Project Management —
Estimation

Announcement

e Midterm 2
— Wednesday, May. 4
— Scope
e Week 11 — Week 13
— Short answer questions

Agenda (Lecture)

e Estimation

Agenda (Lab)

 Implement a software product based on your design
documents

e Submit a weekly project progress report at the end
of the Wednesday lab session

HOWJS
YOUR ITS A

PROJECT STEAMING

PILE OF
OGS FAILURE.

W P ST A lmad i TV S0 L

& Scott Adams, Inc./Dist. by UFS, Inc.

ITS LIKE FIFTEEN
DRUNKEN MONKEYS
LJITH A JIGSALJ

3k 2R o P Bront Aderma, e Dig by UFS, bng

HOLWJ'S YOUR
PROJECT COMIMNG
ALOMNGY

!

Guide to the Software Engineering Body of Knowledge

2004 Version
Software , . Software X . Software
Requirements] Seftware Design Construction Software Testing Maintenance
Software Software Desig Software Sofware Software
Requirements - (F W dare esulj,n - Construction Testing . Maintenance
Fundamentals undamentals Fundamentals Fundamentals Fundamentals
Wey Tesues in
[, oy lsuesin
Requirements Ly chy Issucs i.n ly _\Managiﬂlg Test Levels 5?ftwarc:
Process Software Design Construction Maintenance
—# Maintenance Process
Requirements Software Structure Practical Test Techniques
Elicitation and Architecture Considerations ques
Soft e Techniques for
. OIiware Lesign . .
Requirements - g i Test Related Maintenance
Analysis % Quality Analysis Measures
and Evaluation
Requirements Software Design Test
Specification Notations Process
Requi Software Design
equirements X .
S “» Strategies and
Validation
Methods
Practical
Considerations
(a) (b) (c) (d) (e)

Figure 2 First five KAs

Guide to the Software Engineering Body of Knowledge

+

He-

H-

(2004 Version)
Software Software Software Software Knowledge Areas of
Configuration — Engineering — Cngineering — Engineering Tools — Software Quality the Related
Management Management Process and Methods Disciplines
Management of the [nitiation and Process s -
" s . = Software — Software Qualiy -omputel
SCM Process Scope Definition Implementation and Software Tools > ¢ Quali Engineering
) Fundamentals -ng 2
Chaﬂgc Saoftware Requirements -«
Teaols
Software Quality
Software Lo Software Pmﬁlc":' > Pr{-n:!:_?ﬁ Sofbware Design Tools 4 [Management {.c‘!n.mmm
Conliguration Planning Definition Processes Science
Identification Software Construction
: Tools +
- - - Yoo o o
I Software Project —p Process Software Testing Tools <] ™ Practical Management
Software Assessment Considerations
C"Jl] ﬁgllrﬂliﬁﬂ Software hMainenance -
Contral Teals
. L Process and Software Configuration g | Mathematic
> Review and [hmducl Management Tocls athematles
Software Evaluation Measurement Software Engineering -
Con ﬁgllrﬂliﬁﬂ Management Tools Pmi ot
2 . e e
Status Accounting Softwars Enginesting Management
r‘l“(‘Lth T"nlh =
i - Closure Software Quality Tools H
Software Quality
Configuration Wiscellaneous Tool Management
Auditing lssucs < h
Software Software
Soft Rel —> Engineering — Engineering — Software
Software Release] h
oItware helease Measurement Methods Ergonomics
Management and
Del i\-‘cr}-‘ Heuristic Methods ~H
Systems
Formal Methods - Engineering
Prototyping Methwods -

(f)

(g

(h)

(i)

Figure 3 Last six KAs

()

(k)

Software Project Success Rate

Data on 280,000 projects completed in 2000 - Standish Group Data

Successful
28%

Canceled

——
—_—
.
——
-

Completed late,
over budget, and/or
with features missing
49%

http://www.softwaremag.com/archive/2001feb/CollaborativeMagt.html

Statements about Management

o “Software project management is an essential part of
software engineering.”

o “Without proper planning, a software development
project is doomed.”

e “Good management cannot guarantee project
success. However, bad management usually result in
project failure: The software is delivered late, costs
more than originally estimated, and fails to its
requirement.”

Project

e Organizations perform works: operations and
projects

e Commonalities between operations and projects
— Performed by people
— Constrained by the limited resources
— Planned, executed, and controlled
e Differences between operations and projects
— Operations are on-going and repetitive
— Projects are temporary and unique

Project Management

* Project Management Body Of Knowledge (PMBOK)
— Project Management Institute
e www.csun.edu/~twang/380/Slides/pmbok.pdf

Software Project Management

Software project management is especially difficult
because

|IEEE Guide -- Adoption of PMI Standard A Guide to
the Project Management Body of Knowledge -- IEEE
Std 1490-1998

|IEEE Standard for Software Project Management
Plans -- IEEE Std 1058-1998

Software project management : The Manager’s View

Process/Project/Product/People

RFP > Process —tp Product

@ Methods \ ools
|)

Metrics

 Numerical measures that quantify the degree to which
software, a process or a project possesses a given
attribute

 Metrics help the followings
— Determining software quality level
— Estimating project schedules
— Tracking schedule process
— Determining software size and complexity
— Determining project cost
— Process improvement

Software Metrics

 Without measure it is impossible to make a plan, detect
problems, and improve a process and product

e A software engineer collects measure and develops
metrics so that indicators will be obtained

 Anindicator provides insight that enables the project
manager or software engineers to adjust the process, the
project, or the product to make things better

Software Metrics (cont’d)

e The five essential, fundamental metrics:
— Size (LOC, etc.)
— Cost (in dollars)
— Duration (in months)
— Effort (in person-month)
— Quality (number of faults detected)

Product Size Metrics

 Conventional metrics

— Size-oriented metrics

— Function-oriented metrics

— Empirical estimation models
 Object-Oriented metrics

— Number of scenario scripts

— Number of key classes

— Number of support classes

— Average number of support classes per key classes
e User-Case oriented metrics

Product Size Metrics (cont’d)

* Web engineering product metrics

— Num
— Num
— Num
— Num

oer of static web pages
oer of dynamic web pages
oer of internal page links

oer of persistent page links

Estimate Uncertainty

A
4.00

3.00 -

Upper bound
2.00 -

1.50 -

1.00 |-

0.67 -

0.50
0.95 Lower bound

Cost estimate (in millions of dollars)

0 | | | Ly
Requirements Analysis Design Implementation

Workflow during which the cost estimate is made

 The accuracy of estimation increases as the process
proceeds

Size Estimation

e The methods to achieve reliable size and cost
estimates:

— LOC-based estimation
— FP-based estimation

— Empirical estimation models
e COCOMO

LOC-based Estimation

 The problems of lines of code (LOC)

— Different languages lead to different lengths of
code

— It is not clear how to count lines of code

— A report, screen, or GUl generator can generate
thousands of lines of code in minutes

— Depending on the application, the complexity of
code is different

LOC-based Estimation - Example

e Function e Estimated LOC
— User interface 2,300
— 2-D geometric analysis 5,300
— 3-D geometric analysis 6,800
— Database management 3,500
— Graphic display facilities 4,950
— 1/0 control function 2,100
— Analysis function 8,400

e Total estimated LOC 33,350

LOC-based Estimation - Exercise

e Average productivity based on historical data
— 620 LOC/pm
— $8,000 per month
->S$12.91/L0C

e If the estimated project is 33,200 LOC,

— then the total estimated project cost is S and
— the estimated effortis __ person-months

FP-based Estimation

 Based on FP metric for the size of a product

— Based on the number of inputs (Inp), outputs

(Out), inquiries (Ing), master files (Maf), interfaces
(Inf)

— Step 1: Classify each component of the product
(Inp, Out, Inq, Maf, Inf) as simple, average, or
complex (Figure 1)

e Assign the appropriate number of function points

e The sum of function pointers for each component gives UFP
(unadjusted function points)

FP-based Estimation (cont’d)

— Step 2: Compute the technical complexity factor (TCF)

e Assign a value from O (“not present”) to 5 (“strong influence
throughout”) to each of 14 factors such as transaction rates,
portability (Figure 2)

 Add the 14 numbers: This gives the total degree of influence
(DI)
— TCF =0.65 + 0.01 x DI
— The technical complexity factor (TCF) lies between 0.65 and 1.35
— Step 3.The number of function points (FP) is then
given by

* FP = UFP x TCF

FP-based Estimation (cont’d)

Level of Complexity

Component Simple Average Complex

Input item 3 1 6

Output item 4 5 /

Inquiry 3 4 b

Master file / 10 15

Interface 5] 10
Figure 1

e
2
3
4
5.
6
7
8

9.

10.
1FJe
12
13.
14.

Data communication

. Distributed data processing
. Performance criteria

. Heavily utilized hardware

High transaction rates

. Online data entry
. End-user efficiency

. Online updating

Complex computations
Reusability

Ease of installation

Ease of operation
Portability
Maintainability

Figure 2

FP-based Estimation (cont’d)

e The same product was coded both in assembler and
in ADA and the results compared

Assembler Version Ada Version
Source code size 70 KDSI 25 KDSI
Development costs $1,043,000 $590,000
KDSI per person-month 0.335 0.211
Cost per source statement $14.90 $23.60
Function points per person-month 1.65 2.92

Cost per function point $3,023 $1,170

Exercise Problems

e Atarget product has 7 simple inputs, 2 average input, and 10
complex inputs. There are 56 average output, 8 simple
inquires, 12 average master files, and 17 complex interfaces.
Determine the unadjusted function points (UFP).

e |f the total degree of influence for the product of the question
above is 49, determine the number of function points.

Average LOC Per
One Function Point

Assembly Language 320
C 128
COBOL 105
FORTRAN 106
Pascal 90
C++ 64
Ada95 53
Visual Basic 32
Smalltalk 22
Powerbuilder 16

SQL 12

COCOMO

COnstructive COst MOdel
Empirical model

— Metrics such as LOC and FP are used as input to a
model for determining product cost and duration

Well documented, and supported by public domain
and commercial tools; Widely used and evaluated

Has a long pedigree from its first instantiation in
1981

— COCOMO | (81)
— COCOMO I

COCOMO (cont’d)

 Based on water fall process model

 The vast majority of software would be developed
from the scratch

e There are three forms of the COCOMO

— Basic COCOMO (macro estimation) which gives
an initial rough estimate of man months and
development time

— Intermediate COCOMO which gives a more
detailed estimate for small to medium sized
projects

— Detailed COCOMO (micro estimation) which
gives a more detailed estimate for large projects.

COCOMO (cont’d)

e Effort=A * Size® * M
— Where A is coefficient

— The exponent B reflects the increased effort
required as the size of the product increases

— The multiplier M is based on the project
characteristics

Intermediate COCOMO

Organic mode Semi-detached mode Embedded mode
(Simple) (Moderate) (Complex)

MM, = 3.2(KLOC)1%M MM, = 3.0(KLOC)*12M MM, = 2.8(KLOC) 1 20M
(NE = 3.2(KLOC)19>) (NE = 3.0(KLOC)*12) (NE = 2.8(KLOC) - 29)

e NE: Nominal effort (a rough estimate of the development effort using two
parameters)

* MM ,: Man-month for estimated development effort

e M: 15 software development effort multipliers

e KLOC: number of thousands of line of code

Intermediate COCOMO (cont’d)

Step 1. Estimate the length of the product in KLOC
Step 2. Estimate the product development mode
— Simple (organic, straightforward)

— Moderate (medium sized, semidetached)

— Complex (embedded)

Step 3. Compute the nominal effort

Step 4. Multiply the nominal value by 15 software development
cost multipliers

Step 5. Estimate the calendar time (TDEV) in months required to
complete a project

Rating

Cost Drivers Very Low Low Nominal High Very High Extra High
Product Attributes

Required software reliability 0.75 0.88 1.00 I:15

Database size 0.94 1.00 1.08

Product complexity 0.70 0.85 1.00 1.15 1.65
Computer Attributes

Execution time constraint 1.00 1.11 1.30 1.66

Main storage constraint 1.00 1.06 1.21 1.56

Virtual machine volatility* 0.87 1.00 1.15 1.30

Computer turnaround time 0.87 1.00 1.07 | 5
Personnel Attributes

Analyst capabilities 1.46 1:19 1.00 0.86 0.71

Applications experience 1.29 1213 1.00 0.91 0.82

Programmer capability 1.42 1.17 1.00 0.86 0.70

Virtual machine experience* 1.21 1.10 1.00 0.90

Programming language 1.14 1.07 1.00 0.95

experience

Project Attributes

Use of modern programming 1.24 1.10 1.00 0.91 0.82

practices
Use of software tools 1.10 1.00 0.91 0.83
Required development schedule 1.23 1.08 1.00 1.04 1.10

*For a given software product, the underlying virtual machine is the complex of hardware and software (operating system, database

management system) it calls on to accomplish its task.

Figure 5. Intermediate COCOMO software development effort multipliers

Intermediate COCOMO
— Example

Example: Microprocessor-based communications
processing software for electronic funds transfer
network

Step 1. Estimate the length of the product

— 10,000 LOC (10 KLOC)

Step 2. Estimate the product development mode
— Complex (“embedded”) mode

Step 3. Compute the nominal effort

— Nominal effort = 2.8 * (10)12° = 44 man-months

Intermediate COCOMO
- Example (cont’d)

e Step 4. Multiply the nominal value by 15 software
development cost multipliers (see table on the next slide)

— Product of effort multipliers = 1.35

— Estimated effort for project is therefore 1.35 * 44 = 59 person
(man)-months

Intermediate COCOMO
- Example (cont’d)

Effort
Cost Drivers Situation Rating Multiplier
Required software reliability Serious financial consequences High 1.15
of software fault
Data base size 20,000 bytes Low 0.94
Product complexity Communications processing Very high 1.30
Execution time constraint Will use 70% of available time High 1.11
Main storage constraint 45K of 64K store (70%) High 1.06
Virtual machine volatility Based on commercial Nominal 1.00
microprocessor hardware
Computer turnaround time 2 hour average turnaround Nominal 1.00
time
Analyst capabilities Good senior analysts High 0.86
Applications experience 3 years Nominal 1.00
Programmer capability Good senior programmers High 0.86
Virtual machine experience 6 months Low 1.10
Programming language experience 12 months Nominal 1.00
Use of modern programming Most techniques in use over High 0.91
practices 1 year
Use of software tools At basic minicomputer Low 1.10
tool level
Required development schedule 9 months Nominal 1.00

Results of the Intermediate COCOMO

COCOMO has been validated with respect to broad
samples (63)

COCOMO was the most accurate estimation method of
its time

Major problem

— If the estimate of the number of lines of codes of

the target product is incorrect, then everything is
Incorrect

COCOMO I

e 1995 extension to 1981 COCOMO that incorporates

— Object orientation, Modern life-cycle models, Rapid prototyping,
Fourth-generation languages, COTS software

e COCOMO Il is far more complex than the first version

Exercise Problem

You are in charge of developing a 76-KLOC embedded product that is
nominal except that the database size is rated very high and the use of

software tools is low. Using Intermediate COCOMO, what is the estimated
effort in person (man)-months?

