

Scality RING:
 Software for Storing the Information Age

Scality Technical White Paper

June 2015

Scality RING Technical White Paper v2.0 − Scality Confidential 2

Table of Contents

I. Introduction: Storage for the Modern Data Center ... 3
II. Scality’s Software Defined Storage Vision .. 5
III. Design Principles ... 5
IV. RING Architecture ... 6

A. RING Components: Connectors, Storage Nodes, Systems Management 7
B. Scale-Out-File-System (SOFS) .. 9
C. Routing Protocol, Keyspace and Distributed Hash Table (DHT) ... 9
D. Intelligent Data Durability and Self-Healing ... 12
E. Multi-Site Geo-Distribution ... 15
F. Consistency Models ... 17

V. RING Connectors ... 18
VI. RING Management ... 21
VII. Summary .. 23

Table of Figures

Figure 1 - Software Defined Storage within the Software Defined Data Center .. 3
Figure 2 - Scality RING Software Defined Storage high-level architecture .. 4
Figure 3 - Scality's Vision of the Evolution of Storage…………………………………………………………...5
Figure 4 - Scality RING architecture .. 6
Figure 5 - RING software processes: RING connectors, storage nodes and IO daemons 7
Figure 6 - RING software deployment ... 8
Figure 7 - Scality key format .. 11
Figure 8 - Keyspace with 6 servers and 6 storage nodes per server ... 11
Figure 9 - Scality Classes of Service ... 12
Figure 10 - Scality ARC: Example of ARC(10/4) schema .. 13
Figure 11 - Replication and ARC data protection differences .. 13
Figure 12 - Six-server RING example of performance during hardware failures and speed of rebuild 15
Figure 13 - Mirrored RINGs with Object data ... 15
Figure 14 - RING Tier1Sync Example ... 16
Figure 15 - SOFS Mirror-Image RING and Unified RING modes .. 17
Figure 16 - RING Supervisor Volume Provisioning UI ... 22
Figure 17 - RING Supervisor interacting with Scality management agents (sagentd)……………………...23

Scality RING Technical White Paper v2.0 − Scality Confidential 3

I. Introduction: Storage for the Modern Data Center

Today’s data centers have moved beyond the rigid deployment of proprietary hardware based compute,
network and storage solutions – to a new Software Defined Data Center (SDDC) model that achieves
agility through software-based infrastructure services. The SDDC is embodied by today’s well-proven
software virtualization solutions for compute - as provided by hypervisors - to full cloud automation
software platforms. A complete software-based infrastructure solution requires more than compute
virtualization, however. Combining the agility of cloud and virtualization software, along with Software-
Defined Networking (SDN), and Software-Defined Storage (SDS) solutions, forms the key cornerstones of
the modern data center. We see these elements coming together in software to enable the greatest data
center agility, by enabling the software to shape the underlying hardware to deliver services in the best
form for applications to consume. By decoupling software from the underlying platform, we also enable
the greatest choice in platform flexibility, both from a vendor perspective, and from a scaling and future-
proofing perspective. This will provide a quantum step in reducing the cost of ownership of the future data
center.

The next generation of scalable storage systems are therefore departing from the traditional model of
hardware appliance based “arrays”, to a decoupled model of storage software hosted on commodity (x86)
based servers. The goal is to provide customers with complete hardware freedom, both for their initial
deployments and for future-proofing their investments, 100% system reliability through intelligent
software-based data protection and self-healing algorithms, and the flexibility to configure for high-
performance for both throughput intensive and operations-intensive workloads.

Figure 1 - Software Defined Storage within the Software Defined Data Center

The Scality RING is a Software-Defined Storage (SDS) solution for petabyte-scale data storage that is
designed to interoperate in the modern Software Defined Data Center SDDC. The RING software is
designed to create unbounded scale-out storage systems that converge the storage of Petabyte scale
data from multiple applications and use-cases, including both object and file based applications. The
RING is a distributed system deployed on industry standard servers, with a minimum cluster of six (6)

Scality RING Technical White Paper v2.0 − Scality Confidential 4

storage servers that can be seamlessly scaled-out to very large systems of thousands of storage servers
with 100’s of petabytes of storage capacity. The RING has no single points of failure, and requires no
downtime during any upgrades, scaling, planned maintenance or unplanned system operations with self-
healing capabilities – the RING keeps operating normally and providing data availability throughout these
events. To match performance to increasing capacity, the RING can also independently scale-out its
access nodes (“Connectors”), to enable an even match of aggregate performance to the application load.
The RING employs a second-generation peer-to-peer architecture that uniquely distributes both the user
data and the associated metadata across the underlying nodes to eliminate a common bottleneck in
current distributed systems, the central metadata repository or database. To enable file and object data in
the same scalable system, the RING provides a virtual file system layer on top of an internal distributed
database system, with POSIX based access semantics over NFS, SMB, FUSE connectors and shared
access to the same data over a CDMI REST connector. This is in addition to the RINGs integral support
for an AWS S3 compatible REST connector and a fast native REST API.

The RING software is hardware-agnostic, and can be hosted on a wide spectrum of popular Linux
distributions including CentOS/Red Hat Enterprise, Ubuntu and Debian. The RING requires no kernel
modifications, to eliminate hardware-dependencies and platform vendor lock-in – and enables
deployment on your own operating system builds. This approach also decouples Scality from maintaining
hardware compatibility lists (HCLs) other than those associated with the specific Linux distributions. The
underlying physical storage cluster can be comprised of servers of any form factor and density, ranging
from small storage servers with a few hard disk drives (HDDs), to very high-density servers containing
dozens of HDDs as well as flash drives (SSDs). The use of commodity components also extends to the
network elements with 1GbE/10GbE interfaces acceptable for both the external connector interfaces and
the internal RING interconnect fabric. This flexibility makes it possible to construct capacity-optimized
RINGs, performance-optimized RINGs or a mix of both characteristics in a single RING. In all cases, the
RING software abstracts the underlying physical servers and hard disk drives, and can exploit the lower-
latency access characteristics of SSD storage to maintain its internal metadata, to improve the overall
performance of data stored on HDDs. Total flexibility of deployment also extends to mixed
(heterogeneous) platform options – since the RING is designed to scale out over time, with various
hardware vendors, server generations and densities expected as a normal part of the RING platform
lifecycle.

Figure 2 - Scality RING Software Defined Storage high-level architecture

Scality RING Technical White Paper v2.0 − Scality Confidential 5

Managing and monitoring the RING is enabled through a cohesive suite of interfaces. This starts with a
graphical “point-and-click” web portal termed the RING Supervisor, a scriptable Command Line
Interface/CLI termed RingSH and monitoring/alerting via SNMP based consoles. The RING is designed to
be self-managing and autonomous to free administrators to work on other value-added tasks, and not
worry about the component level management tasks common with traditional array based storage
solutions.

II. Scality’s Software Defined Storage Vision

Scality believes that the $100 billion storage market will shift dramatically in the next five years from one
that is dominated by proprietary storage appliances (and closely-related storage software and services),
to one where a large proportion of data is stored within SaaS applications and SDS solutions. Existing
segments of storage, defined largely by storage protocols, will disappear. Modern data centers that
continue to host storage will converge along two categories: low-latency and capacity-optimized. One
category, comprised primarily of costly flash media devices, will handle the small subset of applications
and data that demand low-latency. The majority of applications and data, 80-85%, will reside in massive
capacity solutions that are optimized for linear scalability, extreme resiliency, and automated operation.

Figure 3 – Scality’s Vision of the Evolution of Storage

The RING is designed to support a broad variety of application workloads in a capacity-optimized fashion.
As the data center has evolved from providing mainly back-office transactional services, to providing a
much wider range of applications including cloud computing, content serving, distributed computing and
archiving – the need for data storage that can support a wide range of these use cases at massive scale
becomes paramount. The types of data being stored have also increased, including traditional file data as
accessed over network file protocols such as NFS, as well as new object based application data formats
with REST based APIs. Eliminating the “one application – one data storage silo” problem, and evolving to
a consolidated storage pool with economies of scale is key to dramatically increase flexibility and
business agility, as well as reduce operational costs for both enterprise and service provider data centers.

III. Design Principles

To support this vision and the market requirements, Scality has designed the RING along the design
criteria spearheaded by the leading cloud-scale service providers, such as Google, Facebook, and
Amazon. The RING leverages loosely-coupled, distributed systems designs that leverage commodity,
mainstream hardware along the following key tenets:

Scality RING Technical White Paper v2.0 − Scality Confidential 6

• 100% parallel design for metadata or data - to enable scaling of

capacity and performance to unbounded numbers of objects, no single
points of failures, with no service disruptions or forklift upgrades as the
system grows

• Multi-protocol data access – to enable the widest variety of object, file
and host based applications to leverage RING storage

• Flexible data protection mechanisms - to efficiently and durably protect
a wide range of data types and sizes

• Self-healing from component failures – the system expects and
tolerates failures and automatically resolves them, to provides high-
levels of data durability and availability

• Hardware-agnostic – to provide optimal platform flexibility, eliminate lock-in and reduce TCO

The RING incorporates these design principles at multiple levels, to deliver the highest levels of data
durability, at the highest levels of scale, for most optimal economics.

IV. RING Architecture

To scale both storage capacity and performance to massive levels, the Scality RING software is designed
as a distributed, 100% parallel, scale-out architecture with a set of intelligent services for data access and
presentation, data protection and systems management. To implement these capabilities, the RING
provides a set of fully abstracted software services including a top-layer of scalable access services
(Connectors) that provide storage protocols for applications. The middle layers are comprised of a
distributed virtual file system layer, a set of data protection mechanisms to ensure data durability and
integrity, self-healing processes and a set of systems management and monitoring services. At the
bottom of the stack, the system is built on a distributed storage layer comprised of virtual storage nodes
and underlying IO daemons that abstract the physical storage servers and disk drive interfaces.

At the heart of the storage layer is a scalable, distributed object key/value store based on a second
generation peer-to-peer routing protocol. This routing protocol ensures that store and lookup operations
scale efficiently to very high numbers of nodes. These comprehensive storage software services are
hosted on a scalable number of industry standard x86 servers with processing resources and disk
storage, connected through standard IP based network fabrics such as 10Gb Ethernet.

Figure 4 - Scality RING architecture

Scality RING Technical White Paper v2.0 − Scality Confidential 7

A. RING Components: Connectors, Storage Nodes, Systems Management
The RING software is comprised of the following main components: the RING Connectors, a distributed
internal NewSQL database called MESA, the RING Storage Nodes and IO daemons, and the Supervisor
web based management portal. The MESA database is used to provide object indexing, as well as the
integral Scale-Out-File-System (SOFS) file system abstraction layer, described in section IV.B. The
underlying core routing protocol and Keyspace mechanisms are described in section IV.C.

RING Connectors
The Connectors provide the top-level access points and protocol services for applications that use the
RING for data storage. The RING Connectors provide a family of application interfaces including object-
based Connectors (Scality’s sproxyd native REST API, and the RS2 connector based on de-facto
industry REST standards AWS S3 and an OpenStack Swift driver), as well as file system Connectors
(NFS, SMB, FUSE and CDMI) to suit a rich set of applications and a wide variety of data types. A full
description of the RING Connectors and their use cases is provided in section V. Connectors therefore
provide storage services for read, write, delete and lookup for objects or files stored into the RING.
Applications may make use of multiple connectors in parallel to scale out the number of operations per
second, or the aggregate throughput of the RING for high numbers of simultaneous user connections.
The system may be configured to provide a mix of file access and object access (over NFS and sproxyd
for example), simultaneously – to support multiple application use cases.

Figure 5 - RING software processes: RING connectors, storage nodes and IO daemons

The data IO path flows from applications through the Connectors. The Connectors then dispatch the
requests to the RING storage nodes. Connectors are also responsible for implementing the configured
data protection storage policy (replication or ARC), as described later. For new object writes, the
Connectors may chunk objects that are above a configurable size threshold before the chunks are sent to
the storage nodes. The storage nodes in-turn will write the data chunks to the underlying storage nodes
and IO daemons, as described next.

Storage Nodes and IO Daemons
Storage Nodes are virtual processes (Bizstorenode) that own and store a range of objects associated
with its portion of the RING’s “Keyspace” (a full description of the RING’s Keyspace mechanism is
provided in section IV.C). Each storage server is typically configured with six (6) storage nodes
(Bizstorenode), and under these storage nodes are the storage daemons (Biziod), which are responsible
for persistence of the data on disk, in an underlying local standard disk file system. Each Biziod is a low-
level process that manages the IO operations to a particular physical disk drive, and maintains the

Scality RING Technical White Paper v2.0 − Scality Confidential 8

mapping of object indexes to the actual object locations on disk. Each Biziod is local to a given server,
managing only local storage and communicating only with Storage Nodes on the same server. The typical
configuration is one Biziod per physical disk drive, with support for up to hundreds of daemons1 per
server, so the system can support very large, high-density storage servers.

Each Biziod maintains its indexes, object payloads and object metadata in a set of fixed size container
files on each disk, with the storage daemon providing fast access for storage and retrieval operations into
the container files. By containerizing small files, the system can provide high-performance access to even
small files, without any storage overhead. The RING can also leverage low-latency flash (SSD) devices
for maintaining the index files on its own dedicated RING, for faster retrieval performance. The system
provides data integrity assurance and validation through the use of stored checksums on the index and
data container files, which are validated upon read access to the data. The use of a standard disk file
system underneath Biziod ensures that administrators can use normal operating system utilities and tools
to copy, migrate, repair and maintain the disk files if required.

The recommended deployment for systems that have both HDD and SSD media on the storage servers
is to deploy a data RING on HDD, and the associated metadata in a separate RING on SSD. Typically
the requirements for metadata are approximately 10% of the storage capacity of the actual data, so the
sizing of SSD should follow that percentage for best effect. Scality can provide specific sizing
recommendations based on the expected average file sizes, and number of files for a given application.

Figure 6 - RING software deployment

Systems Management
The Supervisor is the web based GUI for graphical RING management, operations, monitoring and
provisioning. The RING also provides a Command Line Interface (RingSH), and an SNMP MIB and Traps
for use with popular monitoring consoles such as Nagios. The RING also provides a monitoring daemon
(sagentd) that is used to efficiently scale statistics collection and monitoring from a large set of storage
nodes and storage daemons to the Supervisor. A full description of the Supervisor and the other RING
services and capabilities are described in section VI.

1 Up to 255 storage daemons per physical server in current releases.

B. Scale-Out-File-System (SOFS)

The RING supports native file system access to RING storage through the file Connectors and the
integrated Scale-Out-File-System (SOFS). SOFS is a POSIX based virtual file system that provides file
storage services without the need for external file gateways, as is common in other object storage
solutions.

To provide file system semantics and views, the RING utilizes an internal distributed database (MESA) on
top of the RING’s storage services. MESA is a distributed, NewSQL database that is used to store file
system directories and inode structures, to provide the virtual file system hierarchy, with guaranteed
transactional consistency of file system data. Through MESA, SOFS supports sparse files, to provide
highly efficient storage of very large files, through this space efficient mechanism.

SOFS file systems can be scaled-out in capacity across as many storage nodes as needed to support
application requirements, and can be accessed by a scalable number of NFS, FUSE, SMB or CDMI
connectors to support application load requirements. The RING provides the concept of “Volumes”, which
may be used to easily configure file system services through the Supervisor, as described in section VI.
The RING can support up to 232 volumes, with support for billions of files per volume, with no need to
preconfigure volumes for capacity (the RING effectively supports thin-provisioning of volumes). Volumes
will utilize the RING’s storage pool to expand as needed when files are created and updated.

A volume provides a view into the file system that may be accessed over one or more Connectors
simultaneously with a global namespace. While multiple Connectors may be used to simultaneously
access a volume, the RING currently supports scale-out access for multiple concurrent reads, and limited
support for multiple concurrent writers. When multiple connectors attempt to write to the same directory or
the same file within a directory, MESA’s transactional consistency will serialize updates to these common
directories or files, which may limit concurrency of writes to these structures. Future RING releases will
support fully distributed range locking across files and directories, to enable higher degrees of concurrent
write access to the same files and folders, from multiple connectors.

C. Routing Protocol, Keyspace and Distributed Hash Table (DHT)

Large distributed systems depend on fast and efficient routing of requests among the member nodes.
Many mechanisms exist for performing these operations, ranging from centralized routing approaches
that can optimize locking and conflict detection, but do not scale effectively, can present bottlenecks in
performance and central points of failure. The opposite approach is a distributed broadcast model that
can partially eliminate these bottlenecks, but are limited in practice due to the number of changes that
need to be reflected in the system’s topology. In response to these issues, a set of efficient routing
protocols have been proposed by the research community, including a set of second-generation peer-to-
peer protocols (sometimes termed Overlay Routing Networks), such as MIT’s Chord protocol2. Chord is
also highly responsive to changes in system topology, such that these changes do not require
broadcasting to all nodes, but only to a few relevant nodes. This enables the algorithm to work efficiently
in very large clusters.

The Scality RING architecture is therefore based on Chord, which provides the perfect basis for a
distributed storage designed for hyper-scaling to billions of objects, and thereby enables Scality’s
distributed, 100% parallel design principle. Scality has augmented and patented3 the basic Chord protocol
to enable high levels of data durability, high-performance, self-healing and simplified management. The
basic Chord algorithm arranges nodes (i.e., storage nodes) along a logically circular “Keyspace” with
each node being assigned a fraction of this Keyspace (the “RING”). Each node then owns the range of
keys bounded by its own key up to the key before its successor node. Chord is able to route requests for
a given key quickly and efficiently from any node, to the node that owns the key, with the property that

2 http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
3 http://www.google.com/patents/US20100162035

Scality RING Technical White Paper v2.0 − Scality Confidential 10

any lookup will require at most O [½ (log2(N))] operations, where N = the number of nodes in the RING.
This means that the number of lookups scales sub-linearly and deterministically for RINGs very large
numbers of nodes and massive storage capacity, according to the following table. For example, in a 1000
node system, 5 lookup “hops” maximum are required to find a key on the RING.

Number of nodes in RING RING Capacity* Number of lookups
100 5.7 PB 3
1,000 56 PB 5
10,000 560 PB 7

 * Raw capacity: assumes 6 nodes per physical server, 56 HDDs per server, 6TB per drive

Chord also has the property that it is dynamic, with the ability to adapt rapidly to changes in the Keyspace
as a result of new nodes joining, or nodes departing the RING. The system is able to automatically
rebalance the keys in the Keyspace as a result of node additions and departures, without service
disruption. Rebalancing requires the system to move the set of keys owned by a node to the new node(s)
now assigned to the affected addresses in the Keyspace, or to move data that was owned by a departing
node to its previous neighbor node. During rebalancing, the system can preserve data access by routing
around changes in the Keyspace by establishing proxies, or alternate paths to data on other nodes, until
the rebalancing process has completed.

Distributed Hash Table (DHT) for routing
Underpinning the Chord algorithm is Scality’s Distributed
Hash Table (DHT)4 implementation, which provides the
routing mechanism for locating objects on the RING. The
DHT is distributed among the nodes assigned to the
Keyspace. An important aspect of the DHT is that it is
decentralized – the DHT on a node only has knowledge
of its own key range, knowledge of a few neighboring
nodes (its immediate predecessors and successors),
and a few additional nodes at well-known geometric
“projections” across the RING. Importantly, the DHT
does not represent a centrally shared “metadata store”
of the Keyspace, it merely captures the local node’s
knowledge of a subset of the RING topology, so that
lookup operations can efficiently compute the next-best
estimate of the location of a key on other nodes, until it is
found. While multiple hops may occur during key lookups, the algorithm uses knowledge of predecessor
and successor nodes to deterministically and with low-latency (tens of milliseconds) to locate the right
node. Note that these lookups to the correct node do not require disk seek operations; it merely requires
navigating the DHT algorithm across a sequence of nodes.

By distributing the DHT fractionally across the nodes, this ensures that there is no global-update or
consistency of key maps required for every storage operation across all nodes. This reduces broadcast
requests, inter-node communications, and scales the system to very high-levels in a much more efficient
manner. The overhead of inter-node communications to update all nodes in a cluster is commonly the
limiter of scalability in distributed file systems and scale-out NAS solutions, due to the need to continually
synchronize all nodes on every update. The DHT can dynamically adapt to changes in the RING topology
as a result of nodes joining and leaving the RING - either due to normal operations such as scaling or due
to disk or server failure events. Normal operations can continue when changes are occurring, with the
system serving lookup and storage requests as normal without any disruption. Another important property
of the DHT is that small Keyspace modifications due to node departures or additions, only affects a
relatively small number of keys, and hence requires balancing only a proportionally small number of keys.

4 http://en.wikipedia.org/wiki/Distributed_hash_table

Scality RING Technical White Paper v2.0 − Scality Confidential 11

RING Key Format and Class of Service
Scality organizes the Keyspace using its own key format, consisting of 160bit keys, with the first 24-bits of
each key serving as a randomly generated dispersion field (to avoid inadvertent collisions or convergence
of a set of related keys), the next 128bits representing the object payload, and the last 8 bits representing
the Class of Service (CoS) of the object associated with the key.

Figure 7 - Scality key format

The RING provides highly flexible Classes of Service ranging from 1 to 6 way object replication (CoS 0 to
5), as well as Scality’s erasure-coding implementation known as Advanced Resiliency Configuration
(ARC). In either replication or ARC, the system stores chunks of the objects on the RING nodes,
associated with its unique 160bit key for future lookup and retrieval. As described later, Connector-level
policies may be established to store objects in a Replication Class of Service, or via ARC, based on a
configurable object size threshold. Moreover, a RING may store objects durably according to one or more
Class of Service, for flexibility in storing mixed size workloads. A full description of the RING’s data
durability capabilities is provided below.

Figure 8 - Keyspace with 6 servers and 6 storage nodes per server

As shown in the figure, a simple RING consists of a minimum of six (6) physical servers. To subdivide the
Keyspace more effectively across physical capacity, each physical server is assigned a set of at least six
(6) virtual “Storage Nodes”. These Storage Nodes are then logically arranged into the circular Keyspace
according to their assigned Key value. In the simplified example above, Storage Node 50 is responsible
for storing Keys ranging from 40 to 49. If Storage Node 50 departs the RING (either intentionally or due to
a failure), its Keys will be automatically reassigned and rebalanced to its successor, the Storage Node
with Key 60 (which will then assume responsibility for Keys in the range 40 to 59)

As mentioned previously, Scality has patented its own implementation of the Chord algorithm and
augmented it with several critical improvements, including a highly robust version of the DHT with intrinsic
knowledge of replicated key projections, self-healing algorithms to deal with real-world component failures
(disk, server, network, site), and then layered comprehensive replication and ARC data protection
schemes on top of Chord for data durability.

D. Intelligent Data Durability and Self-Healing

The RING is designed to expect and manage a wide range of component failures including disks, servers
networks and even across multiple data centers, while ensuring that data remains durable and available
during these conditions. The RING provides data durability through a set of flexible data protection
mechanisms optimized for distributed systems, including replication, erasure coding and geo-replication
capabilities that allow applications to select the best data protection strategies for their data. These
flexible data protection mechanisms implement Scality’s design principle to address a wide spectrum
(80%) of storage workloads and data sizes. A full description of multi-site data protection is provided in
the next section, Multi-Site Geo-Distribution.

Figure 9 - Scality Classes of Service

Replication Class of Service
To optimize data durability in a distributed system, the RING employs local replication, or the storage of
multiple copies of an object within the RING. The RING will attempt to spread these replicas across
multiple storage nodes, and across multiple disk drives, in order to separate them from common failures
(assuming sufficient numbers of servers and disks are available). The RING supports six Class-of-Service
levels for replication (0-5), indicating that the system can maintain between 0 to 5 replicas (or 1-6 copies)
of an object. This allows the system to tolerate up to 5 simultaneous disk failures, while still preserving
access and storage of the original object. Note that any failure will cause the system to self-heal the lost
replica, to automatically bring the object back up to its original Class-of-Service, as fast as possible.

While replication is optimal for many use cases where the objects are small, and access performance is
critical, it does impose a high storage overhead penalty compared to the original data. For example, a
100KB object being stored with a Class-of-Service=3, will therefore consume 3 x 100KB = 300KB of
actual physical capacity on the RING, in order to maintain its 3 replicas. This overhead is acceptable in
many cases for small objects, but can become a costly burden for megabyte or gigabyte level video and
image objects. In this case, paying a penalty of 200% to store a 1GB object since it will require 3GB of
underlying raw storage capacity for its 3 replicas. When measured across petabytes of objects, this
becomes a significant cost burden for many businesses, requiring a more efficient data protection
mechanism.

Advanced Resiliency Configuration (ARC) Erasure Coding
Scality’s Advanced Resiliency Protection (ARC) provides an alternative data protection mechanism to
replication that is optimized for large objects and files. ARC implements Reed-Solomon erasure coding5
techniques, to store large objects with an extended set of parity “chunks”, instead of multiple copies of the
original object. The basic idea with erasure coding is to break an object into multiple chunks (m), and
apply a mathematical encoding to produce an additional set of parity chunks (k). A description of the
mathematical encoding is beyond the scope of this paper, but they can be simply understood as an
extension of the XOR parity calculations used in traditional RAID. The resulting set of chunks, (m+k) are
then distributed across the RING nodes, providing the ability to access the original object as long as any

5 Reed Solomon erasure coding: http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction

Scality RING Technical White Paper v2.0 − Scality Confidential 13

subset of m data or parity chunks are available. Stated another way, this provides a way to store an
object with protection against k failures, with only k/m overhead in storage space.

Figure 10 - Scality ARC: Example of ARC(10/4) schema

To provide a specific example, assume a 1 GB object is to be stored using an ARC(10,4) erasure coding
schema. This implies that the original object will be divided into equal 10 chunks, each of 100MB. The
system will then apply ARC encoding on these 10 chunks, to produce 4 additional parity chunks, each of
100MB in size. The resulting 14 chunks require 14 x 100MB, or 1.4GB of total storage space. This is
therefore 40% space overhead (0.4GB/1.0GB), with protection against four simultaneous disk failures.
This is significantly less than the 300% space overhead that would be required to store 4 replicas of an
object using replication (4 x 1GB = 4GB).

Many commercial storage solutions impose a performance penalty on reading objects stored through
erasure coding, due to the fact that all of the chunks, including the original data, are encoded before they
are stored. This requires mandatory decoding on all access to the objects, even when there are no failure
conditions on the main data chunks. With Scality’s ARC, the data chunks are stored in the clear, without
any encoding, so that this performance penalty is not present during normal read accesses. This means
that ARC’d data can be accessed as fast as other data, unless a data chunk is missing which would
require a parity chunk to be accessed and decoded. In summary, for single-site data protection, Scality’s
replication and ARC data protection mechanisms can provide very high-levels of data durability, with the
ability to tradeoff performance and space characteristics for different data types.

Figure 11 - Replication and ARC data protection differences

Scality RING Technical White Paper v2.0 − Scality Confidential 14

Note that replication and ARC may be combined, even on a single connector, by configuring a policy for
the connector to store objects below a certain size threshold with a replication CoS, but files above the file
size limit with a specific ARC schema. This allows the application to simply store objects without worrying
about the optimal storage strategy per object, with the system managing that automatically.

Note that the RING does not employ traditional RAID based data protection techniques. While RAID has
served the industry well in legacy NAS and SAN systems, industry experts have written at large about the
inadequacies of classical RAID technologies when employed on high-density disk drives, in capacity-
optimized and distributed storage systems. These deficiencies include higher probabilities of data loss
due to long RAID rebuild times, and the ability to protect against only a limited set of failure conditions (for
example, only two simultaneous disk failures per RAID6 group). Further information and reading on the
limitations of RAID as a data protection mechanism on high-capacity disk drives is widely available6.

Self-healing, Rebuilds and Performance under Load
The RING provides self-healing operations to automatically resolve component failures, including the
ability to rebuild missing data chunks due to disk drive or server failures, rebalance data when nodes
leave and join the RING, and to proxy around component failures. In the event a disk drive or even a full
server fails, background rebuild operations are spawned to restore the missing object data from its
surviving replicas or ARC chunks. The rebuild process completes when it has restored the original Class
of Service - either the full number of replicas or the original number of ARC data and parity chunks. A
local disk failure can also be repaired quickly on a node (distinct from a full distributed rebuild), through
the use of an in-memory key map maintained on each node. Nodes are also responsible for automatically
detecting mismatches in their own Keyspace, rebalancing keys and for establishing and removing proxies
during node addition and departure operations. Self-healing provides the RING with the resiliency
required to maintain data availability and durability in the face of the expected wide set of failure
conditions, including multiple simultaneous component failures at the hardware and software process
levels.

To optimize rebuilds as well as mainline IO performance during rebuilds, the RING utilizes the distributed
power of the entire storage pool. The parallelism of the underlying architecture pays dividends by
eliminating any central bottlenecks that might otherwise limit performance or cause contention between
servicing application requests, and normal background operations such as rebuilds, especially when the
system is under load. To further optimize rebuild operations, the system will only repair the affected object
data, not the entire set of disk blocks, as is commonly the case in RAID arrays. Rebuilds are distributed
across multiple servers and disks in the system, to utilize the aggregate processing power and available
IO of multiple resources in parallel, rather than serializing the rebuilds onto a single disk drive.

By leveraging the entire pool, the impact of rebuilding data stored either with replication or ARC is
minimized since there will be relatively small degrees of overlap between disks involved in servicing data
requests, and those involved in the rebuilds. The diagram below demonstrates the benefits of the RING’s
parallelism when the system is performing disk repair operations, as well as the graceful degradation in
overall system performance when 1/6th of the server resources become unavailable, with a corresponding
drop of 1/6th in throughput even as the rebuilds are occurring. In this small example, the system rebuilds
and rebalances 60TB of data in just two hours.

6 http://searchstorage.techtarget.com/feature/RAID-alternatives-Erasure-codes-and-multi-copy-mirroring

Scality RING Technical White Paper v2.0 − Scality Confidential 15

Figure 12 - Six-server RING example of performance during hardware failures and speed of rebuild

E. Multi-Site Geo-Distribution

To enable site-level disaster recovery solutions, the RING can be deployed across multiple sites (data
centers) with failure tolerance of one or more sites. Two distinct geo-distributed deployment options are
provided, the first which makes use of a single logical RING deployed across multiple sites (“stretched
RING”), and the second deployment option is for independent RINGs, each within its own data center,
with asynchronous mirroring employed to maintain synchronization between the RINGs.

Figure 13 - Mirrored RINGs with Object data

For object mirroring over REST (with sproxyd), the RING supports active/passive RING-to-RING mirroring
over the Tier1Sync feature. This maintains an asynchronous mirror of the source RING (RING-A) to a
target RING (RING-B), with a configurable time delay. This mode is enabled at the entire RING level, and
can be employed when the application can tolerate a small difference in the current status of RING-B with
respect to the source on RING-A. This implies a small difference in the Recovery Point Objective (RPO)

Scality RING Technical White Paper v2.0 − Scality Confidential 16

of RING-B, if RING-A fails and the application needs to failover to RING-B. This asynchronous mirroring
mode is useful in higher-latency WAN environments, where the application does not want to impose the
latency of writing over the WAN to RING-B for every update to RING-A. Tier1Sync supports mixed mode
data protection schemes on RING-A and RING-B, including mixed ARC schemas on the source and
target RING.

Tier1Sync works as follows: an application can write data to one RING as the active RING, RING-A. The
Tier1Sync module on each storage node then reads all keys belonging to that node. Tier1Sync then
synchronizes the data and metadata from all of the nodes on its RING, to a Connector of RING-B in a
second data center. The Object Web Service (OWS) of the RING-B writes the synchronized data and
metadata to the nodes of RING-B (if ARC is involved on RING-A or RING-B, a different mechanism using
the RING’s scloned and sproxyd connectors is used instead of OWS). Upon a successful write, the
synchronized keys on both RINGs are marked with the SYNC flag. Note that Tier1Sync for ARC uses
object-based synchronization instead of chunk-based synchronization, to ensure consistency of split files
as well as whole objects.

Figure 14 - RING Tier1Sync Example

In the case of one data center failure, the data is available on the peer RING in the second data center,
without any manual intervention. Since the Tier1Sync process is asynchronous, there may be a loss of
the last few updates from the failed RING that have not yet been synchronized. The administrator may
use administrator utilities and log files to determine objects that have not been properly synchronized.

Mirrored RINGs with SOFS
For active/passive file system mirroring using SOFS, the RING provides the ssync utility. This provides
file system level asynchronous mirroring between two RINGs: RING-A and RING-B. SOFS mirroring can
be enabled at the file system level, with some file systems actively mirrored and other file systems not
being mirrored. This provides additional flexibility for the application to select the data that should be
protected for site-level disaster recovery. The ssync utility has a configurable asynchronous mirroring time
interval, and supports mixed data protection schemes using replication or ARC on the source RING-A,
and replication or ARC on the target RING-B, as needed to support the applications data protection
requirements.

Two deployment modes are supported: mirror-image RING mode, and unified-RING mode. In the mirror-
image mode, both sides RING-A and RING-B contain data and metadata. This mode provides the highest

Scality RING Technical White Paper v2.0 − Scality Confidential 17

degree of protection against site failures, by maintaining two full data RINGs. This requires the system to
replicate all metadata and data operations from RING-A to RING-B, and requires twice the storage
capacity.

SOFS Mirror-Image RING mode SOFS Unified-RING mode

Figure 15 - SOFS Mirror-Image RING and Unified RING modes

In the unified-RING mode, there is a single shared data RING, and two separate metadata RINGs. This
mode reduces the amount of storage capacity and data transfers required from RING-A to RING-B, so it
provides greater efficiency, but it trades off site-level disaster protection of the data.

The design of ssync is optimized for highly parallel workloads, with connectors writing to their own
directories, with no concurrent access between connectors to the same directory data. This ensures that
updates across connectors and folders are properly serialized to the secondary, passive RING (RING-B).
For best performance, the system should be designed to replicate traffic across many (100’s to 1000’s) of
concurrent folders, each accessed by its own dedicated connector.

Stretched RING
To support multi datacenter deployments with site protection and complete data consistency between all
sites, the RING supports a stretched RING deployment mode. In this mode, a single logical RING is
deployed across multiple data centers, with all nodes participating in the standard RING protocols as if
they were local to one site. When a stretched RING is deployed with ARC, it provides multiple benefits
including full site-level failure protection, active/active access from both data centers, and dramatically
reduced storage overhead compared to mirrored RINGs. An ARC schema for a three-site stretched RING
of ARC (7,5) would provide protection against one complete site failure, or up to four disk/server failures
per site, plus one additional disk/server failure in another site, with approximately 70% space overhead.
This compares favorably to a replication policy that might require 300-400% space overhead, for similar
levels of protection across these sites.

Applications using the sproxyd connector on a stretched RING have the flexibility in selecting the
consistency policy for both writes (PUT operations) and DELETE operations. For example, the application
may elect to write objects synchronously to both sites, assuring full consistency of the data before the
write is acknowledged and returned. For example, if an object is written with a CoS=2 (hence 3 replicas of
the object), full write consistency assures that all 3 replicas are written to the RING before the write
operation returns. Alternately, to optimize write performance in a stretched RING with higher latency
between sites, sproxyd may be configured to perform asynchronous writes for a specified number of
replicas. For example, the connector may be configured to only write 2 of the 3 replicas synchronously,
and then allow the final replica to be written asynchronously. This can accelerate write operations to the
remote site, by not imposing the latency across the wire into the PUT operation. The same optimization
can be selected for optimizing distributed DELETE operations across a stretched RING.

F. Consistency Models

The Scality RING at its core is designed to optimize for data availability and fault tolerance. In other
words, the system will make data available to an application, even if it cannot assure that the data is

Scality RING Technical White Paper v2.0 − Scality Confidential 18

strictly consistent. In the parlance of Brewer’s CAP Theorem7, distributed systems must choose a
tradeoff in optimizing for two out of the three properties in CAP: Consistency, Availability and Partition (or
Fault) Tolerance. To optimize for AP, the RING relaxes strict data consistency (C) at the object layer –
enabling the application to determine the consistency rules for storing its data (see below for the strict
consistency implemented for SOFS). Consistency determines the minimum number of replicas of an
object that should be stored for a given class of service. For example, for CoS=3, strict consistency would
require all three replicas to be committed to storage before the write is deemed complete. Relaxed
consistency rules would allow only 1 or 2 of the replicas to be committed out of 3, with the write deemed
completed. The remaining replicas will eventually be written to the storage layer, but there may be a delay
until this occurs. Hence this type of consistency is often termed “eventual consistency”, as opposed to
strict consistency.

In contrast, the Scality Scale-Out File System (SOFS) layer implements a virtual POSIX file system
abstraction, which enforces strict consistency semantics. In order to ensure that the file system is always
in a consistent state, SOFS is implemented with the use of the MESA database, using full ACID (atomic)
database transactions for writes to the file system. The RING also applies distributed two-phase commit8
protocols to ensure that data is on stable storage across all storage nodes involved in the write, before
proceeding. This implies that writes to SOFS will always require all file replicas (or data and parity chunks,
in the case of ARC erasure coding) to be written to the storage layer before the write is acknowledged.
While this ensures file system consistency, in return it requires that multiple concurrent writers must be
aware of the serialization constraints this implies when writing to the same file system structures, such as
a single directory.

V. RING Connectors

Connectors are the entry points into the RING, providing access to applications for storage services. The
RING supports a wide range of Connectors to support new generation object applications, over several
dialects using REST protocols, as well as file-based legacy applications over local file systems (via Linux
FUSE), or network file protocols (NFS and SMB) for Linux, Mac and Microsoft Windows clients. The
system also provides an OpenStack Cinder driver for Nova instances to create persistent data volumes,
and an OpenStack Swift driver for persistent object storage.

As described previously, the connectors are the data access entry points to the RING. The data IO path
flows through the connectors into the underlying system. Connectors are either stateless (non-caching),
or stateful (maintaining caches), to optimize for their common data access patterns. Connectors are also
responsible for implementing the replication CoS or ARC policy, as specified in each Connector’s
configuration files. Connectors will split large objects into chunks for objects that are above a configurable
size threshold (splitting is required for replicated objects above 500MB, and above 2GB for ARC), in order
to optimize IO load across the system. In general, objects and files above 100MB should be considered
for splitting, depending on available CPU and memory resources, and the applications IO load and
latency requirements.

Object Connectors
The RING is accessible as a native object storage platform over a choice of REST/http protocols. REST
provides simple object key/value storage semantics through basic PUT, GET, DELETE calls with flat
(non-hierarchical) and scalable name spaces. The RING provides a choice of a native, high-performance
REST API (sproxyd), or industry-standard REST APIs (SNIA CDMI, Amazon S3 compatible and
OpenStack Swift), each with specific characteristics that must be carefully considered for each use case
and application.

Sproxyd: high-performance & scalability

7 http://en.wikipedia.org/wiki/CAP_theorem
8 http://en.wikipedia.org/wiki/Two-phase_commit_protocol

Scality RING Technical White Paper v2.0 − Scality Confidential 19

The RING’s sproxyd connector is a pure object REST API, designed to meet extreme scalability and
performance requirements. Sproxyd provides basic PUT, GET, HEAD and DELETE API calls, along with
standard and Scality defined optional headers to customize the behavior. Sproxyd may be used in two
modes, either by_key or by_path, to fit the needs of varying types of applications. If by_path is selected,
the RING will internally hash the path to compute the internal keys. The application may elect to use
sproxyd in either strong consistency mode, or eventual consistency mode, as a policy associated with
each type of data protection mechanism. Sproxyd is a stateless (non-caching) connector, to enable
transparent HTTP load balancing across multiple sproxyd connectors.

As a basic object connector, additional features such as key management (catalogs), authentication, file
system sharing or multi-tenancy capabilities are left for the application to manage.

RS2: public cloud compatibility
The RS2 API is a REST protocol modeled after the Amazon Web Services (AWS) S3 object API. This
protocol offers features to make it optimal for public cloud deployments, including mandatory
authentication, MD5 signatures for integrity validation, and a Bucket container mechanism. In exchange
for this functionality and similar to the AWS S3 API, RS2 is not used for applications that require high
scalability or performance.

OpenStack Swift: scalable data storage for OpenStack Nova
The OpenStack Swift Connector provides a scalable data storage system for OpenStack Swift. The
Scality Swift Connector plugs in underneath OpenStack Swift, and is completely interoperable with
OpenStack Accounts, Containers and Keystone authentication mechanisms. The Swift Connector
operates as a back-end replacement to the normal Swift storage layer, and provides all of the RING’s
features including ARC erasure-coding (not yet available in Swift), scalability and high-performance
features.

File Connectors
The RING file system connectors provide file services on Scality’s native Scale-Out-File System (SOFS –
see section VI below), which provides a file system view and a set of file protocols for enabling file-based
access to the RING. The set of protocols supported by the RING SOFS include NFS, SMB and FUSE
(Linux File System in User space).

NFS v3: wide platform support on Linux and Mac clients
NFS v3 is the commonly used and available version of the popular Network File System protocol
originally developed by Sun Microsystems. It is supported and available as a client interface on nearly all
operating system, including Linux, Mac and even on Microsoft Windows. The RING includes support for
NFS quotas and NFS advisory locking within a single connector. Authentication for NFS clients is also
supported via the Kerberos mechanism, as supported in many security server solutions including
Microsoft Active Directory (AD).

SMB 3.0: Microsoft Windows clients and servers
SMB 3.0 is the current version of Microsoft’s Server Message Block (SMB) protocol. The RING supports
an SMB 3.0 compatible connector that provides several key advancements over earlier CIFS and SMB
2.0 implementations, including transport-encryption, persistent file handles, and OpLocks.

Sfused: Host file system connector, with parallel IO support
The Linux File system in User Space (FUSE) is a POSIX compliant local file system supported across all
major Linux distributions. It provides local file system access to the RING, to support a variety of
application server style deployments. Scality’s sfused connector is enabled to provide support for quotas,
as well as parallel IO to the back-end RING servers, to optimize access to very large files that are striped
across multiple back-end servers.

CDMI: REST interface with file compatibility

Scality RING Technical White Paper v2.0 − Scality Confidential 20

CDMI is an industry-standard REST API sponsored by the Storage Networking Industry Association
(SNIA)9. It is architected on SOFS to provide a key advantage of namespace compatibility with the
RING’s Scale-Out File System (SOFS), so that files and objects may be shared between the CDMI REST
protocol, and file protocols such as NFS and FUSE. CDMI also provides a Container concept to facilitate
multi-tenancy.

Scale-Out File System Considerations
All file connectors (NFS, SMB, Sfused and CDMI) may be scaled-out across multiple servers, to provide
scalable read performance to high-numbers of client applications that require simultaneous access to the
same file system data. See Section IV (SOFS) on the RING’s support for multiple simultaneous
connectors on a file system.

OpenStack Volume Connectors

OpenStack Cinder Driver
To support persistent data volumes for OpenStack Nova instances, Scality has supported an OpenStack
Cinder driver since the OpenStack Grizzly release10. This provides scalable storage for application data
volumes in the RING, optimized to support hundreds to thousands of Tier2 data volumes along, similar to
the performance profile of Amazon Web Services (AWS) EBS magnetic storage11. The Scality RING
Driver is not recommended as an OS boot volume mechanism for OpenStack Nova instances.

Complete listing of the RING connectors:

Type Connector Strengths Limitations

Object Sproxyd Stateless, lightweight, native REST
API, highly scalable, support for geo-
distributed deployments

No container mechanism, no
authentication

 RS2 S3 compatible REST API, with
Buckets, authentication & object
indexing support

Buckets cannot be geo-distributed,
performance overhead for
authentication & MD5 verification

 RS2 light Subset of RS2 – highly-scalable,
supports geo-distributed deployments

Eliminates S3 buckets & authentication
mechanism for improved scaling

 OpenStack
Swift

Scalable back-end storage for
OpenStack Swift; supports Containers,
Accounts & KeyStone

Not a Swift API, but a complete back-
end storage layer underneath Swift.

File NFS NFS v3 compatible server, supports
Kerberos, advisory-locking (NLM), and
user/group quotas

Multiple concurrent readers OK,
multiple writers serialize on single
directories/files

 Sfused Local Linux file system driver, great for
application servers. Fast for big files:
parallel IO to multiple back-end storage
servers

Requires driver to be installed on client
/ app server. Same concurrency
behavior as NFS

 SMB SMB 2.x and subset of SMB 3.x
compliant server

Runs on top of FUSE. Does not yet
support SMB 3.0 “multi-channel” IO

 CDMI REST API namespace compatible with
SOFS (NFS, SMB, FUSE) data

By-path and by-key object addressing
plus Containers

OpenStack OpenStack
Cinder Driver

OpenStack Cinder driver for attaching
data volumes to Nova instances

Runs on top of SOFS, using sparse
files to present block volumes

9 http://www.snia.org/cdmi
10 https://wiki.openstack.org/wiki/CinderSupportMatrix
11 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_standard

Scality RING Technical White Paper v2.0 − Scality Confidential 21

VI. RING Management

To manage and monitor the RING, Scality provides a comprehensive set of tools, with a variety of
interfaces. These include a web based GUI (the Supervisor), a Command Line Interface that can be
scripted (RingSH), and for use with standard SNMP monitoring consoles, the RING provides SNMP
compliant MIB and traps.

Supervisor Web Management GUI
The Supervisor is the RING’s Web based
management GUI. It provides visual, point-and-click
style monitoring and management of the RING
software, as well as the underlying physical platform
layer. The Supervisor provides a main Dashboard
page that provides graphical RING views, including the
Servers, Zones and Storage Nodes comprising the
RING, with browsing capabilities to drill down to details
of each component, and pages for operations,
management and provisioning of RING services. The
Supervisor also provides performance statistics,
resource consumption and health metrics through a
rich set of graphs.

The Supervisor UI provides a simple volume UI for SOFS that enables the administrator to easily
provision Volumes and connectors. Once provisioned through the UI, the connectors are configured and
started, and ready for access by applications.

Scality RING Technical White Paper v2.0 − Scality Confidential 22

Figure 16 - RING Supervisor Volume Provisioning UI

The Supervisor works in conjunction with the Scality management agent (sagentd), which is hosted on
each Scality managed storage server, or connector server. The sagentd daemon provides a single point
of communication for the Supervisor with the given host, for purposes of statistics and health metrics
collection. This avoids the additional overhead of individual connections from the Supervisor to each
Storage Node, and each disk drive daemon running on a specific host.

Figure 17 - RING Supervisor interacting with Scality management agents (sagentd)

RingSH Command Line Interface
RingSH is a scriptable command line interface (CLI) for managing and monitoring the RING, which can
be used on the Supervisor host, or on any storage server for managing the RING components. RingSH
provides a rich set of commands for managing the complete stack, as well as providing access to system
statistics and health metrics.

SNMP Monitoring
For monitoring of the RING from popular data center tools such as Nagios, the RING provides an SNMP
compliant MIB. This enables these tools to actively monitor the RING’s status, as well as to receive alerts
via SNMP traps. System health metrics, resource consumption, connector and storage node performance
statistics are available and may be browsed from the MIB.

Scality RING Technical White Paper v2.0 − Scality Confidential 23

VII. Summary

The RING is designed on a core set of principles to deliver true customer value: massive capacity scaling,
consolidation of multiple storage silos with reduced management costs, always on data availability and
the highest levels of data durability, all at the economics of cloud-scale data centers. The RING provides
a comprehensive software-defined storage (SDS) solution on industry-standard platforms to enable these
values. Further information on the Scality RING is available at www.scality.com.

