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY
INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

IN'NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF
ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2014 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the
United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

MARCH, 2014 WHITE PAPER | MANTLE | 12

