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This thesis was carried out at Efore Group Product Development department, Espoo. The 
aim of the thesis was to develop and tailor embedded software testing process and meth-
ods and develop customised testing tool. 
 
Traditional software testing methods were studied to familiarise oneself with the basic 
concepts of software testing. Several software testing methods were studied to map op-
tions for exploiting existing methods in developing software testing method for low-level 
embedded software environment. 
 
The customised testing method was built around Test Maturity Model integration TMMi 
model to ensure integration of the software testing practices to the existing software de-
velopment process and pave the way for continuous improvement of software testing. A 
spiral model was selected to be the main process control structure due to its iterative and 
test intense nature. The concrete testing practice incorporated into the customised meth-
od was based on agile Test Driven Development TDD method to shorten defect lifecycles 
and set emphasis on developer oriented software testing. From these elements a tailored 
software testing method was formed. 
 
In order to perform software testing in early stages of project, a hardware software test-
ing platform was designed. The platform was able to simulate analogue, digital and PWM 
signals to enable testing in simulated target environment before actual hardware is availa-
ble. The testing platform could be fully automated by test scripts. The platform gathered 
test log from inputs and formatted the data for further processing and documentation. 
 
The platform prototype was tested on one actual project and proven to be functional and 
suitable for effective early-stage testing. 
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Insinöörityö tehtiin Efore Oyj:n tuotekehitysosastolle Espooseen. Insinöörityön tavoitteena 
oli kehittää ja räätälöidä prosessi ja menetelmät sulautettujen järjestelmien software-
testaukseen sekä kehittää työkalu testauksen suorittamiseksi. 
 
Työssä tutkittiin perinteisiä software-testauksen menetelmiä ja testauskonsepteja. Lisäksi 
tutkittiin useita software-testausmetodeja ja kartoitettiin mahdollisuutta olemassa olevien 
metodien hyödyntämiseen tilaajayrityksen sulautettujen järjestelmien matalan tason soft-
waren testauksen kehittämisessä. 
 
Räätälöity testausmetodi rakennettiin Test Maturity Model integration TMMi –mallin 
ympärille, jotta voitiin varmistaa testauskäytänteiden integroituminen softwaren kehit-
ysprosessiin ja mahdollistaa testausmetodien jatkuva kehittäminen. Pääasialliseksi proses-
sin ohjaus- ja kontrollimetodiksi valittiin spiraalimalli iteratiivisen ja testausorientoituneen 
luonteensa vuoksi. Kehitetyssä metodissa konkreettinen testauksen toteutus pohjautuu 
joustavaan Test Driven Development TDD –metodiin, jotta vikojen elinikä voitiin minimoida 
ja painottaa testaus kehittäjälähtöiseksi. Näistä elementeistä koottiin räätälöity tes-
tausmenetelmä Eforen käyttöön. 
 
Jotta software-testaus olisi ollut mahdollista aloittaa varhaisessa vaiheessa, työssä ke-
hitettiin software-testausalusta. Alusta pystyi tuottamaan analogisia ja digitaalisia 
signaaleja sekä PWM-pulssisignaaleja. Alustalla voitiin simuloidan lopullista laiteympäristöä 
ja testaus voitiin suorittaa kohdeprosessorissa ennen varsinaisen laitteiston valmistumista. 
Testausalustan lähdöt voitiin automatisoida täysin skripteillä. Alusta keräsi sisääntuloista 
dataa ja muotoili kerätyn datan pohjalta lokitiedostoja jatkokäsittelyä ja dokumentointia 
varten. 
 
Alustan prototyyppiä testattiin meneillään olleen projektin yhteydessä ja testausalustan 
konsepti todettiin toimivaksi. Laitteisto soveltui tehokkaaseen varhaisessa vaiheessa tapah-
tuvaan softwaren testaukseen. 
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TMMi  Test Maturity Model integration 
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1 Introduction 

 

Embedded systems have found their  way to  all  areas  of  electronics,  including power  

electronics where computer control has started to replace analogue circuitry in modern 

industry-level power supply units. Clients are demanding increasingly sophisticated and 

more complex control and monitoring features that have created requirement for in-

cluding microprocessors and embedded systems on power electronics products, thus 

software has eventually become important part of product development process in 

power electronics. This has created demand for extensive software testing, verification 

and validation methods to ensure the operational reliability of the products. 

 

This thesis is made for Efore Group Product Development. Efore Group was founded in 

Finland in 1975 and in present day Efore is an international technology company fo-

cused on custom designed highly embedded power products that require high perfor-

mance, reliability and efficiency. In product development Efore focus on minimizing the 

energy consumption by improving energy efficiency, thus contributing to environmental 

friendliness. 

 

Often comprehensive software testing of embedded systems can be performed only in 

the later stages of the project when the first prototype hardware is available. This ap-

proach  has  several  drawbacks.  First,  it  makes  the  first  prototype  prone  to  software  

defects and discovering the defects are emphasized on the later stages of product de-

velopment lifecycle. Secondly, in-depth testing of software is difficult, or even impossi-

ble, since the first true opportunity to run the software is in the first prototype round. 

This can slow down the software development process and hinder quality control 

measures since the defects cannot be rooted out as early as possible. Thirdly, inade-

quate software testing methods increase risk of software defects passing through the 

tests and eventually manifesting themselves in the production or, in the worst case, in 

the field. 

 

The aim of this thesis is to develop early-phase embedded software testing methods to 

suit the needs of Efore Product Development department, create a solution for testing 

of multiple types of 8-bit and 16-bit microcontrollers and I/O configurations, design 
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hardware implementation of testing environment and test finally the system in practice 

with a real product. The goal in testing platform design is that it could be used right 

from the low-level unit testing all the way to testing complete code, since it would be 

ideal that software testing in hardware environment could be started way before the 

first prototype in emulated hardware environment. This would move the emphasis of 

defect discovering and fixing to the early stages of the lifecycle thus improving quality 

control and defect fixing lead-time. 
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2 Embedded Systems 
 

2.1 Overview 
 

Term “embedded system” is rather vague. Generally it depicts a computer system that 

is dedicated to one or few specific tasks offering minimal amount of flexibility. Embed-

ded systems often deal with real-time computing in which the system must react to 

real-time stimuli. Embedded systems vary from simple interface applications to massive 

control and monitoring systems. A Venn diagram shown on figure 1 clarifies how em-

bedded systems settle in contrast to other computing systems. 

 

 

Figure 1. Embedded systems in contrast to other computing systems. 
 

 

An embedded system can be, for example, an MP3 player, an ECG machine, a micro-

wave oven, a cell phone, a missile tracking system or a telecommunications satellite. 

The rallying point of all these applications is that they interact with real physical world 

controlling some application specific hardware that is built-in on the system as shown 

on figure 2. (1, p. 5) 
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Figure 2. Generic scheme of an embedded system (1, p. 5) 
 

 

The processing unit is typically a microcontroller or digital signal processor (DSP). 

Greater scale systems can contain several processing units. The system interacts with 

the real world in real-time by receiving signals through sensors and sending outputs to 

actors that manipulate environment. The environment, including the sensors and ac-

tors, is often referred to as the plant. Embedded systems include special application 

specific built-in peripheral devices such as A/D and D/A converters, instrumentation 

amplifiers, Flash memory circuits, et cetera. The software on embedded system is 

stored in any kind of non-volatile memory, often ROM or Flash, but the software can 

also be downloaded via network or a satellite upon start-up. (1, p. 5) 

 

Due to the strict framework in which embedded systems are designed to operate in the 

size, performance and reliability of the system can be easily optimized in both hard-

ware and software domains. Embedded systems are also easy to mass produce to re-

duce costs. These are great advantages and they have enabled the invasion of embed-

ded systems into our everyday lives. Embedded systems have become so pervasive 

that they perform bulk of computation today (2, p. 1). 

 

Embedded system Plant 
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2.2 Embedded Software 
 

Unlike conventional computer systems that are designed to be as flexible as possible – 

they can run wide variety of programs and applications and can be extended with addi-

tional hardware add-ons – embedded systems are compact computer systems dedicat-

ed to operate in certain strictly specified framework running single firmware that is not 

customizable by the user, offering a little or none flexibility. In addition, the resources, 

for example the amount of memory and processing power, on embedded systems are 

often very limited. These differences affect the way software (SW) code is written for 

embedded systems contra software code for conventional computer systems. 

 

Due to the special hardware (HW) environment the embedded software is written for, 

one main characteristic of embedded software is that it relies on direct manipulation of 

the processors registers that control the peripheral functions and I/O of the system. It 

is usual for the embedded system not to have any kind of standard function library and 

everything must be written from scratch. 

 

The lack of standard libraries is often due to the fact that in embedded systems the 

code should be compact and as efficient as possible, since poorly optimized code has 

heavy impact on the performance on a system where hardware resources are scarce. 

In the worst case poor optimisation can lead to the software binary not fitting in the 

system memory at all. The emphasis on optimisation and efficiency is great also be-

cause the system is often required to react immediately to real-time stimuli. Thus, in 

some time-critical embedded systems parts of the code, or even all the code, is written 

in assembly to ensure that the processing power is used at maximum efficiency. 

 

On embedded systems reliability is also a key issue, since the software is often re-

quired to run without problems non-stop for long periods of time. The code efficiency 

and reliability can be matters of life and death for the whole project. Fortunately em-

bedded software is compiled for a particular processor and particular hardware, which 

makes code optimisation easier and increases reliability since conflicts between hard-

ware and software can be avoided. 
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3 Software Testing 
 

3.1 Overview 
 

Increasing share of software in systems has increased the importance of software test-

ing  in  the  product  development  process  and it  has  become a  major  factor  in  quality  

control measures. In practice it is impossible to create defect-free code (1, p. 3), which 

inevitably creates a requirement for effective testing process. 

 

Software testing methods and techniques have been developed from the 1970s with 

major breakthroughs in the 1980s by software testing pioneer Barry Boehm who intro-

duced the spiral model for software testing and studied the economic effects of soft-

ware testing. During the 1990s software testing had become the basic process of soft-

ware development companies and nowadays nearly 40 per cent of development costs 

are spent on software testing and defect removal (3, p. 7). Value of rigorous testing is 

clearly understood in the software industry. Even so neglected software testing is one 

of the most common reasons for project not meeting its deadline. In some cases de-

fected software can even lead to project being aborted. 

 

The economic importance of software testing is significant, which drives interest and 

emphasis in software testing. According to a report on the Economic Impacts of Inade-

quate Infrastructure for Software Testing published in 2002 by Research Triangle Insti-

tute  and  the  National  Institute  of  Standards  and  Technology  (USA)  the  annual  cost  

incurred as  insufficient  software  testing  amounts  to  $59.5  billion  in  USA alone (2,  p.  

184). Failure to test and validate software properly can lead to major financial losses, 

since the longer the defect lifecycle is, the more expensive it is to fix, as figure 3 illus-

trates (4). 

 

If software testing and validation is insufficient and a defect injected in the require-

ments is found not till operational testing, the cost to fix the defect is enormous. The 

costs can get intolerable if the defect is found in the field, especially if the defect re-

quires the product to be recalled from customers. Thus, it seems intuitive that a suc-

cessful testing pushes defect lifecycle as short as possible. This requires that the test-

ing process is included in the development process right from the beginning. 
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Figure 3. Relative cost to fix defects in relation of phase the defect is introduced to phase the 
defect is fixed. 

 

Studies have shown that software has high defect densities: 13 major errors per 1000 

lines of code on average (2, p. 184). In this light the reliability of the system is highly 

dependent on efficient and rigorous software testing and validation. It does not directly 

improve the quality of the system per se, but it does it indirectly by offering valuable 

data of weak spots of the system and helps to focus resources on critical areas. One 

should bear in mind that all defects cannot be found and there is never enough time 

and  resources  to  test  everything  (1,  pp.  3-4).  Thus  software  testing,  like  any  other  

testing process, shall be planned carefully and preparing a test strategy is essential for 

efficient testing since excessive testing can lead to major financial losses. The strategy 

should pinpoint the balance of testing costs and defects found depending on the crite-

ria of maximum defects allowed. 
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3.2 General concepts 
 

3.2.1 Software testing principles 
 

Often software testing is considered to be a process to demonstrate that the program 

functions correctly, but this definition is erroneous. More appropriate interpretation is 

that testing is a process to find as many defects as possible. The difference may sound 

irrelevant semantics, but it is essential in comprehending the philosophy of testing and 

setting the right kind of goal. If the goal would be in demonstrating that the software 

works correctly, then the whole process is in danger to steer towards avoiding the de-

fects rather than deliberately making the test fail. Testing could be described as a de-

structive sadistic process. (5, pp. 5-6) 

 

There are few basic principles in software testing that greatly affect the outcome and 

the efficiency of the testing process. The most important principles are: 

 A test case must contain a definition of the expected output and results. 

 Each test result shall be thoroughly inspected. 

 Test cases must be written for invalid and unexpected input conditions, as well 

as for input conditions that are valid and expected. 

 Examine a program to see if it does not do what it should do and if it does what 

it should not do. 

 Test cases should be stored and be repeatable. 

 Plan a testing effort in assumption that defects will be found. 

 The probability of existence of defects is proportional to the number of defects 

already found. (5, p. 15) 

 

These principles are intuitive guidelines for test planning and help getting a grasp on 

the nature of testing process and its goals. 

 

3.2.2 Dynamic Testing 
 

Dynamic testing is the most common type of testing and it is often misinterpreted that 

testing as a whole is dynamic testing. There are two general types of dynamic testing: 

black box testing and white box testing. The difference between these two types is the 
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focus and scope of testing. A test plan is built on a combination of these two ap-

proaches. 

 

In black box testing the internal behaviour of UUT (Unit Under Test) is not concerned. 

Test data is fed to UUT and the received output data is compared to expected data. In 

this approach the goal is to find circumstances in which the program does not behave 

according to its specification. In theory an exhaustive input testing that finds all the 

errors requires to test with all possible inputs in the operational area. This easily grows 

the number of test cases in practice to infinity. Thus, it is essential in black box testing 

to design the test cases in a way that the number of test cases is on acceptable level 

and the yield is as big as possible. (5, pp. 9-10) 

 

In white box testing the test data and test cases are structured from the internal struc-

ture of the program. The emphasis on white box testing is often on coverage testing. 

It aims to test that every statement in the program executes at least once or every 

logical  branch gets values true and false at least once during the test run. In theory 

white  box testing  suffers  the  same kind of  infinity  problem as  black  box testing;  ex-

haustive path testing, in which every branching combination is tested, leads quickly to 

practically infinite number of test cases. Thus, in practice compromises must be done. 

(5, p. 11) 

 

There is also a combination of white box and black box testing that is called grey box 

testing. It is black box type method that, in addition to the module specifications, has 

some information from the actual code of the UUT as a basis for test case designing. 

 

3.2.3 Static Testing 
 

Static software testing is usually inspections and reviews of the code or a document. In 

static testing the software is not actually used at all, but visually inspected – In other 

words: read. Static testing is proven to be extremely effective type of testing both in 

means of cost-effectiveness and defect spotting effectiveness. Due to these facts, it is 

advised to include static testing in every test plan and test level. (5, pp. 21-23) 
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The most common form of static testing is code reviews in which the code is analysed 

by a group of people, often by peers. Suitable number of participants is three to four 

persons of which one is the author of the code, one is the moderator, one is program-

mer peer and one is a test specialist. The moderator schedules the review, makes the 

practical arrangements, records the defects and ensures that the errors are corrected. 

The rest of the group is focused solely on the review. Usually the participants get ac-

quainted with the code beforehand and the review conference is held where the partic-

ipants meet for the actual review. The duration of the review should not exceed 120 

minutes to ensure effectiveness. (5, pp. 24,26) 

 

The code is inspected to find basic coding mishaps, but it  is important to inspect the 

structure and evaluate the algorithm decisions since most of these types of defects are 

invisible to traditional dynamic computer-based testing methods. The aim of static test-

ing is to find defects and potential hazards, but not to fix them. The advantage of code 

review is that the exact locations of the defects that are found are known. This makes 

fixing process quick and a mass of defects can be fixed in one sitting. 

 

The code review progresses so that the programmer narrates the logic of the program 

step by step. The other participants raise questions and try to determine if defects ex-

ist in a collective effort. After the narration the program is analysed with respect to a 

checklist of common defects. See Appendix 1 for a revised list of defects. The modera-

tor ensures that the discussion proceeds along productive lines and the focus is on 

finding defects and not fixing them. After the review the programmer is given a list of 

the defects found. (5, p. 25) 

 

In addition to code, other documents can be reviewed in the same manner as code is 

reviewed. It is well advised to review software specifications, test plans, et cetera, to 

root out defects from the design documents. Specification documents should be re-

viewed with care, since defects that are injected into the specifications are extremely 

hazardous and can jeopardise the whole project when the developed system does not 

meet the customer’s requirements. 
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3.2.4 Levels of Testing 
 

Software testing can be divided roughly to four levels. They are, from low-level to 

high-level: unit testing, integration testing, system testing and acceptance testing. Dif-

ferent levels are performed by various testers and teams at various phases in the pro-

ject timeline, so that the levels help organizing the testing process. Test levels define 

who is performing the testing and when. It structures the testing process by incremen-

tal principles from small isolated parts tested at the lower levels to larger components 

or subsystems being tested at the higher levels. A good distinction between low-level 

and high-level testing is the position of the testing in the product development lifecy-

cle. (1, p. 34) 

 

Unit testing is the lowest level of software testing process in which individual units of 

software is tested. A unit is the smallest testable part of software, which is usually a 

single function. This level of testing is normally carried out by developers in parallel 

with development process as a part of test driven development practice. In unit testing 

a white box testing method is often used due to the small size and simplicity of the 

code under test. The aim is that majority of defects are discovered at this level, be-

cause  discovering  and  fixing  the  defects  at  this  stage  is  easy  and  fast  compared  to  

fixing defects discovered at later development stages. Unit testing also increases re-

sistance to defects caused by changes in the code, since the test scripts can be run 

every time a change is made to assure the unit works as intended after the changes. 

Due to the sheer volume of defects possible to discover and fix with unit testing, it can 

be regarded as the most important level of testing. (6) 

 

Integration testing is a level of software testing process where the units are combined 

and tested as functional groups. At this level the emphasis is on testing the interface 

and interaction between the units. Testing method can be black box testing, white box 

testing or grey box testing. The choice of method depends on the type of the units and 

on complexity of the group under test. Integration testing is carried out by the devel-

opers or, in some cases, an independent software testing team. (6) 

 

System testing is a higher level of the software testing process where a complete inte-

grated  system  is  tested.  On  embedded  systems  this  phase  is  usually  carried  out  on  

prototypes  where  the  functionality  of  the  embedded software  in  the  destination  plat-



12 

 

 

form is tested in black box method. System testing aims to reveal defects in which the 

software does not meet the requirements set for the product and defected interaction 

between the embedded system and the plant. System testing is usually carried out by 

independent testing team but on small projects this phase can be carried out by the 

developers. (6) 

 

Acceptance testing is the final stage of testing where the final product is put under test 

and the design is accepted for release. The aim is to find the defects in which the 

product does not fulfil its original requirements and purpose for the customer. Ac-

ceptance testing is usually purely ad hoc and the number of defects discovered is min-

imal, preferably none. In some cases acceptance testing can be performed by the cus-

tomer. (6) 

 

3.3 Testing Methods 
 

3.3.1 Black Box Testing Methods 
 

As mentioned earlier in context of black box testing, an exhaustive testing of all input 

values leads to practically infinite number of test cases. The test cases must be scaled 

down and this is when equivalence partitioning and boundary-value analysis tech-

niques are applied. These techniques are very intuitive way to scale down the test cas-

es. 

 

In equivalence partitioning the input values are divided into two or more partitions 

depending on the function of UUT. The partition classes are value ranges that are ei-

ther valid or invalid equivalence classes. In other words, every value on the class range 

can be safely assumed to be either valid or invalid input. For example, if the UUT is a 

function that requires a voltage as a floating point input V in range of 0.0 to 5.0 volts, 

the values of V can be divided into three equivalence classes: valid class 0.0  V  5.0 

and invalid classes V < 0.0 and V > 5.0. 

 

With boundary-value analysis a test cases can be constructed from the equivalence 

partitions.  In  this  technique  the  test  cases  explore  the  boundary  conditions  of  the  

equivalence classes. For example on the case of the voltage V, the boundary condition 
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test cases could be 0.0, 5.0, -0.001 and 5.001. With these test cases probable compar-

ison errors can be detected. In some cases it can be profitable to analyse the output 

boundaries  and  try  to  produce  a  test  case  that  causes  the  output  to  go  beyond  its  

specified boundaries. In reality boundary-value analysis can be challenging task due to 

its heuristic nature and it requires creativity and specialisation towards the problem. (5, 

pp. 59-60) 

 

In addition to these equivalence classes, a defect guessing technique can be used to 

add test cases that are not covered by the classes. These test cases can be inputs in 

invalid data type, void inputs or other defect prone inputs. Effective defect guessing 

requires experience and natural adeptness. (5, p. 88) 

 

3.3.2 White Box Testing Methods 
 

Logic coverage testing is a white box testing method and it is the most common type 

of coverage test. As mentioned in chapter 3.2.2, complete logic path testing is impos-

sible due the practically infinite number of test cases, so the test must be scaled down 

but still endeavour to meet the required level of coverage. Finding the optimal test 

case set is a challenging task. 

 

Statement coverage testing is a test in which every statement of the UUT is executed. 

Such a test is easily designed but it is very weak type of test since it overlooks possible 

defects in branch decision statements. It can be said that statement coverage testing 

as such is so weak that it is practically useless. (5, pp. 44-45) 

 

Stronger logic coverage test is decision coverage test. In this test type the test cases 

are written so that every branch decision has a true and false outcome at least once 

during the test run. Branch decisions include switch-case, while and if-else 

structures. This also very often covers statement coverage, but it is advisable that 

statement coverage is ensured. Decision coverage is stronger than statement coverage 

but still is rather weak since some conditions can be skipped to fulfil complete decision 

coverage. (5, pp. 45-46) 
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Condition coverage is the next stronger criterion. In condition coverage test cases are 

written so that every condition in a decision takes on all possible outcomes at least 

once. In addition, to benefit from this criterion statement coverage must be added on 

top of the condition coverage. The decision coverage and condition coverage can be 

combined to achieve acceptable logic coverage. (5, pp. 46-47, 49) 

 

The choice of criterion depends on the structure of the UUT. For programs that contain 

only one condition per decision, decision coverage test is sufficient. If the program 

contains decisions that contain more than one condition, it is advisable to apply condi-

tion coverage. (5, p. 52) 

 

3.3.3 Non-Incremental and Incremental Unit Testing 
 

Testing the whole system at once with an acceptable coverage can be a devious and 

often impossible task. Therefore it is more effective to test the system in small units, 

hence the term unit testing. This way the test cases become easier to design and ac-

ceptable test coverage can be managed more efficiently. 

 

 

Figure 4. Example program structure 
 

One way to perform unit testing is to test every unit independently and combine the 

tested modules to form the complete program. In this method when the functions of 

the simple example program in Figure 4 are tested, every function needs a driver and 

in some cases one or more stubs. A driver is a program that passes the test case input 

arguments  to  the  module.  It  simulates  the  higher  level  module.  A  stub is  a  program 

that simulates the effects of the lower level modules. When every function is tested the 
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functions are combined and final integration tests are performed. This method is called 

non-incremental big bang method. 

 

There are several obvious problems in this approach. Since every function requires 

driver and stubs to be written, testing requires lots of additional work – The example 

program in Figure 4 requires six stubs and six drivers, which can result in hundreds of 

lines of additional test code. Stubs can get complex, since they have to simulate sec-

tions of the code. Because of this writing a stub is not always a trivial  task. Also de-

fects caused by mismatching interfaces or incorrect assumptions among modules are 

overlooked; not to mention possible defects in written stubs causing incorrect test re-

sults. Also, when the modules are combined in a big bang manner, pinpointing the 

location of defects revealed in that phase can be difficult, since the defect can be any-

where. (5, pp. 107-110) 

 

The only real advantage in non-incremental testing is that it allows parallel testing of 

units, which can be effective in massive software projects. This is rarely the case in 

small scale embedded systems. The problems of non-incremental method can be 

solved by incremental testing, which can be considered superior to non-incremental 

testing. In incremental testing one module is tested and then a new module is com-

bined to the tested module gradually building and testing the complete program. The 

integration testing can be considered to be performed in parallel with the unit testing. 

There are two incremental testing methods: top-down and bottom-up. 

 

In top-down method the testing is started from the highest module: main() in the ex-

ample on Figure 4. This method requires only stubs to be written. The stubs are grad-

ually replaced by the actual functions as the testing progresses. In this method the test 

cases are fed to the modules via the stubs. This may require multiple versions of stubs 

to be developed. To ease the testing process, it is advisable to test I/O modules first. 

The I/O module often reduces the required code and functionality of stubs. The most 

complex and defect prone modules are advisable to be tested as soon as possible, 

since pinpointing the defects in the early stages is somewhat easier. (5, pp. 110-114) 

 

The advantage of top-down method is that an early working skeletal version is gradu-

ally formed and it serves as evidence that the overall design is sound. This makes test-



16 

 

 

ing the software as a whole system on the destination platform possible earlier. A seri-

ous shortcoming of top-down method is the problem of test case feeds. Since there are 

no drivers, the test case injection and result  gathering can be a challenging, or even 

impossible,  task.  Also  the  distance  between  the  point  of  test  case  injection  and  the  

actual UUT can become unnecessarily long, thus making test case designing difficult. 

These features can lead to insufficient testing. (5, pp. 114-116) 

 

The bottom-up method addresses these problems. In this method the testing is started 

from the lowest modules and the drivers are gradually replaced by the functions as the 

testing progresses. A unit can be tested if, and only if, all of its lower functions are 

tested, e.g. measure() on the example program can be tested only after 

measure_current() and measure_voltage() have been tested and fixed. Bottom-up 

method can be considered to be an opposite of top-down method; the advantages of 

bottom-up are the disadvantages of top-down and vice versa. The greatest advantage 

in bottom-up method is, no doubt, that the test cases can be implemented with ease in 

the drivers contrary to in the stubs in the top-down method. Also, multiple versions of 

the same driver are not needed, thus reducing the work required for performing the 

tests. The problem in bottom-up is that the working complete program, or the skeletal 

version, is achieved only after the last module. (5, pp. 116-117) 

 

There is no absolute truth which method is better: top-down or bottom-up. It depends 

on the structure and function of the software. Also sheer luck is a factor, since bottom-

up method is disadvantageous if major defects are manifested in the higher level mod-

ules and vice versa. This is especially troublesome if the defect is injected in a design 

phase and the fix requires redesign. Naturally top-down and bottom-up methods can 

be combined. (5, pp. 118-119) 

 

3.3.4 System Testing 
 

The system testing is not a process of testing the functions of the complete system – 

That would be redundant, since the functions are tested in the integration testing level. 

System testing is a process to compare the system to its original objectives, e.g. the 

requirements set by the customer. The test cases are not developed on the grounds of 

detailed software specifications, but on the grounds of user documentation. There are 
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several categories in system testing. Naturally, not all categories apply to all systems. 

(5, pp. 130-131) 

 

The system testing categories possibly affecting Efore products are as follow: 

 Facility testing aims to determine whether each facility mentioned in the user 

documentation or customer requirements is actually implemented. 

 In volume testing the system is subjected to heavy volumes of data – For ex-

ample the system I/O is fed with continuous control  data for a long period of 

time. 

 Stress testing. It should not be confused with volume testing, since in stress 

testing the system is subjected to heavy maximum loads for a short period of 

time. Stress test can also test a situation in which the maximums are tempo-

rarily exceeded. 

 Usability testing is a rather broad category, since it includes all user interface 

questions,  e.g.  is  the  data  input  syntax  consistent  and  are  the  possible  error  

messages and indicators logical. 

 Performance testing is  also  an intuitive  category.  This  category  addresses  the  

question whether the system contains timing or response time defects. 

 In storage testing the memory features of the system are tested. The aim is to 

show that the memory related features are not met. 

 Compatibility/conversion testing is a category that affects products that are de-

signed to replace an existing obsolete product. This testing aims to find com-

patibility defects between the tested product and the obsolete product. 

 Reliability testing is  a  self-explanatory  category.  The  aim  is  to  show  that  the  

product does not meet the reliability requirements. This is especially important 

feature in Efore products, since software crash is a completely unacceptable 

situation. Testing for long uptime requirements is impossible, and therefore 

special techniques must be used in order to determine the reliability issues. 

 In recovery testing the system is introduced to unexpected temporary error 

states, such as power failures, hardware failures and data errors. The aim is to 

show that the system does not recover from these failures. 

 Serviceability testing is required if the system software is designed to be updat-

ed on the field or it has other serviceability or maintainability characteristics. (5, 

pp. 132-142) 
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It is advisable that system testing is performed by an independent testing team to en-

sure unbiased testing, since psychological ties of the development team can subcon-

sciously stand in the way of rigorous system testing. After all the aim of system testing 

is to break it. (5, p. 143) 

 

3.4 Testing of Embedded Software 
 

Basic rules of software testing also apply to embedded software. There are, however, 

certain special requirements and additional factors that have to be taken into account 

when testing embedded software. As mentioned in chapter 3.2.4, there are four levels 

of testing that apply to software. In embedded systems the second level,  integration 

testing, can be divided into two segments: software integration testing and soft-

ware/hardware integration testing (1, p. 35). In the latter, interfaces and interaction of 

the software components and hardware domain are tested. This can include testing 

the interaction between software and built-in peripheral devices or the plant. 

 

One special characteristic in embedded software development is that the actual envi-

ronment, in which the software is run, is usually developed in parallel with the soft-

ware. This causes trouble for testing because comprehensive testing cannot be per-

formed due to the lack of hardware environment until the later part of the project 

lifecycle. This can be solved by a hardware testing platform on which the tests can be 

carried out in simulated environment before the actual environment is available. 

 

3.4.1 TEmb Method Overview 
 

Broekman and Notenboom introduce TEmb method, which helps to tailor testing 

scheme for a particular embedded system. In TEmb method the test approach for any 

embedded system can be divided in two parts: the generic elements applicable to any 

structured approach and application specific measures. The generic part consists of for 

instance planning the test project, applying standardized techniques, organizing test 

teams, dedicated test environments, reporting, et cetera. They are parts of four cor-

nerstones of structured testing: lifecycle, infrastructure, techniques and organization, 

referred to as LITO. (1, p. 7) 
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This generic test approach is not concrete and needs to be supplemented with details 

such as what design techniques will be applied and which tools will be used. These 

choices depend on the characteristics of the system under test. These choices are 

made in the initial state of the project when the overall test approach is planned. This 

process in TEmb method is called the mechanism. (1, p. 7) 

 

3.4.2 TEmb Generic 
 

The generic part of TEmb can be divided to LITO, as stated before. These LITO parts 

are the backbone of the testing method and they contain everything that is required 

for any project. These four LITO characteristics, lifecycle, techniques, infrastructure 

and organisation are shared characteristics and every one of these cornerstones must 

be equally covered. The lifecycle is the central piece that binds the whole process to-

gether. When all the cornerstones are supported, the testing system becomes struc-

tured and thus manageable. (1, pp. 10-11) 

 

The lifecycle contains the actual plan in time domain defining what shall be done and 

when.  It  can be divided into  five  phases,  which  are  planning & control,  preparation,  

specification, execution and, finally, completion. As illustrated on figure 5, the planning 

& control is the guiding process that holds up the rest of the lifecycle phases in order 

and control. 

 

  
Preparation Specification Execution Completion 

  
Planning and control 

  

Figure 5. Lifecycle Model 
 

The main function of the lifecycle process is to speed up and organise the workflow of 

the testing process. When the execution phase is reached, everything concerning spec-

ification and preparation shall be completed. For example, when testing (execution) 

begins, the test cases (specification) and testing techniques (preparation) shall be 
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completed. Basically it considers things that must be done and arranges them efficient-

ly for streamlined execution. 

 

Techniques cornerstone is a supporting process that defines the techniques used not 

only in the testing itself, but also techniques used in controlling the process, tracking 

the process and evaluating the results. It is a collection of old and new techniques that 

are evaluated and chosen for use. The techniques can be, for example, strategy devel-

opment, test design, safety analysis, test automation and checklist techniques. 

 

The infrastructure consists of all facilities required to perform the testing. These facili-

ties are test environment, tools, automation and office environment. The test environ-

ment consists of the actual environment where the testing takes place. This can be a 

prototype, a hardware emulation environment, a computer simulation or a production 

unit. Depending on the nature of the platform the testing takes place, the testing task 

may require different types of measurement equipment and if the tested unit needs 

external simulated signals and impulses, the generation of these must also be included 

in the infrastructure. The test environment also contains test databases for archiving 

results, test cases and simulation runs for required repeatability. 

 

Organisation is the group of people performing the testing. It contains the organisation 

structure, roles, staff & training and management & control procedures. 

 

3.4.3 TEmb Mechanism and Specific Measures 
 

For a particular embedded system the TEmb generic must be topped up with system 

specific  measures  which  add definitions  to  the  LITO matrix.  The aim is  to  define  the  

application specific characteristics that dictate the specific measures. One tool to cate-

gorise the system under test is to use a checklist of different features: safety critical, 

technical-scientific algorithms, autonomous, one-shot, mixed signal, hardware re-

strictions, state-based, hard real-time, control and extreme environments. The system 

can fulfil one or several of these features which then guide the test planning process. 

(1, p. 16) 
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An embedded system is safety critical if a failure can cause serious physical damage or 

serious risk to health or even lead to death, although some systems can be considered 

partly safety critical if they can cause serious hazard indirectly. In safety critical sys-

tems risk analysis is extremely important and rigorous techniques are required to ana-

lyse and guarantee the reliability. (1, p. 16) 

 

Some applications have to perform complex scientific algorithms. These require vast 

amounts of processing and often heavy data traffic. These types of systems are often 

control applications that control vehicles, missiles or robots. The large and the most 

complex part of their behaviour is practically invisible from the outside the system. 

Therefore the testing should be focused on early white-box level testing and less is 

required for black-box oriented system testing and acceptance testing. (1, p. 16) 

 

Autonomous systems are meant to operate after start-up without human intervention 

or interaction. This kind of system can be a traffic signalling systems and some weapon 

systems. Such systems are designed to work continuously and react to certain stimuli 

independently without intervention for indefinite period of time. This means that man-

ual testing of this type of systems is difficult or even impossible. A specific test envi-

ronment and specific test tools are required to execute the test cases and analyse the 

results. (1, p. 17) 

 

Unique one-shot systems are released only once and cannot be maintained. They are 

bespoke systems that are meant to be built correctly in one shot, hence the name one-

shot system. These types of systems are usually satellites. For unique systems there 

are no long-term goals in testing due to the first and only release. For this kind of sys-

tem the testing scheme must be reconsidered in areas of maintenance, reuse, et 

cetera. (1, p. 17) 

 

Mixed signal systems are systems that contain, in addition to binary signals, analogue 

signals. Inputs and outputs do not have exact values but have certain tolerances that 

define flexible boundaries for accepted test output. The boundaries often contain a 

grey area where the tester is required to make a decision if the test output is accepted 

or rejected. These types of systems are often tested manually because the test results 

are not always implicit. (1, p. 17) 
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The limitations of hardware resources set certain restrictions on the software, like 

memory usage and power consumption. Also, most of the hardware timing issues are 

solved in software. These issues require specialised and technical testing methods. (1, 

p. 17) 

 

State-based behaviour is described in terms of transitions from a certain state to an-

other triggered by certain events. The response depends not only on the input, but 

also on the history of previous events and states. On a state-based system identical 

inputs are not always accepted and, if accepted, may produce completely different 

outputs. Testing this kind of system requires careful test case planning and test auto-

mation. (1, p. 18) 

 

The definition of hard real-time system is that the exact moment that stimulus occurs 

influences the system behaviour. When testing this type of systems, the test cases 

must contain detailed information about the timing of inputs and outputs. In addition, 

the test cases are often sequence dependent, which require some level of automation. 

(1, p. 18) 

 

A control system interacts with the environment according to continuous feedback sys-

tem. The system output affects the environment and the effects are returned to the 

system which affects the control accordingly. Therefore the behaviour of the system 

cannot be described independently, since the system is tightly interlinked with events 

in the environment. These kinds of systems require accurate simulation of the envi-

ronment behaviour. (1, p. 18) 

 

If  the  system  is  exposed  to  extreme environment,  such  as  extreme  heat,  cold,  me-

chanical strain, chemicals, radiation, et cetera, it should be considered to take the con-

ditions into account in testing the embedded system. Environment dependent testing is 

more hardware oriented since the embedded software per se is not environment de-

pendent. (1, p. 18) 

 

All these characteristics help to plan special test cases for the system under test. The 

characteristics are also a good tool for risk analysis. The selected measures can be 
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divided to lifecycle, infrastructure, techniques and organisation, similarly to the TEmb 

generic methods. The relationships between system characteristics and the required 

test cases are analysed and they can be presented in a so-called LITO-matrix. An ex-

ample matrix is presented in Table 1. This matrix helps to define testing approach. 

 

 Example of LITO matrix Table 1.
 

System char-
acteristic 

Lifecycle Infrastructure Techniques Organisation 

Mixed signals  Mixed signal 
analyser 
Signal genera-
tor 

Analyse mixed 
signal output 

Laboratory 
personnel 

State-based 
behaviour 

 State modelling 
and testing 
tools 

State transition 
testing 
Statistical us-
age testing 
Rare event 
testing 

 

Control system HW and SW in 
the loop 

Simulation of 
feedback-loop 

Statistical us-
age testing 
Rare event 
testing 
Feedback con-
trol testing 

Hardware en-
gineering 

 

 

The LITO matrix is not software exclusive, but neither are embedded systems. The 

matrix contains measures that overlap with general system and hardware testing. 

Therefore is advisable to establish the testing approach in collaboration with the test-

ing team and hardware designers. These hardware overlaps are the very core of prob-

lem in embedded software testing. With TEmb method these issues can be addressed 

when planning the software testing. 
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4 Implementation of Software Testing 
 

The current Efore Software Development process is illustrated in appendix 2. The pro-

cess is waterfall based and it contains an iterated loop to finally refine the software 

from the first prototype round to final release version. The actual software testing 

methods are static reviews between the process phases and the final verification test-

ing in the SW Verification phase. The process lacks strictly defined low level testing 

directions and software testing policy needs improvement. Every designer needs to 

develop their own methods to test and debug the code, because there is no low-level 

software testing plan. Testing is considered solely to be an invisible part of the coding 

process and therefore it is easily neglected and poorly documented. 

 

The implementation of rigorous software testing in Efore is challenging. There are 

some characteristics in Efore software development process that make it difficult to 

apply conventional software testing methods and models to Efore Product Develop-

ment. The greatest challenge is that the projects are software-wise almost always one-

man projects from the beginning to end. This means that there is no separate software 

testing team. All the testing is done in later stages in form of acceptance testing and 

no separate software testing team exists. This is problematic because most of devel-

oped software testing methods postulate that the process contains independent soft-

ware testing team and the emphasis is set on that team. 

 

The size of the software development team and lack of independent software testing 

team means that it is unavoidable that the software testing responsibility will be on the 

developers.  There  are,  however,  a  few  methods  that  can  be  applied  to  this  kind  of  

scenario. Due to the special requirements, instead of selecting a single existing method 

leading to unsatisfying compromise, desired result can be achieved with a combination 

of several methods and models. 

 

The tailored method for Efore consists of three segments, which cover all the require-

ments for effective testing and quality control. The segments are Test Maturity Model 

integration TMMi covering organising and evaluating the testing process, spiral process 

model covering process control and Test Driven Development (TDD) covering the test-

ing itself during coding process. With these methods a firm basis for effective software 
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testing can be established and developed further when the software development team 

grows. 

 

4.1 Test Maturity Model integration TMMi 
 

The Test Maturity Model integration, shortly TMMi, is developed by an independent 

non-profit TMMi foundation dedicated to improving software testing in the software 

industry. The foundation was founded by an international group of leading testing and 

quality experts aiming to standardise software testing processes and offering open 

domain model for the industry to improve software quality. (7) 

 

The two main influences of TMMi model are TMM framework developed by the Illinois 

Institute of Technology and the Capability Maturity Model Integration (CMMI), which is 

often regarded as the industry standard for software processes. The relation to CMMI 

ease up integration of TMMi to the vast number of companies that already have CMMI 

based process structure, and the TMM giving the test focused approach to the quality 

control and quality assurance questions. The other influences in TMMi are Gelperin and 

Hetzel’s Evolution of Testing Models, Beizer’s testing model and International software 

testing standard IEEE 829. (3, pp. 7-8) 

 

The need for improved process model arises from two problems. First of all, the semi-

standard process model CMMI gives only little attention to testing. The TMMi is a more 

detailed model for software process improvement including more broad view on soft-

ware testing and emphasis on the importance of testing, quality control and quality 

assurance. Secondly, CMMI model does not define clear fixed levels or stages to pro-

ceed through during the improvement process. This hinders the evaluation of the cur-

rent level or stage the company is on. TMMi model is structured clearly in fixed levels 

in order to aid planning of development strategy and eventually evaluate the progress. 

All in all, TMMi is developed to support evaluation and improvement of testing process, 

making possible to establish progressively more effective and efficient test process. (3, 

p. 7) 

 

One of the reasons TMMi was chosen is, that the scope of TMMi model is in software 

and system engineering. This makes TMMi extremely suitable for embedded software 
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design because the model accommodates processes outside the pure software domain, 

which is essential in embedded system design where the separation of software from 

the complete system itself is virtually impossible. The second fact that supports TMMi 

is that it covers all levels of software testing from low-level test planning to high-level 

project  validation.  It  addresses  all  the  cornerstones  of  testing  in  the  LITO  model  in-

cluded in TEmb method. Thirdly, the clearly defined stages offer great guideline for the 

development of Efore software testing process and its further improvement. 

 

4.1.1 TMMi Maturity Levels 
 

TMMi contains five maturity stages through which the testing process evolves and the 

improvement can be assessed. On the lowest level, level 1, testing is chaotic, ad hoc 

based and unmanaged and on the highest level, level 5, testing is managed, defined, 

measured and highly optimised. Every stage contains basis for the next stage, thus the 

prerequisites for development are ensured when the testing process development plan 

follows the model carefully. This way the improvement steps can be followed systemat-

ically and development cannot get stuck or end up unbalanced. (3, p. 10) 

 

Level 1 – Initial 

 

The  first  level  is  the  initial  step  where  the  testing  is  undefined  process  and  is  often  

considered solely as debugging. The supporting organisation is weak or often non-

existent. The test cases are developed in ad hoc manner after the coding process itself 

is completed. The objective on this level is to ensure the software runs without major 

failures. The testing also lacks resources, tools and testing experience. One notable 

characteristic of level 1 is that project deadlines are often overrun and the products do 

not tend to be released on time. (3, p. 11) 

 

Level 2 – Managed 

 

At the second TMMi level the testing process is managed and disciplined. Testing itself 

is separated from debugging and the good existing practices are endured. On this level 

a general test strategy is established to guide the testing improvement towards level 3. 

Test plans are developed, which are further defined by means of product risk assess-
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ment as instructed in TEmb method. Testing is monitored and controlled to avoid ne-

glects. On level 2 the testing is already on four levels, from unit testing to acceptance 

testing; although testing may begin late in the development lifecycle after the coding 

phase. Every testing level has separate defined testing objectives in the general testing 

strategy. The objective of testing is to verify that the product fulfils the product specifi-

cation. Defects and quality problems still occur. Since the testing is started too late, 

defect lifecycles are long and some defects even propagate from the initial design 

phase. There are no formal review programs to address the problems. (3, p. 11) 

 

Level 3 – Defined 

 

At level 3 testing is continuous parallel process integrated to the project lifecycle. Test 

planning is done during the requirements phase and is documented in a master test 

plan. The standard test processes acquired during level 2 are aggregated and the set 

improved further. A separate testing organisation exists and testing training is given. 

Software testing is perceived as a profession. The test process improvement strategy is 

institutionalised. The importance of reviews is understood and formal review program 

is implemented, which addresses reviewing across the project lifecycle. At this level 

test designs and techniques are expanded beyond functionality testing to include relia-

bility. Testing is now more rigorous. Also on level 2 test procedures, process descrip-

tions and standards were defined separately for each instance, for example particular 

projects, whereas on level 3 a general default template exists and this template is tai-

lored to suit different instances, thus creating more consistent testing practice. (3, pp. 

11-12) 

 

Level 4 – Measured 

 

Previous levels have created capable infrastructure for rigorous testing and further 

testing improvements. When the infrastructure is in its place, the process can be 

measured and evaluated encouraging further accomplishments. At this level testing is 

more of an evaluation process than productive process attached to development lifecy-

cle. An organisation-wide test measurement program will be established to evaluate 

the quality and productivity of testing and monitor improvements. Measures are used 

as basis for decision making and they direct predictions relating to test performance 
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and costs. The measurement program also allows evaluation of better product quality 

by defining quality needs, attributes and metrics. This way product quality can be un-

derstood in quantitative terms instead of quality being an abstract goal. This makes 

possible to set concrete objectives regarding quality. Reviews and inspections are re-

garded as part of the test process and are used early in the lifecycle to control quality. 

Peer reviews are transformed into a quality measurement technique, in which the data 

gathered from the reviews is used to optimise the test approach integrating the static 

peer reviewing into the dynamic testing process. (3, p. 12) 

 

Level 5 – Optimised 

 

At level 5 the process can be continually improved by the means of quantitative and 

statistical understanding of the testing process. The performance is enhanced by tech-

nological improvements and the testing process is fine-tuned. The testing organisation 

that was founded on level 3 now has specialised training and the responsibility of the 

group has grown. The defect prevention program is established to support quality as-

surance process. The test process is statistically managed and it is characterised by 

sampling-based measurements. A procedure is established to identify enhancements in 

the process, as well as to select and evaluate new testing technologies for possible 

future use. The testing process is now extremely sophisticated and continuously im-

proving process. (3, pp. 12-13) 

 

4.1.2 TMMi Structure 
 

As mentioned before in chapter 4.1.1, the TMMi model consists of five different maturi-

ty stages that indicate the degree of the current testing process quality and that can 

be used as a guideline for measures required for the next stage. Every stage contains 

three kinds of component groups: required, expected and informative components. 

 

Required components describe the base core of requirements the testing must fulfil. 

They are specific and generic goals and the goal satisfaction is used to measure if the 

process is mature for that TMMi level. Expected components describe what will typical-

ly be implemented to achieve typical component. Expected components guide the pro-

cess as they contain specific and generic practices. These practices, or their alterna-
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tives,  must  be  present  in  the  planned  and  implemented  process  for  the  goals  to  be  

considered satisfied. Informative components provide details and help solving how to 

approach the required and expected components. 

 

 

Figure 6. TMMi model structure 
 

Every maturity level from level 2 to higher levels contains several process areas that 

indicate the characteristics of that level. In other words, the very requirements the 

testing process must fulfil in order to be considered to fulfil the maturity level in ques-

tion. As shown on figure 6, each process area contains the two types of goals and the 

practices linked to them. The component groups bind goals and practices together. 

The black arrow illustrates required components that define the practices needed, grey 

arrow illustrates expected components that contribute to the goals and the orange 

double-arrow illustrates informative components that define the relation of the goals 

and practices in detail. 

 

The TMMi document contains detailed descriptions of each maturity level. In that doc-

ument the maturity levels are defined by several types of components that bundle up 

in the three component groups. A purpose statement is an informative component that 

describes the generic purpose of a process area. Introductory notes is an informative 

component that describes major concepts behind a process. Scope identifies test prac-

tices that are addressed by a process. A specific goal is a required component that 



30 

 

 

describes the unique characteristics of a process. A generic goal is a required compo-

nent that describes the characteristics that must be present to institutionalise a pro-

cess. A specific practice is an expected component which is a description of an activity 

that is important for achieving the associated goal. It describes the activities expected 

to result  from the goal.  A typical work product is an informative component that lists 

sample outputs from a specific practice. A sub-practice is an informative component 

that provides guidance for implementation of a specific practice. A generic practice is 

an expected component that describes an important activity for achieving the associat-

ed generic goal. Generic practices elaboration is an informative component that guides 

how the generic practice should be applied. (3, pp. 15-16) 

 

4.1.3 TMMi Level 2 – General 
 

Level 2 is the first TMMi level that actually has requirements to fulfil. It is the first step 

from the level 1 chaos towards more organised and efficient testing principles and pro-

cesses. The process areas at TMMi level 2 are 

 Test Policy and Strategy 

 Test Planning 

 Test Monitoring and Control 

 Test Design and Execution 

 Test Environment 

 

Level 2 is the initial step Efore has to take in improving its software testing process. 

Therefore it is justified to inspect the level 2 and its requirements and process areas in 

detail. 

 

4.1.4 TMMi Level 2 – Test Policy and Strategy 
 

The purpose of  this  process  area  is  to  develop and establish  a  general  software  test  

policy in which the test levels are unambiguously defined and test performance indica-

tors are introduced. The test policy defines overall test objectives, goals and strategic 

views creating a common view on software testing between all stakeholders. The poli-

cy should contain objectives for test process improvement and these objectives should 
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subsequently be translated into test performance indicators. The test policy and these 

indicators provide a clear direction for test process improvement. (3, p. 24) 

 

A test strategy will be defined from the test policy. The strategy contains generic test 

requirements and it addresses the generic product risks and a process to mitigate 

those risks. Preparation of the test strategy starts by evaluating the risks addressed in 

the TEmb method. The test strategy is the foundation for project’s test plan and activi-

ties. The strategy describes the test levels that are to be applied and the objectives, 

responsibilities, main tasks and entry/exit criteria for each of these levels. (3, p. 24) 

 

The test policy and strategy shall be established on basis of the current TMMi level: in 

this case, level 2. The policy and strategy modification is required as the test process 

evolves and moves up the TMMi levels. The detailed description of the Test Policy and 

Strategy process area can be found on Test Maturity Model integration TMMi v.3.1 

document on pages 24-31. (3, p. 24) 

 

4.1.5 TMMi level 2 – Test Planning 
 

The purpose of Test Planning is to define a test approach based on risk analysis and 

the test strategy and create a plan for performing and managing the software testing. 

The plan is  established according to  the  details  of  the  product,  the  project  organisa-

tion, the requirements and the development process. The risks define what will be 

tested, to what degree, how and when. This information is used to estimate the costs 

of testing. The product risks, test approach and estimates are defined in co-operation 

with all the stakeholders. The plan further defines the provided test deliverables, the 

resources that are needed and infrastructural aspects. If the plan does not comply with 

the test strategy in some areas, it should explain the reason for these non-

compliances. (3, p. 32) 

 

The test plan document is developed and accepted by the stakeholders. The plan is the 

basis  for  performing  and  controlling  the  testing  in  the  project.  The  test  plan  can  be  

revised if needed. The detailed description of the Test Planning process area can be 

found on Test Maturity Model integration TMMi v.3.1 document on pages 32-46. (3, p. 

32) 
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4.1.6 TMMi level 2 – Test Monitoring and Control 
 

The purpose of this process area is to provide methods for monitoring product quality 

and progress of testing so that actions can be taken when test progress deviates from 

plan or product quality deviates from expectations. Monitoring is based on data gather-

ing  from the testing  process,  reviewing the  data  for  validity  and calculating  the  pro-

gress and product quality measures. The data can be for example from test logs and 

test incident reports. The test summary is written from the monitoring process on peri-

odic event-drive basis to provide information on testing progress and product quality, 

with emphasis on the product quality. (3, p. 47) 

 

When deviations are revealed in the monitoring, appropriate corrective actions should 

be performed. These actions may require revising the original plan. If the corrective 

actions affect the original plan, all stakeholders must agree on the actions. (3, p. 47) 

 

The essential part of this process area is test project risk management, which is per-

formed to identify and solve major problems that compromise the test plan. It is also 

important to identify problems beyond the responsibility of testing, for example chang-

es in product specification, delays in product development and budget issues. (3, p. 

47) 

 

4.1.7 TMMi Level 2 – Test Design and Execution 
 

This process area aims to improve test process capability during design and execution 

phases by establishing design specifications, using test design techniques, performing 

a structured test execution process and managing test incidents to closure. Test design 

techniques are used to select test conditions and design test cases according to re-

quirements and design specifications. (3, p. 58) 

 

Test conditions and test cases are documented in a test specification. A test case con-

sists of the description of the input values, execution preconditions, expected results 

and execution post conditions. Test cases are later translated to test procedures. A test 



33 

 

 

procedure contains the specific test actions and checks in an executable sequence, 

including specific test data required for the execution. (3, p. 58) 

 

The test design and execution activities follow the test approach, which is defined in 

the test plan. The test approach determines the test design techniques applied. During 

the execution, defects that are found are reported, logged using a defect management 

system and delivered to the stakeholders. A basic incident classification scheme is es-

tablished and procedure is created to manage defect lifecycle process and ensure each 

defect to closure. (3, p. 58) 

 

4.1.8 TMMi Level 2 – Test Environment 
 

The purpose of this process area is to establish and maintain testing environment in 

which it is possible to execute tests in a manageable and repeatable way. A managed 

and controlled test environment is essential for successful and effective testing. The 

environment is needed to obtain test results under conditions close to the real-life sim-

ulation. The test environment also contains test data to guarantee test reproducibility. 

The test environment is specified early in the project, preferably in conjunction with 

product specification. The specification is reviewed to ensure correct representation of 

the real-life operational environment. (3, p. 69) 

 

Test environment management is responsible for availability of the testing environment 

for the testing stakeholders. Test environment management manages access to the 

test environment, manages test data, provides and executes configuration manage-

ment and provides technical support during test execution. (3, p. 69) 

 

Test  Environment  process  area  also  addresses  requirements  of  generic  test  data  and 

the creation and management of the test data. The specific test data is defined in test 

design and analysis phase, but the generic test data is, if defined as a separate activi-

ty, included in Test Environment process area. Generic test data is reused and provides 

overall background data to perform the system functions. It often consists of master 

data and some initial content for primary data with possible timing requirements. (3, p. 

69) 
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4.2 Spiral Model 
 

It is essential for successful and effective software testing that the testing process is 

controlled and structured as pointed out in chapter 3.4. This way the testing process 

can be evaluated and, most importantly, executed with ease. By defining testing pro-

cess strictly, testing level overlaps and general neglects can be avoided and the effi-

ciency and coverage of the testing process is optimised. 

 

The spiral model fits very well to general Efore Product Development process and it 

gives good support to testing and quality control measures due to its iterative nature. 

The model is cyclic in nature, which means every development level follows the same 

phases. The original spiral model consists of six phases: 

1. Determine objectives, alternatives and constraints 

2. Identify and resolve risks 

3. Evaluate alternatives 

4. Develop and test the current level 

5. Plan the next level 

6. Decide on the approach for the next level 

 

The main idea behind the spiral model is that everything is not defined in detail at the 

very beginning of the project and testing is included in every cycle. In Efore Software 

Development lifecycle every phase can be considered to consist of one or more cycles. 

This makes the process more structured, yet flexible, and controlled throughout the 

project lifecycle. In addition the model requires extensive testing in every cycle, mak-

ing static testing the mandatory minimum. 

 

For Efore the spiral model can be simplified and modified to include the phases of 

TEmb lifecycle introduced in the chapter 3.4.2: 

 Preparation and specification (includes phases 1.—3.) 

 Execution (phase 4.) 

 Completion (includes phases 5.—6.) 
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The beginning of  the  cycle  starts  by  preparation  and specification.  In  this  phase the  

means to achieve the goal set for the cycle are evaluated and defined. The deadlines 

for the cycle are defined. 

 

In the second phase the required operations are carried out and the result is tested. 

The testing consists of at least of static testing. This means that every cycle delivera-

bles are reviewed, including the test plan and software specifications. The project con-

tains several reviews along the whole project lifecycle. Due to the sheer number of 

reviews, only major revisions should be reviewed by formal review process described in 

chapter 3.2.3. 

 

The minor revision reviews are carried out by means of peer reviews. For every project 

a review software engineer peer is appointed to support the main software engineer. 

The peer participates in all reviews of the project. The minor reviews can be informal, 

but static testing deliverables must always be generated. When the peer reviewer is 

one and same person during the whole project, the time required for reviews is mini-

mised as the reviewer is already familiar with the project and the functionality of the 

code. One cycle can contain several informal reviews. 

 

In the last phase the decision is made whether to advance to the next phase in the 

project lifecycle or reiterate the previous phase. If the project is not yet finished, goals 

for the next iteration cycle are defined. The plan is composed according to the project 

plan and test plan. 

 

4.3 Test Driven Development 
 

The general problem with embedded system development is that hardware is devel-

oped concurrently with the software. The hardware may go through several iterations 

causing need for changes in the software and the hardware is usually available late in 

the project. This often leads to a situation where software testing is pushed to the first 

prototype round where it ends up being endless bout of debugging and regressive test-

ing. This is also the current situation at Efore. This process method wastes time and 

resources. TDD addresses this problem and, in addition, TDD thinking suits Efore Soft-

ware Development process excellently due to its developer oriented nature. 
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TDD is agile software development method. The main characteristic of TDD is that unit 

tests are written before the actual code. The benefit in this reverse thinking is that it 

forces the developer to plan the unit and understand the specification completely be-

fore coding. This way code is more optimised and defect injections from poor ad hoc 

planning are prevented. When every unit is tested and planned individually, the prob-

lems in integration phase are also minimised. The unit and integration tests are per-

formed frequently during the coding phase, thus ensuring rigorous and comprehensive 

testing. (5, pp. 178-179) 

 

Other benefits of TDD are that it offers very high test coverage and leads to modular 

design (8). In other words, TDD results in high quality basic modules that help estab-

lishing high quality system that requires less high-level testing, thus having positive 

influence on total project time (1, pp. 45-46). These modules can be safely reused 

because they are confirmed to be working, thanks to existing documented and repeat-

able unit tests. This can be used to reduce redundant coding of recurrent functions in 

later projects. 

 

 

Figure 7. The TDD cycle 
 

The TDD cycle consists of five phases which are illustrated in figure 7. The cycle starts 

by  creating  the  test  for  the  unit  that  is  developed.  Then  all the tests, including the 

newly created test and all the previous tests, are run. A test pass is considered a seri-

ous failure since the newly created test cannot pass because there is no coding done 

yet for the test to pass. It can be said that the test is initially created to fail. The third 

phase is  that  a  small  change is  made and the  tests  are  run again.  Finally,  when the  

tests pass, the code is refactored. (8) 
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The TDD cycle is designed to be as short as possible. The aim is to develop the code in 

as small fractions as possible. It is inevitable that TDD slows down the coding process, 

but the amount of time saved in later testing phases, debugging and code fixing is 

unsurpassed, not to mention the increase in quality and reliability. The fast paced cycle 

of TDD also ensures that defect lifecycle is short since most of the defects are fixed 

almost immediately after injection. This is as close as ideal situation as one can get. 

 

During the development phase, the lifecycle of TDD is less structured than it is for in-

dependent test team. The general test plan is established and the test cases are de-

veloped on basis of the test plan. Because test cases are designed before the UUT, the 

unit test cases are exceptionally designed using black box methods only. The testing is 

controlled so that every TDD cycle produces a set of deliverables: the test software & 

scripts and a test document that includes the test cases and the test results. If chang-

es are done in a module that has already been tested, all the tests shall be performed 

again and new test deliverables shall be established. (1, pp. 50-53) 

 

The same lifecycle strategies apply for TDD development that apply to incremental unit 

testing. The code can be developed in top-down and/or bottom-up method where the 

TDD cycle is integrated into the original incremental method. The operations of em-

bedded systems rely  heavily  on the  real-time events  in  the  plant  and the  embedded 

environment itself. Therefore it is advisable to favour bottom-up method for TDD, since 

writing stubs simulating the real-time events is difficult and even redundant when the 

complexity of stubs approach the complexity of the module they are simulating. Never-

theless, the structure and functions of the system are the main features that dictate 

the best TDD approach for the project. 

 

There are some drawbacks on the TDD method. One problematic feature is the re-

quirement of complete dedication from the developer. As mentioned in chapter 3.2, 

writing comprehensive test cases require certain “destruction oriented” mind-set that 

differs greatly from the mind-set of a software developer. Adapting to the dualistic feel 

of the process requires time and patience from the developer and during this adapta-

tion period productivity can be temporarily reduced. In addition, some software struc-

tures can be challenging to write in module oriented method, which can make writing 

test cases difficult or even impossible. 
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4.4 Tailored Software Testing for Efore 
 

The most essential action that has to be taken in order to implement software testing 

to Efore is to create the base frame for the software testing process. This is accom-

plished by following the TMMi method directives. Without working infrastructure and 

controlled process, all software testing improvement efforts are futile. Therefore the 

first initial step is to implement software test policy and software test strategy accord-

ing to TMMi Level 2. The guidelines for those are discussed in chapter 4.1 and in fur-

ther detail in TMMi Version 3.1 document available from The TMMi Foundation. 

 

The TMMi Level 2 introduces software test planning to Efore Software Development 

process. The test plan further defines software test monitoring and control measures, 

which include frequent static reviews during the software development process and 

documenting the testing process. 

 

The whole process is structured to spiral model method where the Software Develop-

ment lifecycle is divided into iterative cycles. These cycles are used to control the SW 

development process and add flexibility into the lifecycle. The cycles include frequent 

reviews from which review deliverables are generated. These deliverables are used to 

evaluate the progress of the project. 

 

Test Driven Development and peer reviews are introduced as general practices in the 

coding cycle and the deliverables are created according to the test plan. The low level 

testing is developer oriented and the final verification and acceptance testing is per-

formed by an external tester. 

 

Methods and emphasis of test case development is guided by test design and execu-

tion directives of TMMi. All the tests are performed in the test environment defined by 

TMMi. The test environment not only contains the actual hardware required for testing, 

but also the database for the test deliverables and other testing related documents. 
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With these measures, rigorous software testing process is introduced to Software De-

velopment process and the TMMi maturity level can be raised from initial Level 1 to 

structured Level 2. This allows further continuous improvement of software testing and 

software quality control. 

 

The testing intense project lifecycle requires changes to the current project lifecycle 

model (appendix 2). The proposed new project lifecycles are presented in the appendix 

3. 
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5 Testing Platform 
 

5.1 Overview 
 

In order to extensively test embedded systems and the peripheral functions, the target 

environment must be simulated. The simulation can be performed in software or 

hardware. 

 

For this project a hardware simulation was chosen due the diverse number of different 

microcontrollers and need for mixed signals. With hardware testing platform it will be 

possible to simulate the real target environment and perform unit and integration tests 

in the target processor. This allows rigorous testing of the software before the first 

hardware prototype and even makes possible to perform software/hardware integra-

tion tests. 

 

To simulate the plant, the platform must be able to generate analogue voltages up to 

+5V, receive analogue signals, handle up to 50 digital Input/Outputs, generate PWM 

signals and communicate via SPI, I2C and UART protocols. 

 

Functions of the platform are controlled by a separate microprocessor, which is script-

ed  by  a  host  computer  via  USB.  The  platform  can  generate  test  signals  and  receive  

analogue and digital signals as a result. In addition, the platform can communicate 

with the processor board via UART (Universal Asynchronous Receiver Transmitter), I2C 

or SPI (Serial  Peripheral Interface) bus. The outputs can be scripted in order to fully 

automatize  the  testing  process  and  signal  generation.  This  way  the  tests  are  always  

identically repeatable and the results can be gathered automatically. 

 

5.2 Hardware Implementation 
 

The testing platform consists of a motherboard which contains basic features required 

for the testing, such as 

 mbed NXP LPC1768 for data gathering and control functions 

 64-bit digital programmable Input/Output 
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 total of 12 channel Digital-to-Analogue converters (DAC) for test signal genera-

tion 

 six Analogue-to-Digital converters (ADC) 

 five Pulse Width Modulation (PWM) outputs 

 connector for a fan 

 voltage regulator and other operating voltage related circuitry 

 eight indicator LEDs for digital signals 

 connectors for a processor board 

 test pins for measurement equipment connections 

 battery for real-time clock backup 

 

The  platform  is  shown  on  figure  8.  The  core  of  the  testing  platform  is  mbed  NXP  

LPC1768 rapid prototyping miniature development board. The NXP LPC1768 core is 32-

bit Cortex-M3 ARM running at 96 MHz clock with 512kB Flash and 64kB RAM. The 

board offers USB connection for PC. The LPC1768 contains integrated peripherals such 

as SPI, UART, CAN and I2C buses, ADC and DAC converters and PWM outputs. (9) 

 

 

Figure 8. Software testing platform 
 

Due to the restricted number of I/O pins on the mbed the digital I/O is implemented 

with  Microchip  Technology  Inc.  16-bit  I/O  expansion  chips  MCP23S17.  The  platform  

contains total of four MCP23S17s offering the total of 64 bit digital I/O. The chips are 



42 

 

 

controlled via fast 10 MHz SPI bus. The chips contain interrupt on change functionality 

which is used to read the inputs when a change in inputs occurs. (10) 

 

The Digital-to-Analogue functionality is implemented with Maxim Integrated Products’ 

four channel 12-bit DAC chips MAX5135 (11). The motherboard contains three 

MAX5135s. The DACs are connected to the same 10 MHz SPI bus as the I/O expan-

sions. For Analogue-to-Digital conversions mbed NXP LPC1768’s internal 12-bit ADCs 

are used. 

 

The motherboard block diagram can be found in appendix 4. All the connectors for the 

processor board are standard male IDC connectors. All outputs are divided in separate 

connectors by type, except digital I/O ports which are further divided in separate 16-

pin connectors with two ports each. Most of the ports also contain test pins for exter-

nal measurement equipment connections. The board contains a battery backup for 

mbed real-time clock. 

 

The processor boards contain the actual target processor and connectors for the pro-

cessor I/O, programming connector and other processor and application specific hard-

ware. 

 

5.3 Software Implementation 
 

The software is written in C/C++ and compiled with Code Sourcery G++ Lite 2011.03-

42. The software offers automated output control by scripting and a manual mode for 

controlling the outputs directly from console. It generates test logs automatically for 

further processing and documentation. 

 

5.3.1 Automatic Mode 
 

The script format is designed to be easily generated with Excel. The log file format is 

also designed to be effortlessly pasted to Excel and displayed in graphical format. Eve-

ry I/O function can be scripted and the inputs are logged. 
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Script files can be commented in C style by marking the comment lines with double-

dash. Every output is scripted in individual script blocks separated by a blank line. The 

block can contain one to 200 lines of script, depending on the type of script. The 

scripts can be divided into two categories: signal scripts and configuration scripts. Intu-

itively, control scripts are used to generate test signals for the target board and config-

uration scripts are used to setup the peripheral functions, e.g. communication ports 

and digital I/O data directions. Every block starts with a definition line that defines 

what is scripted. The order of script blocks is not restricted, but for clarity it is advisa-

ble to write scripts in pairs, e.g. data direction script is followed by related I/O signal 

scripts. An example script is shown in appendix 5. 

 

The first script block on the example is a single line configuration block for digital I/O 

port B data directions. The format for data direction definition is DDN where N repre-

sents the alphabetical symbol of the digital I/O port. The definition is followed by tab 

and 8-bit data direction value in hexadecimal. Logical 1 presents an input and logical 0 

presents an output. Every pin is an output as a default. 

 

The data direction block is followed by port B signal script block. Port script is defined 

by POutN where N represents the alphabetical symbol of the digital I/O port. The 

script data starts from the next line. The data is structured in two columns. The first 

column contains time values in seconds and the second column contains the port value 

in hexadecimal. The columns are separated with tab. This structure is identical to all 

signal scripts. 

 

Digital I/O pins can also be scripted individually. Individual scripting overrides port 

scripts for the individually scripted pins. The format is DOutN where the N represents 

the pin number from 0 to 63. 

 

The next script block contains a definition of DAC reference voltage that is used in the 

platform hardware. It is followed by a signal script for analogue out 3. Voltage script is 

defined by VOutN where N represents the DAC channel number. The values for ana-

logue outputs are scripted in volts. The transitions in voltage scripts are not instanta-

neous. The script points can be considered to be points of piecewise defined continu-

ous linear function. The voltage run of the example script is illustrated in figure 9. 
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Figure 9. Voltage generated in VOut3 by the example script 
 

The next block is a single line configuration script of PWM frequency. The block is de-

fined by PWMF. The definition is followed by tab and frequency in Hertz. PWM frequen-

cy is global and same for all PWM outputs. 

 

The PWM signal script block is defined by PWMN where  N  represents  the  number  of  

PWM channel. The data on the PWM is the duration of high state in percentage con-

trast to the whole cycle duration. Therefore 0 generates constant low, 1 generates 

constant  high  and  0.5  generates  even  50%  square.  The  PWM  pulse  width  is  swept  

linearly in the same way as voltage. 

 

The script file is read to and ran from RAM. Memory is dynamically allocated to ensure 

efficient memory usage. In theory, maximum simulation run duration is over 10 days. 

 

Every automated test run generates two log files that contain the test results. The first 

log file is simple easy-to-read log that contains all the events that happened in the in-

puts  during  the  test  run.  The  second  log  file  contains  preformatted  data  where  the  

event data can be copy pasted into Excel spread sheet for graphing. The detailed de-

scriptions of automatic script commands are found on appendix 6. 
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5.3.2 Manual Control Mode 
 

Every output can be controlled manually from the console by entering in manual con-

trol mode. The commands are similar to the automatic script commands. The same 

commands work in manual mode, but also shortened versions are available. The com-

mands are non-case-sensitive. While in the command mode, all other manual control 

commands are disabled. 

 

The logic behind the commands is identical to the script commands in automatic mode 

described in previous chapter 5.3.1. Unlike the multi lined structure of the scripts, 

manual control commands are single line. 

 

Analogue outputs are controlled by VN x. The voltage change in manual mode is im-

mediate. Digital outputs can be controlled either pinwise with DN x commands or by 

portwise with PN x commands. The port values are inputted as hexadecimal. PWM is 

controlled by PWMN x. The PWM frequency command is identical to the command in 

automatic mode. 

 

While in the manual mode, the user can enter in Comm mode which contains all the 

communications functionality. The communications functions are in experimental stage 

since there has not been a chance to test and debug them. Thus, the functionality has 

not been confirmed on actual products. 

 

The Comm mode can be entered with Comm command. The communications port must 

be  configured  in  order  to  use  Comm mode  functions.  This  is  done  with  Configure 

command. Every communications port type needs different configuration values. The 

commands are: 

 Configure UART <baud_rate> <bit_length> <parity> <stop_bits> 

 Configure SPI <baud_rate> <bit_length> <polarity_mode> 

 Configure I2C <baud_rate> <address> <slave/master> 

 

Baud rates, message bit  lengths and number of stop bits are intuitive. The parity on 

UART is defined by an integer from 0 to 4, where 0 = None, 1 = Odd, 2 = Even, 3 = 
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Forced 1 and 4 = Forced 0. The polarity mode in SPI configuration is also an integer 

from 0 to 3. The polarity functionality is described in table 2. 

 

In the I2C configuration address is the slave address of the testing platform in hexa-

decimal. It can be left to 0 if the device acts as a master. The slave/master bit selects 

the type of communication where 0 = master and 1 = slave. 

 

 SPI polarity mode descriptions (12) Table 2.
Polarity 
mode 

When first data bit is 
driven 

Other data bits are 
driven When data is sampled 

0 Prior to first SCK rising edge SCK falling edge SCK rising edge 

1 First SCK rising edge SCK rising edge SCK falling edge 

2 Prior to first SCK falling edge SCK rising edge SCK falling edge 

3 First SCK falling edge SCK falling edge SCK rising edge 

 

 

To send data to the DUT TX command is used. For SPI communications the command 

is followed by maximum of 127 values in hexadecimal. Length of each value is be-

tween two to four hexadecimals, depending on the data length set in the configuration. 

 

For I2C and UART there are two transmitting options. TXC command transmits a string 

of characters and TXH sends raw numeric data in hexadecimals. The limit is 127 val-

ues; two hexadecimals per value. 

 

Data received via UART is displayed immediately. When the platform acts as a master 

for  I2C  or  SPI  bus,  the  receiving  command  must  be  used.  For  SPI  the  command  is  

simply RX x and for I2C the commands are RXC x for character data and RXH x for 

numeric data. The x represents the number of values read from the DUT. 

 

While in manual mode, changes in digital inputs or ADC limit alarm triggers an inter-

rupt, and the state of the outputs is displayed immediately on change. Manual mode is 

ideal for quick tests and communicating with the unit via Comm mode, but it should 

not be used for actual tests due the lack of repeatability. The detailed descriptions of 

manual mode commands are found on appendix 7. 
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6 Testing in Practice 
 

The concept and functionality of the testing platform was tested on a set of test cases 

of an on-going project. 

 

6.1 The Processor Board 
 

The first step was to build the processor board for the target processor. The board was 

built on a breadboard, as displayed in figure 10. The analogue outputs, digital I/O and 

communication port were wired to separate pin header connectors. The processor 

board contained also a test pins for PWM output, PWM input and power connections. 

 

 

Figure 10. Processor board for the UUT 
 

In addition, the board included RJ11 connector for programmer/debugger. This con-

nector was solely used for programming the blank target MCU with the binary image. 

 

6.2 Example Test Case 
 

One of the tests performed concerned a hysteresis of operation modes depending on 

the current flow through the UUT. The current is an analogue signal from 0V to +5V. 

The Unit is defaulted to state A at the power on. The unit should enter state B when 
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the current drops to -0.5A or below and return back to the state A when the current is 

0.5A or greater. 

 

In addition to monitoring current, the unit measures two voltages. To avoid simulating 

abnormal behaviour, the voltages are also scripted so that the voltage potential corre-

sponds with the hysteresis trigger current. 

 

The example script can be found in appendix 8. The script is divided into three script 

groups: Configuration scripts, dynamic scripts and static or irrelevant scripts. This 

makes it easier to read the script and separate signals that are essential for the current 

test from the signals that are irrelevant for the result. 

 

The first group is configuration group where the basic configuration is made. The ref-

erence voltage for DACs is set to +5V by Vref command. Next, the input and output 

ports are defined. The Processor board is connected to ports A, C and D. Without data 

direction definition the port defaults to all outputs, but every port is defined for clarity. 

The unit also monitors fan speed via pulse capture. This is emulated in the platform 

with PWM output, which frequency is set to 10Hz. 

 

The next group is dynamic script group. This group contains all signals that are men-

tioned in the test case and/or that change during the test run. As mentioned before, 

the test contains three main signal inputs: current and two voltages. The actual volt-

age and current values that the simulated signals represent in the HW environment are 

commented in the script to make the script more readable. In addition to the analogue 

input signals the processor is reset at the beginning of the test to ensure the software 

is in the right mode for the test. 

 

The last group is for static or irrelevant scripts. These are signals that are not men-

tioned in the test script. These signals can be e.g. external control signals that are 

used to switch the software in special mode or static analogue signals, like tempera-

ture sensor readings. 
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6.2.1 Expected Result 
 

At the beginning the unit enters a self-test mode due reset. A LED signal connected to 

platform input Port A pin 5 shall first flicker in two phases and then go off to signal that 

the self-test is complete. When the current drops below -0.5A or more, the LED should 

light up and stay lit until the current exceeds 0.5A when the LED should go off. 

 

6.2.2 Measured Results 
 

The test was run successfully and the log files were generated. A shortened version of 

the generated log is in appendix 9. The log is shortened by 300 lines from the middle, 

but the essential part is included. The visualisation of the test signals and digital input, 

Port A, is included in the appendix 10. The essential graphs for the test are illustrated 

in Figure 10. 

 

 

Figure 11. Essential test graphs 
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The transition points of the led can be deciphered from the graphs. The exact time of 

each transition can be acquired by hovering mouse cursor over the transition points in 

Excel. The transition points, 26.0184 seconds and 32.2708 seconds, are marked green 

in the test log in appendix 10. There the exact voltage values for the current, 1.966V 

and 2.042V, can be read. 

 

According to the SW-HW interface specification of the unit the ADC voltage value for  

-0.5A is 1.975V and for 0.5A 2.025V. Therefore, according to the measured results, the 

hysteresis is greater than -0.5A to 0.5A and the test is a pass.  
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7 Conclusions 
 

There were two goals for this thesis: to develop and tailor embedded software testing 

methods for Efore SW development team and develop tools to carry out the testing.  

The most interesting finding was that software testing of low level embedded systems 

is  surprisingly  young art  of  engineering and it  is  still  in  rather  immature  state.  Many 

resources even stated embedded software testing being mostly neglected in electronics 

industry. This was a very surprising and somewhat concerning finding considering that 

embedded systems have been around for over two decades and in modern electronics 

the software is the heart of the whole product. 

 

There  are  certain  difficulties  in  testing  embedded  software  that  makes  it  a  bit  more  

challenging than conventional software testing. The most critical problem is the tight 

dependency on the hardware environment that is developed concurrently with the 

software and that is often required to perform reliable software testing. Sometimes it is 

even impossible to test the software without custom tools, which easily makes the idea 

of focusing on testing in late post proto stages very tempting. This problem was taken 

into account in the thesis by developing the required hardware tools for the testing in 

addition to the testing methods and processes. 

 

7.1 The Method 
 

There were certain characteristics in Efore SW process that made integrating rigorous 

software testing to the process challenging. The main challenges were caused by the 

nature  of  the  SW  development  projects.  Instead  of  one  or  two  big  software  unities  

there were multiple smaller one-developer software projects. This feature made tradi-

tional methods that relied on independent testing team somewhat inefficient because 

to familiarise oneself with every project and keep track of every project’s progress can 

get difficult and needlessly time-consuming. Due to these reasons, an external test 

engineer may even hinder the development process on such small scale and short 

lifecycle projects. 

 

Because of this, a developer oriented approach was chosen. The testing is integrated 

in the development process which makes the testing efficient because the tester is 

already familiar with the design and requirements. This somewhat increases the dura-
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tion of the coding process, but takes the losses back in increased quality and drastically 

decreased defect lifecycle. 

 

To aid the implementation of the new testing methods the TMMi process was chosen 

as vehicle for the implementation process. In addition to introducing rigorous testing to 

the software process, the TMMi offers a roadmap for further developing and expanding 

the testing process. This is an essential feature since the amount and importance of 

software in power products will definitely continue to increase in the future. The power 

electronics industry is showing signs that in the future more and more of the expensive 

analogue control circuits are being replaced with sophisticated digital control algo-

rithms. This will make successful and adaptive software quality assurance essential. 

 

7.2 The Testing Platform 
 

The testing platform that was designed as part of the thesis proved to be suitable for 

pre-proto testing and the motherboard & processor board concept proved to be func-

tional, although some technical problems were encountered during the testing. 

 

The memory requirements of a DAQ (data acquisition) application turned out to be too 

much for the LPC1768. The first revisions of the software were done on mbed online 

compiler.  In  the  later  stages  the  software  was  modified  to  be  compiled  offline  on  

Sourcery G++ Lite compiler. It resulted in increased memory problems due to poor 

optimisation and general performance of the compiler. The image size was increased 

from 38kB to 179kB. With tweaking the image size could be reduced to 88kB. After the 

porting to Code Sourcery compiler, the behaviour of standard library functions became 

highly unpredictable, causing random crashes during file writes very likely due to con-

flicts between heap and stack. The only way to avoid crashes during test runs was to 

perform hard reset by depowering the platform before every test run. Fixing these de-

fects require either better processor and/or additional external RAM. Either way, a new 

hardware revision is required in addition to changes in the code. 
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Defect and problem checklist for code reviews 

 

Data Reference Defects 

1. Referenced variable is unset or uninitialized 

2. Array referenced out of bounds 

3. Array referenced by non-integer 

4. Pointer points to an unreferenced memory 

5. Value of a variable has a type or attribute other than what the compiler 

expects 

6. Pointer points to a different data type than is expected 

7. A data structure is referenced in multiple functions, but it is not defined 

identically 

8. Reference to array is off by one 

 

Data Declaration Defects 

1. Variable is not explicitly declared 

2. Declarative initialisation of an array is wrong 

3. Variable assigned to wrong data type 

4. Variables have almost identical names thus increasing a risk of confusion 

 

Computation Defects 

1. Computations have non-arithmetic data types 

2. Computation is performed between different data types without type-

casting 

3. Computation is performed between the same data types but with differ-

ent data lengths 

4. Computation result exceeds the range of the result variable 

5. Computation result is in the range of the result variable, but an overflow 

or underflow is possible during the computation 

6. In division computation nominator can be zero 

7. Variable value goes beyond meaningful range (e.g. probability is nega-

tive) 
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8. On expressions containing more than one operator assumption about the 

order of operator execution is incorrect 

9. Invalid use of integer arithmetic (e.g. in expression using integer divi-

sion) 

 

Comparison Defects 

1. Compared variables have different data types 

2. Mixed-mode comparison with different data lengths 

3. Comparison operator is incorrect 

4. Boolean expression does not state what it should state 

5. Operands of Boolean operation are not Boolean; comparison and Boole-

an operators are erroneously mixed 

6. On expressions containing more than one Boolean operator assumption 

about the order of evaluation and execution is incorrect 

 

Control Flow Defects 

1. A loop will erroneously never terminate 

2. Function will never terminate 

3. A condition or loop will never execute due the conditions 

4. An iteration loop has off-by-one error 

5. Loop or condition decision is non-exhaustive (e.g. expected values are 1, 

2 and 3 and if the value is not 1 or 2 the program assumes it is 3) 

 

Interface Defects 

1. Parameters sent to a function are in wrong order 

2. Units system of parameters does not match (e.g. voltage is sent to func-

tion in volts but function expects millivolts) 

3. A function has multiple entry points and it references a variable that is 

not initialised in all entry points 

4. A function alters a parameter that is intended to be only an input value 

 



Appendix 2 

 

 

Software development process 
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Proposed software development process 
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Software testing platform block diagram 
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Test script demonstration 
 
// An example script file “example” 
// 2011-08-01 
 
// Script for Port B data direction 
DDB 0xA0 
 
// Script for digital port B in hex 
POutB 
0 02 
0.2 32 
2.8 10 
3.5 2F 
 
// Script for digital pin 40 
DOut40  
1 0 
1.5 1 
1.7 0 
2.2 1 
 
// Reference voltage is +5V 
Vref 5 
 
// Script for voltage 3 
VOut3  
0 0 
1.2 2.8 
3 0.5 
4.3 4 
 
// Script for PWM frequency 
PWMF 1000 
 
// Script for PWM output 1 
PWM1 
0 0.5 
1.5 0.8 
3 0.2
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Automatic script syntax 

 

Analog output script 
Syntax Description 
VOut<channel> 
<time_0> <value_0> 
<time_1> <value_1> 
… … 
<time_n-1> <value_n-1> 
<time_n> <value_n> 

Channel is an integer between 0-11. 
Time steps must be in chronological order. 
Values  are  floating  point  numbers  between  0  and  1,  
which represent the percentage of the reference voltage 
of the DAC. 
The value sweeps linearly between the script points. 

Analogue output reference voltage 
Syntax Description 
Vref <value>  The value is reference voltage of the DAC on the hard-

ware. 
Digital port data direction script 
Syntax Description 
DD<port> <value>  Port is a letter between A-H. 

Value is  a  8-bit  hexadecimals  between 00 and FF repre-
senting the I/O configuration where logical 1 is an input 
and 0 an output. 

Digital pin output script 
Syntax Description 
DOut<pin> 
<time_0> <state_0> 
<time_1> <state_1> 
… … 
<time_n-1> <state_n-1> 
<time_n> <state_n> 

Pin is an integer between 0-63. 
Time steps must be in chronological order. 
States are either 0 or 1. 

Digital port output script 
Syntax Description 
POut<port> 
<time_0> <value_0> 
<time_1> <value_1> 
… … 
<time_n-1> <value_n-1> 
<time_n> <value_n> 

Port is a letter between A-H. 
Time steps must be in chronological order. 
Values are 8-bit hexadecimals between 00 and FF. 

PWM frequency script 
Syntax Description 
PWMF <frequency>  Frequency is an integer in hertz from 1 to 48000000. 
PWM output script 
Syntax Description 
PWM<channel> 
<time_0> <value_0> 
<time_1> <value_1> 
… … 
<time_n-1> <value_n-1> 
<time_n> <value_n> 

Channel is an integer between 0-4. 
Time steps must be in chronological order. 
Values  are  floating  point  numbers  between  0  and  1,  
which represent the percentage of the high pulse dura-
tion to the whole cycle duration. 
The value sweeps linearly between the script points. 

Voltage input alarm script 
Syntax Description 
VIn<channel>  <level> Channel is between 0-5. 

Level is a floating point number between 0 and 1 repre-
senting  the  alarm  level  in  percentage  of  3.3  Volts  that  
triggers alarm. 
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Manual command syntax 

 

Analog output command 
Syntax Description 
V<channel> <value> Channel is an integer between 0-11. 

Values is a floating point number between 0 and 1, which 
represent the percentage of the reference voltage of the 
DAC. 
The voltage is set immediately. 

Digital port data direction command 
Syntax Description 
DD<port> <value>  Port is a letter between A-H. 

Value is  a  8-bit  hexadecimals  between 00 and FF repre-
senting the I/O configuration where logical 1 is an input 
and 0 an output. 

Digital pin output command 
Syntax Description 
D<pin> <state> Pin is an integer between 0-63. 

State is either 0 or 1. 
Digital port output command 
Syntax Description 
P<port> <value> Port is a letter between A-H. 

Value is a 8-bit hexadecimal between 00 and FF. 
PWM frequency command 
Syntax Description 
PWMF <frequency>  Frequency is an integer in hertz from 1 to 48000000. 
PWM output command 
Syntax Description 
PWM<channel> <value> Channel is an integer between 0-4. 

Value is a floating point number between 0 and 1, which 
represents the percentage of the high pulse duration to 
the whole cycle duration. 
The pulse width is set immediately. 

Voltage input alarm script 
Syntax Description 
VIn<channel> <level> Channel is between 0-5. 

Level is a floating point number between 0 and 1 repre-
senting  the  alarm  level  in  percentage  of  3.3  Volts  that  
triggers alarm. 

Communications mode command 
Syntax Description 
Comm This command enters the communications mode. 
UART configuration command 
Syntax 
Configure UART <baud_rate> <data_length> <parity> <stop_bits> 
Description 
Baud rate is an integer between 1 and 1000000. 
Data length defines the number of bits in one data packet. 
Parity  is  an integer  between 0-4 that  defines the parity:  0  = None,  1  = Odd,  2 = Even,  3  = 
Forced 1 and 4 = Forced 0 
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SPI configuration command 
Syntax 
Configure SPI <baud_rate> <data_length> <polarity_mode> 
Description 
Baud rate is an integer between 1 and 20000000. 
Data length defines the number of bits in one data packet. 
Polarity mode defines when data is transferred. This depends on the Clock Polarity (CPOL) and 
Clock Phase (CPHA): 
Polarity mode = 0 CPOL = 0, CPHA = 0 
Polarity mode = 1 CPOL = 0, CPHA = 1 
Polarity mode = 2 CPOL = 1, CPHA = 0 
Polarity mode = 3 CPOL = 1, CPHA = 1 
I2C configuration command 
Syntax 
Configure I2C <baud_rate> <slave_address> <slave/master> 
Description 
I2C supports standard baud rates of 100000 and 400000. 
Slave address is used to determine the address of the platform when used in slave mode. 
Slave/master bit activates slave mode: 0 = master, 1 = slave. 
UART & I2C transmit hexadecimal data command 
Syntax Description 
TX <data_string> Data string can be up to 127 values long, two hexadeci-

mals per value. 
I2C receive data 
Syntax Description 
RX <data_values> Data values define the number of characters read from 

the I2C bus. 
SPI transmit data command 
Syntax Description 
TX <data_string> Data  string  can  be  up  to  127  values  long,  two  to  four  

hexadecimals per value depending on the data length 
configuration. 

SPI receive data command 
Syntax Description 
RX <data_values> Data values define the number of values read from the 

SPI bus. 
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//*****************************************************************************  
//    
//  COPYRIGHT (C) 2011 EFORE OYJ, EFORE PLC    
//    
//*****************************************************************************  
//    
//  Project     : X    
//  Description : X    
//  Revision    : X    
//    
//  Test : X   
//  Author      : Juho Lepistö    
//  Date : 2011-10-19   
//    
//***************************************************************************** 
   
    
    
//*****************************************************************************  
//  Configuration Scripts    
//***************************************************************************** 
   
    
// Reference to 5 V    
Vref 5   
    
// Data directions    
DDA FF   
    
DDC 01   
    
DDD 00   
    
// FAN RPM    
PWMF 10   
    
    
//*****************************************************************************  
//  Dynamic Scripts    
//***************************************************************************** 
   
    
// Reset active low    
// Reset MCU and start after one second    
DOut26    
0 0 // Reset  
1 1   
35 0 // Reset  
    
// Voltage A    
VOut2    
0 2.889 // -52V  
27 2.889   
28 3 // -54V  
    
// Voltage B    
VOut3    
0 3 // -54V  
27 3   
28 2.889 // -52V  
    
// Current    
VOut0    
0 2 // 0 A  
25 2   
28 1.901 // -2 A   
34 2.099 // 2A  
    
// Current, large scope    
VOut1    
0 2 // 0 A  
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//*****************************************************************************  
//  Static or irrelevant scripts    
//***************************************************************************** 
   
    
// ********** Digital outputs ********** //   
   
    
// Control signal 1, active low 
DOut17    
0 1   
    
// Address bit 1  
DOut18    
0 0   
    
// Address bit 2    
DOut19    
0 0   
    
// Address bit 3    
DOut20    
0 0   
    
// Address bit 4    
DOut21    
0 0   
    
// Alarm out 1    
DOut22    
0 0   
    
// Alarm out 2 
DOut23    
0 0   
    
// Control signal 2 
DOut24    
0 0   
    
// Control signal 3 
DOut25    
0 0   
    
// Control signal 4  
DOut27    
0 1   
    
    
// ********** Analogue outputs ********** //    
    
// Temperature A   
// Static 27 celcius    
VOut4    
0 3   
    
// Temperature B 
// Static 27 celcius    
VOut5    
0 3   
    
// 2.5V reference   
// Static 2.5 V    
VOut6    
0 2.5   
    
// Fan PW    
PWM0    
0 0.2   
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Example test log 
 
 
Test run log file /local/example.log 

Date: 2011-10-20 13:07;39 

Time VOut0 VOut1 VOut2 VOut3 VOut4 VOut5 VOut6 PWM0 PA PC PD 

0 2 2 2.889 3 3 3 2.5 0.2 0xFF 0x03 0x08 

1 2 2 2.889 3 3 3 2.5 0.2 0xFF 0x03 0x0C 

1.0642 2 2 2.889 3 3 3 2.5 0.2 0x01 0x02 0x0C 

1.0938 2 2 2.889 3 3 3 2.5 0.2 0x05 0x02 0x0C 

1.1026 2 2 2.889 3 3 3 2.5 0.2 0x7D 0x02 0x0C 

1.2044 2 2 2.889 3 3 3 2.5 0.2 0x79 0x02 0x0C 

2.0098 2 2 2.889 3 3 3 2.5 0.2 0x01 0x02 0x0C 

2.0398 2 2 2.889 3 3 3 2.5 0.2 0x21 0x02 0x0C 

2.0996 2 2 2.889 3 3 3 2.5 0.2 0x01 0x02 0x0C 

2.1114 2 2 2.889 3 3 3 2.5 0.2 0x11 0x02 0x0C 

2.1614 2 2 2.889 3 3 3 2.5 0.2 0x31 0x02 0x0C 

2.2322 2 2 2.889 3 3 3 2.5 0.2 0x11 0x02 0x0C 

... ... ... ... ... ... ... ... ... ... ... ... 

22.298 2 2 2.889 3 3 3 2.5 0.2 0x91 0x02 0x0C 

23.2864 2 2 2.889 3 3 3 2.5 0.2 0x81 0x02 0x0C 

24.2948 2 2 2.889 3 3 3 2.5 0.2 0x91 0x02 0x0C 

25 2 2 2.889 3 3 3 2.5 0.2 0x91 0x02 0x0C 

25.3032 1.99 2 2.889 3 3 3 2.5 0.2 0x81 0x02 0x0C 

26.0184 1.966 2 2.889 3 3 3 2.5 0.2 0xA1 0x02 0x0C 

26.3118 1.957 2 2.889 3 3 3 2.5 0.2 0xB1 0x02 0x0C 

27 1.934 2 2.889 3 3 3 2.5 0.2 0xB1 0x02 0x0C 

27.3202 1.923 2 2.925 2.965 3 3 2.5 0.2 0xA1 0x02 0x0C 

28 1.901 2 3 2.889 3 3 2.5 0.2 0xA1 0x02 0x0C 

28.3286 1.912 2 3 2.889 3 3 2.5 0.2 0xB1 0x02 0x0C 

29.3372 1.945 2 3 2.889 3 3 2.5 0.2 0xA1 0x02 0x0C 

30.3456 1.978 2 3 2.889 3 3 2.5 0.2 0xB1 0x02 0x0C 

31.354 2.012 2 3 2.889 3 3 2.5 0.2 0xA1 0x02 0x0C 

32.2708 2.042 2 3 2.889 3 3 2.5 0.2 0x81 0x02 0x0C 

32.3624 2.045 2 3 2.889 3 3 2.5 0.2 0x91 0x02 0x0C 

33.371 2.078 2 3 2.889 3 3 2.5 0.2 0x81 0x02 0x0C 

34 2.099 2 3 2.889 3 3 2.5 0.2 0x81 0x02 0x0C 

34.3794 2.099 2 3 2.889 3 3 2.5 0.2 0x91 0x02 0x0C 

35 2.099 2 3 2.889 3 3 2.5 0.2 0x91 0x02 0x08 



Appendix 10 

 

 

Example test log graphs 
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