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I. Introduction: Storage for the Modern Data Center 
 
Today’s data centers have moved beyond the rigid deployment of proprietary hardware based compute, 
network and storage solutions – to a new Software Defined Data Center (SDDC) model that achieves 
agility through software-based infrastructure services. The SDDC is embodied by today’s well-proven 
software virtualization solutions for compute - as provided by hypervisors - to full cloud automation 
software platforms. A complete software-based infrastructure solution requires more than compute 
virtualization, however. Combining the agility of cloud and virtualization software, along with Software-
Defined Networking (SDN), and Software-Defined Storage (SDS) solutions, forms the key cornerstones of 
the modern data center.  We see these elements coming together in software to enable the greatest data 
center agility, by enabling the software to shape the underlying hardware to deliver services in the best 
form for applications to consume. By decoupling software from the underlying platform, we also enable 
the greatest choice in platform flexibility, both from a vendor perspective, and from a scaling and future-
proofing perspective. This will provide a quantum step in reducing the cost of ownership of the future data 
center. 
 
The next generation of scalable storage systems are therefore departing from the traditional model of 
hardware appliance based “arrays”, to a decoupled model of storage software hosted on commodity (x86) 
based servers. The goal is to provide customers with complete hardware freedom, both for their initial 
deployments and for future-proofing their investments, 100% system reliability through intelligent 
software-based data protection and self-healing algorithms, and the flexibility to configure for high-
performance for both throughput intensive and operations-intensive workloads. 
 

 
Figure 1 - Software Defined Storage within the Software Defined Data Center 

The Scality RING is a Software-Defined Storage (SDS) solution for petabyte-scale data storage that is 
designed to interoperate in the modern Software Defined Data Center SDDC. The RING software is 
designed to create unbounded scale-out storage systems that converge the storage of Petabyte scale 
data from multiple applications and use-cases, including both object and file based applications. The 
RING is a distributed system deployed on industry standard servers, with a minimum cluster of six (6) 
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storage servers that can be seamlessly scaled-out to very large systems of thousands of storage servers 
with 100’s of petabytes of storage capacity. The RING has no single points of failure, and requires no 
downtime during any upgrades, scaling, planned maintenance or unplanned system operations with self-
healing capabilities – the RING keeps operating normally and providing data availability throughout these 
events. To match performance to increasing capacity, the RING can also independently scale-out its 
access nodes (“Connectors”), to enable an even match of aggregate performance to the application load. 
The RING employs a second-generation peer-to-peer architecture that uniquely distributes both the user 
data and the associated metadata across the underlying nodes to eliminate a common bottleneck in 
current distributed systems, the central metadata repository or database. To enable file and object data in 
the same scalable system, the RING provides a virtual file system layer on top of an internal distributed 
database system, with POSIX based access semantics over NFS, SMB, FUSE connectors and shared 
access to the same data over a CDMI REST connector. This is in addition to the RINGs integral support 
for an AWS S3 compatible REST connector and a fast native REST API. 

The RING software is hardware-agnostic, and can be hosted on a wide spectrum of popular Linux 
distributions including CentOS/Red Hat Enterprise, Ubuntu and Debian. The RING requires no kernel 
modifications, to eliminate hardware-dependencies and platform vendor lock-in – and enables 
deployment on your own operating system builds. This approach also decouples Scality from maintaining 
hardware compatibility lists (HCLs) other than those associated with the specific Linux distributions. The 
underlying physical storage cluster can be comprised of servers of any form factor and density, ranging 
from small storage servers with a few hard disk drives (HDDs), to very high-density servers containing 
dozens of HDDs as well as flash drives (SSDs). The use of commodity components also extends to the 
network elements with 1GbE/10GbE interfaces acceptable for both the external connector interfaces and 
the internal RING interconnect fabric. This flexibility makes it possible to construct capacity-optimized 
RINGs, performance-optimized RINGs or a mix of both characteristics in a single RING. In all cases, the 
RING software abstracts the underlying physical servers and hard disk drives, and can exploit the lower-
latency access characteristics of SSD storage to maintain its internal metadata, to improve the overall 
performance of data stored on HDDs. Total flexibility of deployment also extends to mixed 
(heterogeneous) platform options – since the RING is designed to scale out over time, with various 
hardware vendors, server generations and densities expected as a normal part of the RING platform 
lifecycle.  

 

 
Figure 2 - Scality RING Software Defined Storage high-level architecture 
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Managing and monitoring the RING is enabled through a cohesive suite of interfaces. This starts with a 
graphical “point-and-click” web portal termed the RING Supervisor, a scriptable Command Line 
Interface/CLI termed RingSH and monitoring/alerting via SNMP based consoles. The RING is designed to 
be self-managing and autonomous to free administrators to work on other value-added tasks, and not 
worry about the component level management tasks common with traditional array based storage 
solutions. 

II. Scality’s Software Defined Storage Vision 
 
Scality believes that the $100 billion storage market will shift dramatically in the next five years from one 
that is dominated by proprietary storage appliances (and closely-related storage software and services), 
to one where a large proportion of data is stored within SaaS applications and SDS solutions. Existing 
segments of storage, defined largely by storage protocols, will disappear. Modern data centers that 
continue to host storage will converge along two categories: low-latency and capacity-optimized. One 
category, comprised primarily of costly flash media devices, will handle the small subset of applications 
and data that demand low-latency. The majority of applications and data, 80-85%, will reside in massive 
capacity solutions that are optimized for linear scalability, extreme resiliency, and automated operation. 
 

 
Figure 3 – Scality’s Vision of the Evolution of Storage  

The RING is designed to support a broad variety of application workloads in a capacity-optimized fashion. 
As the data center has evolved from providing mainly back-office transactional services, to providing a 
much wider range of applications including cloud computing, content serving, distributed computing and 
archiving – the need for data storage that can support a wide range of these use cases at massive scale 
becomes paramount. The types of data being stored have also increased, including traditional file data as 
accessed over network file protocols such as NFS, as well as new object based application data formats 
with REST based APIs. Eliminating the “one application – one data storage silo” problem, and evolving to 
a consolidated storage pool with economies of scale is key to dramatically increase flexibility and 
business agility, as well as reduce operational costs for both enterprise and service provider data centers. 

III. Design Principles 
 

To support this vision and the market requirements, Scality has designed the RING along the design 
criteria spearheaded by the leading cloud-scale service providers, such as Google, Facebook, and 
Amazon. The RING leverages loosely-coupled, distributed systems designs that leverage commodity, 
mainstream hardware along the following key tenets: 
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• 100% parallel design for metadata or data - to enable scaling of 

capacity and performance to unbounded numbers of objects, no single 
points of failures, with no service disruptions or forklift upgrades as the 
system grows 

• Multi-protocol data access – to enable the widest variety of object, file 
and host based applications to leverage RING storage  

• Flexible data protection mechanisms - to efficiently and durably protect 
a wide range of data types and sizes 

• Self-healing from component failures – the system expects and 
tolerates failures and automatically resolves them, to provides high-
levels of data durability and availability  

• Hardware-agnostic – to provide optimal platform flexibility, eliminate lock-in and reduce TCO 
 

The RING incorporates these design principles at multiple levels, to deliver the highest levels of data 
durability, at the highest levels of scale, for most optimal economics. 

IV. RING Architecture 
 
To scale both storage capacity and performance to massive levels, the Scality RING software is designed 
as a distributed, 100% parallel, scale-out architecture with a set of intelligent services for data access and 
presentation, data protection and systems management. To implement these capabilities, the RING 
provides a set of fully abstracted software services including a top-layer of scalable access services 
(Connectors) that provide storage protocols for applications. The middle layers are comprised of a 
distributed virtual file system layer, a set of data protection mechanisms to ensure data durability and 
integrity, self-healing processes and a set of systems management and monitoring services. At the 
bottom of the stack, the system is built on a distributed storage layer comprised of virtual storage nodes 
and underlying IO daemons that abstract the physical storage servers and disk drive interfaces.  
 
At the heart of the storage layer is a scalable, distributed object key/value store based on a second 
generation peer-to-peer routing protocol. This routing protocol ensures that store and lookup operations 
scale efficiently to very high numbers of nodes. These comprehensive storage software services are 
hosted on a scalable number of industry standard x86 servers with processing resources and disk 
storage, connected through standard IP based network fabrics such as 10Gb Ethernet. 
 

 
Figure 4 - Scality RING architecture 
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A. RING Components: Connectors, Storage Nodes, Systems Management 
The RING software is comprised of the following main components: the RING Connectors, a distributed 
internal NewSQL database called MESA, the RING Storage Nodes and IO daemons, and the Supervisor 
web based management portal. The MESA database is used to provide object indexing, as well as the 
integral Scale-Out-File-System (SOFS) file system abstraction layer, described in section IV.B. The 
underlying core routing protocol and Keyspace mechanisms are described in section IV.C. 

RING Connectors 
The Connectors provide the top-level access points and protocol services for applications that use the 
RING for data storage. The RING Connectors provide a family of application interfaces including object-
based Connectors (Scality’s sproxyd native REST API, and the RS2 connector based on de-facto 
industry REST standards AWS S3 and an OpenStack Swift driver), as well as file system Connectors 
(NFS, SMB, FUSE and CDMI) to suit a rich set of applications and a wide variety of data types. A full 
description of the RING Connectors and their use cases is provided in section V. Connectors therefore 
provide storage services for read, write, delete and lookup for objects or files stored into the RING.  
Applications may make use of multiple connectors in parallel to scale out the number of operations per 
second, or the aggregate throughput of the RING for high numbers of simultaneous user connections. 
The system may be configured to provide a mix of file access and object access (over NFS and sproxyd 
for example), simultaneously – to support multiple application use cases.  
 

 
Figure 5 - RING software processes: RING connectors, storage nodes and IO daemons 

The data IO path flows from applications through the Connectors. The Connectors then dispatch the 
requests to the RING storage nodes. Connectors are also responsible for implementing the configured 
data protection storage policy (replication or ARC), as described later. For new object writes, the 
Connectors may chunk objects that are above a configurable size threshold before the chunks are sent to 
the storage nodes. The storage nodes in-turn will write the data chunks to the underlying storage nodes 
and IO daemons, as described next. 

Storage Nodes and IO Daemons 
Storage Nodes are virtual processes (Bizstorenode) that own and store a range of objects associated 
with its portion of the RING’s “Keyspace” (a full description of the RING’s Keyspace mechanism is 
provided in section IV.C). Each storage server is typically configured with six (6) storage nodes 
(Bizstorenode), and under these storage nodes are the storage daemons (Biziod), which are responsible 
for persistence of the data on disk, in an underlying local standard disk file system. Each Biziod is a low-
level process that manages the IO operations to a particular physical disk drive, and maintains the 
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mapping of object indexes to the actual object locations on disk. Each Biziod is local to a given server, 
managing only local storage and communicating only with Storage Nodes on the same server. The typical 
configuration is one Biziod per physical disk drive, with support for up to hundreds of daemons1 per 
server, so the system can support very large, high-density storage servers. 
 
Each Biziod maintains its indexes, object payloads and object metadata in a set of fixed size container 
files on each disk, with the storage daemon providing fast access for storage and retrieval operations into 
the container files. By containerizing small files, the system can provide high-performance access to even 
small files, without any storage overhead. The RING can also leverage low-latency flash (SSD) devices 
for maintaining the index files on its own dedicated RING, for faster retrieval performance. The system 
provides data integrity assurance and validation through the use of stored checksums on the index and 
data container files, which are validated upon read access to the data. The use of a standard disk file 
system underneath Biziod ensures that administrators can use normal operating system utilities and tools 
to copy, migrate, repair and maintain the disk files if required. 
 
The recommended deployment for systems that have both HDD and SSD media on the storage servers 
is to deploy a data RING on HDD, and the associated metadata in a separate RING on SSD. Typically 
the requirements for metadata are approximately 10% of the storage capacity of the actual data, so the 
sizing of SSD should follow that percentage for best effect. Scality can provide specific sizing 
recommendations based on the expected average file sizes, and number of files for a given application. 
 

 
Figure 6 - RING software deployment 

Systems Management 
The Supervisor is the web based GUI for graphical RING management, operations, monitoring and 
provisioning. The RING also provides a Command Line Interface (RingSH), and an SNMP MIB and Traps 
for use with popular monitoring consoles such as Nagios. The RING also provides a monitoring daemon 
(sagentd) that is used to efficiently scale statistics collection and monitoring from a large set of storage 
nodes and storage daemons to the Supervisor. A full description of the Supervisor and the other RING 
services and capabilities are described in section VI. 

                                                        
1 Up to 255 storage daemons per physical server in current releases. 



B. Scale-Out-File-System (SOFS) 
 
The RING supports native file system access to RING storage through the file Connectors and the 
integrated Scale-Out-File-System (SOFS). SOFS is a POSIX based virtual file system that provides file 
storage services without the need for external file gateways, as is common in other object storage 
solutions. 
 
To provide file system semantics and views, the RING utilizes an internal distributed database (MESA) on 
top of the RING’s storage services. MESA is a distributed, NewSQL database that is used to store file 
system directories and inode structures, to provide the virtual file system hierarchy, with guaranteed 
transactional consistency of file system data. Through MESA, SOFS supports sparse files, to provide 
highly efficient storage of very large files, through this space efficient mechanism.  
 
SOFS file systems can be scaled-out in capacity across as many storage nodes as needed to support 
application requirements, and can be accessed by a scalable number of NFS, FUSE, SMB or CDMI 
connectors to support application load requirements. The RING provides the concept of “Volumes”, which 
may be used to easily configure file system services through the Supervisor, as described in section VI. 
The RING can support up to 232 volumes, with support for billions of files per volume, with no need to 
preconfigure volumes for capacity (the RING effectively supports thin-provisioning of volumes). Volumes 
will utilize the RING’s storage pool to expand as needed when files are created and updated.  
 
A volume provides a view into the file system that may be accessed over one or more Connectors 
simultaneously with a global namespace. While multiple Connectors may be used to simultaneously 
access a volume, the RING currently supports scale-out access for multiple concurrent reads, and limited 
support for multiple concurrent writers. When multiple connectors attempt to write to the same directory or 
the same file within a directory, MESA’s transactional consistency will serialize updates to these common 
directories or files, which may limit concurrency of writes to these structures. Future RING releases will 
support fully distributed range locking across files and directories, to enable higher degrees of concurrent 
write access to the same files and folders, from multiple connectors. 

C. Routing Protocol, Keyspace and Distributed Hash Table (DHT) 
 

Large distributed systems depend on fast and efficient routing of requests among the member nodes. 
Many mechanisms exist for performing these operations, ranging from centralized routing approaches 
that can optimize locking and conflict detection, but do not scale effectively, can present bottlenecks in 
performance and central points of failure. The opposite approach is a distributed broadcast model that 
can partially eliminate these bottlenecks, but are limited in practice due to the number of changes that 
need to be reflected in the system’s topology. In response to these issues, a set of efficient routing 
protocols have been proposed by the research community, including a set of second-generation peer-to-
peer protocols (sometimes termed Overlay Routing Networks), such as MIT’s Chord protocol2. Chord is 
also highly responsive to changes in system topology, such that these changes do not require 
broadcasting to all nodes, but only to a few relevant nodes. This enables the algorithm to work efficiently 
in very large clusters. 
 
The Scality RING architecture is therefore based on Chord, which provides the perfect basis for a 
distributed storage designed for hyper-scaling to billions of objects, and thereby enables Scality’s 
distributed, 100% parallel design principle. Scality has augmented and patented3 the basic Chord protocol 
to enable high levels of data durability, high-performance, self-healing and simplified management. The 
basic Chord algorithm arranges nodes (i.e., storage nodes) along a logically circular “Keyspace” with 
each node being assigned a fraction of this Keyspace (the “RING”). Each node then owns the range of 
keys bounded by its own key up to the key before its successor node. Chord is able to route requests for 
a given key quickly and efficiently from any node, to the node that owns the key, with the property that 

                                                        
2 http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf 
3 http://www.google.com/patents/US20100162035 
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any lookup will require at most O [½ (log2(N)) ] operations, where N = the number of nodes in the RING. 
This means that the number of lookups scales sub-linearly and deterministically for RINGs very large 
numbers of nodes and massive storage capacity, according to the following table. For example, in a 1000 
node system, 5 lookup “hops” maximum are required to find a key on the RING. 
 

Number of nodes in RING RING Capacity* Number of lookups 
100 5.7 PB 3 
1,000 56 PB 5 
10,000 560 PB 7 

 * Raw capacity: assumes 6 nodes per physical server, 56 HDDs per server, 6TB per drive 
 
Chord also has the property that it is dynamic, with the ability to adapt rapidly to changes in the Keyspace 
as a result of new nodes joining, or nodes departing the RING. The system is able to automatically 
rebalance the keys in the Keyspace as a result of node additions and departures, without service 
disruption. Rebalancing requires the system to move the set of keys owned by a node to the new node(s) 
now assigned to the affected addresses in the Keyspace, or to move data that was owned by a departing 
node to its previous neighbor node. During rebalancing, the system can preserve data access by routing 
around changes in the Keyspace by establishing proxies, or alternate paths to data on other nodes, until 
the rebalancing process has completed.  

Distributed Hash Table (DHT) for routing 
Underpinning the Chord algorithm is Scality’s Distributed 
Hash Table (DHT)4 implementation, which provides the 
routing mechanism for locating objects on the RING. The 
DHT is distributed among the nodes assigned to the 
Keyspace. An important aspect of the DHT is that it is 
decentralized – the DHT on a node only has knowledge 
of its own key range, knowledge of a few neighboring 
nodes (its immediate predecessors and successors), 
and a few additional nodes at well-known geometric 
“projections” across the RING. Importantly, the DHT 
does not represent a centrally shared “metadata store” 
of the Keyspace, it merely captures the local node’s 
knowledge of a subset of the RING topology, so that 
lookup operations can efficiently compute the next-best 
estimate of the location of a key on other nodes, until it is 
found. While multiple hops may occur during key lookups, the algorithm uses knowledge of predecessor 
and successor nodes to deterministically and with low-latency (tens of milliseconds) to locate the right 
node. Note that these lookups to the correct node do not require disk seek operations; it merely requires 
navigating the DHT algorithm across a sequence of nodes. 
 
By distributing the DHT fractionally across the nodes, this ensures that there is no global-update or 
consistency of key maps required for every storage operation across all nodes. This reduces broadcast 
requests, inter-node communications, and scales the system to very high-levels in a much more efficient 
manner. The overhead of inter-node communications to update all nodes in a cluster is commonly the 
limiter of scalability in distributed file systems and scale-out NAS solutions, due to the need to continually 
synchronize all nodes on every update. The DHT can dynamically adapt to changes in the RING topology 
as a result of nodes joining and leaving the RING - either due to normal operations such as scaling or due 
to disk or server failure events. Normal operations can continue when changes are occurring, with the 
system serving lookup and storage requests as normal without any disruption. Another important property 
of the DHT is that small Keyspace modifications due to node departures or additions, only affects a 
relatively small number of keys, and hence requires balancing only a proportionally small number of keys. 

                                                        
4 http://en.wikipedia.org/wiki/Distributed_hash_table 
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RING Key Format and Class of Service 
Scality organizes the Keyspace using its own key format, consisting of 160bit keys, with the first 24-bits of 
each key serving as a randomly generated dispersion field (to avoid inadvertent collisions or convergence 
of a set of related keys), the next 128bits representing the object payload, and the last 8 bits representing 
the Class of Service (CoS) of the object associated with the key.  
 

 
Figure 7 - Scality key format 

The RING provides highly flexible Classes of Service ranging from 1 to 6 way object replication (CoS 0 to 
5), as well as Scality’s erasure-coding implementation known as Advanced Resiliency Configuration 
(ARC). In either replication or ARC, the system stores chunks of the objects on the RING nodes, 
associated with its unique 160bit key for future lookup and retrieval. As described later, Connector-level 
policies may be established to store objects in a Replication Class of Service, or via ARC, based on a 
configurable object size threshold. Moreover, a RING may store objects durably according to one or more 
Class of Service, for flexibility in storing mixed size workloads. A full description of the RING’s data 
durability capabilities is provided below. 
 

 
Figure 8 - Keyspace with 6 servers and 6 storage nodes per server 

As shown in the figure, a simple RING consists of a minimum of six (6) physical servers. To subdivide the 
Keyspace more effectively across physical capacity, each physical server is assigned a set of at least six 
(6) virtual “Storage Nodes”. These Storage Nodes are then logically arranged into the circular Keyspace 
according to their assigned Key value. In the simplified example above, Storage Node 50 is responsible 
for storing Keys ranging from 40 to 49. If Storage Node 50 departs the RING (either intentionally or due to 
a failure), its Keys will be automatically reassigned and rebalanced to its successor, the Storage Node 
with Key 60 (which will then assume responsibility for Keys in the range 40 to 59) 
 
As mentioned previously, Scality has patented its own implementation of the Chord algorithm and 
augmented it with several critical improvements, including a highly robust version of the DHT with intrinsic 
knowledge of replicated key projections, self-healing algorithms to deal with real-world component failures 
(disk, server, network, site), and then layered comprehensive replication and ARC data protection 
schemes on top of Chord for data durability.  



D. Intelligent Data Durability and Self-Healing 
 
The RING is designed to expect and manage a wide range of component failures including disks, servers 
networks and even across multiple data centers, while ensuring that data remains durable and available 
during these conditions. The RING provides data durability through a set of flexible data protection 
mechanisms optimized for distributed systems, including replication, erasure coding and geo-replication 
capabilities that allow applications to select the best data protection strategies for their data. These 
flexible data protection mechanisms implement Scality’s design principle to address a wide spectrum 
(80%) of storage workloads and data sizes. A full description of multi-site data protection is provided in 
the next section, Multi-Site Geo-Distribution. 
 

 
Figure 9 - Scality Classes of Service 

Replication Class of Service 
To optimize data durability in a distributed system, the RING employs local replication, or the storage of 
multiple copies of an object within the RING. The RING will attempt to spread these replicas across 
multiple storage nodes, and across multiple disk drives, in order to separate them from common failures 
(assuming sufficient numbers of servers and disks are available). The RING supports six Class-of-Service 
levels for replication (0-5), indicating that the system can maintain between 0 to 5 replicas (or 1-6 copies) 
of an object. This allows the system to tolerate up to 5 simultaneous disk failures, while still preserving 
access and storage of the original object. Note that any failure will cause the system to self-heal the lost 
replica, to automatically bring the object back up to its original Class-of-Service, as fast as possible.  
 
While replication is optimal for many use cases where the objects are small, and access performance is 
critical, it does impose a high storage overhead penalty compared to the original data. For example, a 
100KB object being stored with a Class-of-Service=3, will therefore consume 3 x 100KB = 300KB of 
actual physical capacity on the RING, in order to maintain its 3 replicas. This overhead is acceptable in 
many cases for small objects, but can become a costly burden for megabyte or gigabyte level video and 
image objects. In this case, paying a penalty of 200% to store a 1GB object since it will require 3GB of 
underlying raw storage capacity for its 3 replicas. When measured across petabytes of objects, this 
becomes a significant cost burden for many businesses, requiring a more efficient data protection 
mechanism. 

Advanced Resiliency Configuration (ARC) Erasure Coding 
Scality’s Advanced Resiliency Protection (ARC) provides an alternative data protection mechanism to 
replication that is optimized for large objects and files. ARC implements Reed-Solomon erasure coding5 
techniques, to store large objects with an extended set of parity “chunks”, instead of multiple copies of the 
original object. The basic idea with erasure coding is to break an object into multiple chunks (m), and 
apply a mathematical encoding to produce an additional set of parity chunks (k). A description of the 
mathematical encoding is beyond the scope of this paper, but they can be simply understood as an 
extension of the XOR parity calculations used in traditional RAID. The resulting set of chunks, (m+k) are 
then distributed across the RING nodes, providing the ability to access the original object as long as any 
                                                        
5 Reed Solomon erasure coding: http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction 



 
Scality RING Technical White Paper v2.0 − Scality Confidential  13 

subset of m data or parity chunks are available. Stated another way, this provides a way to store an 
object with protection against k failures, with only k/m overhead in storage space. 
 

 
Figure 10 - Scality ARC: Example of ARC(10/4) schema 

To provide a specific example, assume a 1 GB object is to be stored using an ARC(10,4) erasure coding 
schema. This implies that the original object will be divided into equal 10 chunks, each of 100MB. The 
system will then apply ARC encoding on these 10 chunks, to produce 4 additional parity chunks, each of 
100MB in size. The resulting 14 chunks require 14 x 100MB, or 1.4GB of total storage space. This is 
therefore 40% space overhead (0.4GB/1.0GB), with protection against four simultaneous disk failures. 
This is significantly less than the 300% space overhead that would be required to store 4 replicas of an 
object using replication (4 x 1GB = 4GB). 
 
Many commercial storage solutions impose a performance penalty on reading objects stored through 
erasure coding, due to the fact that all of the chunks, including the original data, are encoded before they 
are stored. This requires mandatory decoding on all access to the objects, even when there are no failure 
conditions on the main data chunks. With Scality’s ARC, the data chunks are stored in the clear, without 
any encoding, so that this performance penalty is not present during normal read accesses. This means 
that ARC’d data can be accessed as fast as other data, unless a data chunk is missing which would 
require a parity chunk to be accessed and decoded. In summary, for single-site data protection, Scality’s 
replication and ARC data protection mechanisms can provide very high-levels of data durability, with the 
ability to tradeoff performance and space characteristics for different data types. 
 

 
Figure 11 - Replication and ARC data protection differences 
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Note that replication and ARC may be combined, even on a single connector, by configuring a policy for 
the connector to store objects below a certain size threshold with a replication CoS, but files above the file 
size limit with a specific ARC schema. This allows the application to simply store objects without worrying 
about the optimal storage strategy per object, with the system managing that automatically. 
 
Note that the RING does not employ traditional RAID based data protection techniques. While RAID has 
served the industry well in legacy NAS and SAN systems, industry experts have written at large about the 
inadequacies of classical RAID technologies when employed on high-density disk drives, in capacity-
optimized and distributed storage systems. These deficiencies include higher probabilities of data loss 
due to long RAID rebuild times, and the ability to protect against only a limited set of failure conditions (for 
example, only two simultaneous disk failures per RAID6 group). Further information and reading on the 
limitations of RAID as a data protection mechanism on high-capacity disk drives is widely available6. 

Self-healing, Rebuilds and Performance under Load 
The RING provides self-healing operations to automatically resolve component failures, including the 
ability to rebuild missing data chunks due to disk drive or server failures, rebalance data when nodes 
leave and join the RING, and to proxy around component failures. In the event a disk drive or even a full 
server fails, background rebuild operations are spawned to restore the missing object data from its 
surviving replicas or ARC chunks. The rebuild process completes when it has restored the original Class 
of Service - either the full number of replicas or the original number of ARC data and parity chunks. A 
local disk failure can also be repaired quickly on a node (distinct from a full distributed rebuild), through 
the use of an in-memory key map maintained on each node. Nodes are also responsible for automatically 
detecting mismatches in their own Keyspace, rebalancing keys and for establishing and removing proxies 
during node addition and departure operations. Self-healing provides the RING with the resiliency 
required to maintain data availability and durability in the face of the expected wide set of failure 
conditions, including multiple simultaneous component failures at the hardware and software process 
levels. 
 
To optimize rebuilds as well as mainline IO performance during rebuilds, the RING utilizes the distributed 
power of the entire storage pool. The parallelism of the underlying architecture pays dividends by 
eliminating any central bottlenecks that might otherwise limit performance or cause contention between 
servicing application requests, and normal background operations such as rebuilds, especially when the 
system is under load. To further optimize rebuild operations, the system will only repair the affected object 
data, not the entire set of disk blocks, as is commonly the case in RAID arrays. Rebuilds are distributed 
across multiple servers and disks in the system, to utilize the aggregate processing power and available 
IO of multiple resources in parallel, rather than serializing the rebuilds onto a single disk drive. 
 
By leveraging the entire pool, the impact of rebuilding data stored either with replication or ARC is 
minimized since there will be relatively small degrees of overlap between disks involved in servicing data 
requests, and those involved in the rebuilds. The diagram below demonstrates the benefits of the RING’s 
parallelism when the system is performing disk repair operations, as well as the graceful degradation in 
overall system performance when 1/6th of the server resources become unavailable, with a corresponding 
drop of 1/6th in throughput even as the rebuilds are occurring. In this small example, the system rebuilds 
and rebalances 60TB of data in just two hours. 
 

                                                        
6 http://searchstorage.techtarget.com/feature/RAID-alternatives-Erasure-codes-and-multi-copy-mirroring 
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Figure 12 - Six-server RING example of performance during hardware failures and speed of rebuild 

 

E. Multi-Site Geo-Distribution 
 
To enable site-level disaster recovery solutions, the RING can be deployed across multiple sites (data 
centers) with failure tolerance of one or more sites. Two distinct geo-distributed deployment options are 
provided, the first which makes use of a single logical RING deployed across multiple sites (“stretched 
RING”), and the second deployment option is for independent RINGs, each within its own data center, 
with asynchronous mirroring employed to maintain synchronization between the RINGs.  
 

 
 
Figure 13 - Mirrored RINGs with Object data 

For object mirroring over REST (with sproxyd), the RING supports active/passive RING-to-RING mirroring 
over the Tier1Sync feature. This maintains an asynchronous mirror of the source RING (RING-A) to a 
target RING (RING-B), with a configurable time delay. This mode is enabled at the entire RING level, and 
can be employed when the application can tolerate a small difference in the current status of RING-B with 
respect to the source on RING-A. This implies a small difference in the Recovery Point Objective (RPO) 
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of RING-B, if RING-A fails and the application needs to failover to RING-B. This asynchronous mirroring 
mode is useful in higher-latency WAN environments, where the application does not want to impose the 
latency of writing over the WAN to RING-B for every update to RING-A. Tier1Sync supports mixed mode 
data protection schemes on RING-A and RING-B, including mixed ARC schemas on the source and 
target RING. 
 
Tier1Sync works as follows: an application can write data to one RING as the active RING, RING-A. The 
Tier1Sync module on each storage node then reads all keys belonging to that node. Tier1Sync then 
synchronizes the data and metadata from all of the nodes on its RING, to a Connector of RING-B in a 
second data center. The Object Web Service (OWS) of the RING-B writes the synchronized data and 
metadata to the nodes of RING-B (if ARC is involved on RING-A or RING-B, a different mechanism using 
the RING’s scloned and sproxyd connectors is used instead of OWS). Upon a successful write, the 
synchronized keys on both RINGs are marked with the SYNC flag. Note that Tier1Sync for ARC uses 
object-based synchronization instead of chunk-based synchronization, to ensure consistency of split files 
as well as whole objects. 
 

 
 

Figure 14 - RING Tier1Sync Example 

 
In the case of one data center failure, the data is available on the peer RING in the second data center, 
without any manual intervention. Since the Tier1Sync process is asynchronous, there may be a loss of 
the last few updates from the failed RING that have not yet been synchronized. The administrator may 
use administrator utilities and log files to determine objects that have not been properly synchronized. 

Mirrored RINGs with SOFS 
For active/passive file system mirroring using SOFS, the RING provides the ssync utility. This provides 
file system level asynchronous mirroring between two RINGs: RING-A and RING-B. SOFS mirroring can 
be enabled at the file system level, with some file systems actively mirrored and other file systems not 
being mirrored. This provides additional flexibility for the application to select the data that should be 
protected for site-level disaster recovery. The ssync utility has a configurable asynchronous mirroring time 
interval, and supports mixed data protection schemes using replication or ARC on the source RING-A, 
and replication or ARC on the target RING-B, as needed to support the applications data protection 
requirements. 
 
Two deployment modes are supported: mirror-image RING mode, and unified-RING mode. In the mirror-
image mode, both sides RING-A and RING-B contain data and metadata. This mode provides the highest 
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degree of protection against site failures, by maintaining two full data RINGs. This requires the system to 
replicate all metadata and data operations from RING-A to RING-B, and requires twice the storage 
capacity. 
 

  
SOFS Mirror-Image RING mode SOFS Unified-RING mode 

Figure 15 - SOFS Mirror-Image RING and Unified RING modes 

In the unified-RING mode, there is a single shared data RING, and two separate metadata RINGs. This 
mode reduces the amount of storage capacity and data transfers required from RING-A to RING-B, so it 
provides greater efficiency, but it trades off site-level disaster protection of the data. 
 
The design of ssync is optimized for highly parallel workloads, with connectors writing to their own 
directories, with no concurrent access between connectors to the same directory data. This ensures that 
updates across connectors and folders are properly serialized to the secondary, passive RING (RING-B). 
For best performance, the system should be designed to replicate traffic across many (100’s to 1000’s) of 
concurrent folders, each accessed by its own dedicated connector. 

Stretched RING 
To support multi datacenter deployments with site protection and complete data consistency between all 
sites, the RING supports a stretched RING deployment mode. In this mode, a single logical RING is 
deployed across multiple data centers, with all nodes participating in the standard RING protocols as if 
they were local to one site.  When a stretched RING is deployed with ARC, it provides multiple benefits 
including full site-level failure protection, active/active access from both data centers, and dramatically 
reduced storage overhead compared to mirrored RINGs. An ARC schema for a three-site stretched RING 
of ARC (7,5) would provide protection against one complete site failure, or up to four disk/server failures 
per site, plus one additional disk/server failure in another site, with approximately 70% space overhead. 
This compares favorably to a replication policy that might require 300-400% space overhead, for similar 
levels of protection across these sites. 
 
Applications using the sproxyd connector on a stretched RING have the flexibility in selecting the 
consistency policy for both writes (PUT operations) and DELETE operations. For example, the application 
may elect to write objects synchronously to both sites, assuring full consistency of the data before the 
write is acknowledged and returned. For example, if an object is written with a CoS=2 (hence 3 replicas of 
the object), full write consistency assures that all 3 replicas are written to the RING before the write 
operation returns. Alternately, to optimize write performance in a stretched RING with higher latency 
between sites, sproxyd may be configured to perform asynchronous writes for a specified number of 
replicas. For example, the connector may be configured to only write 2 of the 3 replicas synchronously, 
and then allow the final replica to be written asynchronously. This can accelerate write operations to the 
remote site, by not imposing the latency across the wire into the PUT operation. The same optimization 
can be selected for optimizing distributed DELETE operations across a stretched RING. 

F. Consistency Models 
 
The Scality RING at its core is designed to optimize for data availability and fault tolerance. In other 
words, the system will make data available to an application, even if it cannot assure that the data is 
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strictly consistent.  In the parlance of Brewer’s CAP Theorem7, distributed systems must choose a 
tradeoff in optimizing for two out of the three properties in CAP: Consistency, Availability and Partition (or 
Fault) Tolerance. To optimize for AP, the RING relaxes strict data consistency (C) at the object layer – 
enabling the application to determine the consistency rules for storing its data (see below for the strict 
consistency implemented for SOFS). Consistency determines the minimum number of replicas of an 
object that should be stored for a given class of service. For example, for CoS=3, strict consistency would 
require all three replicas to be committed to storage before the write is deemed complete. Relaxed 
consistency rules would allow only 1 or 2 of the replicas to be committed out of 3, with the write deemed 
completed. The remaining replicas will eventually be written to the storage layer, but there may be a delay 
until this occurs. Hence this type of consistency is often termed “eventual consistency”, as opposed to 
strict consistency.  
 
In contrast, the Scality Scale-Out File System (SOFS) layer implements a virtual POSIX file system 
abstraction, which enforces strict consistency semantics. In order to ensure that the file system is always 
in a consistent state, SOFS is implemented with the use of the MESA database, using full ACID (atomic) 
database transactions for writes to the file system. The RING also applies distributed two-phase commit8 
protocols to ensure that data is on stable storage across all storage nodes involved in the write, before 
proceeding. This implies that writes to SOFS will always require all file replicas (or data and parity chunks, 
in the case of ARC erasure coding) to be written to the storage layer before the write is acknowledged. 
While this ensures file system consistency, in return it requires that multiple concurrent writers must be 
aware of the serialization constraints this implies when writing to the same file system structures, such as 
a single directory. 

V. RING Connectors 
 
Connectors are the entry points into the RING, providing access to applications for storage services. The 
RING supports a wide range of Connectors to support new generation object applications, over several 
dialects using REST protocols, as well as file-based legacy applications over local file systems (via Linux 
FUSE), or network file protocols (NFS and SMB) for Linux, Mac and Microsoft Windows clients. The 
system also provides an OpenStack Cinder driver for Nova instances to create persistent data volumes, 
and an OpenStack Swift driver for persistent object storage. 
 
As described previously, the connectors are the data access entry points to the RING.  The data IO path 
flows through the connectors into the underlying system. Connectors are either stateless (non-caching), 
or stateful (maintaining caches), to optimize for their common data access patterns.  Connectors are also 
responsible for implementing the replication CoS or ARC policy, as specified in each Connector’s 
configuration files. Connectors will split large objects into chunks for objects that are above a configurable 
size threshold (splitting is required for replicated objects above 500MB, and above 2GB for ARC), in order 
to optimize IO load across the system. In general, objects and files above 100MB should be considered 
for splitting, depending on available CPU and memory resources, and the applications IO load and 
latency requirements. 

Object Connectors 
The RING is accessible as a native object storage platform over a choice of REST/http protocols. REST 
provides simple object key/value storage semantics through basic PUT, GET, DELETE calls with flat 
(non-hierarchical) and scalable name spaces. The RING provides a choice of a native, high-performance 
REST API (sproxyd), or industry-standard REST APIs (SNIA CDMI, Amazon S3 compatible and 
OpenStack Swift), each with specific characteristics that must be carefully considered for each use case 
and application. 
 
Sproxyd: high-performance & scalability  

                                                        
7 http://en.wikipedia.org/wiki/CAP_theorem  
8 http://en.wikipedia.org/wiki/Two-phase_commit_protocol 
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The RING’s sproxyd connector is a pure object REST API, designed to meet extreme scalability and 
performance requirements. Sproxyd provides basic PUT, GET, HEAD and DELETE API calls, along with 
standard and Scality defined optional headers to customize the behavior. Sproxyd may be used in two 
modes, either by_key or by_path, to fit the needs of varying types of applications. If by_path is selected, 
the RING will internally hash the path to compute the internal keys. The application may elect to use 
sproxyd in either strong consistency mode, or eventual consistency mode, as a policy associated with 
each type of data protection mechanism. Sproxyd is a stateless (non-caching) connector, to enable 
transparent HTTP load balancing across multiple sproxyd connectors. 
 
As a basic object connector, additional features such as key management (catalogs), authentication, file 
system sharing or multi-tenancy capabilities are left for the application to manage.  
 
RS2: public cloud compatibility 
The RS2 API is a REST protocol modeled after the Amazon Web Services (AWS) S3 object API. This 
protocol offers features to make it optimal for public cloud deployments, including mandatory 
authentication, MD5 signatures for integrity validation, and a Bucket container mechanism. In exchange 
for this functionality and similar to the AWS S3 API, RS2 is not used for applications that require high 
scalability or performance.  
 
OpenStack Swift: scalable data storage for OpenStack Nova    
The OpenStack Swift Connector provides a scalable data storage system for OpenStack Swift. The 
Scality Swift Connector plugs in underneath OpenStack Swift, and is completely interoperable with 
OpenStack Accounts, Containers and Keystone authentication mechanisms. The Swift Connector 
operates as a back-end replacement to the normal Swift storage layer, and provides all of the RING’s 
features including ARC erasure-coding (not yet available in Swift), scalability and high-performance 
features. 

File Connectors 
The RING file system connectors provide file services on Scality’s native Scale-Out-File System (SOFS – 
see section VI below), which provides a file system view and a set of file protocols for enabling file-based 
access to the RING. The set of protocols supported by the RING SOFS include NFS, SMB and FUSE 
(Linux File System in User space). 
 
NFS v3: wide platform support on Linux and Mac clients 
NFS v3 is the commonly used and available version of the popular Network File System protocol 
originally developed by Sun Microsystems. It is supported and available as a client interface on nearly all 
operating system, including Linux, Mac and even on Microsoft Windows. The RING includes support for 
NFS quotas and NFS advisory locking within a single connector. Authentication for NFS clients is also 
supported via the Kerberos mechanism, as supported in many security server solutions including 
Microsoft Active Directory (AD).  
 
SMB 3.0: Microsoft Windows clients and servers 
SMB 3.0 is the current version of Microsoft’s Server Message Block (SMB) protocol. The RING supports 
an SMB 3.0 compatible connector that provides several key advancements over earlier CIFS and SMB 
2.0 implementations, including transport-encryption, persistent file handles, and OpLocks. 
 
Sfused: Host file system connector, with parallel IO support 
The Linux File system in User Space (FUSE) is a POSIX compliant local file system supported across all 
major Linux distributions. It provides local file system access to the RING, to support a variety of 
application server style deployments. Scality’s sfused connector is enabled to provide support for quotas, 
as well as parallel IO to the back-end RING servers, to optimize access to very large files that are striped 
across multiple back-end servers. 
 
CDMI: REST interface with file compatibility 
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CDMI is an industry-standard REST API sponsored by the Storage Networking Industry Association 
(SNIA)9. It is architected on SOFS to provide a key advantage of namespace compatibility with the 
RING’s Scale-Out File System (SOFS), so that files and objects may be shared between the CDMI REST 
protocol, and file protocols such as NFS and FUSE. CDMI also provides a Container concept to facilitate 
multi-tenancy. 
 
Scale-Out File System Considerations 
All file connectors (NFS, SMB, Sfused and CDMI) may be scaled-out across multiple servers, to provide 
scalable read performance to high-numbers of client applications that require simultaneous access to the 
same file system data.  See Section IV (SOFS) on the RING’s support for multiple simultaneous 
connectors on a file system. 

OpenStack Volume Connectors 
 
OpenStack Cinder Driver 
To support persistent data volumes for OpenStack Nova instances, Scality has supported an OpenStack 
Cinder driver since the OpenStack Grizzly release10. This provides scalable storage for application data 
volumes in the RING, optimized to support hundreds to thousands of Tier2 data volumes along, similar to 
the performance profile of Amazon Web Services (AWS) EBS magnetic storage11. The Scality RING 
Driver is not recommended as an OS boot volume mechanism for OpenStack Nova instances. 
 
Complete listing of the RING connectors: 
 
Type Connector Strengths Limitations 

Object Sproxyd Stateless, lightweight, native REST 
API, highly scalable, support for geo-
distributed deployments 

No container mechanism, no 
authentication 

 RS2 S3 compatible REST API, with 
Buckets, authentication & object 
indexing support 

Buckets cannot be geo-distributed, 
performance overhead for 
authentication & MD5 verification 

 RS2 light Subset of RS2 – highly-scalable, 
supports geo-distributed deployments 

Eliminates S3 buckets & authentication 
mechanism for improved scaling  

 OpenStack 
Swift 

Scalable back-end storage for 
OpenStack Swift; supports Containers, 
Accounts & KeyStone 

Not a Swift API, but a complete back-
end storage layer underneath Swift. 

File NFS  NFS v3 compatible server, supports 
Kerberos, advisory-locking (NLM), and 
user/group quotas  

Multiple concurrent readers OK, 
multiple writers serialize on single 
directories/files 

 Sfused Local Linux file system driver, great for 
application servers. Fast for big files: 
parallel IO to multiple back-end storage 
servers  

Requires driver to be installed on client 
/ app server. Same concurrency 
behavior as NFS 

 SMB SMB 2.x and subset of SMB 3.x 
compliant server  

Runs on top of FUSE. Does not yet 
support SMB 3.0 “multi-channel” IO  

 CDMI REST API namespace compatible with 
SOFS (NFS, SMB, FUSE) data 

By-path and by-key object addressing 
plus Containers 

OpenStack OpenStack 
Cinder Driver 

OpenStack Cinder driver for attaching 
data volumes to Nova instances 

Runs on top of SOFS, using sparse 
files to present block volumes 

                                                        
9 http://www.snia.org/cdmi 
10 https://wiki.openstack.org/wiki/CinderSupportMatrix  
11 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_standard 
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VI. RING Management 
 

To manage and monitor the RING, Scality provides a comprehensive set of tools, with a variety of 
interfaces. These include a web based GUI (the Supervisor), a Command Line Interface that can be 
scripted (RingSH), and for use with standard SNMP monitoring consoles, the RING provides SNMP 
compliant MIB and traps. 

Supervisor Web Management GUI 
The Supervisor is the RING’s Web based 
management GUI. It provides visual, point-and-click 
style monitoring and management of the RING 
software, as well as the underlying physical platform 
layer. The Supervisor provides a main Dashboard 
page that provides graphical RING views, including the 
Servers, Zones and Storage Nodes comprising the 
RING, with browsing capabilities to drill down to details 
of each component, and pages for operations, 
management and provisioning of RING services. The 
Supervisor also provides performance statistics, 
resource consumption and health metrics through a 
rich set of graphs. 
 
The Supervisor UI provides a simple volume UI for SOFS that enables the administrator to easily 
provision Volumes and connectors. Once provisioned through the UI, the connectors are configured and 
started, and ready for access by applications. 
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Figure 16 - RING Supervisor Volume Provisioning UI 

The Supervisor works in conjunction with the Scality management agent (sagentd), which is hosted on 
each Scality managed storage server, or connector server. The sagentd daemon provides a single point 
of communication for the Supervisor with the given host, for purposes of statistics and health metrics 
collection. This avoids the additional overhead of individual connections from the Supervisor to each 
Storage Node, and each disk drive daemon running on a specific host. 
 

 
Figure 17 - RING Supervisor interacting with Scality management agents (sagentd) 

RingSH Command Line Interface 
RingSH is a scriptable command line interface (CLI) for managing and monitoring the RING, which can 
be used on the Supervisor host, or on any storage server for managing the RING components. RingSH 
provides a rich set of commands for managing the complete stack, as well as providing access to system 
statistics and health metrics. 

SNMP Monitoring 
For monitoring of the RING from popular data center tools such as Nagios, the RING provides an SNMP 
compliant MIB. This enables these tools to actively monitor the RING’s status, as well as to receive alerts 
via SNMP traps. System health metrics, resource consumption, connector and storage node performance 
statistics are available and may be browsed from the MIB. 
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VII. Summary 
 

The RING is designed on a core set of principles to deliver true customer value: massive capacity scaling, 
consolidation of multiple storage silos with reduced management costs, always on data availability and 
the highest levels of data durability, all at the economics of cloud-scale data centers. The RING provides 
a comprehensive software-defined storage (SDS) solution on industry-standard platforms to enable these 
values. Further information on the Scality RING is available at www.scality.com. 


