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1 Introduction

The implementation of econometric models has become increasingly fashionable in mar-

keting research. The main reason for this is that nowadays marketing research can involve

the analysis of large amounts of data on revealed preferences, such as sales, market shares,

brand choices and interpurchase times, and stated preferences such as opinions, attitudes

and purchase intentions. Many firms collect data on these performance measures for their

current and their prospective customers, and they usually try to relate these measures

with individual-specific characteristics and marketing-mix efforts, see Franses and Paap

(2001a) for a recent survey on quantitative models for revealed preference data. The

main reason for considering econometric models is that in many cases the number of data

points and the number of variables is rather large, and hence simply performing a range

of bivariate analyses seems impractical.

The econometric analysis of a certain model for the above mentioned measures usually

involves a range of steps. The first step amounts to specifying a model given the available

data, the relevant explanatory variables, and the marketing problem at hand. Once the

model has been specified, one needs to estimate the parameters and their associated

confidence regions. Third, one usually considers the empirical validity of the model by

performing diagnostic tests on its adequacy, where one typically focuses on the properties

of the unexplained part of the model. Given the potential availability of two or more

adequate rival models, one seeks to compare these models either on within-sample fit or on

out-of-sample forecasting performance. Finally, one can use the ultimately obtained model

for forecasting or for policy analysis. It should be noted that the focus in econometric

textbooks tends to be on parameter estimation, but it is by no means the single most

important issue. Indeed, in practice it is often difficult to specify the model and to

compare it with alternatives.

In this chapter we will consider the econometric analysis of a popular model in mar-

keting research, which is the market share attraction model. This model is typically

considered for data on market shares, where the data have been collected at a weekly
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or monthly interval. Market share attraction models are seen as useful tools for analyz-

ing competitive structures, see Cooper and Nakanishi (1988) and Cooper (1993), among

various others. The models can be used to infer cross-effects of marketing-mix variables,

but one can also learn about the effects of own efforts while conditioning on competitive

reactions. Important features of attraction models are that they rightfully assume that

market shares sum to unity and that the market shares of individual brands are in between

0 and 1. This complicates the econometric analysis, as we will see below. Typically, an

attraction model can be written as a system of equations concerning all market shares,

and the parameters can be estimated using standard methods, see for example Cooper

(1993) and Bronnenberg et al. (2000).

Interestingly, a casual glance at the relevant marketing literature on market share

attraction models indicates that there seem to have been little attention to how to specify

the attraction model, how to estimate its parameters, how to analyse it virtues in the sense

that the models capture the salient data characteristics, and about how to use the models

for forecasting. In sum, it seems that an (empirical) econometric view in these models

is lacking. Therefore, in this chapter we aim to contribute to this view by addressing

these issues concerning attraction models when they are to be used for describing and

forecasting market shares. The first issue concerns the specification of the models. A

literature check immediately indicates that many studies simply assume one version of

an attraction model to be relevant and start from there. In this chapter we first start

with a fairly general and comprehensive attraction model, and we show how various often

applied models fit into this general framework. We also indicate how one can arrive from

the general model at the more specific models, thereby immediately suggesting a general-

to-simple testing strategy. Second, we discuss the estimation of the model parameters.

We show that a commonly advocated method is unnecessarily complicated and that a

much simpler methods yields equivalent estimates. Along the lines, we also propose a

few diagnostic measures, which to our knowledge have rarely been used, but which really

should come in handy. Finally, we address the issue of generating forecasts for market

shares. As the market share attraction model ultimately gets analyzed as a system of
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equations for (natural) log transformed shares, generating unbiased forecasts is far from

trivial. We discuss a simulation-based method which yields unbiased forecasts.

The outline of this chapter is as follows. In Section 2 we first discuss the basics

of the attraction model by reviewing various specifications of the model. We discuss the

interpretation of the model in Section 3, and we discuss parameter estimation of the model

in Section 4. We discuss diagnostic measures in Section 5 and forecasting in Section 6.

Finally we touch upon the topic of model selection in Section 7. We conclude in Section

8 with suggestions for further research.

2 Representation

In this section we start off with discussing a general market share attraction model and we

deal with various of its nested versions which currently appear in the academic marketing

literature. We first start with the so-called fully extended attraction model in Section 2.1.

This model has a flexible structure as it includes many variables. Naturally this increases

the empirical uncertainty about the relevant parameters. Therefore, in practice one may

want to consider restricted versions of this general model. In Section 2.2, we discuss some

of the restricted versions, where we particularly focus on those models which are often

applied in practice.

2.1 A general market share attraction model

Let Ai,t be the attraction of brand i at time t, t = 1, . . . , T , given by

Ai,t = exp(µi + εi,t)
I∏
j=1

K∏
k=1

x
βk,j,i
k,j,t for i = 1, . . . , I, (1)

where xk,j,t denotes the k-th explanatory variable (such as price level, distribution, adver-

tising spending) for brand j at time t and where βk,j,i is the corresponding coefficient for

brand i. The parameter µi is a brand-specific constant. Let the error term (ε1,t, . . . , εI,t)
′

be normally distributed with zero mean and Σ as a possibly non-diagonal covariance ma-

trix, see Cooper and Nakanishi (1988). As we want the attraction to be non-negative,
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xk,j,t has to be non-negative, and hence rates of changes are usually not allowed. The

variable xk,j,t may be a 0/1 dummy variable to indicate promotional activities for brand

j at time t. Note that for this dummy variable, one should transform xk,j,t to exp(xk,j,t)

to avoid that Ai,t becomes zero in case of no promotional activity.

The market shares for the I brands follow from the, what is called, Market Share

Theorem, see Bell et al. (1975). This theorem states that the market share of brand i is

equal to its attraction relative to the sum of all attractions, that is,

Mi,t =
Ai,t∑I
j=1 Aj,t

for i = 1, . . . , I (2)

The model in (1) with (2) is usually called the market share attraction model. Notice

that the definition of the market share of brand i at time t given in (2) implies that the

attraction of the product category is the sum of the attractions of all brands and that

Ai,t = Al,t results in Mi,t = Ml,t.

The interesting aspect of the attraction model is that the Ai,t in (1) is unobserved. As

we will see below, this implies that neither µi nor εi,t is identified. Another consequence is

that the market researcher should make a decision on the specification of Ai,t prior to em-

pirical analysis. As we will indicate, there are many possible specifications. For example,

to describe potential dependencies in market shares over time, which describe purchase

reinforcement effects, one may include lagged attractions Ai,t in (1). For example, one

may consider

Ai,t = exp(µi + εi,t)A
γi
i,t−1

I∏
j=1

K∏
k=1

x
βk,j,i
k,j,t . (3)

However, due to the fact that we do not observe Ai,t, it turns out only possible to estimate

the parameters in this model if the lag parameter γi is assumed to be the same across

brands, see Chen et al. (1994). As this may be viewed as too restrictive, an alternative

strategy to account for dynamics is to include lagged values of the observed variables Mj,t

and xk,j,t in (1). The most general autoregressive structure follows from the inclusion of

lagged market shares and lagged explanatory variables of all brands. In that case, the
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attraction specification with a P -th order autoregressive structure becomes

Ai,t = exp(µi + εi,t)
I∏
j=1

(
K∏
k=1

x
βk,j,i
k,j,t

P∏
p=1

(
M

αp,j,i
j,t−p

K∏
k=1

x
βp,k,j,i
k,j,t−p

))
, (4)

where the αp,j,i parameters represent the effect of lagged market shares on attraction

and where the βp,k,j,i parameters represent the effect of lagged explanatory variables. To

illustrate, this model allows that the market share for brand 1 at t − 1 has an effect on

that of brand 2 at t, and also that there is a relationship between brand 2’s market share

and the price of brand 1 at t − 1. The flexibility of this general specification is reflected

by the potentially large number of parameters. For example with I = 4 brands, K = 3

explanatory variables and P = 2 lags, there are over 150 parameters to estimate (although

they are not all identified, see below).

The model that consists of equations (4) and (2) is sometimes called the fully extended

multiplicative competitive interaction [FE-MCI] model, see Cooper (1993). To enable

parameter estimation, one can linearize this model in two steps. First, one can take one

brand as the benchmark brand. Choosing brand I as the base brand leads to

Mi,t

MI,t

=
exp(µi + εi,t)

∏I
j=1

(∏K
k=1 x

βk,j,i
k,j,t

∏P
p=1

(
M

αp,j,i
j,t−p

∏K
k=1 x

βp,k,j,i
k,j,t−p

))
exp(µI + εI,t)

∏I
j=1

(∏K
k=1 x

βk,j,I
k,j,t

∏P
p=1

(
M

αp,j,I
j,t−p

∏K
k=1 x

βp,k,j,I
k,j,t−p

)) . (5)

Below we will discuss another approach to linearizing the model, but we will show that

both transformations lead to same parameter estimates, while the estimation procedure

based on (5) is much simpler. Next, one can take the natural logarithm (denoted by log)

of both sides of (5). Together, this results in the (I − 1)-dimensional set of equations

given by

logMi,t − logMI,t = (µi − µI) +
I∑
j=1

K∑
k=1

(βk,j,i − βk,j,I) log xk,j,t +

I∑
j=1

P∑
p=1

(
(αp,j,i − αp,j,I) logMj,t−p +

K∑
k=1

(βp,k,j,i − βp,k,j,I) log xk,j,t−p

)
+ ηi,t. (6)

for i = 1, . . . , I − 1. Note that not all µi parameters (i = 1, . . . , I) are identified. Also

for each k and p, one of the βk,j,i and βp,k,j,i parameters is not identified. In fact, only
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the parameters µ̃i = µi − µI , β̃k,j,i = βk,j,i − βk,j,I β̃p,k,j,i = βp,k,j,i − βp,k,j,I are identified.

This is however sufficient to completely identify elasticities, see Section 3 below and

Cooper and Nakanishi (1988, p. 145). Finally, one can only estimate the parameters

α̃p,j,i = αp,j,i − αp,j,I .

The error variables in (6) are ηi,t = εi,t − εI,t, i = 1, . . . , I − 1. Hence, given the

earlier assumptions on εi,t, (η1,t, . . . , ηI−1,t)
′ is normally distributed with mean zero and

((I−1)×(I−1)) covariance matrix Σ̃ = LΣL′, where L = (II−1
...iI−1) with II−1 an (I−1)-

dimensional identity matrix and where iI−1 is an (I − 1)-dimensional unity vector. Note

that therefore only 1
2
I(I − 1) parameters of the covariance matrix Σ can be identified.

In sum, the general attraction model can be written as a (I−1)-dimensional P -th order

vector autoregression with exogenous variables [sometimes abbreviated as VARX(P )],

given by

logMi,t − logMI,t = µ̃i +
I∑
j=1

K∑
k=1

β̃k,j,i log xk,j,t +

I∑
j=1

P∑
p=1

(
α̃p,j,i logMj,t−p +

K∑
k=1

β̃p,k,j,i log xk,j,t−p

)
+ ηi,t, (7)

i = 1, . . . , I − 1, where the covariance matrix of the error variables (η1,t, . . . , ηI−1,t)
′ is Σ̃.

For further reference, we will consider (7) as the general attraction specification. We will

take it as a starting point in our within-sample model selection strategy, which follows

the general-to-specific principle, see Section 7 below.

2.2 Various restricted models

As can be understood from (7), the general attraction model contains many parameters

and in practice this will absorb many degrees of freedom. Therefore, one usually assumes

a simplified version of this general model. Obviously, the general model can be simplified

in various directions, and, interestingly, the academic marketing literature indicates that

in many cases one simply assumes some form without much further discussion. This

may be a non-trivial exercise, as there are many possible simpler models. One can for

example impose restrictions on the β coefficients, on the covariance structure Σ, and on
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the autoregressive parameters α. In this section we will discuss a few of these potentially

empirically relevant restrictions on the attraction specification in (4).

Restricted Covariance Matrix [RCM]

If the covariance matrix of the error variables εi,t in (4) is a diagonal matrix, where each

εi,t has its own variance σ2
i , that is, Σ = diag(σ2

1, . . . , σ
2
I ), then the covariance matrix for

the (I − 1)-dimensional vector ηi,t in (7) becomes

diag(σ2
1, . . . , σ

2
I−1) + σ2

I iI−1i
′
I−1, (8)

where iI−1 denotes a (I − 1)-dimensional unity vector. In Section 7 we discuss how one

can examine the validity of (8), which is not that trivial, even though this assumption has

been regularly made. If this restriction holds, the errors in the attraction specifications

are independent, implying that the unexplained components of the attraction equations

are uncorrelated.

Restricted Competition [RC]

One can also assume that the attraction of brand i only depends on its own explanatory

variables. This amounts to the assumption that marketing effects of competitive brands

do not have an attraction effect, see for example Kumar (1994) among others. For (4),

this corresponds to the restriction βk,j,i = 0 (and βp,k,j,i = 0) for j 6= i. More precisely,

this RC restriction implies that (4) reduces to

Ai,t = exp(µi + εi,t)
K∏
k=1

x
βk,i
k,i,t

I∏
j=1

P∏
p=1

(
M

αp,j,i
j,t−p

K∏
k=1

x
βp,k,i
k,i,t−p

)
, for i = 1, . . . , I, (9)

where we write βk,i for βk,i,i and βp,k,i for βp,k,i,i. Consequently, the linearized multiple

equation model in (7) becomes

logMi,t − logMI,t = µ̃i +
K∑
k=1

βk,i log xk,i,t −
K∑
k=1

βk,I log xk,I,t +

I∑
j=1

P∑
p=1

(
α̃p,j,i logMj,t−p +

K∑
k=1

βp,k,i log xk,i,t−p −
K∑
k=1

βp,k,I log xk,I,t−p

)
+ ηi,t, (10)
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for i = 1, . . . , I − 1. Notice that this means that the coefficients βk,I are equal across the

(I−1) equations and that these restrictions should be taken into account when estimating

the parameters. The RC assumption in (9) imposes K(P + 1)I(I − 2) restrictions on the

parameters in the general model in (7), which amounts to a substantial increase in the

degrees of freedom. In Section 7 we will discuss how this restriction can be tested.

Restricted Effects [RE]

An even further simplified model arises if we assume, additional to RC, that the β pa-

rameters are the same for each brand, that is, βk,i = βk (and βp,k,i = βp,k), see Danaher

(1994) for an implementation of this combined restrictive model. This model assumes

that marketing efforts for brand i only have an effect on the market share of brand i,

and also that these effects are the same across brands. In other words, price effects, for

example, are the same for all brands. It should be noted here that these similarities do

not hold for elasticities, however, as will become apparent in Section 3. One may coin

this model as an attraction model with restricted effects. Based on (4), the attraction for

brand i at time t then further simplifies to

Ai,t = exp(µi + εi,t)
K∏
k=1

xβkk,i,t

I∏
j=1

P∏
p=1

(
M

αp,j,i
j,t−p

K∏
k=1

x
βp,k
k,i,t−p

)
. for i = 1, . . . , I, (11)

and the linearized multiple equation model (7) simplifies to

logMi,t − logMI,t = µ̃i +
K∑
k=1

βk(log xk,i,t − log xk,I,t) +

I∑
j=1

(
P∑
p=1

α̃p,j,i logMj,t−p +
K∑
k=1

βp,k(log xk,i,t−p − log xk,I,t−p)

)
+ ηi,t, (12)

for i = 1, . . . , I−1. This RE assumption imposes an additional K(P+1)(I−1) parameter

restrictions on the β coefficients of (7). Of course, it may occur that the restrictions only

hold for a few and not for all βk,j,i parameters, that is, for only a few marketing variables.

In that case, less parameter restrictions should be imposed.
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Restricted Dynamics [RD]

Finally, one may want to impose restrictions on the autoregressive structure in (4), imply-

ing that the purchase reinforcement effects are the same across brands. For example, the

restriction that the attraction of brand i at time t only depends on its own lagged market

shares Mi,t corresponds with the restriction αp,j,i = 0 for j 6= i in (4). The corresponding

multivariate model then becomes

logMi,t − logMI,t = µ̃i +
I∑
j=1

K∑
k=1

β̃k,j,i log xk,j,t +

I∑
j=1

P∑
p=1

(
αp,i logMj,t−p − αp,I logMI,t−p +

K∑
k=1

β̃p,k,j,i log xk,j,t−p

)
+ ηi,t, (13)

for i = 1, . . . , I − 1, where we again save on notation by using αp,i instead of αp,i,i. Note

that now the αp,I parameters are the same across the (I−1) equations and hence that these

restrictions should be imposed when estimating the model parameters. To illustrate, Chen

et al. (1994) additionally impose that P = 1 and α1,i = γ, which yields the estimable

version of the attraction model in (3) which assumes that the purchase reinforcement

effects are the same across brands. For further reference, we will call this last restriction

the Common Dynamics [CD] restriction.

The above discussion shows that various attraction models, which are considered in

the relevant literature and in practice for modeling and forecasting market shares, are

nested within the general attraction model in (4). The fact that these models are nested

automatically suggests that an empirical model selection strategy can be based on a

general-to-simple strategy, see Franses and Paap (2001b).

3 Interpretation

As the market shares get modeled trough the attraction specification, and as this implies

a reduced form of the model where parameters represent the impact of marketing efforts

on the logarithm of relative market shares, the parameter estimates themselves are not

easy to interpret. To facilitate an easier interpretation, one usually resorts to elasticities.
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In fact, it turns out that the reduced-form parameters are sufficient to identify these

(cross-)elasticities.

For model (4), the instantaneous elasticity of the k-th marketing instrument of brand j

on the market share of brand i is given by

∂Mi,t

∂xk,j,t

xk,j,t
Mi,t

= βk,i,j −
I∑
r=1

Mr,tβk,r,j, (14)

see Cooper (1993). To show that these elasticities are identified, one can rewrite them

such that they only depend on the reduced-form parameters, that is,

∂Mi,t

∂xk,j,t

xk,j,t
Mi,t

= (βk,j,i − βk,j,I)(1−Mi,t)−
I−1∑

r=1∧r 6=i

Mr,t(βk,j,r − βk,j,I), (15)

see (6). Under Restricted Competition, these elasticities simplify to

∂Mi,t

∂xk,j,t

xk,j,t
Mi,t

= (δi=j −Mj,t)βk,j, (16)

where δi=j is the Kronecker δ which has a value of 1 if i equals j and 0 otherwise. Under

Restricted Effects, we simply have

∂Mi,t

∂xk,j,t

xk,j,t
Mi,t

= (δi=j −Mj,t)βk. (17)

It is easy to see that the elasticities converge to zero if a market share goes to 1. From

a marketing perspective, this seems rather plausible. If a brand controls almost the total

market, its marketing efforts will have little if any effect on its market share. Secondly, in

case the market share is an increasing function of instrument X, then if X goes to infinity

the elasticity will go to 0. These two properties may seem straightforward, but among

the best known market share models, the attraction model is the only model satisfying

these properties, see also Cooper (1993).

4 Parameter estimation

In this section we discuss two methods for parameter estimation, and we show that they

are equivalent. The first method is rather easy, whereas the second (which seems to be

commonly applied) is more difficult.
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4.1 Using a base brand

To estimate the parameters in attraction models, we consider the (I − 1)-dimensional set

of linear equations which results from log-linearizing the attraction model given in (7). In

general, these equations can be written in the following form

y1,t = w′1,tb1 + z′1,ta + η1,t

y2,t = w′2,tb2 + z′2,ta + η2,t
... =

... +
... +

...
yI−1,t = w′I−1,tbI−1 + z′I−1,ta + ηI−1,t

(18)

where yi,t = logMi,t − logMI,t, ηt = (η1,t, . . . , ηI−1,t)
′ ∼ NID(0, Σ̃), and where wi,t are ki-

dimensional vectors of explanatory variables with regression coefficient vector bi, which is

different in each equation, and where zi,t are n-dimensional vectors of explanatory variables

with regression coefficient vector a which is the same across the equations, i = 1, . . . , I−1.

Each (restricted) version of the general attraction model discussed in Section 2.2 can be

written in this format, see Franses and Paap (2001b).

To discuss parameter estimation, it is convenient to write (18) in matrix notation.

We define yi = (yi,1, . . . , yi,T )′, Wi = (wi,1, . . . , wi,T )′, Zi = (zi,1, . . . , zi,T )′ and ηi =

(ηi,1, . . . , ηi,T )′ for i = 1, . . . , I − 1. In matrix notation, (18) then becomes
y1

y2
...

yI−1

 =


W1 0 . . . 0 Z1

0 W2 . . . 0 Z2
...

...
. . .

...
...

0 0 . . . WI−1 ZI−1




b1
...

bI−1

a

+


η1

η2
...

ηI−1

 (19)

or

y = Xb+ η (20)

with η ∼ N(0, (Σ̃⊗ IT )), where ⊗ denotes the familiar Kronecker product.

One method for parameter estimation of (20) is ordinary least squares [OLS]. Gen-

erally, however, this leads to consistent but inefficient estimates, where the inefficiency

is due to the (possibly neglected) covariance structure of the disturbances. Only if the

explanatory variables in each equation are the same, or in case Σ is a diagonal matrix,

and provided that there are no restrictions on the regression parameters (wi,t = 0 for all
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i, t), OLS provides efficient estimates, see Judge et al. (1985, Chapter 12), among others.

Therefore, one should better use generalized least squares [GLS] methods to estimate the

model parameters. As the covariance matrix of the disturbances is usually unknown, one

has to opt for a feasible GLS procedure, where we use the OLS estimator of the covariance

matrix of the disturbances. This procedure is known as Zellner’s (1962) seemingly unre-

lated regression [SUR] estimation method. An iterative SUR estimation method will lead

to the maximum likelihood [ML] estimator of the model parameters, see Zellner (1962).

To estimate the parameters in attraction models, and to facilitate comparing various

models, we favor ML estimation. The log of the likelihood function of (20) is given by

`(b, Σ̃) = −T (I − 1)

2
log(2π) +

T

2
log |Σ̃−1| − 1

2
(y −Xb)′(Σ̃−1 ⊗ IT )(y −Xb). (21)

The parameter values which maximize this log likelihood function are consistent and

efficient estimates of the model parameters.

For the FE-MCI model without any parameter restrictions in (7), the ML estimator

corresponds with the OLS estimator, as the explanatory variables are the same across

equations. In that case,

b̂OLS = (X ′X)−1X ′y (22)

and

ˆ̃Σ =
1

T

T∑
t=1

η̂tη̂
′
t (23)

where η̂t consists of stacked η̂i,t = yi,t − w′i,tb̂OLS,i − z′i,tâOLS.

For the attraction models with restrictions on the regression parameters, that is, for

the RC model in (10), the RE model in (12), and the RD model in (13), one can opt

for the iterative SUR estimator which converges to the ML estimator. Starting with the

OLS-based estimator for Σ̃ in (23), one constructs the feasible GLS estimator

b̂SUR = (X ′( ˆ̃Σ
−1

⊗ IT )X)−1X ′( ˆ̃Σ
−1

⊗ IT )y, (24)

that is the SUR estimator, see Zellner (1962). Next, we replace the estimate of the

covariance matrix ˆ̃Σ by the new estimate of Σ̃, that is (23), where η̂t now consists of
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stacked η̂i,t = yi,t−w′i,tb̂SUR,i− z′i,tâSUR, to obtain a new SUR estimate of b. This routine

is repeated until the estimates for b and Σ̃ have converged. These estimates are then the

ML estimates of the model, that is, they maximize the log likelihood function (21).

A little more involved are the restrictions on the Σ̃ matrix. To estimate the attrac-

tion model under the restriction (8), one can either directly maximize the log likelihood

function (21) with Σ̃ = diag(σ2
1, . . . , σ

2
I−1) + σ2

I iI−1i
′
I−1 using a numerical optimization

algorithm like Newton-Raphson or one can again use an iterative SUR procedure. In the

latter approach, the new estimate of Σ̃ is obtained by maximizing

`(Σ̃) = −T (I − 1)

2
log(2π) +

T

2
log |Σ̃−1| − 1

2
η̂′(Σ̃−1 ⊗ IT )η̂, (25)

where η̂ are the residuals from the previous SUR regression. Again, we need a numer-

ical optimization routine to maximize (25). Especially in cases where there are many

brands, the optimization of (25) can become cumbersome. In can however be shown, see

Appendix A, that the optimization can be reduced to numerically maximizing a concen-

trated likelihood over just σ2
I where one uses

σ̂i
2 =

η̂′iη̂i
T
− σ̂2

I for i = 1, . . . , I − 1, (26)

where η̂i = (η̂i,1, . . . , η̂i,T )′. Given an estimate of σ2
I , this relationship can be used to

obtain estimates of σ2
1, . . . , σ

2
I−1.

Finally, in all the above cases the standard errors for the estimated regression param-

eters b are to be estimated by

V̂ (b̂) = (X ′( ˆ̃Σ
−1

⊗ IT )X)−1, (27)

where one should include the appropriate ML estimator for Σ̃. When taking the square

roots of the diagonal elements of this matrix, one obtains the appropriate standard errors.

4.2 An alternative estimation method

The above estimation routine is based on the reduced-form model, which is obtained from

reducing the system of equations using the base brand approach. An alternative method
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is the, what is called, log-centering method advocated by Cooper and Nakanishi (1988).

We will now show that this method is equivalent to the above method, although a bit

more complicated.

The log-centering approach is based on the following transformation. After taking the

natural logs for the I model equations, the log of the geometric mean market share over

the brands is subtracted from all equations. The reduced-form model is now specified

relative to the geometric mean. So instead of reducing the system of equations by using

a base brand, this methodology reduces the system by the “geometric average brand”.

Note that the reduced-form model in this case still contains I equations.

To demonstrate the equivalence of parameters obtained through the log-centering tech-

nique of Cooper and Nakanishi (1988) and those using the base brand approach, we show

that there exists an exact relationship between these sets of parameters. The parameters

for the base brand specification can uniquely be determined from the parameters for the

log-centering specification and vice versa. Given the 1-to-1 relationship the likelihoods are

the same, that is, the discussed FGLS estimator yields the same maximum value of the

likelihood as we can use the invariance principle of maximum likelihood, see for example

Greene (1993, page 115). All that needs to be shown is the 1-to-1 relationship between

the parameters in the two specifications.

Consider a general attraction specification, that is

Ai,t = exp(µi + εi,t)
I∏
j=1

K∏
k=1

x
βk,j,i
k,j,t , (28)

where the market shares are defined by

Mi,t =
Ai,t∑I
j=1 Aj,t

. (29)

Dynamics are not included in this specification to keep the notation relatively simple.

The presented arguments however are invariant to the chosen specification. Written in a
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vector notation the model for the natural logarithm of attraction becomes

logAt :=

logA1,t
...

logAI,t

 =

µ1
...
µI

+
∑
k


βk,1,1 βk,2,1 . . . βk,I,1
βk,1,2 βk,2,2 . . . βk,I,2

...
...

. . .
...

βk,1,I βk,2,I . . . βk,I,I


log xk,1,t

...
log xk,I,t

+

ε1,t
...
εI,t


= µ+

∑
k

Bk log xk,t + εt.

(30)

The definition of market share in (29) implies that logMi,t = logAi,t − log
∑I

j=1 Aj,t. In

a vector notation this gives

logMt :=

logM1,t
...

logMI,t

 = logAt − iI log
I∑
j=1

Aj,t, (31)

where iI denotes a (I × 1) unity vector.

As the model in (31) cannot be estimated directly due to the nonlinear dependence

of log(
∑I

j=1 Aj,t) on the model parameters, a reduced-form model should be considered.

The log-centering method now subtracts the average of the log market shares from the

equations to give a reduced-form specification. The dependent variable in this system of

equations is nowlogM1,t
...

logMI,t

−


1
I

∑I
j=1 logMj,t

...
1
I

∑I
j=1 logMj,t

 =


1− 1

I
−1
I

. . . −1
I

−1
I

1− 1
I

. . . −1
I

...
...

. . .
...

−1
I

−1
I

. . . 1− 1
I

 logMt

= Hlc logMt,

(32)

where Hlc, with rank I − 1, denotes the transformation matrix corresponding to the

log-centering approach. The reduced-form model then becomes

Hlc logMt = Hlc logAt −HlciI log
I∑
j=1

Aj,t (33)

which equals

Hlc logMt = Hlcµ+
∑
k

HlcBk log xkt +Hlcεt, (34)
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as HlciI = 0I×I . Due to the reduced rank of Hlc, the system in (34) contains I equations,

but it only has I − 1 independent equations.

Alternatively, the base brand approach in Section 4.1 gives as the dependent variables

in the reduced-form model logM1,t
...

logMI−1,t

−
logMI,t

...
logMI,t

 =


1 0 . . . 0 −1
0 1 . . . 0 −1
...

...
...

...
0 0 . . . 1 −1

 logMt

= Hbb logMt,

(35)

with Hbb as the relevant transformation matrix. As HbbiI = 0I−1×I , the reduced-form

model becomes

Hbb logMt = Hbb logAt = Hbbµ+
∑
k

HbbBk log xkt +Hbbεt, (36)

which is to be compared with (34). We have seen that this system contains only I − 1

equations.

The 1-to-1 relation between the parameters in the two approaches follows from the

fact that the equation CHlc = Hbb yields a unique solution C, given by

C =


1 0 . . . 0 −1
0 1 . . . 0 −1
...

...
...

...
0 0 . . . 1 −1
1 1 . . . 1 1

 . (37)

Hence, the matrix C relates the “log-centered” parameters to the “base brand” param-

eters. The inverse transformation from the base brand specification to the log-centered

specification follows from applying the Moore-Penrose inverse of C, denoted by C+, that

is,

C+ =


1− 1

I
−1
I

. . . −1
I

−1
I

1− 1
I

. . . −1
I

...
...

. . .
...

−1
I

−1
I

. . . 1− 1
I

−1
I

−1
I

. . . −1
I

 . (38)
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Note that the matrix C+ satisfies Hlc = C+Hbb.

The above shows that the transformations yield equivalent parameters. For example,

assume that the log-centered form of the model is estimated, giving estimates of Hlcµ,

HlcBk and HlcΣH
′
lc. By multiplying the estimated system of equations by C we get

CHlcµ, CHlcBk and CHlcΣH
′
lcC
′ as model coefficients. Using the invariance principle of

maximum likelihood and the relation CHlc = Hbb, these coefficients are the maximum

likelihood estimates of Hbbµ, HbbBk and HbbΣH
′
bb. These coefficients are exactly the same

as the coefficients used in the base brand specification, see (36). Using the inverse of C,

the procedure can be used the other way around. We can also obtain estimates of the

coefficients in a log-centered specification from the estimates in a base brand specification

by multiplying them with C+.

In our opinion, the main reason to prefer taking a base brand to reduce the model is

that the statistical analysis of the resulting model is more straightforward as compared to

the log-centering technique. Recall that the log-centered reduced-form model contains I

equations whereas the base brand reduced-form model only has I−1 equations. One of the

equations in the log-centered specification is however redundant. This redundancy leads

to some difficulties in the estimation and interpretation, as estimation usually requires

the (inverse) covariance matrix of the residuals. In the log-centering case the residuals

are linearly dependent, and the covariance matrix is therefore non-invertible. Further,

direct interpretation of the coefficients obtained from the base brand approach is easier as

each coefficient only concerns two brands, while a coefficient in the log-centering approach

always involves all brands.

5 Diagnostics

In this section we present some basic diagnostics for the market share attraction model.

First of all we present a test on the normality assumption in the attraction specification.

Next, we discuss tests for outliers and tests for structural breaks.

18



5.1 Normality

One can test the normality of each of η̂1, . . . , η̂I−1 separately using the familiar normality

test by Bowman and Shenton (1975) which is based on the skewness, denoted by
√
b1,

and the kurtosis, denoted by b2, of the residuals for every brand. However, Doornik and

Hansen (1994) argue that this test is unsuitable except in very large samples. Instead,

they propose to use the sum of squared transformed skewness and kurtosis measures,

where the transformation involved is as in D’Agostino (1970). The resultant test statistic

equals

Ep = z1(b1)2 + z2(b1, b2)2, (39)

where z1(·) and z(·, ·) are the relevant transformation functions. Under the hypothesis

of normally distributed ηi, i = 1, . . . , I − 1, the test statistic is approximately χ2(2)

distributed. Note that the normality of ηj depends on the normality of both εj and εI .

It is not however straightforward to test the normality of one of the random attraction

factors. Therefore, it is easier to use a joint test on the normality of all disturbances.

Doornik and Hansen (1994) show that a joint test statistic for multivariate normality can

easily be obtained by summing the individual test statistics. The resulting statistic has a

χ2(2(I − 1)) distribution under the null hypothesis of joint normality.

5.2 Outliers

Testing for outliers in market shares is not straightforward. A sudden event in the market

share of one brand is by definition accompanied by an opposite effect in the remainder of

the market. Outliers in market shares can therefore not be attributed to a single brand.

It is then easier to test for an outlier in attractions. To test for this in the attraction of

brand j at time Tb, we simply include exp(Dt) in the attraction specification of brand j.

The dummy variable Dt is defined as

Dt =

{
1 if t = Tb

0 elsewhere.
(40)
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Note that due to the multiplicative specification of attraction we need the exponential

transformation to ensure that the new variable does not affect the attraction if t 6= Tb. For

the specification of the reduced-form model it matters whether the brand with the aberrant

observation is the base brand or not. In case j < I, so that brand j is not the base brand,

we just add the variable Dt to the reduced-form equation for logMj,t − logMI,t. In case

the brand with the aberrant observation happens to be the base brand the variable −Dt

is added to the equations for logMi,t− logMI,t, i = 1, . . . , I−1, where the corresponding

coefficients are restricted to be equal across the equations.

Whether the observation at Tb actually corresponds with an outlier in the attraction

of brand j can now easily be tested by testing the significance of Dt in the reduced-form

model. In case the observation does turn out to be an outlier, one can opt to remove the

observations at Tb from the data set to prevent the outlier from influencing the estimation

results. One can also choose to include the above introduced variable into the model and

base the interpretation of the model on the resulting specification. In fact, the inclusion

of Dt “removes” the influence of the market share at time Tb of brand j.

5.3 Structural breaks

Testing for a structural break is much like testing for outliers. To test for a structural

break in the attraction of brand j starting from time Tb, one can just add the variable

exp(D∗t ) to the attraction specification of brand j, with

D∗t =

{
1 if t ≥ Tb

0 elsewhere.
(41)

Using the same reasoning as above, the reduced-form specifications can be obtained. The

significance of D∗t in the reduced-form model indicates whether there has been a break at

time Tb.

The above methodology only considers a break in the level of the attraction. The

structural break can also be in the effect of one of the marketing instruments. For example,

due to a repositioning of brand j, the price elasticity of this brand may change. To test

for this, one can add the variable exp[D′t log(Pj,t)] to the attraction specification of brand

20



j, and correspondingly to the reduced-form equations.

6 Forecasting

There has been considerable research on forecasting market shares using the market share

attraction model. Most studies discuss the effect of the estimation technique used in

combination with the parametric model specification on the forecasts, see for example

Leeflang and Reuyl (1984), Brodie and de Kluyver (1984) and Ghosh et al. (1984), among

others. More recent interest has been on the optimal model specification under different

conditions, see, for example, Kumar (1994) and Brodie and Bonfrer (1994). The available

literature, however, is not specific as to how forecasts of market shares should be generated.

In this section we show that forecasting market shares turns out not to be a trivial exercise

and that in order to obtain unbiased forecasts one has to use simulation methods.

Furthermore, in empirical applications it should be recognized that parameter values

are obtained through estimation. The true parameter values are usually unknown, and

parameter values are at best obtained through unbiased estimators of the true values.

In a linear model this parameter uncertainty can be ignored when constructing unbiased

forecasts. However, in nonlinear models this may not be true, see for example Hsu and

Wilcox (2000).

6.1 Forecasting market shares

To provide some intuition why forecasting in a market share attraction model is not a

trivial exercise, consider the following. The attraction model ensures logical consistency,

that is, market shares lie between 0 and 1 and they sum to 1. These restrictions imply

that the model parameters can be estimated from a multivariate reduced-form model

with I − 1 equations. The dependent variable in each of the I − 1 equations is the

natural logarithm of a relative market share. More formally, it is logmi,t ≡ log
Mi,t

MI,t
, for

i = 1, 2, . . . , I − 1. The base brand I can be chosen arbitrarily.

Of course, one is usually interested in predicting Mi,t and not in the logs of the relative

market shares. It is then important to recognize that, first of all, exp(E[logmi,t]) is not
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equal to E[mi,t] and that, secondly, E[Mi,t/MI,t] is not equal to E[Mi,t]/E[MI,t], where E

denotes the expectation operator. Therefore, unbiased market share forecasts cannot be

obtained by routinized data transformations, see also Fok and Franses (2001b) for similar

statements.

To forecast the market share of brand i at time t, one needs to consider the relative

market shares

mj,t = Mj,t/MI,t, j = 1, 2 . . . , I, (42)

as m1,t, . . . ,mI−1,t form the dependent variables (after log transformation) in the reduced-

form model (7). As MI,t = 1−
∑I−1

j=1 Mj,t, we have that

MI,t =
1

1 +
∑I−1

j=1 mj,t

Mi,t = MI,tmi,t =
mi,t

1 +
∑I−1

j=1 mj,t

, for i = 1, 2, . . . , I − 1.
(43)

Note that mI,t = MI,t/MI,t = 1 and hence (43) can be summarized as

Mi,t =
mi,t∑I
j=1 mj,t

, for i = 1, 2, . . . , I. (44)

As the relative market shares mi,t, i = 1, . . . , I − 1 are log-normally distributed by

assumption, see (7), the probability distribution of the market shares involves the inverse

of the sum of log-normally distributed variables. The exact distribution function of the

market shares is therefore complicated. Moreover, correct forecasts should be based on

the expected value of the market shares, and unfortunately, for this expectation there is

no simple algebraic expression. Appropriate forecasts therefore cannot be obtained from

the expectations directly.

If we ignore parameter uncertainty for the moment, we need to calculate the expecta-

tions of the market shares given in (44). This cannot be done analytically. However, we

can calculate the expectations using simulations. The relevant procedure works as follows.

We use model (7) to simulate relative market shares for various disturbances η randomly

drawn from a multivariate normal distribution with mean 0 and covariance matrix Σ̃.

In each run, we compute the market shares where parameter values and the realization
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of the disturbance process are assumed to be given. The market shares averaged over a

number of replications now provide their unbiased forecasts. Notice that we only need

the parameters of the reduced-form model in the simulations.

To be more precise about this simulation method, consider the following. The one-step

ahead forecasts of the market shares are simulated using

draw

η
(l)
t from N(0, Σ̃),

compute

m
(l)
i,t = exp(µ̃i + η

(l)
i,t )

I∏
j=1

(
K∏
k=1

x
β̃k,j,i
k,j,t

P∏
p=1

(
M

α̃p,j,i
j,t−p

K∏
k=1

x
β̃p,k,j,i
k,j,t−p

))
, i = 1, . . . , I − 1,

with

m
(l)
I,t = 1

and finally compute

M
(l)
i,t =

m
(l)
i,t∑I

j=1 m
(l)
j,t

, i = 1, . . . , I,

(45)

where l = 1, . . . , L denotes the simulation iteration and where the FE-MCI specification

is used, see (4). Every vector (M
(l)
1,t , . . . ,M

(l)
I,t)
′ generated this way amounts to a draw from

the joint distribution of the market shares at time t. Using the average over a sufficiently

large number of draws we calculate the expected value of the market shares. By the weak

law of large numbers we have

plim
L→∞

1

L

L∑
l=1

M
(l)
i,t = E[Mi,t]. (46)

For finite L the mean value of the generated market shares is an unbiased estimator of

the market share. The estimate may differ from the expected market share, but this

difference is only due to simulation error and this error will rapidly converge to zero if

L gets large. Of course, the value of L can be set at a very large value, depending on

available computing power.

23



The lagged market shares in (7) are of course only available for one-step ahead fore-

casting and not for multiple-step ahead forecasting. Hence, one has to account for the

uncertainty in the lagged market share forecasts. One can now simply use simulated val-

ues for lagged market shares, thereby automatically taking into account the uncertainty

in these lagged variables. Note that we do assume that the marketing efforts of all market

players are known. It is possible to also model these efforts and use the estimated model

to obtain forecasts that also account for that uncertainty.

6.2 Parameter uncertainty

The model parameters usually have to be estimated from the data. This implies that

the parameter estimators are random variables. If estimated parameters are used for

forecasting in combination with a nonlinear model, we should also take into account the

uncertainty of these estimates. To take account of the stochastic nature of the estimator,

we explicitly take the expectation of the market shares over the unknown parameters.

Unfortunately, the relevant distribution of the parameters is not known. To overcome

this difficulty, we propose to use parametric bootstrapping by drawing parameter vectors

from the distribution. The parameter vectors are sampled using the following scheme:

• Use the estimated parameter vector, the realizations of the exogenous variables

and the first P observed realizations of y as starting values to generate artificial

realizations of the market shares.

• Reestimate the model based on the artificial data.

The resulting parameter vectors can be seen as draws from the small sample distribu-

tion of b̂. Based on L draws b̂(1), . . . , b̂(L), in general we calculate an estimate ŷt as

1
L

∑L
l=1 E[yt|b̂(l)].

In the market share attraction model the forecasting scheme becomes more compli-

cated as the market shares do not depend linearly on the disturbances. From (7), (42)

and (44) we have Mi,t = gi(Xt, . . . , Xt−P ,Mt−1, . . . ,Mt−P , ηt, θ), where Xt contains all
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exogenous variables at time t, Mt = (M1,t, . . . ,MI,t)
′, θ a vector of all unknown pa-

rameters including the parameters of the unknown covariance matrix Σ̃ and gi() is a

nonlinear function. As in this case Mi,t also nonlinearly depends on the model distur-

bances E[Mi,t|θ̂] 6= gi(Xt, . . . , Xt−P ,Mt−1, . . . ,Mt−P ,0, θ̂). To obtain unbiased forecasts,

we therefore have to take the expectation of gi() with respect to ηt and θ̂, that is

M̂i,t =

∫
θ̂

∫
ηt

gi(Xt, . . . , Xt−P ,Mt−1, . . . ,Mt−P , ηt, θ̂)φ(ηt| θ̂)f(θ̂)dηtdθ̂, (47)

where φ(ηt|θ̂) denotes the distribution function of the (normally) distributed disturbances

given the parameter estimates and f(θ̂) denotes the distribution function of the parame-

ter estimator conditional on the data. Again we choose to calculate the complex integral

using simulation. The parameter vectors are simulated using the bootstrap methodology

described above. For every realization of θ̂(l) we calculate E[Mi,t| θ̂(l)], i = 1, . . . , I using

the simulation technique in Section 6.1. The average of the forecasts over all generated

parameter vectors constitutes unbiased forecasts of the market shares under uncertain

parameters. It is not necessary to use many simulation rounds conditional on the param-

eters. Theoretically it suffices to use one round for every b̂l.

7 Model selection

Attraction models are often considered for forecasting market shares. It is usually assumed

that, by imposing in-sample specification restrictions, the out-of-sample forecasting ac-

curacy will improve. Exemplary studies are Brodie and Bonfrer (1994), Danaher (1994),

Naert and Weverbergh (1981), Leeflang and Reuyl (1984) , Kumar (1994) and Chen et al.

(1994), among others. A summary of the relevant studies is given in Brodie et al. (2000).

A common characteristic of these studies, an exception being Chen et al. (1994), is that

they tend to compare one or two specific forms of the attraction model with various more

naive models. In this section we consider the question of obtaining the best (or a good)

choice for the specification from the wide range of possible attraction specifications. We

present a general-to-simple strategy for the model selection, following Hendry (1995).

In Franses and Paap (2001b) it is shown that this strategy tends to work very well in
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empirical applications.

The starting point of the model selection strategy is the most extended attraction

model, that is, model (7) without any restrictions. Of course, in practice the size of

the model is governed by data availability and sample size. The first step of a model

selection strategy concerns fixing the proper lag order P of the model. It is well known

that an inappropriate value of P leads to inconsistent and inefficient estimates. Lag order

selection may be based on the BIC criterion of Schwarz (1978). Another strategy may

be a sequential procedure, where one starts with a large value of P and tests for the

significance of the β̃P,k,j,i and α̃P,j,i parameters and imposes these restrictions when they

turn out to be valid. These tests usually concern many parameter restrictions and may

therefore have little power. Instead, one may therefore base the lag order determination

on Lagrange Multiplier [LM] tests for serial correlation in the residuals, see Lütkepohl

(1993) and Johansen (1995, p. 22). The advantage of these tests is that they concern less

parameter restrictions and hence have more power. We would recommend to start with

a model of order 1 and increase the order with 1 until the LM tests do not indicate the

presence of any serial correlation.

Once P is fixed, we propose to test the validity of the various restrictions on (7) as

proposed in Section 2.2. We test for the validity of restriction (8) on the covariance matrix

Σ̃ [RCM] in model (7). Additionally, we test in model (7) for restricted dynamics [RD],

common dynamics [CD], and, for each explanatory variable k, for restricted competition

[RC], for restricted effects [RE] (12) and even for the absence of this variable. Finally,

we propose to test for the significance of the lagged explanatory variables in the general

model.

Next, we recommend to perform an overall test for all restrictions which were not

rejected in the individual tests. If this joint test is not rejected, all restrictions are imposed,

and this results in a final model that can be used for forecasting. However, if the joint test

indicates rejection, one may want to decide to relax some restrictions, where the p-values

of the individual tests can be used to decide which of these restrictions have to be relaxed.

To apply our general-to-simple model selection strategy, we have to test for restrictions
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on the covariance matrix Σ̃ and on the b = (β, βp, α) parameters in model (7). To test

these parameter restrictions, we opt for Likelihood Ratio [LR] tests, see for example

Judge et al. (1985, p. 475). Denoting the ML estimates of the parameters under the null

hypothesis by (b0, Σ̃0) and the ML estimates under the alternative hypothesis by (ba, Σ̃a),

then

LR = −2(`(b̂a, Σ̂a)− `(b̂0, Σ̂0)) ∼
asy

χ2(ν), (48)

where `(·) denotes the log-likelihood function as defined in Section 4 and where ν is the

number of parameter restrictions.

8 Concluding remarks

In this chapter we have gone through part of the econometrics involved in analyzing market

share attraction models. We believe that a systematic strategy enhances the possibility to

compare various empirical findings and to understand deficiencies in case model forecasts

turn out to be inaccurate.

There are a few more issues that need concern in future work. One of these involves

the analysis of possibly differing short-run and long-run effects of marketing efforts, see

Dekimpe and Hanssens (1995) and Paap and Franses (2000), among others. In Fok et al.

(2001) we provide a first attempt in the context of a market share attraction model.

Next, one may want to allow for the event of new brands entering the market or old

brands leaving it. In Fok and Franses (2001a) we discuss techniques for doing so. Finally,

one would want to allow for endogenous marketing efforts, like pricing strategies, which

originate from attraction models.
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A Estimation of restricted covariance matrix

Recall the log likelihood function (25)

`(Σ̃) = −T (I − 1)

2
log(2π) +

T

2
log |Σ̃−1| − 1

2
η̂′(Σ̃−1 ⊗ IT )η̂, (49)

where Σ̃ = diag(σ2
1, . . . , σ

2
I−1) + σ2

I iI−1i
′
I−1. For i = 1, . . . , I − 1 it holds that

∂`(Σ̃)

∂σi
=

(
∂`(Σ̃)

∂vec(Σ̃−1)

)′
∂vec(Σ̃−1)

∂σi

∂`(Σ̃)

∂vec(Σ̃−1)
=
T

2

log |Σ̃−1|
∂vec(Σ̃−1)

− 1

2

∂η̂′(Σ̃−1 ⊗ IT )η̂′

∂vec(Σ̃−1)

=
T

2
vec(Σ̃)− 1

2
vec(

 η̂′1
...

η̂′I−1

 (η̂1, . . . , η̂I−1))

=
1

2
vec[T Σ̃−

 η̂′1
...

η̂′I−1

 (η̂1, . . . , η̂I−1)]

∂vec(Σ̃−1)

∂σi
= vec(−Σ̃−1 ∂Σ̃

∂σi
Σ̃−1) = −(Σ̃−1)2

iiei,I−1

∂`(Σ̃)

∂σi
=

1

2
tr[−T Σ̃(Σ̃−1)2

iiei,I−1 +

 η̂′1
...

η̂′I−1

 (η̂1, . . . , η̂I−1)(Σ̃−1)2
iiei,I−1]

=
1

2
[−T (Σ̃)ii(Σ̃

−1)2
ii + η̂′iη̂i(Σ̃

−1)2
ii]

=
1

2
(Σ̃−1)2

ii[η̂
′
iη̂i − T (σ2

i + σ2
I )]

(50)

where ei,k is a zero vector of size (k× 1) with the i-th element equal to 1. Solving the last

equation given σ̂2
I yields

σ̂i
2 =

η̂′iη̂i
T
− σ̂2

I (51)

The concentrated likelihood is obtained by inserting (51) into the likelihood (49). The

concentrated likelihood now has to be optimized over just one parameter, that is σI .
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